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CONVEX TRANSFORM ORDER OF BETA

DISTRIBUTIONS WITH SOME CONSEQUENCES

IDIR ARAB, PAULO EDUARDO OLIVEIRA AND TILO WIKLUND

Abstract: The convex transform order is one way to make precise comparison
between the skewness of probability distributions on the real line. We establish
a simple and complete characterisation of when one Beta distribution is smaller
than another according to the convex transform order. As an application, we derive
monotonicity properties for the probability of Beta distributed variables exceeding
the mean or mode of their distribution. Moreover, as a byproduct, we obtain a
simple alternative proof of the mode-median-mean inequality for unimodal distri-
butions that are skewed in a sense made precise by the convex transform order.
This new proof also gives an analogous inequality for the anti-mode of distributions
that have a unique anti-mode. Such inequalities for Beta distributions follow as
special cases. Finally, some consequences for the values of distribution functions of
Binomial distributions near to their means are mentioned.
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1. Introduction
How to order probability distributions according to criteria that have in-

terpretable probabilistic consequences is a common question in probability
theory. Naturally there will exist many different order relations, each one
highlighting a particular aspect of the distributions. Classical examples are
given by orderings that capture size and dispersion. In reliability theory
some ordering criteria are of interest when dealing with ageing problems.
These help decide, for example, which lifetime distributions exhibit faster
ageing. An account of different orderings, their properties, and basic re-
lationships may be found in the monographs of Marshal and Olkin [13] or
Shaked and Shanthikumar [19].

In this paper we shall be interested primarily in two such orderings, known
in the literature as the convex transform and the star-shape transform orders.
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These orders are defined by the convexity or star-shapedness of a certain map-
ping that transforms one distribution into another. The convex transform
order was introduced by van Zwet [22] with the aim of comparing skewness
properties of distributions. Oja [16] suggests that any measure of skewness
should be compatible with the convex transform order, and that many such
measures indeed are. Hence, this ordering gives a convenient formalisation
of what it means to compare distributions according to skewness.

With respect to the ageing interpretation, the convex transform order
may be seen as identifying ageing rates even in the case of lifetimes that
did not start simultaneously, while the star-shape order requires the same
starting point for the distributions under comparison[15], as described in
Nanda et al. [15].

Establishing that one distribution is smaller than another is often difficult
and tends to rely on being able to control the number of crossing points
between various affine transforms of distributions functions. Based on such
techniques explicit characterisations of the ordering relationships within the
Gamma and the Weibull families are given in Arab and Oliveira [2, 3] and
Arab et al. [4].

This family of Beta distributions is a two-parameter family of distributions
supported on the unit interval. It appears in various context, for example in
the study of order statistics and in Bayesian statistics as a conjugate prior
for a variety of distributions arising from Bernoulli trials.

The main contribution of this paper is to characterise when one Beta dis-
tribution is smaller than another according to the convex- and star-shaped
transform orders. This characterisation implies various monotonicity proper-
ties for the probabilities of Beta distributed random variables exceeding the
mean or mode of their distribution. Using this allows one to derive, in some
cases, simple bounds for such probabilities. These differ from concentration
inequalities such as Markov’s inequality or Hoeffding’s inequality in that they
study the probability of exceeding, without necessarily significantly deviating
from, the mean or the mode.

A well known connection between Beta and the Binomial distributions al-
lows us to translate these results into similar monotonicity properties for
the family of Binomial distributions. Such probabilities of exceeding means
have received attention in the context of studying properties of randomised
algorithms, see for example Karppa et al. [12], Becchetti et al. [5], or Mitzen-
macher and Morgan [14]. They have also found applications in dealing with
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specific aspects in machine learning problems, such as in Doerr [8], Green-
berg and Mohri [9], with sequels in Pelekis [18] and Pelekis and Ramon [17],
or Cortes et al. [7] for more general questions. Such an inequality for the
Binomial random variables was also used by Wiklund [20] when studying the
amount of information lost when resampling.

These properties also allow one to compare the relative location of the
mode, median, and mean of certain distributions that are skewed in a sense
made precise by the convex transform order. Such mode-median-mean in-
equalities are a classical subject in probability theory. While our condition
for these inequalities to hold has previously been suggested by van Zwet [23],
our proof appears novel. The proof also allows us to establish a similar
inequality for absolutely continuous distributions with unique anti-modes,
meaning distributions having densities with a unique minimum. For an ac-
count of the field we refer the interested reader to van Zwet [23] or, for more
recent references to Abadir [1] or Zheng et al. [21].

This paper is organised as follows. In Section 2 we define the relevant
concepts and definitions. The main results, characterising the order rela-
tionships within the Beta family is presented in Section 3. Consequences
are discussed in Section 4, while proofs of the main results are presented in
Section 5. Some auxiliary results concerning the main tools of analysis are
given in the Appendix A.

2. Preliminaries
In this section we present the basic notions necessary for understanding

the main contributions of the paper.
Let us first recall the classical notion of convexity on the real numbers.

Definition 1 (Convexity). A real valued function f : I 7→ R on an interval
I is said to be convex if for every x, y ∈ I and α ∈ [0, 1] we have f(αx+ (1−
α)y) ≤ αf(x) + (1− α)f(y).

We will also need the somewhat less well known notion of star-shapedness
of a function on the real numbers.

Definition 2 (Star-shapedness). A function f : [0, a] → R, for some a > 0,
is said to be star-shaped if for every 0 ≤ α ≤ 1, we have f(αx) ≤ αf(x).

Star-shapedness could generally be defined on general intervals with re-
spect to an arbitrary reference point. For our purposes it suffices to consider
functions on the non-negative half-line, star-shaped relative to the origin.
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It is immediate that a convex f : I → R on an initial segment of the
non-negative half-line that satisfies f(0) ≤ 0 is star-shaped. Moreover, f is

star-shaped if and only if f(x)
x is increasing in x ∈ I. We refer the reader

to Barlow et al. [6] for some more general properties and relations between
these types of functions.

Our main concern in this paper is to establish certain orderings of the
family of Beta distributions that are defined in [0, 1].

Definition 3 (Beta distribution). The Beta distribution Beta(a, b) with pa-
rameters a, b > 0 is a distribution supported on the unit interval and defined
by the density given for x ∈ [0, 1] by

f(x) =
xa−1(1− x)b−1

B(a, b)
, where B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx. (1)

We shall be interested in ordering with respect to orderings determined by
the convexity or star-shapedness of a certain mapping. Primarily the follow-
ing order due to van Zwet [22]. In order to avoid working with generalised
inverses, we restrict ourselves to distributions supported on intervals.

Definition 4 (Convex Transform Order ≤c). Let P and Q be two proba-
bility distributions on the real line supported by the intervals I and J , with
strictly increasing distribution functions F : I → [0, 1] and G : J → [0, 1],
respectively. We say that P ≤c Q or, equivalently, F ≤c G, if the mapping
x 7→ G−1(F (x)) is convex. Moreover, if X ∼ P and Y ∼ Q, we will also
write X ≤c Y when P ≤c Q.

It is immediate from the definition that if X ∼ P and Y ∼ Q then both
X ≤c Y and Y ≤c X if and only if there exist some a > 0 and b ∈ R such
that X has the same distribution as aY + b. In other words, the convex
transform order is invariant under orientation preserving affine transforms.

Although this order relation is popular in reliability theory, the convex
transform order was first introduced by van Zwet [22] to compare the shape
of distributions with respect to skewness properties. The idea is roughly as
follows. Let X and Y be random variables having, say, absolutely continuous
distributions given by distribution functions F and G, respectively. Then
G−1(F (X)) has the same law as Y . Convexity of x 7→ G−1(F (x)) implies
that the transformed distribution tends to be spread out on the right tail
while being compressing on the left tail. In other words, Y will have a
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distribution more skewed to the right. Indeed, if ψ is an increasing function
then X ≤c ψ(X) if and only if ψ is convex.

In the reliability literature the convex transform ordering is known as the
increasing failure rate (ifr) order. Indeed, assuming that F and G are
absolutely continuous distribution functions with derivatives f and g and
failure rates rF = f/(1− F ) and rG = g/(1−G) then F ≤c G is equivalent
to

f(F−1(u))

g(G−1(u))
=
rF (F−1(u))

rG(G−1(u))

being increasing in u ∈ [0, 1].
The second order of interest is defined analogously to the convex transform

order, but now with respect to star-shapedness.

Definition 5 (Star-shaped order ≤∗). Let P and Q be two probability distri-
butions on the real line supported by the intervals I = [0, a] and J = [0, b], for
some a, b > 0, with strictly increasing distributions functions F : I → [0, 1]
and G : J → [0, 1], respectively. We say that P ≤∗ Q or, equivalently,
F ≤∗ G, if the mapping x 7→ G−1(F (x)) is star-shaped. Moreover, if X ∼ P
and Y ∼ Q, we will also write X ≤∗ Y when P ≤∗ Q.

If X ∼ P and Y ∼ Q for appropriate P and Q then X ≤∗ Y and Y ≤∗ X
if and only if there exists an a > 0 such that X has the same distribution as
aY .

The star transform order can be interpreted in terms of the average fail-
ure rate, which is why it is sometimes known as increasing failure rate in
average (ifra) order. In fact, F ≤∗ G is equivalent to G−1(u)/F−1(u) being
increasing in u ∈ [0, 1]. Moreover

G−1(x)

F−1(x)
=
rF (F−1(u))

rG(G−1(u))
,

where rF (x) and rG(x) are known as the failure rates in average of F and
G, respectively, and are defined by rF (x) = − ln(1 − F (x))/x and rG(x) =
− ln(1−G(x))/x.

While the star-shaped order is strictly weaker than the convex transform
order for distributions having support with a lower end-point at 0, such as
the Beta distributions, it is of some independent interest and a useful inter-
mediate step in proving ordering according to the convex transform order.

The stochastic dominance order is also known also as first stochastic domi-
nance (fsd) in reliability theory, and captures the notion of one distribution
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attaining larger values than the other. It is generally easier to verify than the
convex transform order or star-shaped order and will serve here primarily to
establish necessity of the sufficient conditions for convex transform ordering
between two Beta distributions.

Definition 6 (Stochastic dominance ≤st). Let P and Q be two probability
distributions on the real line with distributions functions F : R → [0, 1] and
G : R → [0, 1], respectively. We say that P ≤st Q or, equivalently, F ≤st G,
if F (x) ≥ G(x), for all x ∈ R. Moreover, if X ∼ P and Y ∼ Q, we will also
write X ≤st Y when P ≤st Q.

3. Main results
The main results of this paper describe the stochastic dominance, star-

shape transform order, and convex transform order relationships within the
family of Beta distributions. The proofs are postponed until Section 5.

The stochastic dominance relationships within the family of Beta distribu-
tions are known and fairly straightforward to establish. In this paper they
will serve to establish necessity of the sufficient conditions for being ordered
according to the convex- or star-shaped transform order.

Theorem 7. Let X ∼ Beta(a, b) and Y ∼ Beta(a′, b′), then Y ≤st X if and
only if a ≥ a′ and b ≤ b′.

The star-shape ordering relationships within the family of Beta distribu-
tions has been addressed previously by Jeon et al. [11, Example 4], but only
for the case of integer valued parameters that satisfy certain conditions. Here
we extends this to a complete classification.

Theorem 8. Let X ∼ Beta(a, b) and Y ∼ Beta(a′, b′), then X ≤∗ Y if and
only if a ≥ a′ and b ≤ b′.

As mentioned above, the star-shape transform order is of some independent
interest and it serves as an intermediate step when establishing the ordering
according to the convex transform order. It turns out to be the case that
two Beta distributions are ordered according to the convex transform order
if and only if they are ordered according to the star-shaped order.

Theorem 9. Let X ∼ Beta(a, b) and Y ∼ Beta(a′, b′), then X ≤c Y if and
only if a ≥ a′ and b ≤ b′.
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4. Some consequences of the main results
A first simple result follows from the invariance of the convex ordering

under affine transformations. Recall that the family of Gamma distribution
with parameters α, θ > 0, denoted Gamma(α, θ), is defined by the density
functions given for x ≥ 0 by

f(x) =
xα−1e−x/θ

θα Γ(α)
, where Γ(α) =

∫ ∞
0

xα−1e−x dx.

It is easily seen that if Xb ∼ Beta(a, b) for a, b > 0, then, leaving a fixed, the
distributions of bXb converge weakly to Gamma(a, 1) as b tends to +∞. The
following proposition is an immediate consequence of the transitivity of the
transform orders and Theorems 8 and 9.

Proposition 10. Let X ∼ Beta(a, b) and Y ∼ Gamma(a, θ) for a, b, θ > 0,
then X ≤∗ Y and X ≤c Y .

4.1. Probabilities of exceedance. It was noted already by van Zwet [22]
that the probabilities of random variables being greater than (or smaller
than) their expected values is monotone with respect to convex transform
ordering of their distributions. This is essentially a immediate consequence
of Jensen’s inequality. The idea generalises directly to any functional that
satisfies a Jensen-type inequality.

Theorem 11. For any interval I, measurable function h : I → R and X ∼ P
with P supported in I denote the distribution of h(X) by Ph.

Let F be a set of continuous probability distributions on intervals in R and
T : F → R a functional satisfying for all P ∈ F and h convex and increasing
with Ph ∈ F that h(T (P )) ≤ T (Ph).

Then if X ∼ P and Y ∼ Q with distributions P,Q ∈ F such that X ≤c Y
it holds that P(X ≥ T (P )) ≥ P(Y ≥ T (Q)).

If T satisfies instead h(T (P )) ≥ T (Ph) then, under the same assumptions
on X and Y , the conclusion becomes P(X ≥ T (P )) ≤ P(Y ≥ T (Q)).

Proof : Assume T satisfies the first inequality, h(T (P )) ≤ T (Ph). Let F
and G be the distribution functions of X and Y , respectively, and h(x) =
G−1(F (x)). Clearly h is increasing. The assumption X ≤c Y implies h is
also convex so that G−1(F (T (P ))) = h(T (P )) ≤ T (Ph) = T (Q). Since G is
increasing it follows that F (T (P )) ≤ G(T (Q)).
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The second statement, for T satisfying h(T (P )) ≤ T (Ph), follows by repro-
ducing the same argument with the inequality reversed.

Note now that the standard Jensen inequality implies that we may take as
T in Theorem 11 the expectation operator T (P ) = E(X) for X ∼ P . Hence
the following is immediate.

Corollary 12. Let X and Y be two random variables such that X ≤c Y .
Then P(X ≥ E(X)) ≥ P(Y ≥ E(Y )).

As a direct consequence of Theorem 9 and Corollary 12, we have the follow-
ing monotonicity properties of Beta distributed random variables exceeding
their expectation.

Corollary 13. For each a, b > 0 let Xa,b ∼ Beta(a, b). Then (a, b) 7→
P(Xa,b ≥ E(Xa,b)) is increasing in a and decreasing in b.

This provides immediate bounds for the probabilities of Beta distributed
random variables exceeding their expectation.

Corollary 14. Let Xa,b ∼ Beta(a, b), where a, b ≥ 1. Then

e−1 <

(
b

1 + b

)b
≤ P(Xa,b ≥ E(Xa,b)) ≤ 1−

(
a

1 + a

)a
< 1− e−1.

Proof : Compute P(Xa,b ≥ E(Xa,b)) for a = 1 or b = 1, use the monotonicity
given in Corollary 13, and, finally allow a, b → +∞ to find both numerical
bounds.

Using Theorem 11 we may prove similar monotonicity properties for the
probabilities of exceeding modes or anti-modes. Recall that an absolutely
continuous distribution is unimodal if it has a continuous density with a
unique maximum and uniantimodal if it has a continuous density with a
unique minimum.

Corollary 15. Let X ∼ P and Y ∼ Q be two real valued random variables
with absolutely continuous distributions P and Q supported on some intervals
I and J and such that X ≤c Y .

If P and Q are unimodal with modes mode(X) and mode(Y ), respectively,
then P(X ≥ mode(X)) ≤ P(Y ≥ mode(Y )).

If P and Q are uniantimodal with anti-modes anti-mode(X) and
anti-mode(Y ), respectively, then

P(X ≥ anti-mode(X)) ≥ P(Y ≥ anti-mode(Y )).
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Proof : We prove only the result for modes, the statement about anti-modes
being proved analogously. To prove the statement we shall rely on Theo-
rem 11.

Define F as the set of absolutely continuous unimodal distributions sup-
ported in some interval in R and T : F → R the functional defined by T (P )
being equal to the unique mode of P , for every P ∈ F . By Theorem 11 it
suffices the prove that T satisfies h(T (P )) ≤ T (Ph), for every P ∈ F , and
h convex and increasing such that Ph ∈ F . For this purpose, choose f a
continuous and unimodal version of the density of P , and denote, for no-
tational simplicity, the unique mode by m. Simple computation yields that

g(x) = f(h−1(x))
h′(h−1(x)) is a density for Ph. Since Ph has some continuous density

with a unique mode and h is increasing and convex, g must be a such a
density. Denote the mode T (Ph) by mh.

Since m is a mode of P it follows that f(m) ≥ f(h−1(m′)) and, by the
unimodality of Ph, it follows that

f(h−1(m′))

h′(h−1(m′))
= g(m′) ≥ g(h(m)) =

f(h−1(h(m)))

h′(h−1(h(m)))
=
f(m)

h′(m)
.

Consequently h′(h−1(m′)) ≤ h′(m), which in turn implies that m′ ≤ h(m),
since h′ and h are both increasing. The conclusion now follows immediately
from Theorem 11.

Similarly to Corollary 13, the previous result implies monotonicity proper-
ties for the probability of exceeding the mode or anti-mode for Beta distribu-
tions. For that, we must restrict ourselves to parameters a and b such that
Beta(a, b) actually has a unique mode or anti-mode, that is to say, when
a, b > 1 or a, b < 1, respectively. In either case the mode or anti-mode,
respectively, is (a− 1)/(a+ b− 2).

Corollary 16. For a, b > 0 let Xa,b ∼ Beta(a, b).
If a, b > 1 let mode(Xa,b) = (a− 1)/(a+ b− 2), then the mapping (a, b) 7→

P(Xa,b > mode(Xa,b)) is decreasing in a and increasing in b.
If a, b < 1 let anti-mode(Xa,b) = (a − 1)/(a + b − 2), then the mapping

(a, b) 7→ P(Xa,b > anti-mode(Xa,b)) is increasing in a and decreasing in b.

Recall that B ∼ Bin(n, p) if P(B = k) =
(
n
k

)
pk(1− p)n−k or equivalently if

it is a sum of n independent and equally distributed indicators that are equal
to 1 with probability p. Using a link between the Beta and the Binomial dis-
tributions allows to prove some monotonicity properties for the probabilities
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that a Binomial variables exceeds certain values close to its mean. As noted
in the Introduction, the quantity P(Bn,p ≤ np), where Bn,p ∼ Bin(n, p) has
garnered some interest recently. The map p 7→ P(Bn,p ≤ np) is not monotone
even when restricting to p = 0, 1

n , . . . , 1−
1
n , 1, where np is an integer. Using

our results we prove that slightly changing np renders monotonicity.

Corollary 17. For n ∈ N and for each p ∈ [0, 1] let Bn,p ∼ Bin(n, p). The
map p 7→ P(Bn,p > np−p) is increasing for p = 1/(n−1), . . . , (n−2)/(n−1),
and the map p 7→ P(Bn,p > np − (1 − p)) is decreasing for p = 1/(n +
1), . . . , n/(n+ 1).

Proof : For each a, b > 0 let Xa,b ∼ Beta(a, b). It is well known that
P(Xk+1,n−k ≥ p) = P(Bn,p ≤ k), for k = 0, . . . , n. The equality can for exam-
ple be established by repeated integration by parts. As the distribution of
Xk+1,n−k has mean (k+1)/(n+1) and mode k/(n−1), it follows from Corollar-
ies 13 and 16, that k 7→ P(Bn, k+1

n+1
≥ k) is decreasing and k 7→ P(Bn, k

n−1
≥ k)

is increasing. Reparameterising in terms of p yields k = np + p − 1 and
k = np− p, so the result follows.

4.2. (Anti)mode-median-mean inequalities. If Xa,b ∼ Beta(a, b) then
the random variable 1 − Xa,b is distributed according to Beta(b, a). As the
convex transform order is invariant with respect to translations, Theorem 9
implies that when a ≤ b we have that −Xa,b ≤c Xa,b. Since the convex trans-
form order orders only the underlying distribution the following definition
due to van Zwet [23] is justified.

Definition 18 (Positive/negative skew). Let P be a probability distribution
andX ∼ P a random variable with distribution P . We say that P is positively
skewed if −X ≤c X and that P is negatively skewed if X ≤c −X.

Thus, according to this definition, the Beta distributions have positive skew
when a ≤ b and negative skew when a ≥ b.

As noted by van Zwet [23] Definition 18 provides an intuitive condition
for inequalities between the mode, median and mean to hold. We give an
alternative proof of this fact, based on the results in the previous section.
This alternative proof yields a similar inequality for the anti-mode.

Theorem 19. Let P be a positively skewed distribution.
If P is unimodal with mode m0, then there exists a median m1 of P such

that m0 ≤ m1.
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If P has finite mean m2, then there exists a median m1 of P such that
m1 ≤ m2.

If P is uniantimodal with anti-mode m3, then there exists a median m1 of
P such that m1 ≤ m3.

Proof : We prove only the first statement as the remaining ones are proved
analogously. Let X be a random variable with distribution P and m0 the
mode of P . Then m1 = sup{m | P(X ≤ m) ≤ 1/2} is a median of P .
Since P is positively skewed it follows by Corollary 15 that P(X ≤ m0) ≤
P(−X ≤ −m0). Moreover, P(−X ≤ −m0) = 1 − P(X ≤ m0), so that
P(X ≤ m0) ≤ 1/2. Therefore m0 ≤ m1.

For the second statement apply Corollary 12 instead of Corollary 15.

Having a median lying between the mode and mean is usually called satis-
fying the mode-median-mean inequality. Analogously we will say that a dis-
tribution satisfies the median-anti-mode inequality if it has a median smaller
than its anti-mode.

As already noted before, when a ≤ b, the distribution Beta(a, b) is posi-
tively skewed. The following slight generalisation of the known result con-
cerning the ordering of the mode, median, and mean of the Beta distribution
is now immediate.

Corollary 20. If 1 ≤ a ≤ b then Beta(a, b) satisfies the mode-median-
mean inequality. If a ≤ b ≤ 1 then Beta(a, b) satisfies the median-mean
and median-anti-mode inequalities.

5. Proofs
This section collects all the proofs related to establishing Theorems 7, 8

and 9, stated in Section 3. To improve the readability, results relevant to
each Theorem are presented in a separate subsection.

Most of the proofs rely on keeping track of sign changes of various functions.
Throughout S(x ∈ I 7→ f(x)) = S(x 7→ f(x)) = S(f(x)) = S(f) ∈ S =
{0, -, +, -+, +-, . . . } denotes the sequence of signs of a function f : I → R.
Formal definitions, notation, and standard results concerning sign patterns
can be found in Appendix A.

The following technical lemma summarises the basic strategy used through-
out the proofs of the main results in the upcoming section

Lemma 21. For a, b, a′, b′, c > 0 and d < 1 denote by F and G the distribu-
tion functions of Beta(a, b) and Beta(a′, b′) and `(x) = cx+ d.
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Then for I = {x ∈ [0, 1] | 0 < `(x) < 1} = (max(0,−d
c),min(1, 1−d

c )) one
has

S(x ∈ [0, 1] 7→ F (x)−G(`(x))) = S(x ∈ I 7→ F (x)−G(`(x))) (2)

≤ σ1 · S(x ∈ I 7→ p1(x)) (3)

≤ σ1 · S(x ∈ I 7→ p2(x)) (4)

≤ σ1 · σ2 · S(x ∈ I 7→ p3(x)) (5)

≤ σ1 · σ2 · S(x ∈ I 7→ p4(x)), (6)

where

σ1 = Sign(−d), σ2 =


Sign(a′ − a), if d = 0, a′ 6= a,

Sign(1 − a), if d > 0, a 6= 1,

Sign(a′ − 1), if d < 0, a′ 6= 1,

0, -, or +, otherwise,

and

p1(x) =
xa−1(1− x)b−1

B(a, b)
− c`(x)a

′−1(1− `(x))b
′−1

B(a′, b′)
,

p2(x) = (a− 1) log(x) + (b− 1) log(1− x)

− (a′ − 1) log(`(x))− (b′ − 1) log(1− `(x)) + C,

p3(x) =
a− 1

x
− b− 1

1− x
− c(a′ − 1)

`(x)
+
c(b− 1)

1− `(x)
,

p4(x) = c3x
3 + c2x

2 + c1x+ c0,

for c3 = (a−a′+ b− b′)c2, c2 = −(a−a′+1− b′)c2− (a−a′+ b−1)c(1−d)−
(b′−b+1−a)cd, c1 = (a−a′)c(1−d)+(a−b′)c(−d)+(a+b−2)(1−d)(−d),

c0 = −(a− 1)(d− 1)d, and C = log B(a′,b′)
cB(a,b).

Proof : Write [0, 1] = J ∪ I ∪ J ′ where J = [0,max(0,−d
c)] and

J ′ = [min(1, 1−d
c ), 1]. Then S(x ∈ [0, 1] 7→ F (x) − G(`(x))) = S(x ∈ J 7→

F (x)−G(`(x))) · S(x ∈ I 7→ F (x)−G(`(x))) · S(x ∈ J ′ 7→ F (x)−G(`(x))).
By construction the first and third terms are just a single sign that coincides
with the first and final sign of S(x ∈ I 7→ F (x)−G(`(x))) and can hence be
dropped. This proves (2).

Assertion (3) is now immediate from Propositions 39 and 40 and (4) follows
by taking logarithms of both terms and simplifying.
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Moreover, (5) follows by another application of Propositions 39 and 40 and
(6) follows by multiplication with x(1− x)`(x)(1− `(x)) which is positive on
I by definition.

5.1. Stochastic dominance ordering. Before actually proving Theorem 7,
we shall prove that the stochastic dominance is a necessary condition for
ordering compactly supported distributions with respect to the star-shape
transform or the convex transform orders. Although the result concerning
the stochastic dominance is well established, we present a proof using sign
patterns.

A first result concerns a simple relation between the star-shaped transform
ordering and the stochastic dominance order.

Proposition 22. Let X ∼ P and Y ∼ Q be random variables with distribu-
tions P and Q supported on [0, 1]. Then X ≤∗ Y implies Y ≤st X.

Proof : Let F and G be the distribution functions of X and Y , respectively.
As G−1(F (x))/x is increasing, it follows that G−1(F (x))/x ≤ G−1(F (1)) = 1,
thus G−1(F (x)) ≤ x and G(x) ≥ F (x), meaning Y ≤st X.

Since the convex transform order implies the star-shape transform order,
the following is immediate.

Corollary 23. Let X ∼ P and Y ∼ Q be random variables with distributions
P and Q supported on [0, 1]. Then X ≤c Y implies Y ≤st X.

In the above statement the use of the unit interval is for notational conve-
nience. Using invariance under orientation preserving affine transformations
the statement generalises to distributions on any bounded interval.

Using the above we may now establish necessary conditions for one Beta
distribution to be smaller than another according to convex- or star-shaped
transform orders. We do this by characterising when one is smaller than the
other according to stochastic dominance.

The proof is elementary, but since it illustrates well the style of the up-
coming proofs we formulate it in terms of an analysis of sign patterns.

Proof of Theorem 7: Let F , G, f , and g be the distribution and density func-
tions of Beta(a, b) and Beta(a′, b′). Denote H(x) = F (x) − G(x). We need
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to prove that S(H) = - if and only if a ≥ a′ and b ≤ b′. We have

S(H ′(x)) = S

(
xa
′−1(1− x)b

′−1

B(a, b)

(
xa−a

′
(1− x)b−b

′ − B(a, b)

B(a′, b′)

))
= S

(
xa−a

′
(1− x)b−b

′ − B(a, b)

B(a′, b′)

)
.

Since the case a = a′ and b = b′ is trivial, we may assume H is not constant
0 and so, since H(0) = H(1) = 0, that neither S(H ′) = + nor S(H ′) = -.

If a ≥ a′ and b ≤ b′, with at least one strict, we have S(H ′) ≤ -+

since xa−a
′
(1 − x)b−b

′
is increasing. Only S(H ′) = -+ is possible so Proposi-

tions 39 and 40 imply - · · · - = S(H) ≤ -+ with S(H) = - the only option.
Assume now that b > b′ and a > a′. Clearly S(H ′) = - · · · - and since

xa−a
′
(1−x)b−b

′
is unimodal either S(H ′) = - or S(H ′) = -+-. Only S(H ′) =

-+- is possible, so Proposition 40 implies that S(H) = - · · · + 6= -.
Using that Beta(a, b) ≤st Beta(a′, b′) if and only if Beta(b′, a′) ≤st Beta(a, b)

and that ≤st is a partial order covers the remaining cases.

5.2. Star-shape ordering. We now prove Theorem 8, showing that, apart
reversing the order direction, we find the same parameter characterisations
as for the stochastic dominance.

Proof of Theorem 8: The necessity follows from Proposition 22 and Theo-
rem 7. As for the sufficiency, it is enough to prove the statement when
a > a′, b = b′ and when a = a′, b < b′. The general statement then follows
by transitivity since then Beta(a, b) ≤∗ Beta(a, b′) ≤∗ Beta(a′, b′). Moreover,
we may assume that either b ≤ b′ ≤ 1 or 1 ≤ b ≤ b′. Since the remaining
case, b ≤ 1 ≤ b′, follows again by transitivity.

Let F and G be the distribution functions of Beta(a, b) and Beta(a′, b′),
respectively, with f and g the corresponding density functions as in (1). By
Proposition 38 we need to prove that for every c > 0

S(x ∈ [0, 1] 7→ G−1(F (x))− cx) = S(F (x)−G(cx)) ≤ -+. (7)

As the assumptions on the parameters are the same as in Theorem 7, it
follows that G−1(F (x)) ≤ x, meaning (7) is trivially satisfied when c ≥ 1.
Moreover, both G−1 and F are increasing, so (7) is again trivial for c ≤ 0. It
is therefore enough to consider c ∈ (0, 1).

The conclusion follows by analysing three different cases.
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Case 1. b = b′ ≤ 1, a > a′: Using (3) from Lemma 21 with d = 0 gives

S(G−1(F (x))− cx) ≤ S

(
xa−1(1− x)b−1

B(a, b)
− ca

′
xa
′−1(1− cx)b−1

B(a′, b)

)
= S

(
xa−a

′
(

1− cx
1− x

)1−b
− ca′ B(a, b)

B(a′, b)

)
≤ -+,

since 1−cx
1−x is increasing for a ≥ a′ and b ≤ 1.

Case 2. b = b′ ≥ 1, a > a′: Applying Lemma 21 with d = 0 we have
c3 = (a − a′)c2 > 0, c2 = −(b − 1)c(1 − c) − (a − a′)c(1 + c), c1 =
(a− a′)c > 0, c0 = 0, σ1 = 0, and σ2 = +, meaning (6) gives

S(F (x)−G(cx)) ≤ + · S(c3x
3 + c2x

2 + c1x) = + · S(c3x
2 + c2x+ c1).

Since c3 > 0 we have S(x ∈ [0, 1] 7→ c2x
2 + c1x + c0) ≤ +-+. But

c1 > 0 and c3 + c2 + c1 = −(b− 1)c(1− c) < 0 meaning we must have
S(x ∈ [0, 1] 7→ c2x

2 + c1x + c0) = +-. Hence S(F (x)−G(cx)) ≤ -+-.
But since F (1)−G(c) = 1−G(c) > 0 we have S(F (x)−G(cx)) ≤ -+.

Case 3. a = a′, b < b′: Applying Lemma 21 with d = 0 we have c3 =
−(b′ − b)c2 < 0, c2 = (1− b)c− (1− b′)c2, c1 = 0, c0 = 0, σ1 = 0, and
σ2 ∈ {0, -, +}, meaning (6) gives

S(F (x)−G(cx)) ≤ σ2 · S(c3x
3 + c2x

2) = σ2 · S(c3x+ c2) ≤ σ2 · +-.

In any case S(F (x) − G(cx)) ≤ -+- no matter the value of σ2. But
F (1)−G(c) > 0, so we must have S(F (x)−G(cx)) ≤ -+.

This concludes the proof.

As will become apparent in the next section, this characterisation of the
star-shape transform ordering is an essential first step towards proving the
corresponding statement for the convex transform order.

5.3. Convex transform ordering. To characterise how the Beta distribu-
tions are ordered according to the convex transform order we will apply a
strategy similar to the one used in previous sections. According to Proposi-
tion 38 we need to prove that for a ≥ a′ and b ≤ b′ the distribution functions
F and G of Beta(a, b) and Beta(a′, b′), respectively, satisfy

S(x ∈ [0, 1] 7→ F (x)−G(`(x))) ≤ +-+, (8)
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for every affine function ` with positive slope.
First we need an auxiliary result, generalising Theorem 6.1 in [4], which

corresponds to taking x0 = y0 = 0 = inf I in the statement below.

Proposition 24. Let f : I 7→ R where I is an interval. If for some x0 ≤ inf I
and y0 it holds that S(x ∈ I 7→ f(x) − `(x)) ≤ -+ for all affine functions
` such that `(x0) = y0 then S(x ∈ I 7→ f(x) − ˜̀(x)) ≤ -+ for all affine
functions ˜̀ such that ˜̀(x0) ≥ y0.

The analogous conclusion holds considering the sign pattern +- and taking
x0 ≥ sup I satisfying ˜̀(x0) ≤ y0.

Proof : The proof is not too difficult. The main idea is given graphically in
Figure 1.

y0

x0 x1

y0

x0 x1

˜̀

`

Figure 1. Main idea of proof of Proposition 24.

The above statement may be combined with the characterisation of how
Beta distributions are ordered according to the star-shaped transform order
that was established in the previous section. Doing so allows us to immedi-
ately take care of a number of affine ` in (8).

Corollary 25. Let F and G be the distribution functions of Beta(a, b) and
Beta(a′, b′), respectively, and assume that a ≥ a′ and b ≤ b′. If ` is any affine
function satisfying `(0) ≥ 0 or `(1) 6∈ (0, 1) then (8) is satisfied.

Proof : We analyze three different cases.

Case 1. `(0) ≥ 0: According to Theorem 8 and Proposition 38, we have
that, for any c ∈ R, S(F (x) − G(cx)) ≤ -+. Taking into account
Proposition 24, this implies S(F (x)−G(`(x))) ≤ -+ ≤ +-+.

Case 2. `(1) ≤ 0: In this case ` is always negative, and the result is
immediate.
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Case 3. `(1) ≥ 0: It enough to prove that S(F (x)−G(c(x−1) + 1)) ≤
+- for every c ∈ R. Indeed, once this proved, the conclusion follows
using Proposition 24 again.

Note that F−(x) = 1 − F (1 − x) is the distribution function of
Beta(b, a) and G−(x) = 1 − G(1 − x) is the distribution function of
Beta(b′, a′). The characterisation of star-shape transform order proved
in Theorem 8 together with Proposition 38, means that S(1−G(1−
x) − 1 + F (1 − c′x)) ≤ -+, for every c′ ∈ R. For any c ∈ R we may
apply this to c′ = 1/c, which gives

S(F (x)−G(c(x− 1) + 1)) = S(1−G(c(x− 1) + 1)− 1 + F (x))

= revS(1−G(1− x)− 1 + F (1− x/c))
≤ rev(-+) = +-.

The proof of Theorem 9, establishing the convex transform ordering within
the Beta family is achieved through the analysis of several partial cases. For
improved readability we will be presenting these in several lemmas.

Lemma 26. Let X ∼ Beta(a, b) and Y ∼ Beta(1, b), with a ≥ 1 and b > 0.
Then X ≤c Y .

Proof : Let F and G be the distribution functions of the Beta(a, b) and
Beta(1, b) distributions, respectively, and f and g their densities. Taking into
account Proposition 38 and Corollary 25, we need to show that, for every
affine function `(x) = cx+ d satisfying `(0) = d < 0 and `(1) = c+ d ∈ (0, 1)
one has that (8) is satisfied. We need to separate the arguments into three
cases.

Case 1. b = 1: In this case the statement follows directly from the con-
vexity of F (x) = xa and that G(x) = x.

Case 2. b ∈ (0, 1): Applying Lemma 21 we have I = (−d/x, 1), σ1 = +,
and σ2 ∈ {0, -, +}, meaning (5) gives

S(F (x)−G(cx)) ≤ + · σ2 · S
(
a− 1

x
− b− 1

1− x
+
c(b− 1)

1− `(x)

)
.

But since for x ∈ I
a− 1

x
− b− 1

1− x
+
c(b− 1)

1− `(x)
=
a− 1

x
+

(1− b)(1− (c+ d))

(1− x)(1− `(x))
> 0,

we have S(F (x) − G(`(x))) ≤ + · σ2 · + ≤ +-+ no matter the value of
σ2.
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Case 3. b > 1: Applying Lemma 21 we have σ1 = + and σ2 ∈ {0, -, +},
meaning (6) gives

S(F (x)−G(cx)) ≤ + · σ2 · S(c3x
3 + c2x

2 + c1x+ c0)

= + · σ2 · S(l(x)(c′2x
2 + c′1x+ c′0))

= + · σ2 · S(c′2x
2 + c′1x+ c′0)

where c′2 = (a − 1)c, c′1 = −(a − b)c − (a + b − 2)(1 − d), and c′0 =
(a − 1)(1 − d). Since c′2 > 0 we have S(c′2x

2 + c′1x + c′0) ≤ +-+. On
the other hand, c′2 + c′1 + c′0 = −(b − 1)(1 − (c + d)) < 0, hence
S(c′2x

2 + c′1x+ c′0) ≤ +-. Combining these inequalities yields

S(F (x)−G(`(x))) ≤ +σ2+- ≤ +-+-.

Finally, as F (1)−G(`(1)) > 0, it follows that S(F (x)−G(`(x))) ≤ +-+.

So, taking into account Proposition 38, the proof is concluded.

The second lemma is similar in that but covers the case where a ≥ 1.

Lemma 27. Let X ∼ Beta(1, b) and Y ∼ Beta(a, b) with a ≤ 1 and b > 0.
Then X ≤c Y .

Proof : Let F and G represent the distribution functions of Beta(1, b) and
Beta(a, b), Note that the meaning of the symbols F and G are interchanged
relative to their use in the proof of Lemma 26. Taking into account Propo-
sition 38 and Corollary 25, we need to show that (8) holds for `(x) = cx+ d
such that `(0) = d < 0 and `(1) = c + d ∈ (0, 1). This is equivalent to
S(G(x)−F (`−1(x))) ≤ -+-, where `−1(x) = (x−d)/c satisfies `−1(0) ∈ (0, 1)
and `−1(1) > 1.

Reversing the roles of F and G the proof is now analogous to that of
Lemma 26 except that a < 1 and we wish to establish S(x ∈ I 7→ G(x) −
F (`∗(x))) ≤ -+- for `∗(x) = c∗x + d∗ with `∗(0) = d∗ ∈ (0, 1) and `∗(1) =
c∗ + d∗ > 1 on the interval I = (0, (1− d∗)/c∗).

Comparing the distributions for more general pairs of parameters a and a′

requires separate analyses depending on whether b > 1 or b ∈ (0, 1).

Lemma 28. Let X ∼ Beta(a, b) and Y ∼ Beta(a′, b) with a > a′ and b > 1.
Then X ≤c Y .
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Proof : Let F andG be the distribution functions of Beta(a, b) and Beta(a′, b).
By Proposition 38 and Corollary 25, it is enough to prove that (8) holds when
`(x) = cx+ d is such that `(0) = d < 0, `(1) = c+ d ∈ (0, 1).

Applying Lemma 21 we have c3 = (a − a′)c2, σ1 = +, and σ2 ∈ {0, -, +},
meaning (6) gives

S(F (x)−G(`(x))) ≤ + · σ2 · S(c3x
3 + c2x

2 + c1x
1 + c0).

Since c3 > 0 we have S(c3x
3 +c2x

2 +c1x
1 +c0) ≤ -+-+. But c3 +c2 +c1 +c0 =

−(b− 1)(c+ d)(1− (c+ d)) < 0 so S(c3x
3 + c2x

2 + c1x
1 + c0) ≤ -+-.

Combining the sign pattern inequalities, we have derived that

S(x ∈ I 7→ F (x)−G(`(x))) ≤ + · σ2 · -+- = +-+-,

regardless of the value of σ2. Finally F (1)−G(`(1)) > 0 so we conclude that
S(x ∈ I 7→ F (x)−G(`(x))) ≤ +-+, hence proving the result.

Lemma 29. Let X ∼ Beta(a, b) and Y ∼ Beta(a′, b) with 0 < b ≤ 1 and
either 1 > a > a′ > 0 or a > a′ > 1. Then X ≤c Y .

Proof : We may assume, without loss of generality, that a − a′ < 1. Indeed,
if a − a′ ≥ 1, one may choose for sufficiently large N a sequence a0 =
a, a1, . . . , aN = a′ such that ai1 − ai < 1 for all i = 1, . . . , N and apply
transitivity to conclude Beta(a0, b) ≤c · · · ≤c Beta(aN , b). Let F and G be
the distribution functions of Beta(a, b) and Beta(a′, b), respectively. Based
on Proposition 38 and Corollary 25, it is enough to prove that (8) holds for
every `(x) = cx + d such that `(0) = d < 0 and `(1) = c + d ∈ (0, 1). Using
Lemma 21 we have for I = (−d/c, 1) that

S(x ∈ [0, 1] 7→ F (x)−G(`(x)))

≤ + · S
(
x ∈ I 7→ xa−1(1− x)b−1

B(a, b)
− `(x)a

′−1(1− `(x))b−1

B(a′, b)

)
= + · S

(
x ∈ I 7→ xa−1

`(x)a′−1
− cB(a, b)

B(a′, b′)

(1− `(x)

1− x

)b−1
)
.

(9)

For convenience define C = cB(a, b)/B(a′, b′) > 0, q1(x) = xa−1/`(x)a
′−1,

q2(x) = (1 − x)/(1 − `(x)), and q(x) = q1(x) − Cq2(x)1−b. Restricting to I
we have that q2 is decreasing and concave. Hence, as b ≤ 1, it follows that
x ∈ I 7→ −Cq2(x)1−b is non-decreasing and convex.

A simple computation yields q′1(x) = ((a − a′)cx + (a − 1)d)/(x2−a`(x)a
′
)

which has unique root at x0 = −(a − 1)d/((a − a′)c). Letting c∗2 = (a −
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a′)(a − a′ − 1)c2, c∗1 = 2(a − a′ − 1)(a − 1)cd, c∗0 = (a − 1)(a − 2)d2, and
p(x) = c∗2x

2 + c∗1x+ c∗0 we have after a another straight forward computation
q′′1(x) = p(x)/(x3−a`(x)a

′+1).

Case 1. 1 > a > a′: In this case (a−a′)cx+(a−1)d > 0 for x > 0, which
implies that q1 is increasing on I. Therefore x ∈ I 7→ q1(x)−Cq2(x)1−b

is increasing, meaning S(x ∈ I 7→ q1(x) − Cq2(x)1−b) ≤ -+. Plugged
into (9) this gives S(F (x)−G(`(x))) ≤ +-+.

Case 2. a > a′ > 1: A direct verification shows that x0 ∈ I so that
I1 = (−d/c, x0] and I2 = (x0, 1) are well defined and non-empty. Since
I = I1 ∪ I2 and I1 < I2

S(x ∈ I 7→ q(x)) = S(x ∈ I1 7→ q(x)) · S(x ∈ I2 7→ q(x)).

Sign pattern in I1: As c∗2 = (a−a′)(a−a′−1)c2 < 0 it follows that
S(x ∈ I 7→ q′′1(x)) = S(x ∈ I 7→ p(x)) ≤ -+-. But p(−d/c) =

(a′ − 1)a′d2 > 0 and p(x0) = (a−1)(a′−1)d2

a−a′ > 0 so S(x ∈ I 7→
p(x)) = +.
This implies that q1 is convex in I1. As we have proved the con-
vexity of −Cq2(x)1−b in I, it follows that q(x) = q1(x)−Cq2(x)1−b

is convex in I1. According to Proposition 37 it follows that

S(x ∈ I1 7→ q(x)) ≤ +-+.

Sign pattern in I2: Noting that S(x ∈ I 7→ q′1(x)) = S((a −
a′)cx+(a−1)d) ≤ -+ and q′1(x0) = 0, it follows that q′1 is positive
in I2. Thus q1 is increasing in I2. We have proved above that
x ∈ I 7→ −Cq2(x)1−b is increasing, so q(x) is increasing in the
interval I2. Therefore

S(x ∈ I2 7→ q(x)) ≤ -+.

If q(x0) < 0 then S(x ∈ I1 7→ q(x)) ≤ +-. If q(x0) ≥ 0 then
S(x ∈ I2 7→ q(x)) = + since q is increasing on I2. In either case
S(x ∈ I1 7→ q(x)) · S(x ∈ I2 7→ q(x)) ≤ +-+.

Putting the above into (9) we have

S(x ∈ I 7→ F (x)−G(`(x))) ≤ + · +-+ = +-+

as required.

We now state, without proof, a straightforward result, helpful for the con-
clusion of the final characterisation within the Beta family.
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Proposition 30. Let X ∼ P and Y ∼ Q be random variables with some
distributions P and Q, then X ≤c Y if and only if 1− Y ≤c 1−X.

We now have all the necessary ingredients to prove the main theorem.

Proof of Theorem 9: The necessity is a direct consequence of Theorem 7. The
sufficiency follows from Lemmas 26, 27, 28, 29, and the transitivity of the
convex transform order. First note that we obtain

Beta(a, b) ≤c Beta(a′, b), (10)

when a = a′ (trivial), b > 1 (use Lemma 28), b ≤ 1 and either 1 > a >
a′ or a > a′ > 1 (use Lemma 29). The order relation (10) also holds
if b ≤ 1 and a > 1 > a′ by combining Lemmas 26 and 27, since then
Beta(a, b) ≤c Beta(1, b) ≤c Beta(a′, b). Using this and Proposition 30 we
also have Beta(a′, b) ≤c Beta(a′, b′), concluding the proof.
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Appendix A.An algebra for sign variation
The main tool of all proofs concerning the ordering within the Beta fam-

ily is the study of sign patterns of functions. While such techniques have
a long tradition in probability theory, for our purposes it turns out to be
computationally convenient to give a presentation slightly more algebraic as
compared to what appears to be the convention, using a suitable monoid
(see, for example, Jacobson [10]).

Definition 31. Let (S, ·) = 〈+, - | + · + = +, - · - = -〉 be the monoid
generated by two idempotent elements + and - and with unit 0.

We shall call elements of S sign patterns. When unambiguous we will
denote products σ · σ′ by simply juxtaposing the factors as in σσ′, so that
S = {0, +, -, +-, -+, +-+, . . . }.

For any σ = σ1 · · ·σn ∈ S where σ1, . . . , σn ∈ {+, -} let revσ = σn · · ·σ1

be the sign pattern given by reversing the order of signs and let

σ = σ0 · · · · · σn, where σi =

{
+ σi = -,

- σi = +,

denote the sign pattern given by flipping the signs. Note in particular that
0 = 0.
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Sign patterns have a natural order structure.

Definition 32. Given σ, σ′ ∈ S we say that σ ≤ σ′ if σ′ = π · σ · π′ for some
π, π′ ∈ S. In other words, if σ is a substring of σ′.

Proposition 33. (S, ·,≤) is a partially ordered monoid in the sense that
(S,≤) is a partially ordered set and if σ, σ′ ∈ S are such that σ ≤ σ′ then for
any π, π′ ∈ S one has π · σ · π′ ≤ π · σ′ · π′.

We can now describe the sign variations of a function in terms of the simple
sign function.

Definition 34 (Sign function). The sign function Sign: R→ S is defined by
Sign(x) = + if x > 0, Sign(x) = 0 if x = 0, and Sign(x) = - if x < 0.

Definition 35 (Sign patterns and finite sign variation). Given I ⊆ R, we
say that a function f : I 7→ R is of finite sign variation if the set

{Sign(f(x1)) · Sign(f(x2)) · · · · · Sign(f(xn)) | n ∈ N, x1 ≤ · · · ≤ xn ∈ I}

has a (unique) maximal element in S. This maximal element is then denoted
by S(x ∈ I 7→ f(x)) and called the sign pattern of f .

When unambiguous, we will abbreviate S(x ∈ I 7→ f(x)) = S(x 7→ f(x)) =

S(f(x)) = S(f) and write for readability S(f) = S(f).
The proposition below gives some standard rules of calculation for sign pat-

terns which are straightforward to prove and used without explicit mention
throughout the proofs.

Proposition 36. Let I ⊂ R and f, g : I → R be such that f and f − g are
of finite sign variation.

(1) For any J ⊂ I one has S(x ∈ J 7→ f(x)) ≤ S(x ∈ I 7→ f(x)).
(2) For any J ≤ K such that I = J ∪ K one has S(x ∈ I 7→ f(x)) =

S(x ∈ J 7→ f(x)) · S(x ∈ K 7→ f(x)).
(3) For any positive h : I → R one has S(f(x)) = S(f(x)h(x)).
(4) For J ⊂ R and η : J → I increasing (or decreasing) one has S(x ∈

I 7→ f(x)) = S(x ∈ J 7→ f(η(x))) (respectively = revS(x ∈ J 7→
f(η(x)))).

(5) For J ⊂ f(I)∪ g(I) and η : J → R increasing (or decreasing) one has
S(f(x) − g(x)) = S(η(f(x)) − η(g(x))) (respectively = S(η(f(x)) −
η(g(x)))).
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Sign patterns provide a useful tool for establishing convexity or star-shap-
edness of functions (see for example Lemma 11 and Theorem 20 in Arab and
Oliveira [2]).

Proposition 37. A continuous function f is convex (respectively,
star-shaped) if and only if S(f(x) − `(x)) ≤ +-+ (respectively, S(f(x) −
`(x)) ≤ -+), for all affine functions ` (respectively, for all affine functions `
vanishing at 0).

Applied to the convex (ifr) and star-shape transform (ifra) orders, these
characterisations translate into the following equivalent conditions for being
ordered.

Proposition 38. Let X and Y be random variables with distributions given
by distribution functions F and G, respectively. Then X ≤c Y (respectively
X ≤∗ Y ) if and only if S(F (x)−G(`(x))) ≤ +-+ (resp., S(F (x)−G(`(x))) ≤
-+) for every affine function ` (resp., for every affine function ` vanishing at
0).

The following slight generalisation of a well known relationship between the
sign pattern of a differentiable function and the sign pattern of its derivative
is also used throughout our proofs.

Proposition 39. Let f : I 7→ R be continuously differentiable with finite sign
pattern S(x ∈ I → f(x)) = σ · · ·, then S(x ∈ I → f(x)) ≤ σ · S(x ∈ I →
f ′(x)).

Proof : Let S(x ∈ I → f(x)) = σ0σ1 · · ·σn. Therefore there exists a sequence
x0 < x1 < · · · < xn with Sign(f(xi)) = σi. By the mean value theorem

there exist y1, . . . , yn such that f ′(yi) = f(xi)−f(xi−1)
xi−xi−1 . Since, in particular,

Sign(f ′(yi)) = σi, we have that σ1 · · ·σn ≤ S(x ∈ I → f ′(x)).

If in the statement of Proposition 39 the initial sign of S(x ∈ I → f ′(x))
is the same as σ the inequality becomes S(x ∈ I → f(x)) ≤ S(x ∈ I →
f ′(x)). This becomes particularly useful in combination with the following,
elementary, proposition.

Proposition 40. For b > a let f : [a, b] 7→ R be a continuously differentiable
function with finite sign patterns S(x ∈ I → f(x)) = σ · · ·σ′ and S(x ∈ I →
f ′(x))) = τ · · · τ ′. If f(a) = 0 then σ = τ and if f(b) = 0 then σ′ = τ ′.
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The interval [a, b] may be replaced by (a, b], [a, b) or (a, b) if the conditions
f(a) = 0 and f(b) = 0 are replaced by limx→a+ f(x) = 0 or limx→b− f(x) = 0,
as appropriate.
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