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1. Introduction
Preordered monoids are monoids equipped with a preorder compatible with

the monoid operation. They are relevant tools in many areas as, for instance,
in computer science where they are used in the theory of language recognition
(see [23]), as well as in non-classical logics, namely in fuzzy logics (see [8] and
[10]), to mention a few.

Many fundamental results had been obtained by switching from categories
of monoids to categories of preordered or ordered monoids, and the same for
semigroups. Examples of this fact are new proofs of two remarkable results
that we refer next.

A celebrated result of I. Simon ([24]) on the classification of recognizable
languages in terms of J -triviality of the corresponding syntactic monoids
has a radically new proof in [25] where it is proved that every finite J -trivial
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monoid (for the Green’s J -equivalence relation [6]) is a quotient of an ordered
monoid satisfying the identity x ≤ 1. In [9], the authors give another proof
of this result and explain its relevance in the theory of finite semigroups. A
systematic use of ordered monoids in language theory, was initiated by J.-E.
Pin in [19] and developed in [20], [21] and other subsequent papers.

The second example is a new proof of a well-known and important result of
A. Tarski that gives a criterion for the existence of a monoid homomorphism
from a given commutative monoid A to the extended positive real line R+

that sends a fixed element a ∈ A to the 1. In [26], F. Wehrung proves that
this is an Hahn-Banach type property, stating the injectivity of R+, not in
the category of commutative monoids, where there are no nontrival injectives,
but in the category of commutative monoids equipped with a preorder that
makes every element positive, called there “positively ordered monoids” or
P.O.M. for short.

Preordered monoids have a much richer diversity of features than pre-
ordered groups. In contrast with the case of preordered groups, in preordered
monoids the submonoid of positive elements, called the positive cone, nei-
ther determines the preorder nor is a cancellative monoid, in general. These
features of preordered groups are rescued in the new context by considering
convenient subcategories of the category of preordered monoids, OrdMon,
satisfying these properties or appropriate generalizations, covering a wide
range of structures.

In particular, the failure of the first property gives rise to a classification of
preordered monoids according to the relation between its preorder and the
preorder induced by the corresponding positive cone considered here that
is, for P.O.M., the opposite of Green’s preorder L as explained in Section
2. Furthermore, this last preorder may or may not be compatible with the
monoid operation. The characterization of the positive cones inducing com-
patible preorders provides a reason why the commutativity of the underlying
monoid is often assumed in the literature.

This classification gives rise to several categories and functors between
them, some of them being part of adjoint situations.

The cancellation property is often replaced by weaker conditions like the
“pseudo-cancellation” introduced in [26] that plays an important role in the
characterization of the injective objects presented there.
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We prove that the forgetful functors from OrdMon to Mon and to Ord
are topological and monadic functors, respectively, and derive some conse-
quences of these facts. By Ord we mean the category of preordered sets and
monotone maps.

Due to the fact that OrdMon is the category Mon(Ord) of internal
monoids in Ord (which fails to be so in OrdGrp), we show that the con-
struction of the left adjoint to U1 : OrdMon = Mon(Ord)→ Ord as well
as its monadicity can be derived from general results for the forgetful functor
Mon(C) → C, when C is a symmetric monoidal category satisfying some
additional conditions, presented in [11], [12] and [22].

In [10] coextensions of commutative pomonoids (monoids equipped with a
compatible partial order) are introduced, generalizing similar constructions
due to P. A. Grillet ([7]) and J. Leech ([13, 14]), in the unordered case.

Schreier split extensions of monoids, that first appeared in [17], correspond
to an important class of split epimorphisms of monoids, the Schreier split
epimorphisms (whose name was inspired by the Schreier internal categories
in monoids introduced by Patchkoria in [18]). Indeed, they are exactly those
split epimorphisms that correspond to monoid actions: an action of a monoid
B on a monoid X being a monoid homomorphism ϕ : B → End(X) from B
to the monoid of endomorphisms of X. Also this class of split epimorphisms
has essentially all homological and algebraic properties of the split homomor-
phisms in groups (see [2] and [3]).

Schreier split extensions have already been defined in categories of monoids
with operations ([17]) and in the categories of cancellative conjugation mono-
ids ([5]).

In this paper we describe Schreier split extensions in the full subcategory
OrdMon∗ of OrdMon with objects all preordered monoids whose preorder
is induced by the corresponding positive cones.

In [4] the structure of the split extensions in the category of preordered
groups is studied and the case where the restriction to the positive cones
gives a Schreier split epimorphism in Mon is analysed. Also the behaviour
of the category Mon(Ord) and, more generally, the one Mon(C) when C
satisfies suitable conditions, is considered in the last section.

Throughout we will denote preordered monoids additively, say (A,+, 0,≤)
where the monoid (A,+, 0) is not necessarily commutative and≤ is a preorder
compatible with +, that is, where +: A× A→ A is a monotone map.
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For concepts in category theory that are not defined here we suggest
MacLane’s book [16].

2. The category of preordered monoids
We start by recalling that if (A,+, 0,≤) is a preordered group, i.e. (A,+, 0)

is a (not necessarily abelian) group and the preorder ≤ is compatible with
the group operation

∀a, b, c, d ∈ A a ≤ b and c ≤ d =⇒ a+ c ≤ b+ d,

then P = {a ∈ A | 0 ≤ a} is a submonoid of A closed under conjugation.
Furthermore, this monoid P , that is called the positive cone of the preordered
group, determines the preorder, i.e.,

a ≤ b⇐⇒ b− a ∈ P.
Indeed, if a ≤ b, since −a ≤ −a, then

0 = a− a ≤ b− a.
Conversely, if b− a ≥ 0, since a ≥ a then

b = b− a+ a ≥ a.

In this case, defining

a ≤P b⇐⇒ b ∈ P + a = a+ P

we have that ≤ coincides with ≤P .

In OrdMon, if we consider the preorder ≤P defined by

a ≤P b if b ∈ P + a,

then we get a preorder ≤P that is contained in the original preorder.

Proposition 1. If (A,+, 0,≤) ∈ OrdMon then P = {a ∈ A | 0 ≤ a} is a
submonoid of A and

a ≤P b =⇒ a ≤ b.

Proof : We have that 0 ∈ P and if a, b ∈ P then a ≥ 0 and b ≥ 0 implies that
a+ b ≥ 0 and so P is a submonoid of A.

If b = x+ a with x ∈ P , since x ≥ 0 and a ≥ a, then b = x+ a ≥ a.

The converse of this result is false, in general, as the following example
shows.
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Example 1. Let (A,+, 0) be the monoid with the following addition table

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 4 4 4
2 2 2 4 4 4
3 3 3 4 4 4
4 4 4 4 4 4

equipped with the preorder ≤ with P = A and generated by the following
diagram (where the arrows from zero have been omitted)

1 //

�� ��

2

����
3 // 4

.

Then (A,+, 0,≤) ∈ OrdMon and ≤P is the preorder

1 //

�� ��

2

��
3 // 4

,

that is strictly contained in ≤.

In the previous example one can easily check that ≤P is compatible with
+ and so (A,+, 0,≤P ) is also a preordered monoid. The following example
shows that this is not always the case.

Example 2. We consider the monoid (A,+, 0) with addition table

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 2 2 4
2 2 1 2 1 4
3 3 1 2 1 4
4 4 4 4 4 4

with P = A and the preorder generated by

1 //

��

2

��
3

OO @@

// 4

.
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It is easy to check that (A,+, 0,≤) is a preordered monoid. However, ≤P
being the following preorder

1

��

2

��
3

OO @@

// 4

is not compatible with the monoid operation. Indeed, 2 ≥P 0 and 1 ≥P 1 but
1 + 2 = 2 �P 1 since 2 /∈ A+ 1 = {1, 4}.

The following is an example of a preordered monoid where the two pre-
orders coincide.

Example 3. Let (A,+, 0) be the monoid of Example 1 now with a different
positive cone, P = {0, 1}, and the preorder sketched below

0 // 1 2

��
3 // 4

which is exactly ≤P , i.e. ≤ is the same as ≤P .

Now we characterize the submonoids of a preordered monoid which induce
a compatible preorder.

Definition 1. Given a monoid A and a submonoid M of A we say that M
is

- right normal if a+M ⊆M + a, for every a ∈ A;
- left normal if M + a ⊆ a+M , for every a ∈ A;
- normal if it is both right and left normal.

Proposition 2. Let P be the positive cone of a preordered monoid (A,+, 0,≤
). Then the monoid operation is monotone with respect to ≤P if and only if
P is right normal.

Proof : If ≤P is compatible with + and b = a+ x with x ∈ P then

x ≥P 0 and a ≥P a =⇒ b = a+ x ≥P a
and so there exists an y ∈ P such that a+ x = y + a, i.e. a+ P ⊆ P + a.

Conversely, if a ≤P b and c ≤P d then b = x + a and d = y + c, for some
x, y ∈ P and so, because P is right normal, we can find z ∈ P for which
a+ y = z + a, hence

b+ d = x+ a+ y + c = x+ z + a+ c
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and so a+ c ≤P b+ d.

In Example 1 we have P = A, the so-called positively preordered monoids,
and the left and right cosets are the following

a a+A A+a
0 A A
1 {1,4} {1,2,3,4}
2 {2,4} {2,4}
3 {3,4} {3,4}
4 {4} {4}

Since P is right normal — for all a ∈ A, a + A ⊆ A + a — then ≤P is
compatible with +.

For Example 2, again P = A but P is not right normal and so ≤P is not
compatible with +.

a a+A A+a
0 A A
1 {1,2,4} {1,4}
2 {1,2,4} {2,4}
3 {1,2,3,4} {1,2,3,4}
4 {4} {4}

We remark that, in this case, A is not right normal in itself but it is left
normal — A + a ⊆ a + A, for every a ∈ A — and so if we consider the
preorder

a ≤′P b⇐⇒ b ∈ a+ P

then, using a result similar to the one of Proposition 2, we conclude that
(A,+, 0,≤′P ) ∈ OrdMon.

Remark 1. For a submonoid M of a monoid A, when M = A, we have
that ≤M= ≤opL and ≤′M = ≤opR, where L and R are the Green’s relations
defined, in additive notation, by

a ≤L b⇔M + a ⊆M + b,

a ≤R b⇔ a+M ⊆ b+M.

Indeed,

a ≤M b⇔ b = x+ a, for some x ∈M ⇔M + b ⊆M + a⇔ b ≤L a,
and the same for ≤R.
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Corollary 1. For every submonoid M of a commutative preordered monoid
(A,+, 0,≤), the preorders ≤M and ≤′M coincide and, moreover, (A,+, 0,≤M)
is a preordered monoid.

Obviously, the positive cone of a commutative preordered monoid need not
determine the preorder: for

+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 1

with P = A and ≤ as sketched below

1 // 2oo

the right (= left) cosets are
a P+a
0 P
1 {1}
2 {1,2}

and so ≤P is
1 2oo ,

but 1 �P 2 because 2 /∈ P + 1.
Let us denote by OrdMon∗ the full subcategory of OrdMon with objects

the preordered monoids such that ≤=≤P . And the same for the commutative
case, OrdCMon∗.

Proposition 3. The subcategory OrdCMon∗ is coreflective in the category
OrdCMon.

Proof : If (A,+, 0,≤) is a preordered commutative monoid and P is its pos-
itive cone then, by Corollary 1, (A,+, 0,≤P ) ∈ OrdCMon∗. Further-
more, the identity morphism cA : (A,≤P )→ (A,≤) is the coreflection. In-
deed, given a morphism f : (A′,≤P ′)→ (A,≤) in OrdCMon if a′ ∈ P ′ then
f(a′) ∈ P (a′ ≥ 0 ⇒ f(a′) ≥ 0) and so f(P ′) ⊆ P . Consequently f factors
through cA

(A,≤P )
C(A,≤)

// (A,≤)

(A′,≤P ′)
f̄

OO

f

99
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by a unique homomorphism f̄ ∈ OrdCMon∗ because if a′1 ≤P ′ a′2 then
a′2 ∈ P ′ + a′1 and so

f(a′2) ∈ f(P ′) + f(a′1) ⊆ P + f(a′1).

Hence, f(a′1) ≤P f(a′2) and so f̄(a′1) ≤P f̄(a′2) for all a′1 ≤P ′ a′2 in A′.

Definition 2. We say that a monomorphism of monoids m : S → A is right
normal if m(S) is a right normal submonoid of A and we denote by
RNMono(Mon) the corresponding full subcategory of the category of mono-
morphisms of monoids, Mono(Mon).

Example 2 shows that the identity morphisms may not be a right normal
monomorphism.

Theorem 1. The category OrdMon∗ is isomorphic to the one of right nor-
mal monomorphisms in Mon, RNMono(Mon).

Proof : The functor G : OrdMon∗ → RNMono(Mon) defined by

(A,≤P )

f
��

(A′,≤P ′)

7→ P //

f |P
��

A

f
��

P ′ // A′

has an inverse F : RNMono(Mon)→ OrdMon∗ assigning

S //

f ′
��

A

f
��

S ′ // A′

7→ (A,≤S)

f
��

(A′,≤S′)

where f(S) ⊆ S ′ implies that f ∈ OrdMon∗. Then GF (S → A) = G(A,≤S
) = (S → A) and FG(A,≤P ) = F (P → A) = (A,≤P ).

The following are examples, inspired by [26], of objects in OrdMon∗.

(1) The set of all R-submodules of a module A over a ring R, equipped
with the “Minkovski sum”

U + V = {u+ v : u ∈ U and v ∈ V }

and the order defined by the inclusion. Indeed, in this case every
element is positive and U ⊆ V if and only if V = V + U .
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(2) All injective objects in OrdMon with respect to embeddings (not
to monomorphisms) are objects in OrdMon∗. In fact, let M be the
submonoid of the monoid N×N, generated by (1, 0) and (1, 1) with the
order induced by the product order and i : M → N×N the embedding.
If a ≤ b in an injective object A then there exists a (unique) morphism
in OrdMon, u : M → A such that u(1, 0) = a and u(1, 1) = b, defined
by u(n + m,m) = na + mb, for every n,m ∈ N. By injectivity of A,
there exists a morphism v : N× N→ A

M
i //

u
��

N× N

v
{{

A

extending u, that is such that v · i = u. Then taking c = v(0, 1) we
have that b = c + a ∈ P + a and so the preorder in A coincides with
the one induced by its positive cone. Indeed, since (0, 0) ≤ (0, 1) and
v preserves the order then 0 ≤ c.

Let OrdMon� be the full subcategory of OrdMon with objects all pre-
ordered monoids whose positive cone is a right normal monoid.

Proposition 4. The category OrdMon∗ is coreflective in OrdMon�.

Proof : Essentially the same as the one of Proposition 3.

Summing up, we have the following commutative diagram of categories and
functors

OrdMon // Mono(Mon)

OrdMon�

hh

vv

OrdMon∗

OO

66

∼= // RNMono(Mon)oo

OO

where OrdMon∗ is coreflective in OrdMon� but OrdMon� is not core-
flective in OrdMon as we prove in the following section.
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3. The forgetful functors
Let us consider the following commutative diagram of forgetful functors

OrdMon
U2 //

U1
��

Mon

V1
��

Ord
V2

// Set

where V2 is topological and V1 is a monadic functor. We are going to prove
that also U2 is a topological functor and U1 is a monadic one.

Proposition 5. The functor U2 : OrdMon→Mon is a topological functor.

Proof : Given a family of monoid homomorphisms

fi : (X,+, 0)→ U2(Ai,+, 0,≤i),
for i ∈ I, defining for x, x′ ∈ X

x ≤ x′ ⇔ fi(x) ≤i fi(x′),∀i ∈ I,
we obtain a preorder which, in addition, is compatible with the monoid
operation:

x ≤ x′ and y ≤ y′ ⇔ ∀i ∈ I, fi(x) ≤ fi(x
′) and fi(y) ≤ fi(y

′)

⇔ ∀i ∈ I, fi(x) + fi(y) ≤ fi(x
′) + fi(y

′)

⇔ ∀i ∈ I, fi(x+ y) ≤ fi(x
′ + y′)

⇔ x+ y ≤ x′ + y′.

From that we conclude that:

(1) U2 has a left and a right adjoint defined by equipping each monoid
with the discrete and the total preorder, respectively;

(2) OrdMon is complete and cocomplete, since Mon is complete and
cocomplete, and U2 preserves limits and colimits.

Proposition 6. The functor U1 : OrdMon→ Ord has a left adjoint.

Proof : Let F (X,≤) = (X∗, con, [ ],≤), where X∗ is the set of all words in
the alphabet X with the operation of concatenation, having the empty word
[ ] as identity (the free monoid on the set X), equipped with the preorder

w = [w1 · · ·wn] ≤ w′ = [w′1 · · ·w′m]
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if and only if n = m and wi ≤ w′i for i = 1, 2, · · ·n. This way we define a
preorder compatible with concatenation.

The morphism

η(X,≤) : (X,≤)→ U1(X
∗, con, [ ],≤),

which assigns to each x ∈ X the singular word [x], is universal from (X,≤)
to U1:

(X,≤)
η(X,≤)

//

f ((

U1(X
∗, con, [ ],≤)

U1f̄
��

(X∗, con, [ ],≤)

f̄
��

U1(A,+, 0,≤) (A,+, 0,≤)

for each f in Ord there exists a unique f̄ ∈ OrdMon such that f̄([x]) = f(x)
and so f̄([x1 x2 · · · xn]) = f(x1) + f(x2) + · · · + f(xn), because f̄ ∈ Mon.
And f̄ is monotone: if x = [x1 x2 · · · xn] ≤ y = [y1 y2 · · · yn], since xi ≤ yi,
i = 1, · · · , n, then f(x1) + f(x2) + · · ·+ f(xn) ≤ f(y1) + f(y2) + · · ·+ f(yn),
i.e. f(x) ≤ f(y).

Consequently, this defines a functor

F1 : Ord→ OrdMon

that is left adjoint of U1 with unit η.

Proposition 7. The functor U1 : OrdMon→ Ord is monadic.

Proof : We recall that, by Beck’s monadicity criterion (see e.g. Th.2.4 in
[15]), a right adjoint functor U1 is monadic if and only if

• U1 reflects isomorphisms;
• OrdMon has and U1 preserves coequalizers of all parallel pairs (f, g)

such that (U1(f), U1(g)) has a contractible coequalizer in Ord.

Given a morphism f : (A,+, 0,≤) → (B,+, 0,≤) in OrdMon such that
U1(f) is an isomorphism in Ord then, being also a bijective homomorphism
of monoids, it is an isomorphism of monoids and so it is also an isomorphism
in OrdMon. Hence U1 reflects isomorphisms.

For a parallel pair of morphisms

f, g : (A,+, 0,≤)→ (B,+, 0,≤)

in OrdMon let q : (B,+, 0)→ (C,+, 0) be a coequalizer of (U2(f), U2(g)) in
the category of monoids. Considering in C the preorder that is the transitive
closure of the image by q of the preorder in B, it is easy to prove that this
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preorder is compatible with the monoid operation, so that (C,+, 0,≤) ∈
OrdMon, and also that

q : (B,+, 0,≤)→ (C,+, 0,≤)

is the coequalizer of (f, g) in this category.
Let us assume that the pair (U1(f), U2(g)) has a contractible coequalizer

(U1(f), U1(g), h; i, j) in Ord. We have to prove that the unique morphism
t ∈ Ord such that t · h = U1(q) is an isomorphism.

Since V2U1 = V1U2 and V1 is monadic, we know that V2(t) is a bijection.
Furthermore, if c = t(x) ≤ t(y) = d then x ≤ y. Indeed, by definition of the
preorder in C, there exists a zig-zag in B

b1 ≤ b2 ∼ b′2 ≤ b3 · · · bn−1 ∼ b′n−1 ≤ bn,

such that q(b1) = c, q(bn) = d and q(bi) = q(b′i) for i = 2, · · ·n − 1. Thus
x = h(b1) ≤ h(bn) = y.

Proposition 8. The subcategory OrdMon� is not coreflective in the cate-
gory OrdMon.

Proof : For every preordered set (X,≤), F1(X,≤) = (X∗, con, [ ],≤) has pos-
itive cone P = {[ ]} that is a right normal (indeed a normal) submonoid.
Hence the preordered monoid F1(X,≤) ∈ OrdMon� and we have the fol-
lowing situation

OrdMon�
U1

�

&&

// OrdMon ' OrdT
U1

vv

Ord
F1

66

F1
�

ff

where U1
� is the restriction of U1 to OrdMon�, F1

� is the corestriction of
F1 giving a left adjoint to U1

�, and T is the monad that both adjunctions
induce in Ord.

From that we conclude that OrdMon� cannot be coreflective in OrdMon
otherwise, being closed under coequalizers, U1

� would be monadic and so
OrdMon� ∼= OrdT ∼= OrdMon that is false as Example 2 shows.

Direct proofs presented in this section are simple and informative about
the categories involved.

However, since OrdMon is the category Mon(Ord) of internal monoids
in the category of preordered sets (which is not true for ordered groups) these
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results can be derived from more general ones relative to categories of models
of the theory of monoids in monoidal categories. In our case, since Ord is
a cartesian closed category which, furthermore, is locally finitely presentable
(see [1]), the construction of the left adjoint of U1 : Mon(Ord)→ Ord is a
particular case of the construction of the left adjoint of the forgetful functor
of Mon(C)→ C, when C is a symmetric monoidal category, satisfying some
additional conditions, presented by G. M. Kelly in [11], see also [12]. Also
the monadicity of U1 comes from Corollary 2.6 in [22].

In more detail, S. Lack proves in [12] that the forgetful functor Mon(C)→
C has a left adjoint when C is a symmetric monoidal category with count-
able coproducts that are preserved by tensoring on either side, with the free
monoid over an object X ∈ C given by

1 +X +X2 + · · ·
where Xn means the nth-tensoring of X.

In [22], H. Porst deals with “admissible monoidal categories” which are
locally presentable categories that, in addition, are symmetric monoidal with
the property that tensoring by a fixed object defines a finitary functor (i.e.,
a functor preserving directed colimits).

In the cartesian case, that is when the tensor is given by the direct product
and the identity is the terminal object in the monoidal category, if C is locally
presentable and cartesian closed it is clearly admissible, in the above sense,
and so, by Corollary 2.6 in [22] we conclude the monadicity of Mon(C) over
C.

4. Schreier split extensions
We recall that, in the category of monoids, a Schreier split epimorphism

([2]) is a diagram

X
k
// A

p
//

q
oo B

s
oo (1)

where k, p and s are monoid homomorphisms, ps = 1B, k is the kernel of p
and q is a set-theoretical map (called the Schreier retraction), such that,

(S1) kq + sp = 1A, and
(S2) q(k(x) + s(b)) = x, for every x ∈ X and b ∈ B.

To the Schreier split epimorphism above corresponds an action

ϕ : B → End(X)
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defined by ϕ(b)(x) = q(s(b) + k(x)) that we will denote by b · x.
Important consequences ([2]), that will be used in the sequel, are the fol-

lowing:

(C1) k(b · x) + s(b) = s(b) + k(x), for all b ∈ B and x ∈ X;
(C2) q(a1 + a2) = q(a1) + q(sp(a1) + kq(a2)) = q(a1) + p(a1) · q(a2), for all

a1, a2 ∈ A;
(C3) A is isomorphic to the semi-direct product XoϕB with isomorphisms

defined by α(a) = (q(a), p(a)) and β(x, b) = k(x) + s(b);
(C4) p is the cokernel of k and so, since the sequence is exact, we speak of

Schreier split extensions.

This definition can easily be extended to the category of preordered monoids
by keeping q a set-theoretical map and assuming that k, p and s are monotone
homomorphisms.

In this section we are going to characterize Schreier split extensions in
OrdMon∗. For that we use the isomorphism defined in Theorem 1 and work
in the category RNMono(Mon). For simplicity, we assume that the objects
in this category are inclusions and we denote the right normal submonoids
of a monoid M by PM , since they are the positive cones of a compatible
preorder in M .

Definition 3. A Schreier split epimorphism in RNMono(Mon) is a dia-
gram

PX
k̄ //

��

PA
p̄
//

��

PB
s̄
oo

��

X
k
// A

p
//

q
oo B

s
oo

(2)

in which the lower row is a Schreier split epimorphism in Mon, and the
upper row consists of right normal submonoids, the positive cones PX, PA,
and PB, that make X, A, and B, objects in OrdMon∗. The morphisms k̄,
p̄, and s̄, are the corresponding restrictions.

We point out that we do not assume the monotonicity of q.

We will show that for every two objects (X,PX) and (B,PB) in the category
RNMono(Mon), there is an equivalence between Schreier split extensions of
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(X,PX) by (B,PB) and a certain kind of actions that we will call preordered
actions for the purpose of this paper.

Definition 4. Let (X,PX) and (B,PB) be two objects in the category
RNMono(Mon). A preordered action of (B,PB) on (X,PX), that will be
denoted by (X,B, PX , PB, ϕ, ξ), consists of a monoid action of the underlying
monoids B on X, i.e. a monoid homomorphism

ϕ : B → End(X),

together with a set-theoretical mapping

ξ : X × PB → X,

satisfying the following conditions:

(A1) ξ(0, b) = 0, for all b ∈ PB
(A2) if x ∈ PX then ξ(x, 0) = x
(A3) if ξ(x, b) = x and ξ(x′, b′) = x′ then

ξ(x+ b · x′, b+ b′) = x+ b · x′

(A4) for all x, u ∈ X, v ∈ PB, b ∈ B, if ξ(u, v) = u, then there exists
u′ ∈ X such that

x+ b · u = u′ + v′ · x
and

ξ(u′, v′) = u′

where v′ ∈ PB is such that b + v = v′ + b, which exists because PB is
right normal.

A morphism (f0, f1, f2) between two Schreier split extensions in the cate-
gory RNMono(Mon) is a commutative diagram of the form

PX
f̄0

}}

k̄ //

��

PA
f̄1

}}

p̄
//

��

PB
f̄2

}}

s̄
oo

��

PX ′
k̄′ //

��

PA′
p̄′

//

��

PB′
s̄′

oo

��

X
f0

||

k
// A

f1

||

p
//

q
oo B

f2

||

s
oo

X ′
k′

// A′
p′

//
q′

oo B′.
s′

oo
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Whereas a morphism of preordered actions,

(f0, f2) : (X,B, PX , PB, ϕ, ξ)→ (X ′, B′, P ′X , P
′
B, ϕ

′, ξ′)

consists of two monoid homomorphisms f0 : X → X ′ and f2 : B → B′ which
restrict to the respective positive cones giving f̄0 : PX → PX ′ and f̄2 : PB → PB′,
such that

f0(b · x) = f2(b) · f0(x)

and

ξ′(f0(u), f̄2(v)) = f0(u),

whenever ξ(u, v) = u. In other words, the diagram where the horizontal
arrows are defined by the monoid actions, (b, x) 7→ b · x,

B ×X
f0×f2

��

// X

f0
��

B′ ×X ′ // X ′

is commutative and the diagram

X × PB
f0×f̄2

��

ξ
// X

f0
��

X ′ × PB′
ξ′

// X ′

commutes only when restricted to those pairs (u, v) ∈ X × PB for which
ξ(u, v) = u. That is, there exists g : Pξ → Pξ′, such that the left square and
the outer rectangle commute

Pξ //

g
��

X × PB
f0×f̄2

��

ξ
// X

f0
��

Pξ′ // X ′ × PB′
ξ′

// X ′

(3)

where Pξ = {(u, v) ∈ X × PB | ξ(u, v) = u} and similarly for Pξ′.
This way we defined a category S of Schreier split extensions in

RNMono(Mon) and a category A of preordered actions.

Theorem 2. There is an equivalence of categories between the category A of
preordered actions and the category S of Schreier split extensions in
RNMono(Mon).
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Proof : We define a functor G : S → A assigning to a Schreier split epimor-
phism in RNMono(Mon) as displayed in (2), a preordered action as follows:

(1) ϕb(x) = q(s(b) + k(x)), for all x ∈ X and b ∈ B;
(2) ξ(u, v) = u if k(u) + s(v) ∈ PA and ξ(u, v) = 0 otherwise.

These maps ϕ and ξ satisfy the conditions of Definition 4:

• The first condition above defines an action of B on X ([17]).
• For b ∈ PB, ξ(0, b) = 0 because s(b) ∈ PA.
• If x ∈ PX then ξ(x, 0) = x since k(x) + s(0) = k(x) ∈ PA.
• If ξ(x, b) = x and ξ(x′, b′) = x′ then k(x) + s(b), k(x′) + s(b′) ∈ PA.

Since PA is a monoid then

k(x) + s(b) + k(x′) + s(b′) ∈ PA,
but s(b) + k(x′) = k(b · x′) + s(b) and so we have that

k(x+ b · x′) + s(b+ b′) ∈ PA.
Consequently, ξ(x+ b · x′, b+ b′) = x+ b · x′.
• PA → A ∼= X oϕ B right normal means that for all (x, b) ∈ X oϕ B,

(u, v) ∈ PA, there exists (u′, v′) ∈ PA such that

(x, b) + (u, v) = (u′, v′) + (x, b)

that is
(x+ b · u, b+ v) = (u′ + v′ · x, v′ + b)

which implies x+ b · u = u′ + v′ · x and b+ v = v′ + b.

Defining G(f0, f1, f2) = (f0, f2) we obtain a functor G : S → A.

Conversely, given a preordered action (X,B, PX , PB, ϕ, ξ) we construct a
Schreier split extension in RNMono(Mon) as follows (using the same no-
tation as in (2)):

(1) A = X oϕ B is the semi-direct product of the underlying monoids
induced by the monoid action ϕ. This means that A is the set X ×B
with the monoid operation

(x, b) + (x′, b′) = (x+ b · x′, b+ b′)

and neutral element (0, 0) ∈ X ×B;
(2) the right normal submonoid of A, PA = Pξ, is defined by

(x, b) ∈ PA ⇔ b ∈ PB and ξ(x, b) = x.

This gives a Schreier split extension in RNMono(Mon). Indeed:
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(a) Pξ is a submonoid of X oϕ B by (A3) and the fact that PB is a
monoid.

(b) The right normality of PA comes from (A4).
(c) The morphism 〈1, 0〉 : X → A restricts to PX → PA by (A2).
(d) The morphism 〈0, 1〉 : B → A restricts to PB → PA by (A1).

Moreover, we define a functor H : A → S assigning to each morphism of
actions

(f0, f2) : (X,B, P,PB, ϕ, ξ)→ (X ′, B′, PX ′, PB′, ϕ
′, ξ′),

H(f0, f2) = (f0, f1, f2) where f1 = g : Pξ → Pξ′ as in diagram (3).

Then HG ∼= 1S : in the diagram

PX

$$

k̄ //

��

PA
p̄

//

��

PB
s̄

oo

��

Pξ
β̄

::

//

��

PBoo

��

X

$$

k
// A

p
//

q
oo B

s
oo

X oϕ B
β

::

// Boo

since β(x, b) = k(x) + s(b), by definition of Pξ, we conclude that β̄ : Pξ → PA
is an isomorphism.

It is easy to check that also GH = 1A, thus giving the desired equivalence
of categories.

Finally, we point out two interesting particular cases:

• When q is a monotone map then it restricts to q̄ : PA → PX and ξ is
trivial, in the sense that ξ(x, b) = x when x ∈ PX and b ∈ PB and it
is zero otherwise. In this case, the upper row of the diagram (2) is a
Schreier split epimorphism of monoids and hence PA is isomorphic to
the semidirect product PX ×ϕ̄ PB.
• When q is an homomorphism then the monoid action ϕ is trivial, i.e.
ϕb(x) = x, for all b ∈ B. However, we may still have a non trivial ξ
in this case, as the following example shows.
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In the diagram (2) if q is a monoid homomorphism then A ∼= X × B but
the upper row need not be a Schreier split epimorphism.

Example 4. Let us consider the following diagram

{0} //

��

N× N
+ //

��

N
〈0,1〉
oo

��

Z
〈1,−1〉

// Z× Z
+ //

π1oo Z,
〈0,1〉
oo

(4)

which is an example of a Schreier split epimorphism in the category
RNMono(Mon). The left Z has the discrete order because its positive pos-
itive cone is {0}, while the one on the right has the usual order since its
positive cone is N. The positive cone N × N and the corresponding order in
Z× Z will be described below.

In this case we have a non trivial ξ : Z× N→ Z, defined by

ξ(u, v) =

{
u if u ∈ N and u ≤ v

0 otherwise

giving a preordered action (Z,Z, {0},N, ϕ, ξ) where ϕ is trivial, which induces
a Schreier split extension in RNMono(Mon)

{0} //

��

Pξ
//

��

Noo

��

Z
〈1,0〉
// Z× Z

π2 //
π1oo Z

〈0,1〉
oo

(5)

where Pξ = {(u, v) ∈ Z× Z | 0 ≤ u ≤ v}, with 0 ≤ u ≤ v in the usual order
of N. This defines the positive cone P = Pξ and the order of Z× Z in (4).
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[1] J. Adámek and J. Rosický, Locally presentable and accessible categories, Cambridge Univ.

Press, 1994. (Cited on page 14.)
[2] D. Bourn, N. Martins-Ferreira, A. Montoli and M. Sobral, Schreier split epimorphisms in
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Instituto Politécnico de Leiria, Leiria, Portugal

E-mail address: martins.ferreira@ipleiria.pt

Manuela Sobral
Universidade de Coimbra, CMUC e Departamento de Matemática, Coimbra, Portugal
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