
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 20–13

NONLINEAR SYSTEMS OF PARABOLIC IBVP: A
SUPER-SUPRACONVERGENT FULLY DISCRETE

PIECEWISE LINEAR FEM

S. CARVALHO, J.A. FERREIRA AND G. PENA

Abstract: The main objective of this paper is the design and convergence anal-
ysis of discretizations of second order nonlinear parabolic initial boundary value
problems with second order of convergence with respect to H1-discrete norms. The
results are established assuming that the solutions are in H2. As the methods can be
simultaneously seen as piecewise linear finite element methods and finite difference
methods, the convergence results can be seen simultaneously as supraconvergence
results and superconvergence results. Numerical results illustrating the sharpness
of the smoothness assumptions are also included.

1. Introduction
The main goal of the present paper is to propose numerical discretizations

of the following system of second order nonlinear parabolic equations

∂U

∂t
+ F (U,∇U) = A∆U +G in Ω× (0, T ], (1)

that depends only on x and t, and where, to simplify, Ω = (0, 1), U = (u, v),
A is a diagonal matrix with entries α > 0 and β > 0, ∇U = (∇u,∇v), F =
(f1, f2) and G = (g1, g2). This system is complemented with homogeneous
Dirichlet boundary conditions

U = 0 on ∂Ω× (0, T ], (2)

with ∂Ω = {0, 1}, and initial conditions

U(x, 0) = U0(x), x ∈ Ω, (3)

having U0 = (u0, v0).
A huge number of physical, biological, and engineering science phenomena

are described by the system of parabolic equations (1). Another application
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that we would like to focus, in a future work, is related with the numerical
solutions of the 2D magnetohydrodynamic equations with dispersion. Al-
though magnetohydrodynamic equations are of hyperbolic type, a common
approach to solve numerically these equations is to add artificial diffusion
terms and solve numerically, for small values of the diffusion coefficients, the
corresponding parabolic problems. We observe that the system of equations
(1) can be seen as the 1D magnetohydrodynamic equations, with velocity
and magnetic dissipation (see [10]). In this case, u denotes the velocity of
the fluid, v the magnetic field, and the pressure is assumed to be known.

To gain some insights in the design and convergence analysis of super-
supraconvergent discretizations of second order nonlinear equations, we start
by considering the elliptic boundary value problem

−u′′ + f(u, u′) = g in Ω, (4)

with homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω. (5)

We wish to extend the results obtained for the previous elliptic problem, to
the following system of nonlinear elliptic equations

−∆U + F (U,∇U) = G in Ω, (6)

where U depends only on the spatial variable, with homogeneous Dirichlet
boundary conditions

U = 0 on ∂Ω. (7)

For linear elliptic boundary value problems, in [2, 5], numerical methods
based on piecewise linear finite element methods (FEM), that are equivalent
to finite difference methods (FDM), were proposed. In these papers, the
authors presented a new approach to analyse the convergence properties of
a fully discrete in space piecewise linear finite element method. In this new
approach, the Bramble-Hilbert lemma [4] is the main tool in the convergence
analysis that allows reducing the smoothness assumptions on the solutions
of the differential problems usually required when Taylor expansion is used.
This methodology has been largely used as can be seen, for instance, in
[1, 3, 6, 7, 8, 9].

The aim of this paper is to propose numerical methods for the IBVP (1)-(3)
and provide their convergence analysis using the numerical approach men-
tioned before. We propose fully discrete piecewise linear methods that can
be seen as finite difference methods, defined in nonuniform grids. We show
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that these methods exhibit second convergence order with respect to a norm
that can be seen as the discrete version of the usual H1-norm. These results
can be seen simultaneously as superconvergence results in the finite element
framework, and supraconvergence results in the finite difference context. The
main question here is the nonlinearity of the IBVP (1)-(3). We start by con-
sidering the stationary elliptic boundary value problems (4) and (6), to gain
some insights in the convergence analysis for nonlinear problems. For the
fully discrete piecewise linear finite element approximation for the solution
of the nonlinear problem, we prove second order convergence for the gradi-
ent without any post-processing, a popular procedure followed in different
contexts, that leads to an improvement of the accuracy of the gradient ap-
proximations (see for instance [11, 13]).

The paper is organized as follows. In Section 1 we propose and analyse
superconvergence and supraconvergence results for (4) with homogeneous
Dirichlet boundary conditions. The extension of these results to the bound-
ary value problem (6)-(7) is the main goal of Section 2. Section 3 is devoted
to the main goal of this paper: the construction of the numerical methods
for the IBVP (1)-(3) and their convergence analysis. The convergence anal-
ysis is not based on the stability properties of the methods, but it will be
established constructing the error equation. Numerical results illustrating
the theoretical support developed in this paper are presented in Section 4.
Finally, in Section 5 we present some conclusions.

2. A nonlinear elliptic equation
We start by introducing a non-uniform grid Ωh, in Ω, of size N , induced by

a vector h = (h1, ..., hN), hi > 0,∀i ∈ {1, ..., N}, and
∑N

i=1 hi = xN − x0 = 1.
Let Λ be a sequence of vectors h, and hmax = maxi=1,...,N hi → 0. Assuming
xi = xi−1 + hi, the non-uniform grid considered is Ωh = {xi : i = 0, ..., N}.
Now, we define the set of interior nodes of the grid by Ωh = Ω∩Ωh, and the
set of boundary points of the grid by ∂Ωh = ∂Ω ∩ Ωh. By Wh and Wh,0 we
denote, respectively, the space of grid functions defined in Ωh, and the space
of grid functions defined in Ωh and null on ∂Ωh.

Let uh, wh ∈ Wh,0. We introduce the L2-discrete inner product in Wh,0

defined by

(uh, wh)h =
N−1∑
i=1

hi+1/2uh(xi)wh(xi),
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considering hi+1/2 = hi+hi+1

2 . The norm induced by this inner product is
denoted by ‖ · ‖h.

Considering uh, wh ∈ Wh, we use introduce the inner product,

(uh, wh)+ =
N∑
i=1

hiuh(xi)wh(xi).

and its induced norm ‖ · ‖+. In Wh,0 we also introduce the norm

‖vh‖h,∞ := max
i=1,...,N−1

|vh(xi)|, ∀vh ∈ Wh,0.

Let D−xuh be the first-order backward finite difference operator, defined
by,

D−xuh(xi) =
uh(xi)− uh(xi−1)

hi
, i = 1, . . . , N.

We recall some useful results regarding functions in Wh,0.

Proposition 1. For vh ∈ Wh,0 it holds

‖vh‖h ≤ ‖D−xvh‖+

and

‖vh‖h,∞ ≤ ‖D−xvh‖+.

We now consider the second-order centered finite difference operator, ∆h,
as the discrete version of the second derivative in space, defined by

∆huh(xi) =
hiuh(xi+1)− (hi + hi+1)uh(xi) + hi+1uh(xi−1)

hihi+1hi+1/2
, i = 1, ..., N − 1,

For this operator, the following result holds, which is an analogue of the
integration by parts formula known in calculus.

Proposition 2. For uh, vh ∈ Wh,0,

(∆huh, vh)h = −(D−xuh, D−xvh)+.

We also introduce the discrete operator ∇h defined as

∇huh(xi) =
hi

hi + hi+1
D−xuh(xi+1) +

hi+1

hi + hi+1
D−xuh(xi), i = 1, ...N − 1,

with

∇huh(x0) = D−xuh(x1) and ∇huh(xN) = D−xuh(xN).
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The source term g is discretized by

gh(xi) =
1

h1+1/2

∫ xi+1/2

xi−1/2

g(x)dx, (8)

where xi−1/2 = xi − hi

2 , and xi+1/2 = xi + hi+1

2 .
We consider, for the elliptic equation (4), the finite differences approxima-

tion
−∆huh + f(uh,∇huh) = gh in Ωh, (9)

complemented with the boundary condition

uh = 0 on ∂Ωh. (10)

We observe that the finite difference discretization (9) can be obtained from
the weak problem

find u ∈ H1
0(Ω) such that

(u′, v′) + (f(u, u′), v) = (g, v), ∀v ∈ H1
0(Ω). (11)

In fact, if uh ∈ Wh,0 and Phuh denotes the piecewise linear interpolator of uh,
the last variational problem is replaced by the following finite dimensional
problem:

find uh ∈ Wh,0 such that

((Phuh)′, (Phvh)′) + (f(Phuh, (Phuh)′), Phvh) = (g, Phvh), ∀vh ∈ Wh,0,

then, taking into account that

((Phuh)′, (Phvh)′) = (D−xuh, D−xvh)+

and

(f(Phuh, (Phuh)′), Phvh) ' (f(uh,∇huh), vh)h, (g, Phvh) ' (gh, vh)h

we get the weak variational problem:

find uh ∈ Wh,0 such that

(D−xuh, D−xvh)+ + (f(uh,∇huh), vh)h = (gh, vh)h, ∀vh ∈ Wh,0. (12)

The discrete equality (12) can be easily obtained from (9), taking into account
Proposition 2. In what follows we need to impose a condition on the grid to
get a second-order estimate for the nonlinear term. We assume that there
exists a positive constant CR such that, for all h ∈ Λ, we have

hmax

hmin
≤ Cr, (13)

where hmin = mini=1,...,N hi.
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Theorem 1. Let us suppose that the sequence of grids Λ satisfies (13), the
solution u of (11) belongs to H3(Ω) ∩H1

0(Ω), f is a Lipschitz function with
Lipschitz constant CL such that 1−CL(1+

√
2Cr) > 0, and f(u, u′) ∈ H2(Ω).

Let uh ∈ Wh,0 be a solution of (12) or (9)-(10), and let Eu be the discretiza-
tion error, Eu = uh − Rhu. Then there exists a positive constant C such
that

‖D−xEu‖2
+ ≤ C

N∑
i=1

h4
i

(
‖u‖2

H3(xi−1,xi+1) + ‖f(u, u′)‖2
H2(xi−1,xi)

)
, (14)

where Rh : C(Ω)→ Wh denotes the restriction operator.

Proof : It can be shown that

(gh, vh)h = (f(Rhu,∇hRhu), vh)h + (D−xRhu,D−xvh)+ +
3∑

i=1

T
(i)
h (15)

where

T
(1)
h = (R̂hu

′ −D−xRhu,D−xvh)+,

T
(2)
h = ((f(u, u′))h −Rhf(u, u′), vh)h,

and

T
(3)
h = (Rhf(u, u′)− f(Rhu,∇hRhu), vh)h,

where R̂h : C(Ω) → Wh is defined by R̂hv(xi) = v(xi−1/2), i = 1, . . . , N ,

R̂hv(x0) = v(x0). To show (15) we observe that we have successively

(gh, vh)h =
N−1∑
i=1

∫ xi+1/2

xi−1/2

(−u′′ + f(u, u′)) dx vh(xi)

=
N∑
i=1

hi
(
u′(xi−1/2)−D−xu(xi)

)
D−xvh(xi)

+
N∑
i=1

hiD−xu(xi)D−xvh(xi)

+
N−1∑
i=1

(∫ xi+1/2

xi−1/2

f(u, u′)dx− hi+1/2f(u(xi), u
′(xi))

)
vh(xi)
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+
N−1∑
i=1

hi+1/2 (f(u(xi), u
′(xi))− f(u(xi),∇hu(xi))) vh(xi)

+
N−1∑
i=1

hi+1/2f(u(xi),∇hu(xi))vh(xi).

In what follows we estimate separately T
(i)
h , i = 1, 2, 3.

• Estimation of T
(1)
h

As in [2], there exists a positive constant C1 such that

|T (1)
h | 6 C1

N∑
i=1

h2
i

∫ xi

xi−1

|u(3)(x)| dx |D−xvh(xi)|.

This leads to

|T (1)
h | 6 C1

( N∑
i=1

h4
i‖u(3)‖2

L2(xi−1,xi)

)1/2

‖D−xvh‖+

6 C1

( N∑
i=1

h4
i‖u‖2

H3(xi−1,xi)

)1/2

‖D−xvh‖+

6
C1

4ε21

N∑
i=1

h4
i‖u‖2

H3(xi−1,xi)
+ ε21‖D−xvh‖2

+,

where ε1 is an arbitrary nonzero real constant.

• Estimation of T
(2)
h

Taking into account the definition of T
(2)
h , for w(x) = f(u(x), u′(x)),

we have

T
(2)
h =

N−1∑
i=1

(∫ xi+1/2

xi−1/2

w(x)dx− hi+1/2w(xi)

)
vh(xi),

and consequently, there exists a positive constant C2 such that

|T (2)
h | 6 C2

( N∑
i=1

h4
i‖w‖2

H2(xi−1,xi)

)1/2

‖D−xvh‖+

6
C2

4ε22

N∑
i=1

h4
i‖f(u, u′)‖2

H2(xi−1,xi)
+ ε22‖D−xvh‖2

+,
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where ε2 is an arbitrary nonzero real constant, provided that f(u, u′) ∈
H2(Ω).

• Estimation of T
(3)
h

Taking into account that f is a Lipschitz function, for T
(3)
h we deduce

|T (3)
h | 6 CL

N−1∑
i=1

hi+1/2|u′(xi)−∇hu(xi)||vh(xi)|.

We remark that u′(xi)−∇hu(xi) admits the representation

u′(xi)−∇hu(xi) =
1

hi+1 + hi
λ(w),

where λ : H3(0, 1) −→ R is the functional defined as

λ(v) = v′(ρ)−
[
ρ̂ (v(1)− v(ρ)) +

1

ρ̂
(v(ρ)− v(0))

]
,

and w(ξ) = u(xi−1+ξ(hi+hi+1)), ξ ∈ [0, 1], with ρ = hi

hi+hi+1
, ρ̂ = hi

hi+1
.

As in [12], Bramble-Hilbert lemma leads to

|T (3)
h | 6 C3

( N∑
i=1

h4
i‖u(3)‖2

L2(xi−1,xi)

)1/2

‖D−xvh‖+

6
C3

4ε23

N∑
i=1

h4
i‖u‖2

H3(xi−1,xi)
+ ε23‖D−xvh‖2

+.

Fixing vh = Eu in (12) and taking into account representation (15) it
follows

(
1−

3∑
i=1

ε2i

)
‖D−xEu‖2

+ ≤ (f(Rhu,∇hRhu)− f(uh,∇huh), Eu)h + Th

≤ CL

(√
2Cr‖Eu‖h‖D−xEu‖+ + ‖Eu‖2

h

)
+ Th

≤ CL

(
1 +

√
2Cr

)
‖D−xEu‖2

+ + Th,

(16)
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where the last inequality was established taking into account Proposition 1
and

Th ≤

(
3∑

j=1

Cj

4ε2j

)
N∑
i=1

h4
i

(
‖u‖2

H3(xi−1,xi)
+ ‖f(u, u′)‖2

H2(xi−1,xi)

)
.

From (16) we establish(
1−

3∑
i=1

ε2i − CL(1 +
√

2Cr

)
‖D−xEu‖2

+ ≤ Th.

If CL

(
1 +
√

2Cr

)
< 1 then there exist positive values for εi, i = 1, 2, 3, such

that

1−
3∑

i=1

ε2i − CL

(
1 +

√
2Cr

)
> 0,

which leads to the existence of a positive constant C satisfying (14).

From Proposition 1 and Theorem 1 we conclude for the norm

‖vh‖1,h =
(
‖vh‖2

h + ‖D−xvh‖2
+

)1/2
, vh ∈ Wh,0,

the following estimate.

Corollary 1. Under the assumptions of Theorem 1, the following bound hold
for the error Eu = uh −Rhu,

‖Eu‖1,h ≤ Ch2
max.

Corollary 1 states that the finite difference scheme (9)-(10) or equivalently,
the fully discrete piecewise linear finite element method (12), is second-order
convergent with respect to the norm ‖ · ‖1,h which is a discrete version of the
usual H1-norm.

Taking into account Theorem 1 and Proposition 1, we conclude the follow-
ing corollary that establishes the uniform boundness of the solution of the
finite difference scheme (9)-(10), or equivalently, the uniform boundness of
the fully discrete piecewise linear finite element method (12).

Corollary 2. If uh ∈ Wh,0 is defined by the finite difference scheme (9)-(10),
or equivalently, by the fully discrete piecewise linear finite element method
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(12), then under the assumptions of Theorem 1, there exists a positive con-
stant C, h−independent, such that

‖uh‖h,∞ ≤ C, h ∈ Λ, (17)

‖D−xuh‖h,∞ ≤ C, h ∈ Λ. (18)

Proof : We have

uh(xi) = Eu(xi) +Rhu(xi), i = 1, . . . , N − 1,

and consequently

‖uh‖h,∞ ≤ ‖Eu‖h,∞ + ‖u‖L∞
≤ ‖D−xEu‖+ + ‖u‖L∞
≤ Ch2

max + ‖u‖L∞, h ∈ Λ,

that concludes the proof of (17).
On the other hand, since

D−xuh(xi) = D−xEu(xi) +D−xRhu(xi), i = 1, . . . , N,

and

|D−xEu(xi)| ≤
1

hmin

N∑
j=1

hj|D−xEu(xj)|

≤ 1

hmin
‖D−xEu‖+,

from (14)

|D−xEu(xi)| ≤ C
h2
max

hmin

≤ C Cr hmax,

we conclude the proof of (18).

3. A nonlinear system of elliptic equations
In this section we extend Theorem 1 for the solution of the following finite

difference method

−∆hUh + F (Uh,∇hUh) = Gh in Ωh, (19)
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where Uh = (uh, vh), with boundary conditions

Uh = 0 on ∂Ωh, (20)

that leads to an approximation for the solution of the differential system
(1)-(2). In (19), Gh = (g1,h, g2,h) with g`,h defined by (8) with g replaced by
g`, ` = 1, 2.

We remark that the finite difference method (19)-(20) is equivalent to the
following fully discrete piecewise linear finite element method:

find Uh ∈ [Wh,0]
2 such that

(D−xUh, D−xQh)+ + (F (Uh,∇hUh), Qh)h = (Gh, Qh)h, ∀Qh ∈ [Wh,0]
2 (21)

where D−xUh = (D−xuh, D−xvh), and the inner product (·, ·)h in [Wh,0]
2 is

defined in the usual way. In (21), if Qh = (qh, ph), then (D−xUh, D−xQh)+ =
(D−xuh, D−xqh)+ + (D−xvh, D−xph)+.

The fully discrete variational problem is a fully discrete version of the
variational problem:

find U ∈ [H1
0(Ω)]2 such that

(∇U,∇Q) + (F (U,∇U), Q) = (G,Q), ∀Q ∈ [H1
0(Ω)]2. (22)

For Vh = (v1,h, v2,h) ∈ [Wh,0]
2 we use the following notation ‖D−xVh‖2

+ =
‖D−xv1,h‖2

+ + ‖D−xv2,h‖2
+.

Theorem 2. Let us suppose that the sequence of grids Λ satisfies (13), the
solution U = (u, v) of (22) belongs to [H3(Ω) ∩ H1

0(Ω)]2, F is a Lipschitz
function with Lipschitz constant CL, such that 1 − 2(1 +

√
2Cr)CL > 0 and

F (U,∇U) ∈ [H2(Ω)]2. Let Uh = (uh, vh) ∈ [Wh,0]
2 be solution of the FDM

(19)-(20) or, equivalently, of the fully discrete piecewise FEM (21), and let
Eh = Uh−RhU. Then there exists a positive constant C, h-independent such
that

‖D−xEh‖2
+ ≤ C

N∑
i=1

h4
i

(
‖U‖2

[H3(xi−1,xi)]2
+ ‖F (U,∇U)‖2

[H2(xi−1,xi)]2

)
, (23)

for h ∈ Λ.

Proof : The proof of this result follows the proof of Theorem 1.
Let Eh = (Eu, Ev). We observe that for

Q1 := (f1(RhU,∇hRhU)− f1(Uh,∇hUh), Eu)h



12 S. CARVALHO, J.A. FERREIRA AND G. PENA

we have successively the following

Q1 ≤ CL

((
‖Eu‖h +

√
2Cr‖D−xEu‖+ + ‖Ev‖h +

√
2Cr‖D−xEv‖+

)
‖Eu‖h

)
≤ CL

(
(1 +

√
2Cr)‖D−xEu‖2

+ + (1 +
√

2Cr)‖D−xEv‖+‖D−xEu‖+

)
≤ CL

(
3

2
(1 +

√
2Cr)‖D−xEu‖2

+ +
1

2
(1 +

√
2Cr)‖D−xEv‖2

+

)
.

Analogously, for Q2 := (f2(RhU,Rh∇U)− f2(Uh,∇hUh), Ev)h we easily get

Q2 ≤ CL

(
1

2
(1 +

√
2Cr)‖D−xEu‖2

+ +
3

2
(1 +

√
2Cr)‖D−xEv‖2

+

)
.

Then for Q1 +Q2 we deduce

Q1 +Q2 ≤ 2CL

(
1 +

√
2Cr

)
‖D−xEh‖2

+.

Consequently, following the proof of Theorem 1 we obtain(
1−

3∑
i=1

ε2i − 2(1 +
√

2Cr)CL

)
‖D−xEu‖2

+

+

(
1−

3∑
i=1

η2
i − 2(1 +

√
2Cr)CL

)
‖D−xEv‖2

+

≤ C

N∑
i=1

h4
i

(
‖U‖2

[H3(xi−1,xi)]2
+ ‖F (U,∇U)‖2

[H2(xi−1,xi)]2

)
.

If 1− 2
(
1 +
√

2Cr

)
CL > 0 then there exists a positive constant C such that

(23) holds.

Corollary 3. Under the assumptions of Theorem 2, there exists a positive
constant C, h-independent, such that

‖Eh‖1,h ≤ C h2
max.

Under the assumptions of Theorem 2, following the proof of Corollary 2
we easily prove the next result.
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Corollary 4. Let Uh ∈ [Wh,0]
2 be solution of the FDM (19)-(20), or equiva-

lently, of the fully discrete piecewise FEM (21). Then, under the conditions
of Theorem 2, there exists a positive constant C, h−independent, such that

‖Uh‖h,∞ ≤ C, h ∈ Λ,

‖D−xUh‖h,∞ ≤ C, h ∈ Λ.

4. A nonlinear system of parabolic equations
To compute an approximation for the IBVP (1)-(3), we propose the fol-

lowing semi-discrete scheme

dUh

dt
(t) + F (Uh(t),∇hUh(t)) = A∆hUh(t) +Gh(t), t ∈ (0, T ] (24)

with boundary and initial conditions

Uh = 0 on ∂Ωh × (0, T ],

Uh(0) = RhU0 in Ωh. (25)

We remark that the semi-discrete scheme is equivalent to the following fully
discrete piecewise linear FEM:

find Uh(t) ∈ [Wh,0]
2 such that for all t ∈ (0, T ] and Qh ∈ [Wh,0]

2(
dUh

dt
(t), Qh

)
h

+ (AD−xUh(t), D−xQh)+

+ (F (Uh(t),∇hUh(t)), Qh)h = (Gh(t), Qh)h, (26)

with

(Uh(0), Qh)h = (RhU0, Qh)h, ∀Qh ∈ [Wh,0]
2. (27)

This fully discrete method is obtained from the piecewise linear FEM:

find Uh(t) ∈ [Wh,0]
2 such that for all t ∈ (0, T ] and Qh ∈ [Wh,0]

2(
dPhUh

dt
(t), PhQh

)
+ (A∇PhUh(t),∇PhQh)

+ (F (PhUh(t),∇PhUh), PhQh) = (G(t), PhQh),

with

(PhUh(0), PhQh) = (U0, PhQh),∀Qh ∈ [Wh,0]
2

considering convenient quadrature rules.
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Theorem 3. Let us suppose that the sequence of grids Λ satisfies (13),
and U(t) ∈ [H3(Ω) ∩ H1

0(Ω)]2, U ∈ [C1([0, T ], C(Ω))]2, F is a Lipschitz
function with Lipschitz constant CL, and F (U(t),∇U(t)) ∈ [H2(Ω)]. Let
Uh(t) ∈ [Wh,0]

2 be a solution of the initial value problem (24)-(25) or, equiv-
alently, solution of the fully discrete piecewise linear FEM (26)- (27) that we
suppose in [C1([0, T ],Wh,0)]

2. Then there exists a positive constant C, h and
t independent, such that for Eh = Uh −RhU we have

‖Eh(t)‖2
h+D

∫ t

0

eS(t−s)‖D−xEh(s)‖2
+ds ≤

∫ t

0

eS(t−s)Th(s)ds, t ∈ [0, T ], (28)

where

Th(t) = C
N∑
i=1

h4
i

(∥∥∥∥∂U∂t (t)

∥∥∥∥2

[H2(xi−1,xi)]2
+ ‖U(t)‖2

[H3(xi−1,xi)]2

+‖F (U(t),∇U(t))‖2
[H2(xi−1,xi)]2

)
,

the coefficients D and S are given by

D = 2 min

{
α−

5∑
i=1

ε2i − η2
6, β −

5∑
i=1

η2
i − ε26

}
, (29)

and

S = CL

(
4 + Cr max

{
1

ε25
+

1

ε26
,

1

η2
5

+
1

η2
6

})
, (30)

respectively, with εi and ηi for i = 1, . . . , 6, fixed such as

α−
5∑

i=1

ε2i − η2
6 > 0, (31)

and

β −
5∑

i=1

η2
i − ε26 > 0. (32)

Proof : We start by remarking that it can be shown that

(g1,h(t), Eu(t))h =

(
Rh
∂u

∂t
(t), Eu(t)

)
h

+

((
∂u

∂t
(t)

)
h

−Rh
∂u

∂t
(t), Eu(t)

)
h

+ α(D−xRhu(t), D−xEu(t))+
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+ α
(
R̂h∇u(t)−D−xRhu(t), D−xEu(t)

)
+

+ (f1(RhU(t),∇hRhU(t)), Eu(t))h

+ (f1,h(t)− f1(t), Eu(t))h

+ (f1(t)− (f1(RhU(t),∇hRhU(t)), Eu(t))h,

where, to simplify, the following notation was used

f1(t) = f1(RhU(t), Rh∇U(t)),

f1,h(t) is defined by (8) with g replaced by f1(t).
Taking this into account, from the first equation of (26) with ph = Eu(t)

we easily get(
dEu

dt
(t), Eu(t)

)
h

+ α(D−xEu(t), D−xEu(t))+

= (f1(RhU(t),∇hRhU(t))− f1(Uh(t),∇hUh(t)), Eu(t))h +
4∑

i=1

T
(i)
h , (33)

where

T
(1)
h =

((
∂u

∂t

)
h

−Rh
∂u

∂t
(t), Eu(t)

)
h

,

T
(2)
h = α(R̂h∇u(t)−D−xRhu(t), D−xEu(t))+,

T
(3)
h = (f1,h(t)− f1(t), Eu(t))h,

T
(4)
h = (f1(t)− f1(RhU(t),∇hRhU(t)), Eu(t))h.

It can be shown that there exist positive constants Ci, i = 1, . . . , 4, h and t
independent, such that

|T (1)
h | ≤ C1

(
N∑
i=1

h4
i

∥∥∥∥∂u∂t (t)

∥∥∥∥2

H2(xi−1,xi)

)1/2

‖D−xEu(t)‖+,

≤ C1

4ε21

N∑
i=1

h4
i

∥∥∥∥∂u∂t (t)

∥∥∥∥2

H2(xi−1,xi)

+ ε21‖D−xEu(t)‖2
+
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|T (2)
h | ≤ C2

(
N∑
i=1

h4
i‖u(t)‖2

H3(xi−1,xi)

)1/2

‖D−xEu(t)‖+

≤ C2

4ε22

N∑
i=1

h4
i‖u(t)‖2

H3(xi−1,xi)
+ ε22‖D−xEu(t)‖2

+,

|T (3)
h | ≤ C3

(
N∑
i=1

h4
i‖f1(U(t),∇U(t))‖2

H2(xi−1,xi)

)1/2

‖D−xEu(t)‖+

≤ C3

4ε23

N∑
i=1

h4
i‖f1(U(t),∇U(t))‖2

H2(xi−1,xi)
+ ε23‖D−xEu(t)‖2

+,

|T (4)
h | ≤ C4

(
N∑
i=1

h4
i‖U(t)‖2

[H3(xi−1,xi)]2

)1/2

‖D−xEu(t)‖+

≤ C4

4ε24

N∑
i=1

h4
i‖U(t)‖2

[H3(xi−1,xi)]2
+ ε24‖D−xEu(t)‖2

+

and

|(f1(RhU(t),∇hRhU(t))− f1(Uh(t),∇hUh(t)), Eu(t))h|

≤ CL

(
‖Eu(t)‖h + ‖Ev(t)‖h +

√
2Cr (‖D−xEu(t)‖+

+ ‖D−xEv(t)‖+)) ‖Eu(t)‖h

≤ CL

((
3

2
+
Cr

2ε25
+
Cr

2ε26

)
‖Eu(t)‖2

h +
1

2
‖Ev(t)‖2

h

+
(
ε25‖D−xEu(t)‖2

+ + ε26‖D−xEv(t)‖2
+

))
where εi 6= 0, i = 1, . . . , 6, are arbitrary positive constants.
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Considering the previous estimates in (33) we deduce

1

2

d

dt
‖Eu(t)‖2

h +

(
α−

5∑
i=1

ε2i

)
‖D−xEu(t)‖2

+

≤ CL

((
3

2
+
Cr

2ε25
+
Cr

2ε26

)
‖Eu(t)‖2

h +
1

2
‖Ev(t)‖2

h + ε26‖D−xEv(t)‖2
+

)
+T1,h(t),

(34)

where T1,h(t) is estimated as follows

T1,h(t) ≤
4∑

j=1

C̃1

4ε2j

(
N∑
i=1

h4
i

(∥∥∥∥∂u∂t (t)

∥∥∥∥2

H2(xi−1,xi)

+ ‖U(t)‖2
[H3(xi−1,xi)]2

+‖f1(U(t),∇U(t))‖2
H2(xi−1,xi)

))
,

for some positive constant C̃1, h and t independent.
Analogously, from the second equation of (26) with qh = Ev(t) we can

establish

1

2

d

dt
‖Ev(t)‖2

h +

(
β −

5∑
i=1

η2
i

)
‖D−xEv(t)‖2

+

≤ CL

((
3

2
+
Cr

2η2
5

+
Cr

2η2
6

)
‖Ev(t)‖2

h +
1

2
‖Eu(t)‖2

h + η2
6‖D−xEu(t)‖2

+

)
+T2,h(t),

(35)

with

T2,h(t) ≤
4∑

j=1

C̃2

4η2
j

(
N∑
i=1

h4
i

(∥∥∥∥∂v∂t (t)

∥∥∥∥2

H2(xi−1,xi)

+ ‖U(t)‖2
[H3(xi−1,xi)]2

+‖f2(U(t),∇U(t))‖2
H2(xi−1,xi)

))
,

for some positive constant C̃2, h and t independent.
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Combining (34) and (35) we get the following differential inequality

d

dt
‖Eh(t)‖2

h + 2

(
α−

5∑
i=1

ε2i − 2η2
6

)
‖D−xEu(t)‖2

+

+ 2

(
β −

5∑
i=1

η2
i − 2ε26

)
‖D−xEu(t)‖2

+

≤ CL

(
4 +

Cr

ε25
+
Cr

ε26

)
‖Eu(t)‖2

h + CL

(
4 +

Cr

η2
5

+
Cr

η2
6

)
‖Ev(t)‖2

h

+ T1,h(t) + T2,h(t).

Fixing εi and ηi, i = 1, . . . , 6, by (31) and (32), from (35) we get

d

dt
‖Eh(t)‖2

h +D‖D−xEh(t)‖2
+ ≤ S‖Eh(t)‖2

h + T1,h(t) + T2,h(t),

where D and S are defined by (29) and (30). Taking into account the smooth-
ness of u(t) and v(t) and of the semi-discrete approximations uh(t) and vh(t)
we conclude (28).

Corollary 5. Under the assumptions of Theorem 3, there exists a positive
constant C such that holds the following

‖Eh‖2
h +

∫ t

0

‖D−xEh(s)‖2
+ds ≤ Ch4

max.

5. Numerical results
In what follows, we present some numerical examples to illustrate the main

convergence results, Theorems 1, 2 and 3. These numerical experiments also
allow to show the sharpness of the smoothness assumptions imposed in these
results. For each experiment, we consider Ω = (0, 1), and random nonuniform
grids for the spatial discretization.

5.1. Elliptic equations. As a first example we consider

f(x1, x2) = cos(x1) + sin(x2), x1, x2 ∈ R

and g such that the boundary value problem (4)-(5) has the solution

u(x) = (ex − 1)(x− 1), x ∈ Ω.
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In this case we have u ∈ H3(Ω), and f satisfying the assumptions of the
Theorem 1.

For the second example we consider we take

f(x1, x2) = cos(x1) + sin(x2), x1, x2 ∈ R
and g is such that

u(x) = |2x− 1|1.6 − 1, x ∈ Ω,

is solution of the boundary value problem (4)-(5). In this case u ∈ H2(Ω).
We report the discrete errors in these two situations in Figure 1. The slope

10−1.5 10−1 10−0.5

10−4

10−3

10−2

hmax

‖D
−
x
E

u
‖ +

(a) u ∈ H3(Ω) and the line has a slope of 2.21.

10−1.5 10−1 10−0.5

10−3

10−2

10−1

hmax

‖D
−
x
E

u
‖ +

(b) u ∈ H2(Ω) and the line has a slope of 1.24.

Figure 1. Log-log plots of ‖D−xEu‖+ versus hmax for the elliptic
equation. The solid lines represent least-squares fittings.

of the line in the left-hand side of Figure 1 is 2.21, which confirms that if we
assume the smoothness assumption specified in Theorem 1, i. e. u ∈ H3(Ω),
then we conclude a second-order convergence rate. The slope of the line in
the plot in the right-hand side is 1.24, which shows that considering a weaker
assumption of smoothness of the solution (u ∈ H2(Ω)), the convergence rate
decreases.

5.2. System of elliptic equations. In the numerical experiments concern-
ing the scheme (19)-(20), we replicate the previous procedure by exploring
two different examples. In the first example we take F = (f1, f2) defined by

f1(x1, x2, x3, x4) = cos(x1) + sin(x2) + cos(x3) + sin(x4), x1, x2, x3, x4 ∈ R
f2(x1, x2, x3, x4) = x1 + sin(x2) + x3 + sin(x4), x1, x2, x3, x4 ∈ R.
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We take the function G such that U = (u, v) with

u(x) = (ex − 1)(x− 1), x ∈ Ω, (36)

v(x) = |2x− 1|4 − 1, x ∈ Ω,

is solution of the boundary value problem (6)-(7). We observe that U ∈
[H3(Ω)]2 and F satisfies the assumptions of Theorem 2.

In the second example we take F as before, U = (u, v) with u given by
(36) and v defined by

v(x) = |2x− 1|1.52 − 1, x ∈ Ω.

In this case we have U ∈ [H2(Ω)]2.
Figure 2 illustrates the behaviour of the numerical method (19)-(20), in

the last two scenarios: the results in the plot in the left-hand side were
obtained with U ∈ [H3(Ω)]2, and the estimated convergence rate is 2.07,
while in the plot in the right-hand side we take U ∈ [H2(Ω)]2, and the
estimated convergence rate is 1.07. These results illustrate the sharpness of
Theorem 2 smoothness assumptions on the solutions. In fact, we lose the
second convergence rate when the solution is in [H2(Ω)]2.

10−1.5 10−1 10−0.5

10−3

10−2

10−1

100

hmax

‖D
−
x
E

h
‖ +

(a) U ∈ [H3(Ω)]2 and the line has a slope of
2.07.

10−0.8 10−0.6 10−0.4

10−1

10−0.5

hmax

‖D
−
x
E

h
‖ +

(b) U ∈ [H2(Ω)]2 and the line has a slope of 1.07.

Figure 2. Plots of ‖D−xEh‖+ versus hmax for the system of
elliptic equations. The solid lines represent least-squares fittings.
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5.3. Systems of parabolic equations. We now turn our attention to the
numerical method (24)-(25). In the time domain [0, T ], we introduce the
uniform grid {tn = n∆t, n = 0, . . . , Nt} with tNt

= T and ∆t denoting the
step size.

We apply a first-order IMEX approach for the time discretization. The
linear part is implicitly discretized while the nonlinear part is explicitly dis-
cretized. We denote by uh(tn) and vh(tn) the numerical approximations for
u(tn) and v(tn), respectively. The fully discrete numerical scheme reads as

Un+1
h − Un

h

∆t
− A∆hU

n+1
h + F (Un

h ,∇hU
n
h ) = Gn+1

h , n = 0, 1, . . . , Nt − 1,

with initial conditions

U 0
h = RhU0 in Ωh,

and boundary conditions

Un
h = 0 on ∂Ωh, n = 0, ..., Nt.

In order to estimate the convergence rate numerically, we define the error

‖Eh‖� =
√
‖Eu‖2

� + ‖Ev‖2
�

where

‖Eu‖2
� = max

n=1,...,Nt

{
‖En

u‖2
h + ∆t

n∑
i=1

‖D−xEi
u‖2

+

}
and ‖Ev‖� is defined analogously.

We now set α = β = 0.1 and define F as

f1(x1, x2, x3, x4) = cos(x1) + sin(x2) + cos(x3) + sin(x4), x1, x2, x3, x4 ∈ R

and

f2(x1, x2, x3, x4) = x1 + sin(x2) + x3 + sin(x4), x1, x2, x3, x4 ∈ R.

Finally, we define the time step ∆t = 10−6, which is small enough so the
first order error from the time discretization does not pollute the convergence
rate wrt the space variable.

In the first example we consider U = (u, v) defined by

u(x, t) = −e−t(ex − 1)(x− 1),

and

v(x, t) = e−t((2x− 1)4 − 1),
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for x ∈ Ω, t ∈ [0, 1] and determine G such that U is solution of the IBVP (1)-
(3). In this case U(t) ∈ [H3(Ω)]2 for t ∈ [0, 1] and F satisfies the assumptions
of Theorem 3.

In the second example we take U with u as before and v given by

v(x, t) = e−t|2x− 1|1.52 − 1.

Figure 3 illustrates the error estimate in Theorem 3. The results included
in the left figure were obtained with U(t) ∈ [H3(Ω)]2. The slope of the linear
regression, in this case, is 1.87 but it reduces to 1.2 when we take v ∈ H2(Ω).

10−1 10−0.8

10−1

hmax

‖E
h
‖ �

(a) U(t) ∈ [H3(Ω)]2 and the line has a slope of
1.87.

10−0.8 10−0.6 10−0.4

10−1

10−0.5

hmax

‖E
h
‖ �

(b) U(t) ∈ [H2(Ω)]2 and the line has a slope of
1.21.

Figure 3. Log-log plots of ‖Eh‖� versus hmax for the system of
parabolic equations. The solid lines represent the least-squares
fitting.

6. Conclusions
The main objective of the present paper is to propose numerical methods

for nonlinear systems of parabolic equations (1)-(3) and to provide their
convergence analysis. The proposed methods (24)-(25) can be seen as fully
discrete piecewise linear finite element methods as well as finite difference
methods. In the main result of this paper - Theorem 3 - we establish that
if the solution U(t) of (1)-(3) is in [H3(Ω)]2, then the discrete L2-norm of
the error of the numerical solution defined by (24)-(25), and of its numerical
gradient are second order convergent.
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In the proof of the main result - Theorem 3 - we do not follow the usual
approach, introduced by Mary Wheeler in [14], in the convergence analysis of
finite element methods, and largely used in the literature. Basically, we use
the error equation and the convergence analysis proposed in [2, 5]. Analogous
results for systems of nonlinear elliptic equations (19)-(20), are also included
in this work - Theorem 2.

We highlight that the authors wanted to extend some of their previously
obtained results for numerical methods for elliptic linear equations (see [2, 5]),
for an elliptic equation coupled with a parabolic equation in the scope of
diffusion processes in porous media (see [1]), or for a parabolic equation
coupled with another parabolic equation (see [8]).

Numerical results illustrating the convergence results are also included.
These results show the sharpness of the smoothness assumptions that means
that if the smoothness assumptions for the solutions of the differential prob-
lems are not satisfied, then the convergence rate is lost.
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