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Abstract: In this paper a system of partial differential equations, that can be used
to describe the drug release from a biodegradable viscoelastic polymeric platform,
is studied from analytical and numerical point of view. The system is defined in
a moving boundary domain and its stability is analysed. From numerical point of
view, a numerical method is proposed and their convergence properties are estab-
lished. In the context of the drug release from biodegradable polymeric platforms,
the qualitative behaviour of the differential system is numerically illustrated.
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1. Introduction

The drug release from a biodegradable polymeric platform in contact with
a fluid, where a solid drug is initially dispersed, is a cascade of phenomena:

(i) The fluid enters in the polymeric structure;
(ii) The dissolution of the solid drug takes place when the solid drug is in

contact with the fluid;
(iii) The dissolved drug is transported through the polymer to the exterior;
(iv) The polymeric structure degrades.

The mathematical modeling of the drug release from biodegradable or non-
biodegradable polymeric platforms has been object of intense research during
the last years. Without being exhaustive we mention the papers [1], [2],
[8], [9], [10], [11], [17], [18] and [19]. Viscoelastic polymeric platforms were
considered in [8], [9], [10] and [11] where the non-Fickian entrance of the
fluid in the viscoelastic polymeric platforms is combined with the dissolution
process of the solid drug and the diffusion transport of the dissolved drug.
In what concerns the polymeric degradation, it can be one of the two types:

surface or bulk (Figure 1) ([4], [14], [17], [18], [19]). Bulk degradation occurs
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when the degradation is slower than the water uptake. The entirely sys-
tem is rapidly hydrated and polymer chains are cleaved through all polymer
structure. Surface degradation occurs when the degradation is faster than
the entrance of water in the system. The break of polymer chains occurs
mainly in the outermost polymer layer. In this case, the domain changes in
time that introduces new challenges in the mathematical description of the
cascade of phenomena.

Figure 1. Bulk erosion (A) and surface erosion (B) (http :
//openi.nlm.nih.gov/imgs/512/203/3124394/3124394ijn − 6 −
877f3.png)

In [18], Rothstein et al. propose a system of partial differential equations to
describe the drug release from a biodegradable polymeric matrix considering
the Fickian entrance of the fluid in the structure, the evolution of the molec-
ular weight due to the polymeric degradation that occurs due to hydrolysis
reactions, the dissolution of the solid drug and the transport of the dissolved
drug.
In [1], the non-Fickian drug transport through a biodegradable viscoelastic

polymeric platform is studied combining the molecular weight evolution due
to the degradation process ([18]) with the non-Fickian drug transport due
to the viscoelastic nature of the polymeric matrix. Here, it is assumed that
the fluid is in equilibrium, the drug is completely dissolved and the polymer
presents bulk degradation (the spatial domain is fixed).
The aim of this work is to study a system of nonlinear partial differential

equations defined in a two-dimensional moving boundary domain that can be
used to describe the drug release from a biodegradable viscoelastic polymeric
platform, where a solid drug is initially dispersed, involving the cascade of
phenomena (i)-(iv): the non-Fickian fluid uptake, the dissolution of the solid
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drug, the transport of the dissolved drug through the relaxed polymer, the
surface degradation of the polymer. We assume that the erosion is due to
hydrolysis reactions that lead to the reduction in time of the polymeric struc-
ture. We also assume that the mechanical characteristics of polymer chains,
the Young modulus and the viscosity, depend on the polymeric molecular
weight ([15], [20]). Moreover, we follow [6] to specify the moving boundary
velocity considering that it depends on the fluid mass flux. The differential
system is completed with convenient initial and boundary conditions and we
remark that to the best of our knowledge, this system of partial differential
equations was not yet object of any mathematical study. We analyse the sta-
bility of the moving boundary non-linear initial boundary value problem and
we propose a numerical method that will be used to illustrate the qualita-
tive behaviour of the fluid, solid and dissolved drug concentrations as well as
the moving front of the domain. The accuracy of the spatial discretizations
of the non-Fickian fluid uptake and the Fickian dissolved drug transport is
established.
The paper is organized as follows: the system of partial differential equa-

tions is introduced in Section 2 considering the drug release from a biodegrad-
able polymeric platform that is consequence of the cascade of phenomena de-
scribed above. The stability analysis of the initial boundary value problem
defined in a time-varying domain, that is consequence of the erosion process,
is presented in Section 3. Following Oberkampf in [16], in Section 4, the
moving boundary initial value problem is rewritten in a fix domain that is
the basis of the numerical approach followed in Section 5. In this section, an
implicit-explicit numerical scheme is proposed that is considered in Section
6 to illustrate the behaviour of the mathematical model. The convergence
analysis of the discretization of the fluid uptake and the transport of the dis-
solved drug is presented in Section 7. We observe that the uniform boundness
of the fluid approximations, that is concluded using the error estimates, has
an important role in the convergence analysis of the drug approximations.
Finally, in Section 8 we present some conclusions.

2.Mathematical model

We consider a two-dimensional biodegradable viscoelastic polymer
(−ℓ1(t), ℓ1(t)) × (−ℓ2(t), ℓ2(t)) (Figure 2). We assume that initially a solid
drug is homogeneous distributed in the spatial domain and that the fluid
enters through the boundaries x = ±ℓ1(t) and y = ±ℓ2(t). Consequently, it
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is reasonable to assume that the fluid distribution, the solid and dissolved
drug distributions in the spatial domain are symmetric with respect to the
origin. These assumptions allows us to replace (−ℓ1(t), ℓ1(t))× (−ℓ2(t), ℓ2(t))

by Ω(t) = [0, ℓ1(t)] × [0, ℓ2(t)] which is a time-varying domain due to the
polymer surface erosion.

−ℓ1(t)
0 ℓ1(t)

x1

ℓ2(t)

x2

−ℓ2(t)

∂Ω1(t) ∂Ω3(t)

∂Ω2(t)

∂Ω4(t)

Ω(t)

Figure 2. The two-dimensional domain

Let cw(x, t) denotes the fluid concentration at x ∈ Ω(t) at time t. We
consider that the fluid transport through the viscoelastic polymeric platform
is of non-Fickian type (see [10], [11])

∂cw
∂t

= ∇ · (Dw∇cw) +∇ · (Dv∇σ)− kcwM, x ∈ Ω(t), t ∈ (0, T ], (1)

where Dw represents the diffusion tensor of the solvent in the polymeric
matrix, Dv is the viscoelastic diffusion tensor, σ is the stress response of the
matrix to the strain exerted by the incoming molecules of solvent, M is the
molecular weight of the polymer. In (1), −kcwM represents the rate of fluid
consumption in the hydrolysis reactions being k the degradation rate.
As in [18], the evolution of the molecular weight of the polymer due to
hydrolysis reactions that lead to the break of the polymer bonds is described
by

∂M

∂t
= −kcwM, x ∈ Ω(t), t ∈ (0, T ]. (2)

The mechanical behaviour of the viscoelastic polymer, which is specified pre-
scribing the functional relation between the stress σ and strain ǫ, is described
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by
∂σ

∂t
+

E(M)

µ(M)
σ = −E(M)

∂ǫ

∂t
, x ∈ Ω(t), t ∈ (0, T ],

(see [3]). In the last equation, E denotes the Young modulus and µ is the
viscosity that we assume depending on the molecular weight ([15, 20]). As
in [5] or in [7], we assume that ǫ = λcw but we remark that other expressions
ǫ = g(cw) were proposed in [10] and [11]. To simplify, we take λ = 1. Then
the last equation is replaced by

∂σ

∂t
+

E(M)

µ(M)
σ = −E(M)

∂cw
∂t

, x ∈ Ω(t), t ∈ (0, T ]. (3)

The kinetics of the solid drug is described by the partial differential equation

∂cs
∂t

= −
kdis

cs0camxcwout
cs(camx − cd)cw, x ∈ Ω(t), t ∈ (0, T ], (4)

where cs is the concentration of solid drug, cd is the concentration of dissolved
drug, kdis is the dissolution rate, cs0 is the initial concentration of solid drug,
camx is maximum solubility and cwout is the concentration of water outside of
the polymer matrix ([18]). Finally, the dissolved drug transport through the
polymer matrix is described by

∂cd
∂t

= ∇ · (D(M)∇cd)

+
kdis

cs0camxcwout
cs(camx − cd)cw, x ∈ Ω(t), t ∈ (0, T ], (5)

where D(M) is the diffusion tensor of the dissolved drug that depends on
the molecular weight and is given by

D(M) = D0e
k̄
M0−M

M0 ,

where D0 is diffusion tensor of the drug in the non-hydrolyzed polymer, k̄ is
a positive constant, M0 is the initial polymeric molecular weight (see in [19]).
As initially we do not have any fluid in the polymer and we have only

solid drug, then the differential system (1)-(5) is completed with the initial
conditions

cw(0) = 0, σ(0) = σ0,M(0) = M0, cs(0) = cs0, cd(0) = 0, in Ω(0), (6)

where σ0 represents the initial stress of the molecules of polymer.
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Let Jw(t) be the fluid flux

Jw(t) = −Dw∇cw(t)−Dv∇σ(t).

As we mentioned before, the symmetric conditions on ∂Ωi(t), i = 1, 2, are
mathematically rewritten in the following form

∇σ.ν = ∇cw.ν = ∇cd.ν = 0, x ∈ ∂Ω1(t) ∪ ∂Ω2(t), t ∈ (0, T ], (7)

where ν is the exterior unit normal Ω(t) on ∂Ω1(t) ∪ ∂Ω2(t).
In what follows we assume that the fluid enters into the polymer through
to the boundary ∂Ω3(t) ∪ ∂Ω4(t) and its entrance depends on the boundary
permeabilityAc and on the difference between the outside fluid concentration
cwout and the fluid concentration at the boundary, that is

Jw(t).νi = Ac(cw − cwout), x ∈ ∂Ωi+2(t), t ∈ (0, T ], (8)

where νi is the exterior unit normal to Ω(t) on ∂Ωi+2(t), i = 1, 2.
All the dissolved drug that attains the boundaries ∂Ω3(t) ∪ ∂Ω4(t) is imme-
diately removed, that is

cd = 0, x ∈ ∂Ω3(t) ∪ ∂Ω4(t), t ∈ (0, T ]. (9)

To close the initial boundary value problem (1)-(5) and (6)-(9) we need to
specify the front degradation speed. In this work we consider a condition
analogous to the one proposed by Patel in [6] for each side of the domain
Ω(t) :

dℓi
dt

=
1

ℓi+1(t)

∫ ℓi+1(t)

0

Jw(t).νidxi+1, t ∈ (0, T ], i = 1, 2, (10)

where, x3 = x1, ℓ3 = ℓ1 and ν1 and ν2 denote the unitary exterior normal to
Ω(t) on ∂Ω3(t) and ∂Ω4(t), respectively, t ∈ (0, T ].
The previous boundary conditions are summarized as follows:






















∇σ.ν = 0,∇cw.ν = 0,∇cd.ν = 0 , x ∈ ∂Ω1(t) ∪ ∂Ω2(t), t ∈ (0, T ],

Jw(t).ν = Ac(cw − cwout), cd = 0, x ∈ ∂Ω3(t) ∪ ∂Ω4(t), t ∈ (0, T ],

dℓi
dt

=
1

ℓi+1(t)

∫ ℓi+1(t)

0

Jw(t).νi dxi+1, t ∈ (0, T ], i = 1, 2.

(11)
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3. Stability analysis

In order to simplify the presentation, we assume in what follows that E, µ
and the diffusion coefficient D are constant. Moreover, to study the stability
of the initial boundary value problem (1)-(5), (6) and (11), an assumption
needs to be considered in the moving front velocity.
Due to surface erosion, the degradation moving front is a decreasing function
in time, then is acceptable to impose that ℓ1(t) and ℓ2(t) are a decreasing
functions in time and their derivatives are negative. As we imposed the
condition (10) and (8) also holds, then

dℓi
dt

=
1

ℓi+1(t)

∫ ℓi+1(t)

0

Ac(cw − cwout) dxi+1, t ∈ (0, T ], i = 1, 2. (12)

Phenomenologically, we have cw less than cwout at the degradation front, and
then

−Accwout ≤ Ac(cw(t)− cwout) < 0,

being the last inequality converted in equality only when fluid is in equilib-
rium. It is then physically acceptable to assume that ℓi(t), i = 1, 2, satisfy
the following assumption:

Assumption 3.1. There exists small enough γi, i = 1, 2, positive constants
such that

ℓ′i(t) ≤ −γi, t ∈ (0, T ], i = 1, 2.

In L2(Ω(t)) we consider the usual inner product

(u, v)Ω(t) =

∫

Ω(t)

uvdx, u, v ∈ L2(Ω(t)),

and the corresponding norm is denoted by ‖.‖Ω(t). If Γ(t) is a part of the
boundary ∂Ω(t), then in L2(Γ(t)) we consider the usual inner product

(u, v)Γ(t) =

∫

Γ(t)

u(s)v(s)ds, u, v ∈ L2(Γ(t)),

being ‖.‖Γ(t) the corresponding norm.
ByH1

Γ(t)(Ω(t)) we denote the space of functions inH1(Ω(t)) null on Γ(t), for

t ∈ (0, T ]. For C(t) =
(

cw(t),M(t), cs(t), cd(t)
)

we use the notation
dC

dt
(t) =

(dcw
dt

(t),
dM

dt
(t),

dcs
dt

(t),
dcd
dt

(t)
)

.
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To gain some insight on the stability behaviour of the initial value problem
(1)-(9), in what follows we study the stability of the linearization of (1)-
(5) for small and large times. In order to do that, we introduce now the
linearization of the previous problem in c̃w, M̃ , c̃d and c̃s which is written in
the following form

∂cw
∂t

= ∇ · (Dw∇cw) +∇ · (Dv∇σ)− kc̃wM − kM̃cw, (13)

∂M

∂t
= −kc̃wM − kM̃cw, (14)

∂σ

∂t
+

E

µ
σ = −E

∂cw
∂t

, (15)

∂cs
∂t

= −K
(

(camx − c̃d)c̃wcs − c̃wc̃scd (16)

+ c̃s(camx − c̃d)cw

)

,

∂cd
∂t

= ∇ · (D∇cd) +K
(

(camx − c̃d)c̃wcs (17)

− c̃wc̃scd + c̃s(camx − c̃d)cw

)

,

where K =
kdis

cs0camxcwout
is a constant.

Stability for large times: In the neighborhood of the steady state solu-
tion, the molecular weight decreases and vanishes, the concentration of water
is in equilibrium being cw = cwout, the concentrations of solid and dissolved
drug inside of the polymeric matrix vanish. Then, the steady solution is
given by

c̃w = cwout, c̃d = 0, c̃s = 0, M̃ = 0. (18)

In this case, the stability of (1)-(5) and (11) can be concluded from the
stability of (13)-(17) when (18) is considered, that is

∂cw
∂t

= ∇ · (Dw∇cw) +∇ · (Dv∇σ)− kcwoutM,x ∈ Ω(t), t ∈ (0, T ], (19)

∂M

∂t
= −kcwoutM, x ∈ Ω(t), t ∈ (0, T ], (20)

∂σ

∂t
+

E

µ
σ = −E

∂cw
∂t

, x ∈ Ω(t), t ∈ (0, T ], (21)
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∂cs
∂t

= −
kdis
cs0

cs, x ∈ Ω(t), t ∈ (0, T ], (22)

∂cd
∂t

= ∇ · (D∇cd) +
kdis
cs0

cs, x ∈ Ω(t), t ∈ (0, T ], (23)

with the boundary conditions (11).
We observe that (19)-(23) with (11) is linear. Then its stability can be con-
cluded from energy estimates for the solution C(t) =

(

cw(t),M(t), cs(t), cd(t)
)

.
In our analysis we use the integral representation of the stress σ

σ(t) =
E2

µ

∫ t

0

e−
E
µ
(t−s)cw(s)ds − Ecw(t) + Ecw(0)e

−E
µ
t

+ σ(0)e−
E
µ
t, t ≥ 0, (24)

that allows to obtain an useful equivalent representation for (19) and (21)

∂cw
∂t

= ∇ · (D1∇cw) +

∫ t

0

e−
E
µ
(t−s)∇ · (D2∇cw(s))ds− kcwoutM

+ Ee−
E
µ
t∇.(Dv∇cw(0)) + e−

E
µ
t∇.(Dv∇σ(0)), (25)

where

σ(0) = Constant, D1 = Dw − EDv, D2 =
E2

µ
Dv.

Then the differential problem (19)-(23) with the boundary conditions (11)
is replaced by the equivalent differential problem (20), (22), (23) and (25)
complemented with the boundary conditions















∇σ.ν = 0, ∇cw.ν = 0, ∇cd.ν = 0 on ∂Ω1(t) ∪ ∂Ω2(t), t ∈ (0, T ],
Jw(t).ν = Accw, cd = 0 on ∂Ω3(t) ∪ ∂Ω4(t), t ∈ (0, T ],

dℓi
dt

(t) =
1

ℓi+1(t)

∫ ℓi+1(t)

0

Jw(t).νi dxi+1, t ∈ (0, T ], i = 1, 2,

(26)

where the fluid mass flux Jw(t) is given by

Jw(t) = −D1∇cw −D2

∫ t

0

e−
E
µ
(t−s)∇cw(s)ds,

and the initial condition

cw(0) = cw0,M(0) = M0, cs(0) = cs0, cd(0) = cd0, x ∈ Ω(0). (27)
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In what follows we establish an upper bound for the energy functional

E(t) = E1(t) + E2(t) + E3(t) (28)

where

E1(t) =
∑

p∈{cw,M,cs,cd}

‖p(t)‖2Ω(t), (29)

E2(t) =

∫ t

0

(

‖∇cw(θ)‖
2
Ω(θ) + ‖∇cd(θ)‖

2
Ω(θ)

)

dθ (30)

and

E3(t) =
∑

i=3,4

∑

p∈{cw,M,cs}

∫ t

0

‖p(θ)‖2∂Ωi(θ)
dθ. (31)

In Ei, i = 1, 2, 3, we consider the solution of the following variational problem:
find C(t)∈ H1(Ω(t))×(L2(Ω(t)))2 ×H1

∂Ω3(t)∪∂Ω4(t)
(Ω(t)), t ∈ (0, T ], such that

dC

dt
(t) ∈

(

L2(Ω(t))
)4
, t ∈ (0, T ], and

(dcw
dt

(t), v1

)

Ω(t)
= −(D1∇cw(t),∇v1)Ω(t) −

∫ t

0

e−
E
µ
(t−s)(D2∇cw(θ),∇v1)Ω(θ)dθ

−
∑

i=3,4

(Accw(t), v1)∂Ωi(t) − kcwout(M(t), v1)Ω(t)

+ e−
E
µ
tE(∇ · (Dv∇cw(0)), v1)Ω(t), ∀v1 ∈ H1(Ω(t)),

(32)

(dM

dt
(t), v2

)

Ω(t)
= −kcwout(M(t), v2)Ω(t), ∀v2 ∈ L2(Ω(t)), (33)

(dcs
dt

(t), v3

)

Ω(t)
= −

kdis
cs0

(cs(t), v3)Ω(t), ∀v3 ∈ L2(Ω(t)), (34)

(dcd
dt

(t), v4

)

Ω(t)
= −(D∇cd(t),∇v4)Ω(t) +

kdis
cs0

(cs(t), v4)Ω(t), (35)

∀v4 ∈ H1
∂Ω3(t)∪∂Ω4(t)

(Ω(t)), (36)

for t ∈ (0, T ].
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To give sense to (32) we need to impose that cw(0) ∈ H2(Ω(t)), t ∈ [0, T ]
and conditions (27) hold in the following sense

(cw(0), w)Ω(0) = (cw0, w)Ω(0), ∀w ∈ L2(Ω(0)),
(M(0), m)Ω(0) = (M0, m)Ω(0), ∀m ∈ L2(Ω(0)),
(cs(0), sd)Ω(0) = (cs0, sd)Ω(0), ∀sd ∈ L2(Ω(0)),
(cd(0), fd)Ω(0) = (cd0, fd)Ω(0), ∀fd ∈ L2(Ω(0)).

Taking in (32)-(35), v1 = cw, v2 = M, v3 = cs and v4 = cd, and using the
fact that

d

dt

∫

Ω(t)

g(x1, x2, t)dx1dx2 = ℓ′2(t)

∫ ℓ1(t)

0

g(x1, ℓ2(t), t)dx1

+ℓ′1(t)

∫ ℓ2(t)

0

g(ℓ1(t), x2, t)dx2 +

∫

Ω(t)

∂g

∂t
(x1, x2, t)dx1dx2,

we easily obtain

1

2

d

dt
‖cw(t)‖

2
Ω(t) −

1

2

∑

i=3,4

ℓ′i−2(t)‖cw(t)‖
2
∂Ωi(t)

= −(D1∇cw(t),∇cw(t))Ω(t)

−

∫ t

0

e−
E
µ
(t−s)(D2∇cw(θ),∇cw(θ))Ω(θ)dθ

−
∑

i=3,4

Ac‖cw(t)‖
2
∂Ωi(t)

+ e−
E
µ
tE(∇ · (Dv∇cw(0)), cw(t))Ω(t)

− kcwout(M(t), cw(t))Ω(t), (37)

1

2

d

dt
‖M(t)‖2Ω(t) −

1

2

∑

i=3,4

ℓ′i−2(t)‖M(t)‖2∂Ωi(t)
= −kcwout‖M(t)‖2Ω(t), (38)

1

2

d

dt
‖cs(t)‖

2
Ω(t) −

1

2

∑

i=3,4

ℓ′i−2(t)‖cs(t)‖
2
∂Ωi(t)

= −
kdis
cs0

‖cs(t)‖
2
Ω(t), (39)
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and

1

2

d

dt
‖cd(t)‖

2
Ω(t) −

1

2

∑

i=3,4

ℓ′i−2(t)‖cd(t)‖
2
∂Ωi(t)

(40)

= −(D∇cd(t),∇cd(t))Ω(t) +
kdis
cs0

(cd(t), cs(t)),

where ‖cd(t)‖
2
∂Ωi(t)

= 0, for i = 3, 4.
It is easy to show that

−

∫ t

0

e−
E
µ
(t−s)(D2∇cw(θ),∇cw(t))Ω(θ)dθ ≤ ǫ21‖∇cw(t)‖

2
Ω(t) (41)

+
D2

2µ

8ǫ21E

∫ t

0

‖∇cw(θ)‖
2
Ω(θ)dθ,

e−
E
µ
tE(∇ · (Dv∇cw(0)), cw(t))Ω(t) ≤ 1

4ǫ22
e−2E

µ
t
(

E2‖∇ · (Dv∇cw(0))‖
2
Ω(0)

)

+ǫ22‖cw(t)‖
2
Ω(t), (42)

kcwout(M(t), cw(t))Ω(t) ≤ k2c2woutǫ
2
3‖cw(t)‖

2
Ω(t) +

1

4ǫ23
‖M(t)‖2Ω(t), (43)

γi−2

2
‖cw(t)‖

2
∂Ωi(t)

≤
ℓ′i−2(t)

2
‖cw(t)‖

2
∂Ωi(t)

, i = 3, 4, (44)

and

kdis
cs0

(cd(t), cs(t)) ≤
k2dis
cs

2
0

ǫ24‖cs(t)‖
2
Ω(t) +

1

4ǫ24
‖cd(t)‖

2
Ω(t), (45)

where ǫi 6= 0, i = 1, . . . , 4.
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Summing up (37)-(40) and taking into account that (41)-(45) we obtain

d

dt
E1(t) + 2(D1 − ǫ21)‖∇cw(t)‖

2
Ω(t) + 2D‖∇cd(t)‖

2
Ω(t)

+ min{γ1, γ2, Ac}
∑

i=3,4

∑

p∈{cw,M,cs}

‖p(t)‖2∂Ωi(t)

≤
D2

2µ

4ǫ21E

∫ t

0

‖∇cw(θ)‖
2
Ω(θ)dθ (46)

+
(

2ǫ22 + 2ǫ23k
2c2wout

)

‖cw(t)‖
2
Ω(t)

+
1

2ǫ24
‖cd(t)‖

2
Ω(t) +

(2k2dis
cs20

ǫ24 −
2kdis
cs0

)

‖cs(t)‖
2
Ω(t)

+
( 1

2ǫ23
− 2kcwout

)

‖M(t)‖2Ω(t)

+
1

2ǫ22
e−2E

µ
tE2‖∇ · (Dv∇cw(0))

∥

∥

∥

2

Ω(0)
.

If we fix ǫ1 satisfying D1 − ǫ21 > 0, then

E(t) ≤ c

∫ t

0

E(s)ds

+
1

min
{

1, 2(D1 − ǫ21), 2D, γ1, γ2, Ac

}

(µE

4ǫ22

∥

∥

∥
∇ · (Dv∇cw(0)‖

2
Ω(0) + E1(0)

)

,

where c is given by

c =
max

{

D2
2µ

4ǫ21E
, ( 1

2ǫ23
− 2kcwout), (

2k2disǫ
2
4

CS
2
0

− 2kdis
CS0

), (2ǫ22 + 2ǫ23k
2c2wout),

1
2ǫ24

}

min
{

1, 2(D1 − ǫ21), 2D, γ1, γ2, Ac

} . (47)

Finally by using Gronwall’s Lemma ([13]) we conclude the following result:

Theorem 1. Under Assumption 3.1, if the solution C = (cw,M, cs, cd) of the
variational problem (32)-(35) and (27) belongs to

C1
(

[0, T ],
(

L2(Ω(t))
)4)

∩C0
(

[0, T ], H1(Ω(t))×
(

L2(Ω(t))
)2
×H1

∂Ω3(t)∪∂Ω4(t)
(Ω(t))

)
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cw,M, cs ∈ C0
(

[0, T ], L2(∂Ωi(t))
)

, i = 3, 4, and cw(0) ∈ H2(Ω(0)), then there

exist two positive constants Ci, i = 1, 2, such that

E(t) ≤ C1

(

‖∇ · (Dv∇cw(0))‖
2
Ω(0) + E1(0)

)

eC2t, t ∈ [0, T ].

Stability for short times: For small times, the concentration of water
and dissolved drug is very small so we consider

c̃w = 0, c̃d = 0, c̃s = cs0, M̃ = M0. (48)

So the stability of the differential system (1)-(5) for small times can be con-
cluded from the stability of (13)-(17) when (48) is considered, that is, from
the linear differential problem

∂cw
∂t

= ∇ · (Dw∇cw) +∇ · (Dv∇σ)− kM0cw, x ∈ Ω(t), t ∈ (0, T ], (49)

∂M

∂t
= −kM0cw, x ∈ Ω(t), t ∈ (0, T ], (50)

∂σ

∂t
+

E

µ
σ = −E

∂cw
∂t

, x ∈ Ω(t), t ∈ (0, T ], (51)

∂cs
∂t

= −
kdis
cwout

cw, x ∈ Ω(t), t ∈ (0, T ], (52)

∂cd
∂t

= ∇ · (D∇cd) +
kdis
cwout

cw, x ∈ Ω(t), t ∈ (0, T ]. (53)

In what follows we use the energy method to analyze the stability be-
haviour of the (49)-(53) with the initial and boundary conditions (27) and
(26), respectively. We start by remarking that from equation (24) and (49)
we obtain the following equation for cw

∂cw
∂t

= ∇ · (D1∇cw) +

∫ t

0

e−
E
µ
(t−s)∇ · (D2∇cw(s))ds− kM0cw

+ Ee−
E
µ
t∇.(Dv∇cw(0)), x ∈ Ω(t), t ∈ (0, T ]. (54)

The energy estimate is established for the solution of the variational prob-
lem: find

C(t) = (cw(t),M(t), cs(t), cd(t)) ∈ H1(Ω(t))×
(

L2(Ω(t))
)2
×H1

∂Ω3(t)∪∂Ω4(t)
(Ω(t))
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and
dC

dt
(t) ∈

(

L2(Ω(t))
)4
, t ∈ (0, T ], such that

(
dcw
dt

(t), v1)Ω(t) = −(D1∇cw(t),∇v1)Ω(t) −

∫ t

0

e−
E
µ
(t−s)(D2∇cw(s),∇v1)Ω(s)ds

−
∑

i=3,4

(Accw(t), v1)∂Ωi(t) − kM0(cw(t), v1)Ω(t)

+ e−
E
µ
tE(∇ · (Dv∇cw(0)), v1)Ω(t), ∀v1 ∈ H1(Ω(t)),

(55)

(
dM

dt
(t), v2)Ω(t) = −kM0(cw(t), v2)Ω(t), ∀v2 ∈ L2(Ω(t)), (56)

(
dcs
dt

(t), v3)Ω(t) = −
kdis
cwout

(cw(t), v3)Ω(t), ∀v3 ∈ L2(Ω(t)), (57)

(
dcd
dt

(t), v4)Ω(t) = −(D∇cd(t),∇v4)Ω(t) +
kdis
cwout

(cw(t), v4)Ω(t), (58)

∀v4 ∈ H1
0(Ω(t)), (59)

for t ∈ (0, T ], with the initial condition (27).
Following the proof of Theorem 1, it can be shown the following result:

Theorem 2. Under Assumption 3.1, if the solution C = (cw,M, cs, cd) of the
variational problem (55)-(58) and (27) belongs to

C1
(

[0, T ],
(

L2(Ω(t))
)4)

∩C0
(

[0, T ], H1(Ω(t))×
(

L2(Ω(t))
)2
×H1

∂Ω3(t)∪∂Ω4(t)
(Ω(t))

)

cw,M, cs ∈ C0
(

[0, T ], L2(∂Ωi(t))
)

, i = 3, 4, and cw(0) ∈ H2(Ω(0)), then there

exist two positive constants Ci, i = 1, 2, such that

E(t) ≤ C1

(

‖∇ · (Dv∇cw(0))‖
2
Ω(0) + E1(0)

)

eC2t, t ∈ [0, T ].

Theorems 1 and 2 allow us to conclude the stability of the linearization of
the initial boundary value problem (1)-(9) in the large and short times for
bounded time intervals.



16 E. AZHDARI, A. EMAMI AND J.A. FERREIRA

4. Tracking the degradation fronts

In what follows we rewrite the IBVP (1)-(6) and (11) in a fixed domain
Ω = [0, 1] × [0, 1] considering a convenient coordinate transformation. Let
(ξ, η) ∈ Ω be the new space variables. Following Oberkampf in [16] we take

ξ =
x1

ℓ1(t)
, η =

x2

ℓ2(t)
.

We observe that if φ(ξ, η, t) = φ(x1, x2, t) then we have

∂φ

∂ξ
(ξ, η, t) = ℓ1(t)

∂φ

∂x1
(x1, x2, t),

∂φ

∂η
(ξ, η, t) = ℓ2(t)

∂φ

∂x2
(x1, x2, t), (60)

and

∂φ

∂t
(x1, x2, t) =

∂φ

∂t
(ξ, η, t)− ξ

ℓ′1(t)

ℓ1(t)

∂φ

∂ξ
(ξ, η, t)− η

ℓ′2(t)

ℓ2(t)

∂φ

∂η
(ξ, η, t). (61)

We use ∇ξ,η to denote the gradient operator with respect to the new variables
and ∂Ω1 = {(0, η), η ∈ (0, 1)}, ∂Ω2 = {(ξ, 0), ξ ∈ (0, 1)}, ∂Ω3 = {(1, η), η ∈
(0, 1)} and ∂Ω4 = {(ξ, 1), ξ ∈ (0, 1)}.
To simplify, we use the same notation for the dependent variables defined
now in the fixed domain. Considering the last relations (60) and (61), the
IBVP (1)-(6) and (11) is now rewritten in the fixed domain Ω as follows:

∂cw
∂t

= ∇ξ,η.
(

DwL1∇ξ,ηcw

)

+∇ξ,η.
(

DvL1∇ξ,ησ
)

+L2∇ξ,ηcw − kcwM in Ω× (0, T ], (62)

where L1 and L2 are diagonal matrices with entries
1

ℓ2i
, i = 1, 2, and

ℓ′1
ℓ1
ξ,

ℓ′2
ℓ2
η,

respectively,

∂M

∂t
= L2∇ξ,ηM − kcwM in Ω× (0, T ], (63)

∂σ

∂t
+

E(M)

µ(M)
σ = E(M)L2∇ξ,ηcw + L2∇ξ,ησ − E(M)

∂cw
∂t

in Ω× (0, T ], (64)

∂cs
∂t

= L2∇ξ,ηcs −
kdis

cs0camxcwout
cs(camx − cd)cw in Ω× (0, T ], (65)
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∂cd
∂t

= ∇ξ,η.
(

D(M)L1∇ξ,ηcd

)

+ L2∇ξ,ηcd

+
kdis

cs0camxcwout
cs(camx − cd)cw in Ω× (0, T ], (66)

cw(0) = 0, σ(0) = σ0,M(0) = M0, cs(0) = cs0, cd(0) = 0 in Ω, (67)

and






























∇ξ,ησ.ν = 0, ∇ξ,ηcw.ν = 0, ∇ξ,ηcd.ν = 0 on (∂Ω1 ∪ ∂Ω2)× (0, T ],
Jwξ,η(t).ν = ℓν(t)Ac(cw − cwout), cd = 0 on (∂Ω3 ∪ ∂Ω4)× (0, T ],
dℓ1
dt

=
1

ℓ1(t)

∫ 1

0

Jwξ,η(1, η).ν1 dη, t ∈ (0, T ],

dℓ2
dt

=
1

ℓ2(t)

∫ 1

0

Jwξ,η(ξ, 1).ν2 dξ, t ∈ (0, T ],

(68)

respectively, where Jwξ,η(t) = −Dw∇ξ,ηcw −Dv∇ξ,ησ and ℓνi = ℓi(t), i = 1, 2.
As before, from the third and last equations of (68), we have

dℓ1
dt

=
1

ℓ1(t)

∫ 1

0

Ac(cw(1, η)− cwout) dη, t ∈ (0, T ], (69)

dℓ2
dt

=
1

ℓ2(t)

∫ 1

0

Ac(cw(ξ, 1)− cwout) dξ, t ∈ (0, T ]. (70)

5. Numerical scheme

In this section we propose a coupled Implicit-Explicit (IMEX) method to
solve the initial boundary value problem (62)-(68).
In [0, T ] we consider the grid {tn, n = 0, . . . ,M}, with t0 = 0, tM = T and

tn − tn−1 = ∆t. We fix ∆ξ = ∆η = h > 0, and we define in Ω the grid

Ωh = {(ξi, ηj), i, j = 0, . . . , N, ξ0, η0 = 0, ξN , ηN = 1, ξi − ξi−1 = h,

ηj − ηj−1 = h, i, j = 1, . . . , N}.

As we are dealing with an initial boundary problem with boundary conditions
on the spatial derivatives defined on the boundary, and to obtain discrete
approximations with higher precision, we introduce the auxiliary points ξ−1 =
−h = η−1, ξN+1 = ηN+1 = 1 + h. Let Ω

∗

h be the set of grid points defined

by Ω
∗

h = Ωh ∪ {(ξr, ηj), (ξj, ηr), r = −1, N + 1, j = 0, . . . , N}. The space of

grid functions defined in Ωh (or Ω
∗
h) is represented by Wh (or W ∗

h). Let D−ξ

and D−η be the backward finite difference operators in ξ and η directions,
respectively. By Dξ and Dη we denote the forward finite difference operators
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in ξ and η directions, respectively. By D2,ξ we represent the second order
finite difference operator

D2,ξuh(ξi, ηj) =
1

h2

(

uh(ξi+1, ηj)− 2uh(ξi, ηj) + uh(ξi−1, ηj)
)

,

for i, j = 0, . . . , N and uh ∈ W ∗
h . The operator D2,η is defined analogously.

By Dc,ξ we denote the first order finite difference operator

Dc,ξuh(ξi, ηj) =
1

2h

(

uh(ξi+1, ηj)− uh(ξi−1, ηj)
)

,

for i, j = 0, . . . , N, uh ∈ W ∗
h . The operator Dc,η is defined analogously. We

also need to introduce the average operator

Ah,ξuh(ξi, ηj) =
1

2
(uh(ξi−1, ηj) + uh(ξi, ηj)),

being Ah,η defined analogously.
To simplify the presentation we consider the following notation: for uh ∈

W ∗
h we consider ∆huh = (D2,ξuh, D2,ηuh), ∇c,huh = (Dc,ξuh, Dc,ηuh).
Discretizing the spatial derivatives of (62)-(66) using the introduced finite

difference operators, we obtain the following semi-discrete initial value prob-
lem

dcw,h
dt

(t) = DwL1∆hcw,h(t) +DvL1∆hσh(t)

+ L2,h∇c,hcw,h(t)− kcw,h(t)Mh(t), (71)

where L2,h is the diagonal matrix with diagonal entries
ℓ′1
ℓ1
ah,

ℓ′2
ℓ2
bh with ah(ξi, ηj) =

ξi and bh(ξi, ηj) = ηj,

dMh

dt
(t) = L2,h∇c,hMh(t)− kcw,h(t)Mh(t), (72)

dσh

dt
(t) +

E(Mh(t))

µ(Mh(t))
σh(t) = E(Mh(t))L2,h∇c,hcw,h(t) + L2,h∇c,hσh(t)

− E(Mh(t))
dcw,h
dt

(t), (73)

dcs,h
dt

(t) = L2,h∇c,hcs,h(t)−
kdis

cs0camxcwout
cs,h(t)(camx − cd,h(t))cw,h(t), (74)
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dcd,h
dt

(t) = ∇−h.
(

L1D̂(Mh(t))∇hcd,h(t)
)

+ L2,h∇c,hcd,h(t)

+
kdis

cs0camxcwout
cs,h(t)(camx − cd,h(t))cw,h(t), (75)

where ∇−h = (D−ξ, D−η), ∇h = (Dξ, Dη) and D̂(Mh(t)) is a diagonal matrix
with entries D(Ah,ξMh(t)), D(Ah,ηMh(t)). This ordinary differential problem
is complemented with the boundary conditions






































































Dc,ξσh(0, ηj, t) = 0, Dc,ξcw,h(0, ηj, t) = 0, Dc,ξcd,h(0, ηj, t) = 0, j = 0, . . . , N,
Dc,ησh(ξi, 0, t) = 0, Dc,ηcw,h(ξi, 0, t) = 0, Dc,ηcd,h(ξi, 0, t) = 0, i = 0, . . . , N,
Jh,ξ(1, ηj, t) = Acℓ1(t)(cw,h(1, ηj, t)− cwout), j = 0, . . . , N,
Jh,η(ξi, 1, t) = Acℓ2(t)(cw,h(ξi, 1, t)− cwout), i = 0, . . . , N,

cd,h(ξi, ηj, t) = 0, i = N, j = 0, . . . , N, i = 0, . . . , N − 1, j = N,

dℓ1
dt

=
1

ℓ1(t)
Ac

(

h
(1

2
cw,h(1, 0, t) +

N−1
∑

j=1

cw,h(1, ηj, t) +
1

2
cw,h(1, 1, t)

)

− cwout

)

,

dℓ2
dt

=
1

ℓ2(t)
Ac

(

h
(1

2
cw,h(0, 1, t) +

N−1
∑

i=1

cw,h(ξi, 1, t) +
1

2
cw,h(1, 1, t)

)

− cwout

)

,

(76)
for t ∈ (0, T ], and the following initial conditions

cw,h(0) = 0, σh(0) = σ0,h,Mh(0) = M0,h, cs,h(0) = c0,s,h, cd,h(0) = 0 in Ωh.
(77)

In (76) the following notation was used

Jh,ξ(1, ηj, t) = −DwDc,ξcw,h(1, ηj, t)−DvDc,ξσh(1, ηj, t),

and

Jh,η(ξi, 1, t) = −DwDc,ηcw,h(ξi, 1, t)−DvDc,ησh(ξi, 1, t).

The IMEX method is now obtained integrating the last semi-discrete prob-
lem using the implicit-explicit Euler’s method that leads to

cn+1
w,h − cnw,h

∆t
= DwL1(tn)∆hc

n+1
w,h +DvL1(tn)∆hσ

n
h

+ Ln+1,n
2,h ∇c,hc

n+1
w,h − kcnw,hM

n
h , (78)
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where Ln+1,n
2,h is the diagonal matrix with entries

ℓn+1
1 − ℓn1
∆tℓn1

ah and
ℓn+1
2 − ℓn2
∆tℓn2

bh,

Mn+1
h −Mn

h

∆t
= Ln+1,n

2,h ∇c,hM
n
h − kcn+1

w,h M
n
h , (79)

σn+1
h − σn

h

∆t
+

E(Mn+1
h )

µ(Mn+1
h )

σn
h = E(Mn+1

h )Ln+1,n
2,h ∇c,hc

n+1
w,h + Ln+1,n

2,h ∇c,hσ
n
h

− E(Mn+1
h )

cn+1
w,h − cnw,h

∆t
, (80)

cn+1
s,h − cns,h

∆t
= Ln+1,n

2,h ∇c,hc
n
s,h −

kdis
cs0camxcwout

cns,h(camx − cnd,h)c
n+1
w,h , (81)

cn+1
d,h − cnd,h

∆t
= ∇−h.

(

L1(tn)D̂(Mn+1
h )∇hc

n+1
d,h

)

+ Ln+1,n
2,h ∇c,hc

n+1
d,h

+
kdis

cs0camxcwout
cn+1
s,h (camx − cnd,h)c

n+1
w,h , (82)

for n = 0, . . . ,M − 1, complemented with the boundary conditions, for p =
0, . . . ,M − 1,










































































Dc,ξσ
p
h(0, ηj) = 0, Dc,ξc

p
w,h(0, ηj) = 0, Dc,ξc

p
d,h(0, ηj) = 0, j = 0, . . . , N,

Dc,ησ
p
h(ξi, 0) = 0, Dc,ηc

p
w,h(ξi, 0) = 0, Dc,ηc

p
d,h(ξi, 0) = 0, i = 0, . . . , N,

Jp
h,ξ(1, ηj) = Acℓ

p
1(c

p
w,h(1, ηj)− cwout), j = 0, . . . , N,

Jp
h,η(ξi, 1) = Acℓ

p
2(c

p
w,h(ξi, 1)− cwout), i = 0, . . . , N,

cpd,h(ξi, ηj) = 0, i = N, j = 0, . . . , N, i = 0, . . . , N − 1, j = N,

ℓp+1
1 − ℓp1
∆t

=
1

ℓp1
Ac

(

h
(1

2
cpw,h(1, 0) +

N−1
∑

j=1

cpw,h(1, ηj) +
1

2
cpw,h(1, 1)

)

− cwout

)

,

ℓp+1
2 − ℓp2
∆t

=
1

ℓp2
Ac

(

h
(1

2
cpw,h(0, 1) +

N−1
∑

i=1

cpw,h(ξi, 1) +
1

2
cpw,h(1, 1)

)

− cwout

)

,

(83)
and with initial conditions

c0w,h = 0, σ0
h = σ0,h,M

0
h = M0,h, c

0
s,h = c0,s,h, c

0
d,h = 0 in Ωh. (84)
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In (83)

Jp
h,ξ(1, ηj) = −DwDc,ξc

p
w,h(1, ηj)−DvDc,ξσ

p
h(1, ηj),

and

Jp
h,η(ξi, 1) = −DwDc,ηc

p
w,h(ξi, 1)−DvDc,ησ

p
h(ξi, 1).

6. Numerical Results

In what follows we exhibit some numerical results for the initial-boundary
value problem (62)-(68) using the method (78)-(84). The following values for
the parameters have been considered:

Dw = 4.61× 10−2mm2/s, Dv = 10−4mol/(mm.s.Pa) cwout = 5.55× 10−1mol/mm3

σ0 = 5× 10−2Pa Ac = 10−2mm/s M0 = 8.3× 10−2Da
k = 1× 10−21/s cs0 = 288.42× 10−2mol/mm3 kdis = 4.6× 10−2mol/(mm3.s)
camx = 2.184× 10−2mol/mm3 DA = 5.94× 10−2mm2/s E0 = 10−4Pa
µ0 = 1× 10−1Pa.s α = 2× 10−1 β = 7× 10−1

In Figure 3 we plot the concentration of the water as it diffuses into the
polymeric matrix at T = 0.5, T = 4, T = 30 and T = 65. As expected, we
observe a solution that presents high values in the outermost regions and low
values at the center of the polymer. The shrinking of the polymer is clearly
observed from the last figure.
The behaviour of the dissolved drug is illustrated in Figure 4 where we

include the plots of the cd at T = 0.5, T = 4, T = 30 and T = 65. We
observe that regions where the concentration of the water is high correspond
to regions where the concentration of dissolved drug is also high. The con-
centration of dissolved drug increases at initial times and then decreases due
to the effect of the boundary condition cd = 0 at the external boundary.
In Figure 5 we include plots of the concentration of solid drug cs at T = 0.5,

T = 4, T = 30 and T = 65. From these plots we conclude that the solid
drug concentration decreases as time increases.
Figure 6 intents to illustrate the behaviour of the erosion front in time.

We observe an initial rapid decreasing of the degradation front position.
This fact can be justified by the rapid initial fluid uptake that induces a
rapid decreasing of the polymeric molecular weight and consequently a rapid
decreasing of the domain.
The behaviour of the front position as function of Dv is illustrated in Fig-

ure 7. As Dv increases, increases the position of the degradation front. This
behaviour is physically sound, since an increase in Dv corresponds to an
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Figure 3. Concentration of water, cw, at different times.

increase in the resistance of the polymeric chains to the fluid entrance. Con-
sequently lower decrease in the molecular weight is observed that leads to a
lower decrease in the degradation front position.
By Mw(t), Ms(t) and Md(t) we represent the masses of water, solid drug

and dissolved drug, respectively, inside the polymeric matrix at time t, and
which is given by

Mi(t) =

∫ ℓ2(t)

0

∫ ℓ1(t)

0

ci(t)dxdy,

where i = w, s, d. Let MT (t) represents the dimensionless total mass of drug
released at time t that is defined by

MT (t) = 1−
1

cs0
(Ms(t) +Md(t)).
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Figure 4. Concentration of dissolved drug, cd, for different times.

In Figures 8 and 9 we include the plots of Mw and cw, respectively, for dif-
ferent values of Dv. Figure 8 illustrates the behaviourMw when Dv increases.
As Dv increases, increases the polymeric resistance to the fluid uptake, and
consequently a decreasing in total mass of fluid is absorbed. This behaviour
is highlighted in Figure 9 where we plot the fluid concentration cw at T = 300
for two different values of Dv. An increasing of Dv leads to a decreasing in
the fluid concentration inside the polymeric platform.
To conclude the numerical study of the qualitative behaviour of the IBVP

(1)-(5), (6) and (11), we would like to compare surface erosion with bulk
erosion. To simulate this last situation we consider that ℓi(t), i = 1, 2, are
fixed.
In Figures 10 and 11 we include the plots of Mw and Md, respectively, to

compare the fluid uptake by the polymeric platform and the dissolved drug
in the polymer for both situations: surface and bulk erosions. The amount
of fluid absorbed by the polymer decreases for surface degradation. This fact
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Figure 5. Concentration of solid drug, cs, for different times.
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is consequence of the reduction of the polymeric domain. The dissolved drug
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mass inside of the polymer increases for bulk erosion because increases the
time needed to the dissolved drug to leave the platform.
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7. Error analysis

To justify the behaviour of the numerical method (78)-(84), in what follows
we study the spatial discretization considering only the fluid concentration cw
without the polymeric reaction for the fluid entrance and the dissolved drug
concentration cd. In this scenario, we analyze the convergence behaviour of
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the solution of the differential problem










dcw,h
dt

(ξi, t) = DwD2,ξcw,h(t) + ah(ξi, t)Dc,ξcw,h(ξi, t), i = 0, . . . , N,

Dc,ξcw,h(ξ0, t) = 0, −DwDc,ξcw,h(ξN , t) = α(t)
(

cw,h(ξN , t)− cwout
)

, t ∈ (0, T ],
cw,h(0) = 0,

(85)
coupled with the following differential system



















dcd,h
dt

(ξi, t) = DdD2,ξcd,h(ξi, t) + bh(ξi, t)Dc,ξcd,h(ξi, t)

+(γ1 − γ2cd,h(ξi, t))cw,h(ξi, t), i = 0, . . . , N − 1,
Dc,ξcd,h(ξ0, t) = 0, cd,h(ξN , t) = 0 , t ∈ (0, T ],
cd,h(0) = 0,

(86)

where ah(t), bh(t) : Ωh → R are bounded and γi, i = 1, 2, are positive con-
stants.
For h ≤ h0, let Rh : C([−h0, 1+h0]) → W ∗

h and R̂h : C([−h0, 1]) → W ∗
h,0 be

the restriction operators, where W ∗
h,0 denotes the space of grid functions uh

defined in {ξi, i = −1, . . . , N} and uh(xN) = 0. Let Ew,h(t) = Rhcw(t)−cw,h(t)

and Ed,h(t) = R̂hcd(t) − cd,h(t) be the semi-discretization errors induced by
the spatial discretizations (85) and (86), respectively, and let Tw,h(t) and
Td,h(t) be the corresponding truncation errors. We have


















dEw,h

dt
(ξi, t) = DwD2,ξEw,h(t) + ah(ξi, t)Dc,ξEw,h(ξi, t) + Tw,h(ξi, t), i = 0, . . . , N,

Dc,ξEw,h(ξ0, t) = Tw,lef(t), −DwDc,ξEw,h(ξN , t) = α(t)Ew,h(ξN , t) + Tw,rig(t),
t ∈ (0, T ],

Ew,h(0) = 0,
(87)

and


























dEd,h

dt
(ξi, t) = DdD2,ξEd,h(ξi, t) + bh(ξi, t)Dc,ξEd,h(ξi, t)

+γ1Ew,h(ξi, t)− γ2
(

cd(ξi, t)cw(ξi, t)− cd,h(ξi, t)cw,h(ξi, t)
)

+Td,h(ξi, t), i = 0, . . . , N − 1,
Dc,ξEd,h(ξ0, t) = Td,lef(t), Ed,h(ξN , t) = 0, t ∈ (0, T ],
Ed,h(0) = 0.

(88)

If we assume that cw(t) ∈ C4([−h0, 1 + h0]) and cd(t) ∈ C4([−h0, 1]), then

‖Tℓ,h(t)‖∞ ≤ Ch2, |Tℓ,k(t)| ≤ Ch2, ℓ = w, k = lef, rig, ℓ = d, k = lef. (89)
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In Wh we introduce the inner product

(uh, vh)h =
1

2
h
∑

i=0,N

uh(ξi)vh(ξi) + h

N−1
∑

i=1

uh(ξi)vh(ξi),

and the corresponding norm is denoted by ‖.‖h.We use the following notation

‖D−ξuh‖+ =
(

N
∑

i=1

h(D−ξuh(ξi))
2
)1/2

.

We establish now a result which is an important tool to prove the main
convergence results.

Theorem 3. If uh ∈ W ∗
h then

(D2,ξuh, uh)h = −hDc,ξuh(x0)uh(x0)−‖D−ξuh‖
2
++hDc,ξuh(xN)uh(xN). (90)

In the next result we obtain an estimate for the error Ew,h(t) that will be
used to get an estimate for Ed,h(t).

Theorem 4. If cw(t) ∈ C4([−h0, 1+ h0]), then the error Ew,h(t) satisfies the
following

‖Ew,h(t)‖
2
h + 2(Dw − ǫ2)

∫ t

0

e
∫ t

s
(3+ 1

2ǫ2
‖ah(µ)‖

2
∞
)dµ‖D−ξEw,h(s)‖

2
+ds

≤

∫ t

0

e
∫ t

s
(3+ 1

2ǫ2
‖ah(µ)‖

2
∞
)dµgh(s)ds, t ∈ [0, T ],

(91)

for h ≤ h0, where ǫ 6= 0, and

gh(s) = h(Tw,lef(s)
2 + Tw,rig(s)

2) + ‖Tw,h(s)‖
2
h.

Proof: From the differential equation of (87) we get

1
2
d
dt
‖Ew,h(t)‖

2
h = (DwD2,ξEw,h(t), Ew,h(t))h + (ah(t)Dc,ξEw,h(t), Ew,h(t))h

+(Tw,h(t), Ew,h(t))h.
(92)

From (90) and (87) we get

(DwD2,ξEw,h(t), Ew,h(t))h = −hDwDc,ξEw,h(ξ0, t)Ew,h(ξ0, t)
−Dw‖D−ξEw,h(t)‖

2
+ + hDwDc,ξEw,h(ξN , t)Ew,h(ξN , t)

= −hTw,lef(t)Ew,h(ξ0, t)−Dw‖D−ξEw,h(t)‖
2
+

−hα(t)Ew,h(ξN , t)
2 − hTw,rig(t)Ew,h(ξN , t)
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that leads to

(DwD2,ξEw,h(t), Ew,h(t))h ≤ −Dw‖D−ξEw,h(t)‖
2
+

+
1

2
h(Tw,lef(t)

2 + Tw,rig(t)
2) + ‖Ew,h(t)‖

2
h.

(93)

For (ah(t)Dc,ξEw,h(t), Ew,h(t))h, it can be shown the following estimate

|(ah(t)Dc,ξEw,h(t), Ew,h(t))h| ≤
1

4ǫ2
‖ah(t)‖

2
∞‖Ew,h(t)‖

2
h + ǫ2‖D−ξEw,h(t)‖

2
+,

(94)
for ǫ 6= 0.
As for (Tw,h(t), Ew,h(t))h we have

|(Tw,h(t), Ew,h(t))h| ≤
1

2
‖Tw,h(t)‖

2
h +

1

2
‖Ew,h(t)‖

2
h,

taking in (92) the estimates (93) and (94) we obtain

d
dt‖Ew,h(t)‖

2
h +2(Dw − ǫ2)‖D−ξEw,h(t)‖

2
+ ≤ ‖Tw,h(t)‖

2
h

+(3 +
1

2ǫ2
‖ah(t)‖

2
∞)‖Ew,h(t)‖

2
h

+h(Tw,lef(t)
2 + Tw,rig(t)

2),

that can be rewritten in the following equivalent form

d
dt

(

e−
∫ t

0
(3+ 1

2ǫ2
‖ah(µ)‖

2
∞
)dµ‖Ew,h(t)‖

2
h

+2(Dw − ǫ2)

∫ t

0

e−
∫ s

0
(3+ 1

2ǫ2
‖ah(µ)‖

2
∞
)dµ‖D−ξEw,h(s)‖

2
+ds

−

∫ t

0

e−
∫ s

0
(3+ 1

2ǫ2
‖ah(µ)‖

2
∞
)dµgh(s)ds

)

≤ 0,

(95)

for t ∈ (0, T ]. Finally, from (95) we conclude (91).

Corollary 1. Under the assumptions of Theorem 4, there exists a positive
constant C, h and t-independent, such that

‖Ew,h(t)‖
2
h +

∫ t

0

‖D−ξEw,h(s)‖
2
+ds ≤ Ch4, t ∈ [0, T ], (96)

for h ≤ h0.

We remark that the next result leads to the uniform boundness of cw,h(t)
with respect to t ∈ [0, T ] and h ≤ h0. This result has an important role in
the convergence analysis of cd,h(t).
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Corollary 2. Under the assumptions of Theorem 4, there exists a positive
constant C, h and t-independent, such that

‖cw,h(t)‖∞ ≤ C, t ∈ [0, T ], h ≤ h0. (97)

Proof: As we have successively

‖cw,h(t)‖∞ ≤ ‖Ew,h(t)‖∞ + ‖Rhcw(t)‖∞

≤
1

h
‖Ew,h(t)‖h + ‖Rhcw(t)‖∞,

from (96) we conclude

‖cw,h(t)‖∞ ≤ Ch+ ‖Rhcw(t)‖∞,

that leads to (97).

Theorem 5. If cd(t) ∈ C4([−h0, 1]), then the error Ed,h(t) satisfies the fol-
lowing

‖Ed,h(t)‖
2
h + 2(Dd − ǫ2)

∫ t

0

e
∫ t

s
(3+γ1+

1

2ǫ2
‖bh(µ)‖

2
∞
+2γ2‖cw,h(µ)‖∞)dµ‖D−ξEd,h(s)‖

2
+ds

≤

∫ t

0

e
∫ t

s
(3+γ1+

1

2ǫ2
‖bh(µ)‖

2
∞
+2γ2‖cw,h(µ)‖∞)dµ

(

gh(s) +
(

γ1 + γ2
2‖cd(s)‖

2
∞

)

‖Ew,h(s)‖
2
h

)

ds, t ∈ [0, T ],

(98)
for h ≤ h0, where ǫ 6= 0, and

gh(s) = hTd,lef(s)
2 + ‖Td,h(s)‖

2
h.

Proof: From the differential equation of (88) we get

1

2

d

dt
‖Ed,h(t)‖

2
h = (DdD2,ξEd,h(t), Ed,h(t))h + (bh(t)Dc,ξEd,h(t), Ed,h(t))h

+(Td,h(t), Ed,h(t))h + γ1(Ew,h(t), Ed,h(t))h
−γ2(cd(t)cw(t)− cd,h(t)cw,h(t), Ed,h(t))h.

(99)
As it can be shown that

(DdD2,ξEd,h(t), Ed,h(t))h = −hTd,lef(t)Ed,h(ξ0, t)−Dd‖D−ξEd,h(t)‖
2
+

≤ 1
2hTd,lef(t)

2 + 1
2‖Ed,h(t)‖

2
h −Dd‖D−ξEd,h(t)‖

2
+,

|(bh(t)Dc,ξEd,h(t), Ed,h(t))h| ≤
1

4ǫ2
‖bh(t)‖

2
∞‖Ed,h(t)‖

2
h + ǫ2‖D−ξEd,h(t)‖

2
+,
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where ǫ 6= 0,

|(Td,h(t), Ed,h(t))h| ≤
1

2
‖Td,h(t)‖

2
h +

1

2
‖Ed,h(t)‖

2
h,

γ1|(Ew,h(t), Ed,h(t))h| ≤
γ1
2
‖Ew,h(t)‖

2
h +

γ1
2
‖Ed,h(t)‖

2
h,

and

−γ2(cd(t)cw(t)− cd,h(t)cw,h(t), Ed,h(t))h
= −γ2(Rhcd(t)Ew,h(t) + cw,h(t)Ed,h(t), Ed,h(t))h
≤ γ2

(

‖cd(t)‖∞‖Ew,h(t)‖h + ‖cw,h(t)‖∞‖Ed,h(t)‖h
)

‖Ed,h(t)‖h

≤
1

2
γ2
2‖cd(t)‖

2
∞‖Ew,h(t)‖

2
h

+
(1

2
+ γ2‖cw,h(t)‖∞

)

‖Ed,h(t)‖
2
h,

from (99) we obtain

d

dt
‖Ed,h(t)‖

2
h + 2(Dd − ǫ2)‖D−ξEd,h(t)‖

2
+

≤ ‖Td,h(t)‖
2
h +

(

γ1 + γ2
2‖cd(t)‖

2
∞

)

‖Ew,h(t)‖
2
h

+
(

3 + γ1 +
1

2ǫ2
‖bh(t)‖

2
∞ + 2γ2‖cw,h(t)‖∞

)

‖Ed,h(t)‖
2
h + hTd,lef(t)

2,

for t ∈ (0, T ], that leads to (98).

Corollary 2 guarantees that under the assumptions of Theorem 4, we have
the uniform boundness of ‖cw,h(t)‖∞, with respect to t ∈ [0, T ] and h ≤ h0.
Then we conclude the following convergence result:

Corollary 3. Under the assumptions of Theorems 4 and 5, there exists a
positive constant C, h and t independent, such that

‖Ew,h(t)‖
2
h +

∫ t

0

‖D−ξEw,h(s)‖
2
+ds ≤ Ch4,

‖Ed,h(t)‖
2
h +

∫ t

0

‖D−ξEd,h(s)‖
2
+ds ≤ Ch4,

for t ∈ [0, T ] and h ≤ h0.
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In what follows we illustrate the last result - Corollary 3. Table 1 presents
the convergence rates

p(cw) =
ln
(Eh1

(cw)

Eh2
(cw)

)

ln
(

h1

h2

)

where Eh(cw) is defined by

Eh(cw) = max
n=1,...,M

(

‖En
w,h‖

2
h +∆t

n
∑

j=1

‖D−ξE
j
w,h‖

2
+

)

,

being Eh(cd) defined analogously. These convergence rates were obtained for
the numerical approximations computed with the one-dimensional version of
the method (78)-(84) and the reference solution defined by h = ∆ξ = 0.001
and ∆t = 2 × 10−7. These results illustrate the second convergence order
stated in Corollary 3.

Table 1. Convergence rates p(cw) and p(cd).

∆ξ Eh(cw) p(cw) Eh(cd) p(cd)

0.01 4.9679× 10−9 2.98 4.4411× 10−17 3.75
0.005 6.2942× 10−10 3.16 3.2799× 10−18 4.09
0.004 3.1072× 10−10 3.99 1.3160× 10−18 4.14
0.002 1.9554× 10−11 —— 7.4576× 10−20 —–

8. Conclusion

A system of partial nonlinear differential equations complemented with
boundary and initial conditions defined in a moving boundary domain (1)-
(5) and (6)-(9) is analysed from analytical and numerical point of view. We
point out that the boundary moving law (10) used here is analogous to the
one proposed by Patel in [6]. This system can be used to describe the drug
release from a biodegradable viscoelastic polymeric platform that presents
surface erosion and where a drug is initially dispersed in the solid state([11],
[18]). To solve numerically the last moving boundary problem, an equivalent
IBVP (62)-(68) defined in a fixed domain is established.
The stability of the moving boundary domain (1)-(5) and (6)-(9) is studied

for large and short times in Theorems 1 and 2, respectively. The proper-
ties of the spatial discretization of the problem (62)-(68) that leads to the
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one-dimensional version of the numerical scheme (78)-(84) is established in
Theorems 4, 5 and Corollaries 2 and 3 considering only the main phenomena:
fluid uptake and dissolved drug transport. In the convergence analysis, the
uniform boundness of the sequence of approximations for the fluid concen-
tration is a main tool.
Finally, the numerical simulation presented illustrates the qualitative be-

haviour of the solution of differential problem (1)-(5) and (6)-(9) as well as
the influence of the main parameters in such behaviour.
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