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COMMUTATION CLASSES OF THE REDUCED WORDS FOR
THE LONGEST ELEMENT OF Sn

GONÇALO GUTIERRES, RICARDO MAMEDE AND JOSÉ LUIS SANTOS

Abstract: Using the standard Coxeter presentation for the symmetric group Sn,
two reduced expressions for the same group element w are said to be commutative
equivalent if one expression can be obtained from the other one by applying a finite
sequence of commutations. The commutative classes can be seen as the vertices of a
graph G(w), where two classes are connected by an edge if elements of those classes
differ by a long braid relation. We compute the radius and diameter of the graph
G(w0), for the longest element w0 in the symmetric group Sn, and show that it is
not a planar graph for n ≥ 6. We also describe a family of commutation classes
which contains all atoms, that is classes with one single element, and a subfamily of
commutation classes whose elements are in bijection with standard Young tableaux
of certain moon-polyomino shapes.

1. Introduction
Given a positive integer n ≥ 2, let Sn+1 denote the symmetric group on

the alphabet [n + 1] := {1, 2, . . . , n + 1}. Composition of permutations are
read from the left. We represent a permutation w ∈ Sn+1 as the word w =
w(1)w(2) · · ·w(n+ 1) in one-line notation.
The symmetric group Sn+1 is generated by the simple reflections {s1, s2, . . . ,

sn}, where si is the transposition (i i+1). These reflections satisfy the Coxeter
relations:

s2i = 1, for all i,
sisj = sjsi, for |i− j| > 1, and (1.1)

sisi+1si = si+1sisi+1, for all i ≤ n− 1. (1.2)

The relations (1.1) are known as commutations or short braid relations, and the
relations (1.2) are called long braid relations. Since {s1, s2, . . . , sn} generates
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Sn+1, any permutation w ∈ Sn+1 can be written as a product of adjacent
transpositions w = si1si2 · · · si`.
Consider w ∈ Sn+1 written as a product w = si1si2 · · · si` where ij ∈ [n]

and ` is minimal. The length of w is `(w) := ` and the product si1si2 · · · si`(w)

is a reduced decomposition for w. The string of subscripts w = i1i2 · · · i` is a
reduced word for w. The content of w is the sequence cont(w) = (c1, . . . , cn),
where each ci is the number of occurrences of the letter i in w. A consecutive
substring of w is called a factor, and a word obtained by deleting some of the
letters of w is a subword of w.
Reduced decompositions and reduced words are in bijection with each other,

and the terms “commutation” and “long braid relation” have natural interpre-
tations in the context of reduced words. The set of all reduced words of w is
denoted by R(w).
The length `(w) of a permutation w can be computed by counting inversions

(see [2]):
`(w) = |{(i, j) : i < j and w(i) > w(j)}|. (1.3)

As an immediate consequence of (1.3), we have `(w) = `(w−1) for any permu-
tation w ∈ Sn+1.
The symmetric group Sn+1 has a unique longest element wn

0 ∈ Sn+1 with
length `(wn

0) =
(
n+1
2

)
. In one-line notation, wn

0 is the permutation (n +
1)n · · · 321. The word w0 := 1(21)(321) · · · (n · · · 21) is a reduced word for
wn
0. To simplify notation, we often omit the n superscript in wn

0, when it is
clear from the context.
We define a relation ∼ on the set R(w0) of all reduced words for w0 by

setting s ∼ t if and only if s and t differ by a sequence of commutations.
This is an equivalence relation and the classes it defines are the commutation
classes of w0, denoted by C(w0). The commutation class of a word w ∈ R(w0)
is denoted by [w]. Although two words in the same commutative class have
the same content, this property is not sufficient to characterize the class. The
next lemma gives a characterization of the words in a commutative class.

Lemma 1.1. Let v and w be words over the alphabet [n]. Then, w ∼ v if and
only if for each integer i ∈ [n− 1], we have w|{i,i+1} = v|{i,i+1}.

Proof : If w ∼ v, then w can be obtained from v by a sequence of commutative
relations that do not change the relative positions of the letters i and i + 1,
and so we must have w|{i,i+1} = v|{i,i+1} for all i ∈ [n − 1]. Reciprocally, if
w|{i,i+1} = v|{i,i+1} for all i ∈ [n − 1], then the relative positions of the letters
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i and i+ 1 is the same for both words v and w, for all i ∈ [n− 1], and thus v
and w can differ only by the positions of integers i and j with |i − j| > 2. It
follows that w ∼ v.

We write v ∼
S
w (resp. v ∼

L
w) when v and w differ by a single short (resp.,

long) braid relation, and [v] ∼
L

[w] when those classes differ by a long braid
relation, i.e. if there are v′ ∈ [v] and w′ ∈ [w] such that v′ ∼

L
w′.

Definition 1.2. The graph G(w0) of commutation classes of w0 ∈ Sn+1 has
vertex set C(w0), and an edge between classes [u] and [w] when [u] ∼

L
[w].

The distance d([u], [w]) between commutation classes [u] and [w] in G(w0) is
the length of a shortest path joining [u] and [w]. The eccentricity of [w] is the
distance to a farthest commutative class from [w]. The radius and diameter
of G(w0) are the minimum and maximum eccentricities, respectively. Figure 1
depicts the graph G(w0) for S4, which has radius and diameter equal to 4.
In his doctoral thesis and in [5], S. Elnitsky proved that G(w0) is a connected

and bipartite graph, by establishing a bijection between reduced words and
rhombic tilings of a certain polygon. Since Elnitsky’s work on G(w0), not
much information has been uncover on this graph [4, 11]. In this paper we study
various properties of G(w0), namely we compute its radius and diameter, and
show that it is not planar for n > 5. We also describe a family of commutation
classes which contains all atoms, that is classes with one single word, and a
subfamily of commutation classes whose elements are in bijection with standard
Young tableaux of certain moon-polyomino shapes.
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[w0] = [121321]

[212321] [123212]

[213213] [132132]

[232123] [321232]

[w•R0 ] = [321323]

Figure 1. The graph G(w3
0).

2. Radius, diameter and planarity of G(w0)
Given a reduced word w = i1i2 · · · i`, define the complement w• and reverse

wR words of w as

w• := (n− i1 + 1)(n− i2 + 1) · · · (n− i` + 1) and wR := i` · · · i2i1.

The complement and reverse operations define involutive mapsR(w0)→ R(w0)

that commute with each other, (w•)R =
(
wR
)•
, and satisfy cont(w) = cont(wR)

and cont(w•) = cont(w•R).

Example 2.1. In S4, w0 = 121321, w•0 = 323123, wR
0 = 123121 and w•R0 =

wR• = 321323.

Definition 2.1. Given a reduced word w = i1i2 · · · i` ∈ R(w0), let S(w) be
the sum of all ` letters of w, that is

S(w) =
∑̀
j=1

ij =
n∑

j=1

j · cj,

where cont(w) = (c1, . . . , cn).
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The number S(w) is invariant for any word in the equivalence class of [w],
and thus defines a map C(w0)→ N. For instance, we have

S(w0) = S
(
wR

0

)
=

n∑
j=1

j(n− j + 1) =
n(n+ 1)(n+ 2)

6

and

S(w•0) = S
(
w•R0
)

=
n∑

j=1

j2 =
n(n+ 1)(2n+ 1)

6
.

The next lemma follows directly from the definition of a long braid relation.

Lemma 2.2. If v ∼
L
w, then |S(v)− S(w)| = 1.

Proposition 2.3. Let v ∈ R(w0). If [v] 6= [w0] then there is u ∈ R(w0) such
that [u] ∼

L
[v] and S(u) < S(v).

Proof : We prove the contrapositive assertion. Let v ∈ R(w0), and assume
that for any class [u] ∼

L
[v] we have S(u) ≥ S(v). Then, by Lemma 2.2,

S(u) = S(v) + 1. This implies that a factor i(i − 1)i cannot appear in any
word of the class [v], for any i = 2, . . . , n. Since between two letters n in a
reduced word for w0 there must be a letter n− 1, then a word in the class [v]
can only have one letter n.
Between two consecutive letters n− 1 in a reduced word for w0, there must

be a letter n or a letter n − 2. Since we have established that a word in the
class [v] cannot have a factor i(i−1)i, for any i, it follows that there must exist
a word in [v] having the factor (n− 1)n(n− 1) or (n− 1)n(n− 2)(n− 1). In
any case, in between two consecutive letters n − 1 it has to appear the letter
n. This implies that any word in [v] has at most two letters n− 1.
Repeating this argument, we conclude that any word in [v] has at most i

letters n − i + 1, for i = 1, . . . , n, and that between two consecutive letters i,
there is exactly one letter i+1, for all i. On the other hand, being reduced, the
length of the words in [v] is

(
n+1
2

)
. Thus, any word in [v] has exactly i letters

n− i+ 1, for i = 1, . . . , n, and applying commutations, it follows that the first
word of [v], in lexicographic order, is w0.

The previous result shows that S(w0) is the minimum value for the map
S, and that S(w) = S(w0) if and only if w ∈ [w0]. Moreover, an analogous
argument shows that S(w•0) is the maximum value for the map S and S(w) =
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S(w•0) if and only if w ∈ [w•0]. That is, S(w0) ≤ S(w) ≤ S(w•0) for any
w ∈ R(w0). We can also conclude that w0 ∼ wR

0 and w•0 ∼ w•R0 .
It also follows from Proposition 2.3 that any commutation class distinct from

[w0] is linked to a class with a smaller S-value, which means that any class is
linked to w0. Thus, we recover the following result from S. Elnitsky [5], which
is also a consequence of Matsumoto’s Theorem [7].

Corollary 2.4. The graph G(w0) is connected.

Additionally, by Lemma 2.2 it follows that G(w) is a bipartite graph, with
the partition of C(w) given by the parity of the S-values of its vertices.

Corollary 2.5. The graph G(w0) is bipartite.

The map S may also be used to compute the diameter of G(w0).

Theorem 2.6. The diameter of G(w0) is S(w•0)− S(w0) =
(
n+1
3

)
.

Proof : By Proposition 2.3, there is w ∈ R(w0) such that [w] ∼
L

[w•0], and
moreover S(w) = S(w•0) − 1 by Lemma 2.2. Repeating this process S(w•0) −
S(w0) times, we arrive at the class [w0], proving that

d([w0], [w
•
0]) = S(w•0)− S(w0) =

(n− 1)n(n+ 1)

6
=

(
n+ 1

3

)
.

Similarly, we can see that for any class [w] we have d([w0], [w]) = S(w)−S(w0)
and d([w], [w•0]) = S(w•0)− S(w).
To prove that the diameter is

(
n+1
3

)
, it remains to show that this number

is the maximal distance between any two classes in the graph. Consider two
commutation classes [w] and [w′]. Since

d([w0], [w]) + d([w], [w•0]) + d([w0], [w
′]) + d([w′], [w•0]) = 2 (S(w•0)− S(w0)) ,

using the triangle inequality, we conclude that

d([w], [w′]) ≤ min{d([w0], [w]) + d([w0], [w
′]), d([w], [w•0]) + d([w′], [w•0])}

≤ S(w•0)− S(w0),

proving that the distance between any two commutation classes [w] and [w′]
is at most S(w•0) − S(w0). It follows that the maximum eccentricity of a
commutation class in the graph G(w0) is S(w•0)− S(w0).
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We will now prove that the eccentricity of any commutation class is, in fact,(
n+1
3

)
and therefore prove that the radius of R(w0) is equal to the diameter.

To this end, we will define an auxiliary function T .
Let Tn be the set of all triples (a, b, c) ∈ [n + 1]3 such that a < b < c. For

any w ∈ R(w0) and any (a, b, c) ∈ Tn define T (w, abc) = 1 if, by the action of
the generators of w on [n+ 1], the inversion of the pair (a, b) occurs before the
inversion of (b, c); and define T (w, abc) = −1 otherwise. The number T (w, abc)
can be easily read off of the line diagram of a permutation. The line diagram of
w = si1si2 · · · si` [6] is the array [n+1]× [`] in the Cartesian coordinates, which
describes the trajectories of the numbers 1, 2, . . . , n + 1 as they are arranged
into the permutation w by the successive simple transpositions sij . Note that
since w is a reduced word for w0, any two integers a < b in [n + 1] will invert
positions in the line diagram of w, thus showing that T is well defined.
Figure 2 shows the line diagram of the word w = 212321 ∈ G(w4

0), and
it follows that T (w, 123) = −1 and T (w, abc) = 1 for all remaining triples
(a, b, c), with a < b < c.

1© 2© 3© 4©
1© 3© 2© 4©
3© 1© 2© 4©
3© 2© 1© 4©
3© 2© 4© 1©
3© 4© 2© 1©
4© 3© 2© 1©

Figure 2. Line diagram of the word 212321.

Lemma 2.7. Two reduced words w,w′ ∈ R(w0) are in the same commutation
class if and only if T (w, abc) = T (w′, abc) for all triples (a, b, c) ∈ Tn.

Proof : The operator T is invariant for words in the same commutation class,
since any possible change of order of the generators is done between generators
acting on disjoint pairs of numbers.
Reciprocally, suppose T (w, abc) = T (w′, abc) and let i be the leftmost letter

of w and suppose w′ = u i v, where u has no letter i. If u has a letter i−1, then
the first occurrence of i−1 acts over a pair of integers (a, b) with a < b = i. On
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the other hand, the generator i in the word w, acts over the pair (b, c) where
b = i < c = i + 1. Thus, T (w, abc) = −1 and T (w′, abc) = 1. It follows that
u cannot have the letter i− 1, and similar reasoning shows that it cannot have
i+ 1. By commutation relations we can write w′ ∼ w′′, where i is the leftmost
letter of w′′. By induction on the first letter where w and w′ differ, we conclude
that w ∼ w′.

In view of the result above, we will write T ([w], abc) to represent the common
number T (v, abc) for all v ∈ [w].

Lemma 2.8. If [w] ∼
L

[w′], then T (w, abc) = T (w′, abc) for all triples in Tn,
except for one.

Proof : Without loss of generality, let w = u i(i + 1)i v ∈ R(w0) and w′ =
u (i+1)i(i+1) v, where u and v are, respectively, the initial and final factors of
w and w′. If a, b, c are such that u(a) = i, u(b) = i+1 and u(c) = i+2, where u
is the permutation corresponding to u, then a < b < c since otherwise w would
not be reduced. Moreover, the permutation corresponding to the left factor
u i(i+1)i is equal to the one corresponding to u (i+1)i(i+1). The transposition
corresponding to the generator i, applied to the permutation u, inverts the
integers a and b, while the transposition corresponding to the i+ 1 applied to
u inverts the integers b and c. Therefore, T (w, abc) = −T (w′, abc). Finally,
since the permutation corresponding to i(i+1)i = (i+1)i(i+1) only acts over
a, b and c, for any other triple x < y < z, we have T (w, xyz) = T (w′, xyz).

Proposition 2.9. For any w ∈ R(w0) and any triple (a, b, c) ∈ Tn, we have
(a) T ([w], abc) = −T ([w•], (n+ 2− c)(n+ 2− b)(n+ 2− a)) ;
(b) T ([w], abc) = T

(
[wR], (n+ 2− c)(n+ 2− b)(n+ 2− a)

)
;

(c) T ([w], abc) = −T
(
[w•R], abc

)
.

Proof : (a) The line diagram of w• corresponds to the horizontal reflection of
the line diagram of w. Since the word w• consists in replacing each generator
i, in the word w, by the generator n + 1 − i, the inversion of the integers a
and b is achieved by the action of w in the same order that the inversion of
the integers n + 2 − a and n + 2 − b is achieved by w•. And so, if the action
of w inverts the integers a and b before it inverts b and c, then the action of
w•, inverts the integers n+ 2− a and n+ 2− b before it inverts n+ 2− b and
n+ 2− c. Thus the result follows.
(b) Note that the line diagram of wR corresponds to the 180 degrees rotation

of the line diagram of w, and the image of a by w0 is n + 2 − a. Reading
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the word w backwards, any inversion of the integers a and b corresponds to a
inversion of the integers n + 2 − a and n + 2 − b in the reverse order. Thus,
if a and b are inverted before b and c by the action of w, then n + 2 − b and
n+ 2− c are inverted before n+ 2− b and n+ 2− a are inverted by the action
of wR. It follows that T ([w], abc) = T

(
[wR], n+ 2− c, n+ 2− b, n+ 2− a

)
.

(c) Follows from the previous two cases, noticing that the line diagram of
w•R corresponds to the vertical reflection of the line diagram of w.

Corollary 2.10. For any w ∈ R(w0),

d
(
[w], [w•R]

)
=

(
n+ 1

3

)
.

Proof : By Theorem 2.6, the distance between any two words is at most
(
n+1
3

)
.

By Proposition 2.9, for any triple (a, b, c), T ([w], abc) = −T
(
[w•R], abc

)
and,

by Lemma 2.8, this means that there are necessary at least |Tn| long relations
in a path linking [w] and

[
w•R
]
. Thus d

(
[w], [w•R]

)
≥ |Tn| =

(
n+1
3

)
, which

concludes the proof.

The following result is a consequence of the previous corollary and Theorem
2.6.

Theorem 2.11. The eccentricity of any class [w] is
(
n+1
3

)
, and therefore the

radius of G(w0) is
(
n+1
3

)
.

As can be seen in Figures 1 and 3, the graphs G(wn
0) for n ≤ 4 are planar

graphs. In Figure 3, the vertices A and B correspond to the commutation
classes of w0 and w•R0 , and the vertices in each dashed circle have the same
S-value, with one unit of increment (resp., decrement) for each circle starting
from S(w0) = 20 (resp., S(w•R0 ) = 30) in the center, having the external circles
the same S-value.
We prove next that for n > 4 the graph G(w0) is not planar, using Wagner’s

Theorem [3]. An edge contraction of an edge e = {u, v} in a graph is the
graph obtained by combining the vertices u and v into a single vertex, which is
adjacent to every vertex that was adjacent to u and v in the original graph. A
graph minor of a graph is a new graph obtained by deleting vertices, deleting
edges, and/or contracting edges of the original graph. Wagner’s Theorem states
that a graph is planar if and only if it does not contain K5 or K3,3 as a graph
minor.

Lemma 2.12. Given n ≥ 2, the graph G(wn−1
0 ) is a subgraph of G(wn

0).
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A
B

Figure 3. The graph G(w4
0).

Proof : Notice that for any word w inG(wn−1
0 ), the word w′ = w·w−n is a word in

G(wn
0), where we set w−n = n(n− 1) · · · 21 (see Definition 3.1). The subgraph

of G(wn
0) formed by the classes of the words w · w−n , with w ∈ R(wn−1

0 ), is
isomorphic to G(wn−1

0 ).

Theorem 2.13. For n > 4 the graph G(wn
0) is not planar.

Proof : Using Lemma 2.12, it is enough to prove that G(w5
0) is not planar. We

will do so by proving that it has K3,3 as minor.
The minor of G(w5

0) having as vertices the sets:
A = {[132132432154321]},
B = {[123214321354321]},
C = {[123212432543212]},
D = {[123212432154321]},
E = {[132134321354321], [132134323543212], [123214323543212]},
F = {[123214321543214], [132134321543214], [321234321543214],

[321234325432124], [321234323543212], [321232432543212],
[132132432543212]},

where E and F are the edge contractions of their vertices, is isomorphic to
K3,3, since each of the vertices A, B, C is connected to all the vertices D, E,
F .
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3. Commutative Classes
In this section, we define a family of reduced words for w0 generated by a

concatenation of monotone words of lengths n, . . . , 2, 1, and indexed by binary
vectors of length n− 1. This family contains, as a particular case, the reduced
word w0 = 1(21)(321) · · · (n · · · 21).

Definition 3.1. Given a binary vector b = (b1, b2, . . . , bn−1), with bi ∈ {+,−}
for all i = 1, 2, . . . , n− 1, we construct the word

wb = wb1
n w

b2
n−1 · · ·w

bn−1
2 w1,

where each wb`
n−`+1 is a monotone subword of length n−`+1 defined recursively

as follows (we set w1 = wbn
1 , with bn = +):

• wb1
n =

{
12 · · ·n, if b1 = +

n · · · 21, if b1 = −
.

• For ` = 1, . . . , n− 1,
– if b` = + and wb`

n−`+1 = i(i+ 1) · · · (j − 1)j with i < j, then set

w
b`+1

n−` =

{
i(i+ 1) · · · (j − 1), if b`+1 = +

(j − 1) · · · (i+ 1)i, if b`+1 = −
,

– if b` = − and wb`
n−`+1 = j(j − 1) · · · (i+ 1)i with i < j, then set

w
b`+1

n−` =

{
(i+ 1) · · · (j − 1)j, if b`+1 = +

j(j − 1) · · · (i+ 1), if b`+1 = −
.

Note that each word wb`+1

n−` is obtained by removing the rightmost letter from
wb`

n−`−1, and sorting the remaining letters by increasing or decreasing order
according to the sign of b`+1. Also, note that in Definition 3.1, the sign bn is
irrelevant for the construction w1 = wbn

1 , that is, the letter wbn
1 is completely

determined by the previous subword wbn−1
2 .
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Example 3.1. Consider the binary vector b = (+,+,−,+,−) of length 5. We
then construct the subwords

wb1
6 = w+

n = 123456,

wb2
5 = w+

5 = 12345,

wb3
4 = w−4 = 4321,

wb4
3 = w+

3 = 234,

wb5
2 = w−2 = 32,

w1 = 3.

Thus, the word indexed by b is wb = 123456 · 12345 · 4321 · 234 · 32 · 3.

Let O(n) = {wb : b ∈ {+,−}n−1} denote the set of all words indexed by
binary vectors of length n − 1, constructed in Definition 3.1. The words of
this set will be designated ordered words, and are formed by subwords wb`+1

n−` in
decreasing order of their lengths. They will serve as a basis for the construction
of a larger class of commutation classes in G(w0).

Proposition 3.2. Any ordered word w ∈ O(n) is a reduced word for w0.

Proof : Let wb ∈ O(n), with b a binary vector of length n − 1. Then, the
length of wb is the sum of the lengths of the monotone subwords wb`

n−`+1, for
` = 1, 2 . . . , n. That is

`(wb) =
n∑

`=1

(n− `+ 1) =
(n+ 1)n

2
= `(w0).

Let us now prove that the permutation associated with wb is the longest
permutation w0 ∈ Sn+1. Assume that b1 = −. The permutation associated
with w−n = n · · · 21 has one-line notation 23 · · · (n+1)1. On the other hand, the
permutation associated with wb2

n−1 · · ·w
bn−1
2 w1 leaves the letter 1 invariant, and

only acts on the set {2, . . . , n+ 1}. By induction, the permutation associated
with wb2

n−1 · · ·w
bn−1
2 w+

1 is the longest permutation on the set {2, . . . , n+1}, and
it follows that the permutation associated with wb is the longest permutation
of Sn+1.
The proof is similar if b1 = +. Therefore wb is a reduced word for w0.
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Proposition 3.3. The set O(n) contains 2n−1 distinct words, each belonging
to a different commutation class.

Proof : By construction, there are a total of 2n−1 words wb, with b a binary
vector of length n − 1, and they are all distinct. We prove by induction on
n ≥ 2 that any two of these words are in distinct commutation classes.
When n = 2 there are only two words w(+) = 12 · 1 and w(−) = 21 · 2,

which clearly are not in the same commutation class. Suppose now n > 2, and
consider words wb and wb′ with b1 = + and b′1 = −. Then, T (wb, xyz) = 1
for any integers y < z with x = 1, while T (wb′, xyz) = −1 for any integers
x < y and z = n + 1. Thus, T (wb, 1y(n + 1)) 6= T (wb′, 1y(n + 1)), for any
2 ≤ y ≤ n, showing, by Lemma 2.7, that the commutation classes of wb and wb′

are distinct. Consider next the case b1 = b′1. Then, we can write wb = wb1
n · ud

and wb′ = wb1
n · ud

′, where d = (b2, . . . , bn−1) and d′ = (b′2, . . . , b
′
n−1). By the

inductive step, we find that the words ud and ud′ are in distinct commutation
classes, showing that wb and wb′ are in distinct commutation classes.

We can use short and long braid relations in an ordered word wb to “move”
a factor wb`

n−`+1 within the other factors of wb, according to the rules of the
following lemma. These rules will be used to construct two classes of words:
atoms, that is reduced words with no short braid relations, and alternating
words, which can be interpreted as fillings of certain moon-polyomino shapes.

Lemma 3.4. Given positive integers a < k ≤ b, consider the increasing word
w+ = a(a+ 1) · · · (b− 1)b and the decreasing word w− = b(b− 1) · · · (a+ 1)a.
Then,

(1) [k · w+] ∼
L

[w+ · (k − 1)].

(2) [(k − 1) · w−] ∼
L

[w− · k].

For instance, the following list of reduced words for w0 shows how we can use
short and long braid relations to “move” the factor w+

3 = 234 of wb in Example
3.1, to the leftmost position:

123456 · 12345 · 4321 · 234 · 32 · 3 = wb

123456 · 12345 · 123 · 4321 · 32 · 3
123456 · 234 · 12345 · 4321 · 32 · 3
345 · 123456 · 12345 · 4321 · 32 · 3 (3.1)
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Given an ordered word wb, and a partition I ∪ J of [n− 1], we construct the
two side ordered word wb

I as the concatenation∏
i∈I

w
bn−i+1

i · wb1
n ·
∏
j∈J

w
bn−j+1

j , (3.2)

where each letter of wbn−i+1

i is obtained from the corresponding letter of wbn−i+1

i

by adding the value
∑n

k=i+1 bk, considering the signals + and − as 1 and −1,
respectively. The factor wbn−i+1

i can also be seen as obtained from the factor
w

bn−i+1

i of wb by the application of short and long braid relations, according to
the rules of Lemma 3.4. Moreover, in

∏
i∈I w

bn−i+1

i the factors are written from
left to right in increasing order of their lengths, and in

∏
j∈J w

bn−j+1

j the factors
are written from left to right in decreasing order of their lengths.
For example, the word (3.1) can be written as wb

I , where b = (+,+,−,+,−)
and I = {3}, where w+

3 = 345.

Definition 3.5. Let T SO(n) = {wb
I : wb ∈ O(n) and I ⊆ [n−1]} denote the

set of all two side ordered words.

Note that each word in T SO(n) is a reduced word for w0, since it is obtained
from some ordered word in O(n), which by Proposition 3.2 is reduced, by
applying short and long braid relations.

Lemma 3.6. The set T SO(n) contains 3× 4n−2 distinct words.

Proof : To construct a two side ordered word, there are two possibilities for the
sign b1 of wb1

n , and two possibilities for whether w1 belongs to the set I or not.
For all other factors there are four possible choices, two for the signal and two
for whether it belongs to I or not. This amounts to 4n−1 possibilities. Note
however, that if b1 and b2 have distinct signs, then wb1

n w
b2
n−1 = wb1

n−1w
b2
n . Thus,

there are a total of 4n−1 − 4n−2 = 3× 4n−2 distinct two side ordered words in
T SO(n).

3.1. Atoms in G(w0).

Definition 3.7. A reduced word w ∈ R(w0) whose commutation class contains
only itself is called an atom of G(w0).

Clearly, a reduced word w ∈ R(w0) is an atom if and only if each factor ij
of length 2 of w is formed by consecutive letters, i.e. |i − j| = 1. We will
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show that there are exactly four atoms in G(w0), for n ≥ 3, namely the words
wb, w−b,

(
wb
)R and

(
w−b

)R, with b = (+,−,+,−, . . .).
To simplify notation, whenever 1 ≤ a < b ≤ n define the words

t+a,b := a(a+ 1) · · · (b− 1)b, and

t−a,b := b(b− 1) · · · (a+ 1)a.

The word t+a,b is reduced since by (1.3) its associated permutation has length

b− a+ 1. Also, t−a,b =
(
t+a,b

)R
is the reverse word of t+a,b, and thus it is reduced

as well. The same argument proves the following result.

Lemma 3.8. Let a, b be integers such that a < b− 1. Then, the words
(1) (a+ 1) · t+a,b · t

−
a,b−1 · (a+ 1), and

(2) t+a,b · t
−
a,b−1 · t

+
a+1,b.

are not reduced.

Lemma 3.9. The increasing word 12 · · ·n is the only reduced word amongst the
set of all words of length ≥ n over the alphabet [n], having leftmost letter 1 and
rightmost letter n, and where each factor of length 2 is formed by consecutive
letters.

Proof : Let k be the length of a word u in the conditions of the lemma. We start
by noticing that if k = n, then the increasing word u = 12 · · ·n is reduced,
since by (1.3) the corresponding permutation (n + 1)12 · · ·n has length n.
Assuming now that k > n, the word u is a concatenation of increasing factors
with decreasing factors. Since u1 = 1 and uk = n, u must have a factor of the
form

t+a,b · t
−
a,b−1 · t

+
a+1,b,

for some integers a < b, which by Lemma 3.8 is not reduced. It follows that u
is not reduced.

Theorem 3.10. For n ≥ 3, there are exactly 4 atoms in the graph G(w0).

Proof : We start by exhibiting the four atoms ofG(w0). Let b = (+,−,+,−, . . .)
and −b = (−,+,−,+, . . .) be the binary vectors of length n − 1 having al-
ternating signs, and consider the corresponding ordered words wb and w−b in
O(n):

wb = w+
nw
−
n−1w

+
n−2 · · ·w1 and w−b = w−nw

+
n−1w

−
n−2 · · ·w1 =

(
wb
)•
.
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By Proposition 3.2, wb and w−b are reduced words for w0, and each factor of
length 2 is formed by consecutive letters. It follows that wb and w−b are atoms
of G(w0). Similarly, each factor of length 2 of the reduced words (wb)R and
(w−b)R, is formed by consecutive letters, showing that they are also atoms of
G(w0). For n ≥ 3, these four atoms are all distinct.
We will prove next that these four words are the only atoms in G(w0). Let

w ∈ R(w0) be an atom. Since the sets of letters appearing in any two reduced
words for w0 are the same (see [2]), a reduced word for w0 must have the
letters 1 and n. By Lemma 3.9, w must have as a factor t+1,n = 12 · · ·n or
t−1,n = n · · · 21, since any factor of length 2 of w consists of consecutive letters.
Suppose the first case happens (the other is analogous).
If w has two 1s and two ns then, again by Lemma 3.9, we would have

t+1,nt
−
1,n−1t

+
2,n as a factor of w, which by Lemma 3.8 is not reduced. Thus,

w has at least two 1s and one n, or one 1 and at least two ns. Notice that one
of these cases must occur, since otherwise we would have

w = w′ · (12 · · ·n) · w′′,

with w′ and w′′ words over the alphabet {2, . . . , n − 1}. In this case, the
permutation associated with w′ leaves invariant the positions 1 and n+ 1, and
then the permutation associated with w′ · (12 · · ·n) sends 1 to n+ 1 and n+ 1
to n. Therefore, w cannot be a word for w0 since it does not send n + 1 to 1,
contradicting the definition of w. Then, w must have a factor

t+1,n · t−1,n−1 · t+2,k or t−1,k · t
+
2,n · t−1,n−1,

for some k < n. Assume the former case (the other is analogous). Then,
this must be the leftmost factor of w, since otherwise w would have the factor
2 · t+1,n · t−1,n−1 · 2, which by Lemma 3.8 is not reduced.
Since k < n, the next factor in w must be a decreasing sequence t−i,k−1 for some

integer i. For the same reason as before i is must be bigger than 1, otherwise
w would have the factor t−1,k · t

+
2,k · t

−
1,k−1, which is not reduced. Consequently,

the new factor should be shorter (in length) than the previous one. Repeating
the same reasoning, w is formed by a sequence of factors in decreasing order
of lengths, alternating between increasing and decreasing factors. So it has, at
most, n factors and, to be reduced, these lengths add up to (n+1)n

2 . Therefore,
these lengths must be, respectively, n, (n− 1), . . . , 1.
Therefore, w is the atom wb that we have constructed above. The different

choices we can made in the proof gives the other three atoms.
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Using Lemma 3.4, it is easy to see that (wb)R = w−b[n−1] and (w−b)R = wb
[n−1],

showing that the four atoms wb, w−b, (wb)R and (w−b)R are words in T SO(n).

3.2. Alternating classes.

Definition 3.11. A word w over the alphabet {a, b} is alternating if it is of
the form (ab)k or (ab)ka for some integer k ≥ 0. A word w over the alphabet
[n] is alternating if each subword w|{i,i+1} of w, formed only by the letters i and
i+ 1, is alternating, for i = 1, 2, . . . , n− 1.

It follows that the difference between the number of letters i and i+ 1 in an
alternating word w is at most one. Moreover, between two consecutive letters
i in w there is exactly one letter i− 1 and exactly one letter i+ 1. Denote by
AR(w0) the set of all alternating reduced words in R(w0). We will characterize
all commutation classes in AR(w0).

Proposition 3.12. Let w ∈ AR(w0) be an alternating word, and i ∈ {2, . . . , n}.
Then, T (w, xiy) is constant for all triples x < i < y.

Proof : Suppose the letter i occurs in w to the left of the first letter i− 1 (the
other case is analogous), that is w|{i−1,i} = (i (i−1))k or w|{i−1,i} = (i (i−1))ki,
for some integer k. Then, by the action of the generators of w in the set [n+1],
the first inversion of i occurs with a pair (i, y) with i < y. Thus, the integer
i, after this inversion, is in position i + 1, and only the generators i and i + 1
can act on it. Since w is an alternating word, there is a letter i+ 1 before the
next letter i in w, which means that the next inversion of the integer i is again
with an integer y′ such that i < y′. This process is repeated until all pairs of
integers (i, t) had invert position, for i < t. It follows that T (w, xiy) = −1.

We now define a subset V of T SO(n), whose elements are alternating words.
Moreover, we will prove that the minimum element, in lexicographic order, of
any alternating class is an element of the set V .

Definition 3.13. Let V be the set of words

w−I =
∏
i∈I

w−i · w−n ·
∏
j∈J

w−j ∈ T SO(n),

where − in w−I stands for the binary vector (−)n−1 of length n− 1, and I ∪ J
is any partition of [n− 1].
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According to Definition 3.1, we have

w−i = i(i− 1) · · · 21 and w−j = n(n− 1) · · · (n− j + 2)(n− j + 1),

for i ∈ I and j ∈ J , and thus w−I ∈ AR(w0).

Lemma 3.14. The set V is a subset of AR(w0) with cardinality 2n−1. More-
over, the commutation classes of any two distinct words of V are distinct.

Proof : By construction, each word w−I , with I ⊆ [n− 1], is the minimum ele-
ment, in lexicographic order, of its class, since they are formed by the concate-
nation of strictly decreasing subwords, with the rightmost letter of a subword
strictly smaller than the leftmost letter of the subword sitting on its right.
Therefore, each word in V is in a different commutation class, and the number
of words in V is the number of subsets of [n− 1].

Example 3.2. For n+ 1 = 6, the set V is formed by the 24 words below:
w−∅ = 54321 · 5432 · 543 · 54 · 5, w−{1} = 1 · 54321 · 5432 · 543 · 54,

w−{1,2} = 1 · 21 · 54321 · 5432 · 543, w−{1,3} = 1 · 321 · 54321 · 5432 · 54,

w−{1,4} = 1 · 4321 · 54321 · 543 · 54, w−{2} = 21 · 54321 · 5432 · 543 · 5,
w−{2,3} = 21 · 321 · 54321 · 5432 · 5, w−{2,4} = 21 · 4321 · 54321 · 543 · 5,
w−{3} = 321 · 54321 · 5432 · 54 · 5, w−{3,4} = 321 · 4321 · 54321 · 54 · 5,
w−{4} = 4321 · 54321 · 543 · 54 · 5, w−{1,2,3} = 1 · 21 · 321 · 54321 · 5432,

w−{1,2,4} = 1 · 21 · 4321 · 54321 · 543, w−{1,3,4} = 1 · 321 · 4321 · 54321 · 54,

w−{2,3,4} = 21 · 321 · 4321 · 54321 · 5, w−{1,2,3,4} = 1 · 21 · 321 · 4321 · 54321.

Notice that the word w0 = w−[n−1] ∈ V . As a particular case of Proposition
3.12, we get the following result.

Corollary 3.15. Let w−I ∈ V . Then, the value of T (w−I , xiy) is 1 (respectively
−1) if i− 1 ∈ I (respectively i− 1 /∈ I), for all integer x < i < y.

We will show next that each alternating reduced word in AR(w0) is in a class
of an element of V .

Theorem 3.16. There are exactly 2n−1 commutation classes in AR(w0).

Proof : By Lemma 2.7, the commutation class of w ∈ R(w0) is characterized by
the values of T (w, abc), for all triples a < b < c. Proposition 3.12 shows that
it is enough to know the values of T (w, k(k + 1)(k + 2)), for k = 1, . . . , n− 1.
Thus, there are at most 2n−1 commutation classes in AR(w0). Lemma 3.14
shows that there are exactly 2n−1 such classes.
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3.3. Complete moon-polyominoes. Next we give an interpretation of alter-
nating words as standard fillings of certain moon-polyomino Young tableaux.
A diagram δ is a finite subset of the two-dimensional integer lattice Z2, which

we identify with a set of cells in the plane, using the English convention for the
coordinates of each cell, i.e. matrix-like coordinates. The number |δ| of cells
in the diagram is the size of δ. A column of δ is the set of cells along a vertical
line, and a row is the set of cells along a horizontal line. A diagonal Dk of a
diagram δ, with k ∈ Z, is the set Dk = {(i, j) ∈ δ : i− j = k}.
A diagram δ is convex if for any two cells in a either column or row, the

elements of Z2 in between are also cells of the diagram. It is intersection-free
if any two columns are comparable, i.e. the set of row coordinates of cells in
one column is contained in the set of row coordinates of cells in the other.
For example, the first diagram in Figure 4 is convex but not intersection-free,
the second is neither convex nor intersection-free, while the third is a convex
intersection-free diagram.

Figure 4. Example of diagrams.

Definition 3.17. A moon-polyomino is a convex intersection-free diagram.
A moon-polyomino with exactly n columns is said to be a n-diagonal moon-
polyomino if it has a column of length i, for all i ∈ [n], and exactly n diagonals.

For instance, the third diagram in Figure 4 is a moon-polyomino but not a
5-diagonal moon-polyomino. Note that since an n-diagonal moon-polyomino is
convex intersection-free, all columns on the right side of the column of length
n are by decreasing order. Moreover, they all start at the same diagonal. We
call this set of columns, including the column of length n, the right side of the
moon-polyomino. Similarly, all columns on the left side of the column of length
n are by increasing order, and end at the same diagonal. We call these set of
columns, excluding the column of length n, the left side of the moon-polyomino.
Analogously we define the up side and down side of a moon-polyomino as the
subdiagram formed by all rows including and below the row of length n, and
as the diagram formed by all rows above the row of length n, respectively.
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The shape of an n-diagonal moon-polyomino is completely determined by
the sequence of its column lengths, and thus it is identified by that sequence.
For example, the shape of the last 5-diagonal moon-polyomino in Figure 5 is
(1, 5, 4, 3, 2).

Proposition 3.18. There are exactly 2n−1 n-diagonal moon-polyominoes.

Proof : An n-diagonal moon-polyomino is completely characterized by choosing
on which side of the moon-polyomino the column of length i will be, for each
i ∈ [n− 1].

Figure 5 shows the 24 5-diagonal moon-polyominoes.

Figure 5. The 5-diagonal moon-polyominoes.

A tableau P of shape δ is an assignment of integers to the cells of δ. If the
entries of the cells of P are the integers in [|δ|] = {1, 2, . . . , |δ|}, used exactly
once, the tableau is called standard. A Young tableau is a tableau in which
the entries are increasing down columns, and across rows, from left to right.
A standard Young tableau (SYT) is a Young tableau which is also a standard
tableau. Figure 6 shows a SYT of the 5-diagonal moon-polyomino of shape
(1, 3, 5, 4, 2). Stanley [10] proved that the cardinality of R(w0) is given by the
number of all SYT with partition shape (n, n− 1, . . . , 1).
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2
1 3 4

5 6 7 8 9
10 11 13 14

12 15

Figure 6. SYT of 5-diagonal moon-polyomino shape

The number of SYT of shape δ is invariant under reflection in a diagonal
line (i, j) 7→ (j, i) or (i, j) 7→ (−j,−i), and reflection in the origin (i, j) 7→
(−i,−j), that is rotation by 180◦ [1], which is the composition of the other two
reflections.

Let w = w1w2 · · ·w` ∈ AR(w0) be an alternating word with content c(w) =
(c1, . . . , cn). We assign to w a tableau P (w) that we will show is a SYT of
n-diagonal moon-polyomino shape. This tableau is constructed by the over-
lapping of n diagonals Di−1, where each diagonal Di−1 contains the positions
of the letters i in w. The first box of Di is placed over or in front of the first
box of Di−1, according to whether the first occurrence of the letter i + 1 in w
is before or after the first occurrence of the letter i.
The following algorithm encodes this procedure, by constructing a sequence

of tableaux ∅ = P0(w), P1(w), . . . , Pn(w) = P (w), where Pi(w) is obtained
from Pi−1(w) by overlapping it with the diagonal Di.

Algorithm 1.
1. Start with the empty subset P0(w) of Z× Z.
2. Add c1 cells at positions (j, j), j = 1, . . . , c1.
3. Fill these c1 cells with the positions of the letters 1, from left to right,

in w. Let P1(w) be the resulting tableau.
4. For i = 2, . . . , n,

a. Let (a, b) be the coordinates of the cell in Pi−1(w) corresponding to
the leftmost letter i− 1 of w, and let k be its label.

b. If the first occurrence of the letter i in w is before the kth place,
then

i. Add ci cells at positions (a− 1 + j, b+ j), j = 0, . . . , ci − 1.
ii. Fill these ci cells with the positions of the letters i, from left

to right, in w. Let Pi(w) be the resulting tableau.
Else, do
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i. Add ci cells at positions (a+ j, b+ 1 + j), j = 0, . . . , ci − 1.
ii. Fill these ci cells with the positions of the letters i, from left

to right, in w. Let Pi(w) be the resulting tableau.

Example 3.3. The successive steps in the construction of the tableau P (w) cor-
responding to the reduced alternating word w = 253145213425312 ∈ AR(w0)
are

P1(w) = 4
8
14

, P2(w) = 1
4 7

8 11
1415

, P3(w) = 1 3
4 7 9

8 1113
1415

,

P4(w) = 1 3 5
4 7 9 10

8 1113
1415

, P5(w) = P (w) = 2
1 3 5 6
4 7 9 1012

8 1113
1415

.

Lemma 3.19. If w is an alternating word, then P (w) is a Young tableau.

Proof : The alternating property of the subword w|{i,i+1}, for i ∈ [n− 1], shows
that any two consecutive diagonals of P (w) satisfy the tableau condition, that
is the entries increase along rows from left to right, and along columns, from
top to bottom. It follows that P (w) is a Young tableau.

Lemma 3.20. Let I = {i1 < · · · < ik} ⊆ [n − 1] and [n] \ I = {j1 <
· · · < j` < n}. Then the shape of P (w−I ) is the n-diagonal moon-polyomino
(i1, . . . , ik, n, j`, . . . , j1).

Proof : The word w−I can be written as a product of factors w−I = w−i1 · · ·w
−
ik
·

w−n ·w−j` · · ·w
−
j1
. By construction, each of these factors corresponds to a column

of P (w−I ), with the number of boxes equal to the length of the correspond-
ing factor. Since all factors w−iq end with the letter 1, then all the columns
1, 2, · · · , k + 1 end in the diagonal D0 associated with the letter 1, and simi-
larly, since all factor w−jp start with the letter n, then the last ` + 1 columns
start in the same diagonal Dn−1.
Since the indices in I appear in w−I in increasing order, the set of row coordi-

nates of column q is contained in the set of row coordinates of column q+1, for
q = 1, . . . , k, and the same happens with the last `+1 columns. This shows that
the shape of P (w−I ) is the n-diagonal moon-polyomino (i1, . . . , ik, n, j`, . . . , j1).

Denote by s(V ) the set of shapes of the tableaux P (v), with v ∈ V , and let
PV be the set of all Young tableaux with shapes in s(V ).
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Theorem 3.21. The map P : AR(w0) → PV , that sends w into P (w), is a
bijection. Moreover, w ∼ v if and only if P (v) and P (w) have the same shape.

Proof : Lemma 3.19 shows that P is well defined. By Algorithm 1, the shape
of the tableau P (w), with w ∈ AR(w0), is completely characterized by the
subwords w|{i,i+1} for i ∈ [n − 1]. It follows by Lemma 1.1 that given w, v ∈
AR(w0), we have w ∼ v if and only if P (v) and P (w) have the same shape.
Note also that the map P is invertible. If Q ∈ PV , has the shape of P (w−I ),

we can construct a word w over the alphabet {1, 2, . . . , n} by setting the letter
i in position k whenever the tableau Q has the integer k in a box of the Di−1
diagonal, for all i ∈ [n]. Since any two consecutive diagonals of Q satisfy the
Young tableau condition, it follows that each subword w|{i,i+1} is alternating
and satisfy w|{i,i+1} =

(
w−I
)
|{i,i+1} for all i ∈ [n − 1]. By Lemma 1.1, we have

w ∼ w−I , and thus w ∈ AR(w0), with P (w) = Q. This proves that P is a
bijection and that w ∼ v if and only if P (v) and P (w) have the same shape.

Example 3.4. The alternating word w = 253145213425312 in Example 3.3 is
in the class of w−{2,3} since the shapes of P (w−{2,3}) and P (w) are the same, with

P
(
w−{2,3}

)
= 6

1 3 7 11
2 4 8 12 15

5 9 13
10 14

.

Note that the filling of P
(
w−{2,3}

)
is obtained by writing the integers from 1 to

15 down columns, starting from the leftmost one. The tableaux of the words
in V are obtained in the same manner.

Corollary 3.22. The map s : V → s(V ) is a bijection that sends each word
v ∈ V to the shape of P (v).

Note that (w−n )•R = wn and for i 6= n,
(
w−i
)•R

= w−i and
(
w−i
)•R

= w−i .
That is,

(
w−I
)•R

= w−[n−1]\I , and thus the shape of P (w−I ) is the 180 degree
rotation of the shape of P (w−[n−1]\I). Therefore, the operation •R establishes a
bijection between the commutation classes [w−I ] and [w−[n−1]\I ]. In particular,
the commutation classes of w0 = w−[n−1] and w

•R
0 = w−∅ have the same number

of elements. For n = 5, the shapes corresponding to the words in the classes
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of w0 = w−[n−1] and w
−
∅ are, respectively:

and .

Note that P (w0) is a shifted standard Young tableau, i.e. a standard Young
tableau of shifted shape given by the strict partition (n, n − 1, . . . , 1). The
bijection P extends the bijection between reduced words in the class of w0 and
standard Young tableau of shifted shape given by (n, n− 1, . . . , 1) constructed
in [8]. A formula for the number of these standard Young tableau of shifted
shape can be found in [9].

Proposition 3.23 (See [8]). The commutation classes of w−∅ and of w−[n−1]
have (

n

2

)
!
n−2∏
i=0

i!

(2i+ 1)!
(3.3)

elements each.

Proof : It is proven in [8] that the number of reduced words in the commutation
class of w0 = w−[n−1] is given by (3.3). This is also the number of elements in
the commutation class of the word w−∅ , since w

•R
0 = w−∅ and •R establishes a

bijection between the commutation classes [w−{1,··· ,n−1}] and [w−∅ ].

If I ∪ J is a partition of [n − 1], then we have
(
w−I
)R

= w+
J , and the shape

of the tableau of
(
w−I
)R is the reflection under the diagonal line (i, j) 7→ (j, i)

of the tableau of w−I . Moreover, if the entry of position (i, j) of P
(
w−I
)
is a,

then the entry in position (j, i) of P (
(
w−I
)R

) is n− a+ 1. It follows that(
w−I
)R

= w+
J ∼ w−I ′ ,

where I ′ = {n − i : i ∈ I}. Therefore, the operation R establishes a bijection
between the commutation classes of [w−I ] and [w−I ′ ], for each I ⊆ [n− 1]. Since
the operations • and R are involutions that commute with each other, it follows
that the operation • establishes a bijection between the commutation classes
of [w−I ] and [w−[n−1]\I ′], for each I ⊆ [n− 1].

Lemma 3.24. Let wb
I ∈ T SO(n). Then wb

I is an alternating word if and only
if b has constant sign.
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Proof : When b = (−)n−1 the word w−I is an element of the set V ⊆ AR(w0),
and if b = (+)n−1 then, as we have seen above, w+

I ∼ w−I ′ , where I
′ = {n− i :

i /∈ I}. Now, suppose b is not a constant vector and let i ∈ {2, . . . , n−1} be the
first index such that bi 6= bi−1. We assume bi = − (the other case is analogous),
and consider a two sided ordered word wb

I . Note that if a ≤ c < d < b, then
the word t+ab · t

−
c,d is not alternating, since

(
t+ab · t

−
c,d

)
|{d−1,d}

= (d− 1)d2(d− 1).

If i /∈ I, then wb
I has a factor wbj

n−j+1 · w
bi
n−i+1 = t+ab · t

−
cd, for some j < i and

a ≤ c < d < b. Similarly, if i ∈ I, then wb
I has a factor w

bi
n−i+1·w

bj
n−j+1 = t−cd·t

+
ab,

for some j < i and a ≤ c < d < b, where we let wbj
n−j+1 = wb1

n if j = 1. It
follows that wb

I is not an alternating word.

We are now ready to compute the number of commutation classes having
an element of the set T SO(n) as a representative. Given wb

I ∈ T SO(n) and
i ∈ [n], define the integers

xi := 1 + #{j < i : bj = +} and yi := n+ 1−#{j < i : bj = −}.

Note that the permutation associated with wbi
n+1−i sends xi to yi if bi = +, and

sends yi to xi if bi = −.

Lemma 3.25. Let wb
I ∈ T SO(n). For i ∈ [n], define the sets

∆i =

{
{(xi, z) : xi < z ≤ yi}, if bi = +
{(z, yi) : xi ≤ z < yi}, if bi = − and ∆i

I =
⋃
j>i

n+1−j∈I

∆j.

Then, we have

T (wb
I , xizyi) =

{
+1, if (bi = + and (z, yi) /∈ ∆i

I) or (bi = − and (xi, z) ∈ ∆i
I)

−1, if (bi = − and (xi, z) /∈ ∆i
I) or (bi = + and (z, yi) ∈ ∆i

I)
.

Proof : Let i ∈ [n] and assume bi = + (the other case is analogous). The set
∆i

I stores all pairs of integers (a, b) with a < b such that w(a) > w(b) for w
the permutation associated with one of the factors wbj

n+1−j, with j > i. Then
the permutation associated with wb

I sends xi to yi. If the pair (z, yi) was not
inverted by now (that is, (xi, z) ∈ ∆i

I), then the pair (xi, z) is inverted before
the pair (z, yi) and, consequently, T (wb

I , xizyi) = +1.

Proposition 3.26. The elements of the set T SO(n) belong to 3×4n−2−2n−1

distinct commutation classes.
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Proof : By Theorem 3.16, the number of commutation classes in the set of
all alternating words AR(w0) is 2n−1, and by Lemma 3.24, each one of these
classes has exactly two words from T SO(n). Consequently, using Lemma 3.6
we conclude that there are at most 3×4n−2−2n−1 distinct commutation classes
in the set T SO(n).
If two T SO(n) words wb

I and wb′

I ′ are different and have the same T -value
for all triples of integers in [n+1], then by Lemma 3.25, b and b′ have opposite
constant signs and I ′ = [n− 1]\I. By Lemma 3.24, both words are alternating
words.

In the next result, we prove that the cardinality of a commutation class of a
alternating word is a local maximum, among the cardinalities of all classes in
R(w0).

Proposition 3.27. The class [v] is a local maximum, for any alternating re-
duced word v ∈ V .

Proof : Let I = {i1, . . . , ik} and w−I ∈ V , with {j1, . . . , j`} = [n − 1] \ I and
j1 < · · · < j`. A reduced word w /∈ [w−I ] is connected to some word v ∈ [w−I ]
only by a long relation 121 ∼

L
212 or n(n−1)n ∼

L
(n−1)n(n−1), since between

two consecutive letters i of w−I , with i 6= 1, n−1, there is always a letter i−1 or
a letter i+1, by the definition of an alternating word. A long relation 121 ∼

L
212

is obtained by using short relations in w−I between the letters 1 and 21 of two
subwords w−iq and w−iq+1

, respectively (assuming w−iq+1
= w−n if q = k), in order

to form a factor 121. Similarly, a long relation n(n − 1)n ∼
L

(n − 1)n(n − 1)

is obtained by using short relations in w−I between the letters n(n− 1) and n
of two subwords w−jp+1

and w−jp, respectively (assuming w−jp+1
= w−n if p = `), in

order to form a factor n(n− 1)n.
Let v = t1tt2 ∼ w−I be a word in the commutation class of w−I with a factor

t = 121, and let w = t1tt2 ∼
L
v, with t = 212. Any sequence of short relation

on the factor t1 or t2 of w can be replicated in v. Moreover, a sequence of short
relations which uses one letter 2 in t can be replicated with the corresponding
letter 1 of t. This defines an injection f from the set [w] into [v]. Note also that
the sequence of short relations in v that sends the letter 1 of t to the opposite
side of the closest letter 3 is not in f([w]), showing that the cardinality of [w]
is strictly less than that of [w−I ]. An analogous argument shows that if w is
connected with v ∼ w−I by a long relation n(n−1)n ∼

L
(n−1)n(n−1), then the



COMMUTATION CLASSES OF THE REDUCED WORDS FOR w0 27

cardinality of [w] is again strictly less than the cardinality of [w−I ]. Therefore,
we can conclude that [w−I ] is a local maximum.

Among the cardinalities of all classes in R(w0), the four atoms we described
in Theorem 3.10 are the classes with fewest elements, and the last result shows
that each alternating class [w−I ], with I ⊂ [n − 1] is a local maximum. Com-
putational evidence leads to the following conjecture.

Conjecture. The alternating classes of w−I and
(
w−I
)•R

= w−J are the ones
with maximum cardinality amongst all classes of R(w0), where I and J are,
respectively, the sets of all odd numbers and all even numbers in [n− 1].

For instance, when n = 6 we have w−I = 1 · 321 · 54321 · 654321 · 6543 · 65
and w−J = 21 · 4321 · 654321 · 65432 · 654 · 6. Moreover, when restricted to the
alternating classes in AR(w0), we conjecture that the classes w0 = w−[n−1] and
w−∅ are the ones having fewest elements, so that |[w0]| ≤ |[w]| ≤ |w−I | for any
w ∈ AR(w0).
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