
Pré-Publicações do Departamento de Matemática
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Abstract: We study a correspondence associating to each subshift X of AZ a
subcategory of the Karoubi envelope of the free profinite semigroup generated by
A. The objects of this category are the idempotents in the mirage of X , that is, in
the set of pseudowords whose finite factors are blocks of X . The natural equivalence
class of the category is shown to be invariant under flow equivalence. As a corollary
of our proof, we deduce the flow invariance of the profinite group that Almeida
associated to each irreducible subshift. We also show, in a functorial manner, that
the isomorphism class of the category is invariant under conjugacy. Finally, we see
that the zeta function of X is naturally encoded in the category. These results
hold, with obvious translations, for relatively free profinite semigroups over many
pseudovarieties, including all of the form H, with H a pseudovariety of groups.
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1. Introduction
Relatively free profinite semigroups and their elements, pseudowords, play

an important role in finite semigroup theory. Around 2003, Almeida estab-
lished the following connection between them and symbolic dynamics [Alm03]:

in the A-generated relatively free profinite semigroup F̂V(A), where V is a
semigroup pseudovariety containing LSl, associate to each subshift X of AZ

the topological closure in F̂V(A) of the set L(X ) of finite blocks of X . This
connection proved to be very useful for a better understanding of structural
aspects of F̂V(A), even in the most difficult case where V is the pseudovariety
S of all finite semigroups. One of the most relevant aspects of this line of
research concerned the case of irreducible subshifts. When X is irreducible,
the union of the J -classes intersecting the topological closure L(X ) ⊆ F̂V(A)
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2 A. COSTA AND B. STEINBERG

contains a minimum J -class JV(X ), which is a regular J -class of F̂V(A).
If V = V ∗ D, the corresponding Schützenberger group GV(X ), the profi-
nite group isomorphic to all maximal subgroups of JV(X ), is invariant under
conjugacy [Cos06], the name given to the isomorphism relation between topo-
logical dynamical systems. The conjugacy invariance of GH(X ) was crucial
to the proof in [CS11] that if H is an extension-closed pseudovariety of groups
containing infinitely many groups of prime order, and if L(X ) is recognized
by a semigroup of H, then the maximal subgroups of JH(X ) are free pro-
H groups of countable rank, unless X is periodic, in which case GH(X ) is
free pro-aperiodic. The profinite group GS(X ) was also identified in many
instances where X is minimal [Alm05a, AC13, AC16], in the process being
shown to sometimes not be free, although it is always projective accordingly
to [RS08]. In this paper, we add information about the dynamical meaning
of GV(X ), as briefly contextualized in the following paragraphs.

Some techniques used in [Cos06] to prove the conjugacy invariance of
GV(X ) were adapted in the same paper in order to obtain conjugacy in-
variants encoded in the syntactic semigroup S(X ) of the language L(X ),
when X is sofic (that is, when L(X ) is rational). These syntactic invari-
ants where shown in [CS16] to be invariants with respect to another relation
of significant importance in symbolic dynamics, flow equivalence (cf. [LM95,
Section 13.6]), the relation, coarser than conjugacy, identifying subshifts with
suitably equivalent suspension flows (or mapping tori). This was done by
showing that those invariants are encoded in the Karoubi envelope of S(X ),
a small category whose equivalence class was shown in [CS16] to be a flow
invariant (even if X is not sofic), and in fact, as also proved there, the best
possible syntactic flow equivalence invariant for sofic systems.

The importance for semigroup theory of the Karoubi envelope K(S) of a
semigroup S became clear with Tilson’s seminal paper [Til87] (there, it is
denoted SE). Inspired by [CS16], we now consider the Karoubi envelope

of F̂V(A) in relation with the subshift X . In fact, we view K(F̂V(A)) as a
compact topological category. In the exploration of the connections between
symbolic dynamics and free profinite semigroups, the convenience of consid-
ering the set of pseudowords of F̂V(A) whose finite factors are elements of
L(X ) soon became apparent (here, as before, V ⊇ LSl) [Cos06, AC09]. This

set, the mirage of X in F̂V(A), denoted MV(X ), always contains L(X ), but

it may contain elements not in L(X ). The arrows (e, u, f) in K(F̂V(A)) such
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that u ∈ MV(X ) form a compact subcategory of K(F̂V(A)), which we call
the Karoubi envelope of the mirage of X (with respect to V), and denote by
K(MV(X )).

In this paper, we show that the correspondence X 7→ K(MV(X )) estab-
lishes a functor from the category of symbolic dynamical systems to that
of compact zero-dimensional categories, whenever V = V ∗ D and V ⊇ LSl.
From this functor, we get for free a new proof that the profinite group GV(X )
is a conjugacy invariant, when X is irreducible, V = V ∗D and V ⊇ LSl. Un-
der the additional mild assumption that V is monoidal, we show that the
natural equivalence class of KV(X ) is actually invariant under flow equiva-
lence, deducing from that, in the irreducible case, the invariance under flow
equivalence of the profinite group GV(X ).

When X is irreducible, the mirage MV(X ) contains a minimum J -class

J̃V(X ), which is regular and therefore possesses a profinite Schützenberger

group G̃V(X ) isomorphic to its maximal subgroups. We deduce, just as for

GV(X ), that G̃V(X ) is a conjugacy invariant when LSl ⊆ V = V∗D, and that

G̃V(X ) is a flow equivalence invariant when V is also monoidal. It may be

interesting and challenging to investigate the group G̃V(X ), which remains
largely unknown when X is not minimal (in the minimal case the equality

GV(X ) = G̃V(X ) holds).

The structure of K(MV(X )) says more about X than GV(X ) or G̃V(X ).
Indeed, we show that the zeta function of X is encoded in K(MV(X )), by
showing that the periodic points correspond to the objects of K(MV(X ))
with a finite isomorphism class. This is done by identifying the regular J -
classes of F̂V(A) containing a finite number of H-classes.

This introduction is followed by two sections of preliminaries, about sym-
bolic dynamics and free profinite semigroups. Section 4 gives tools for the
establishment, in Section 5, of the above mentioned functor between subshifts
and compact categories. The results about flow equivalence are treated in
Section 6, (with an appendix at the end of the paper, concerning one techni-
cal consequence). Finally, Section 7 deals with the connections with the zeta
function.
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2. Symbolic dynamics
In this section we provide a brief introduction to symbolic dynamics. For

a very developed introduction, see the book [LM95]. In the context of this
paper, the short text [Cos18] might also be useful.

It is helpful to begin by recalling some terminology and notation about
free semigroups. In this paper, an alphabet will always be a finite nonempty
set. The elements of the alphabet A are the letters of A. A word over A
is a finite nonempty sequence of letters of A. The words over A form the
semigroup A+, for the operation of concatenation of words. The free monoid
A∗ is obtained from A+ by adjoining the empty sequence (the empty word,
here denoted by the symbol ε), which is the neutral element of A∗ for the
concatenation operation. As it is usual in the literature, the length of a word
u is denoted by |u|.

2.1. The category of symbolic dynamical systems. Let A be an alpha-
bet. Endow A with the discrete topology, and AZ with the corresponding
product topology. Note that, by Tychonoff’s theorem and our convention
that all alphabets are finite sets, the space AZ is compact. We assume that
compact topological spaces are Hausdorff. The shift map σA : AZ → AZ is
the mapping defined by

σA((xi)i∈Z) = (xi+1)i∈Z.

A symbolic dynamical system, also called a subshift, or just a shift, of AZ is
a nonempty closed subset X of AZ such that σA(X ) = X . The subshifts are
the objects of the category of symbolic dynamical systems. In this category,
a morphism between a subshift of AZ and a subshift of BZ is a continuous
mapping ϕ : X → Y such that the diagram

X ϕ
//

σA
��

Y
σB
��

X ϕ
// Y .

commutes. In the category of symbolic dynamical systems, an isomorphism
is usually called a conjugacy, and two isomorphic subshifts are said to be
conjugate.

A block of a subshift X is a nonempty word u appearing in some element
of X , that is, a word u such that for some x ∈ X and some integers i ≤ j,
the equality u = xixi+1 . . . xj−1xj holds. The word u may then be denoted
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by x[i,j]. We denote the set of blocks of X by L(X ). One has X ⊆ Y if and

only if L(X ) ⊆ L(Y), for all subshifts X and Y of AZ.
The notion of block is the groundwork for a form of producing morphisms

between subshifts, which we next describe. For alphabets A and B, and
a positive integer N , take a map Φ: AN → B, where N is some positive
integer. Let m and n be nonnegative integers such that N = m + n + 1. In
the context of this paper, such a map is called a block map. The integer N
is the window size of the block map. Consider the mapping ϕ : AZ → BZ

defined by the correspondence

ϕ((xi)i∈Z) = (Φ(x[i−m,i+n]))i∈Z.

We say that ϕ is the sliding block code from AZ to BZ with block map Φ,
memory m and anticipation n. More generally, if the subshifts X ⊆ AZ

and Y ⊆ BZ are such that ϕ(X ) ⊆ Y , then the induced restriction ϕ : X →
Y is also called a sliding block code, from X to Y , with memory m and
anticipation n. Note that ϕ : X → Y is determined by the restriction of Φ to
the set of words of L(X ) with length N .

We are now ready to state a fundamental result of symbolic dynamics,
the Curtis–Hedlund–Lyndon theorem [Hed69], fully characterizing the mor-
phisms of subshifts (cf. [LM95, Theorem 6.2.9]).

Theorem 2.1. The morphisms between subshifts are precisely the sliding
block codes.

Let us say that a block map Ψ: AN → B is a central block map if N is odd.
If N = 2k+1, then we say that k is the wing of Ψ. Given a sliding block code
ψ : X → Y , a central block map of ψ is a central block map Ψ: A2k+1 → B
for which ψ has Ψ as a block map with both memory and anticipation equal
to k.

Fact 2.2. Every sliding block code ψ : X → Y has a central block map.

Proof : If ψ : X → Y is a sliding block code with block map Φ: Am+n+1 → B,
memory m and anticipation n, and letting k = max{m,n}, then the map
Ψ: A2k+1 → B defined by

Ψ(a−ka−k+1 · · · a−1a0a1 · · · ak−1ak) = Φ(a−ma−m+1 · · · a−1a0a1 · · · an−1an),

where ai ∈ A for all i ∈ {−k,−k + 1, . . . , k − 1, k}, is such that ψ has Ψ as
block map with memory k and anticipation k.
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A 1-code is a block map having a central block map of window size 1 (that
is, wing 0). A 1-conjugacy is a 1-code that is a conjugacy.

Remark 2.3. The composition of two 1-codes is a 1-code.

With the help of Theorem 2.1, one gets the next useful result. In the
diagram included, the double arrow represents an isomorphism, a convention
reprised throughout the paper.

Proposition 2.4 (cf. [LM95, Proposition 1.5.12]). If ϕ : X → Y is a mor-
phism of subshifts, then there are 1-codes α : Z → X and β : Z → Y, for
some subshift Z, such that α is a conjugacy and the diagram

Z
β

��

α

z�

X ϕ
// Y

commutes, that is, ϕ = β ◦ α−1.

2.2. Classification of subshifts. We review some important classes of
subshifts.

A subshift X of AZ is irreducible if there is x ∈ AZ with positive dense orbit,
that is, such that {σnA(x) | n ≥ 1} is dense in X . Clearly, being irreducible is
a property invariant under conjugacy. Next is a convenient characterization
in terms of words. Say that a subset K of a semigroup S is irreducible if,
for every u, v ∈ K, there is w ∈ S such that uwv ∈ S. It turns out that
a subshift X of AZ is irreducible if and only if L(X ) is irreducible in the
semigroup A+.

A subshift X of AZ is sofic when its elements are the labels of the bi-infinite
paths in a fixed graph with edges labeled by letters of A. A sofic subshift is
irreducible if and only such a graph can be chosen to be strongly connected.

Example 2.5. The even subshift is the irreducible sofic subshift X of {a, b}Z
with presentation given by the labeled graph in Figure 1. That is, when u is

a
b

b

Figure 1. The even subshift.

a word over {a, b}, one has u ∈ L(X ) if and only if abna is not a factor of u
for some odd n.
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A subshift conjugate to a sofic subshift is also sofic. Within sofic shifts, the
more salient class closed under conjugacy is that of finite type shifts. These
are the subshifts conjugate with edge shifts, the latter being the subshifts
presented by a labeled graph where distinct edges have distinct labels. The
most famous open problem of symbolic dynamics is to know if we can always
decide if two given edge shifts are conjugate or not.

A conjugacy-closed class quite distinct from sofic shifts, that has received
a lot of attention in the literature (see [Fog02, Lot02]), is that of minimal
subshifts : the subshift X is minimal if, whenever Y is a subshift, the inclusion
Y ⊆ X implies Y = X . All minimal subshifts are irreducible.

3. Free profinite semigroups
We assume knowledge about basic features of semigroups, like Green’s

relations (a short introduction may be found in [RS09, Appendix A]). In this
section we quickly review some aspects of profinite semigroup theory. One of
our purposes is to fix notation. For a more paused but short introduction to
the subject, see for example [Alm05b]. The book [RS09] is also an updated
guiding reference. We finish this section reviewing some connections with
symbolic dynamics.

3.1. Languages and pseudovarieties. A subset of the free semigroup A+

is called a language of A+. A language L of A+ is said to be recognized
by a finite semigroup S if there is a homomorphism ϕ : A+ → S such that
L = ϕ−1(ϕ(L)). Without giving details, we recall the well-known fact, not
difficult to prove, that a language L is recognizable in this algebraic sense if
and only if it is recognized by some finite automaton. Hence, a subshift X
is sofic if and only if L(X ) is recognizable.

A pseudovariety of semigroups is a class of finite semigroups closed under
taking subsemigroups, homomorphic images, and finitary products. The in-
tersection of pseudovarieties is clearly a pseudovariety, and so we may talk
of the pseudovariety generated by a class of semigroups. In Section 6 we
shall have to restrict ourselves to monoidal pseudovarieties, the semigroup
pseudovarieties generated by a class of finite monoids. Here are some pseu-
dovarieties of semigroups, relevant for this paper, with only the last three
examples not being monoidal:

• The pseudovariety S of all finite semigroups.
• The pseudovariety I of one-element semigroups.
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• The pseudovariety G of all finite groups.
• The pseudovariety A of finite aperiodic semigroups, that is, semigroups

all of whose subgroups (i.e., subsemigroups with group structure) are
trivial.
• The pseudovariety H of finite semigroups whose maximal subgroups

belong to the pseudovariety of groups H.
• The pseudovariety Sl of semilattices, that is, commutative semigroups

all of whose elements are idempotent.
• Given a pseudovariety V, the pseudovariety LV of semigroups S such

that, for every idempotent e of S, the subsemigroup eSe belongs to
V.
• The pseudovariety N of finite nilpotent semigroups, which are the finite

semigroups with a zero element 0 such that Sn = {0} for some n ≥ 1.
• The pseudovariety D of finite semigroups such that Se = {e} for every

idempotent e if S.

One of the main interests of semigroup pseudovarieties is that quite of-
ten one decides if a recognizable language L satisfies a certain combinatorial
property by deciding if L is recognized by a semigroup from a certain pseu-
dovariety V. Sometimes, these pseudovarieties are expressed as the result of
operations on other pseudovarieties. An important example is the semidirect
product V∗W of two pseudovarieties V and W, the least semigroup pseudova-
riety containing the semidirect products of elements of V with elements of W.
This is an associative operation on the lattice of pseudovarieties. Another
important operation, non-associative, is the Mal’cev product V©m W, briefly
mentioned in one example later on, and which is the pseudovariety generated
by finite semigroups S for which there is a homomorphism ϕ : S → T with
T ∈ W and ϕ−1(e) ∈ V for every idempotent e of T . The interested reader is
referred to [RS09] for more information on these operations.

Example 3.1. A language L of A+ is said to be locally testable if it is a
finite Boolean combination of languages of the form uA∗, A∗u and A∗uA∗,
where u denotes a (non-fixed) word of A+. One of the first successes of finite
semigroup theory was the proof that being locally testable is a decidable
property by showing that a language is locally testable if and only if it is
recognized by a semigroup in LSl [BS73, McN74, Zal73, Zal72]. In terms of
pseudovarieties, this amounts to the equality LSl = Sl ∗D. If X is a subshift
of AZ of finite type, then L(X ) is locally testable: indeed, it is of the form



THE KAROUBI ENVELOPE OF THE MIRAGE OF A SUBSHIFT 9

L(X ) = A+ \ A∗WA∗ for some finite set W of words. Conversely, if X is
irreducible and L(X ) is locally testable, then X is of finite type (see [Cos07a]
for a proof).

3.2. Relatively free profinite semigroups. A compact semigroup is a
semigroup endowed with a topology for which the semigroup operation is
continuous. We view finite semigroups as compact semigroups with the dis-
crete topology.

In general, a pseudovariety of semigroups V is too small to contain free
objects. An approach commonly followed is to find room for free objects by
considering the inverse limits of semigroups of V, viewed as compact semi-
groups. These semigroups are the pro-V semigroups. Note that the semi-
groups from V are pro-V. Conversely, finite pro-V semigroups must belong
to V. When dealing with the pseudovariety S of all finite semigroups, one
uses the terminology profinite instead of pro-S.

If A is an alphabet, then the natural inverse limit defined by the finite
quotients of A+ that belong to V is a pro-V semigroup, denoted by F̂V(A).
Our assumption that all alphabets are finite guarantees that the topology of
F̂V(A) is metrizable.

The least closed subsemigroup of F̂V(A) containing the image of the gen-

erating map ι : A → F̂V(A) is F̂V(A). The pro-V semigroup F̂V(A) is the
free object generated by A in the category of pro-V semigroups, as the
map ι : A→ F̂V(A) satisfies the following universal property: for every map
ϕ : A → S into a pro-V semigroup, there is a unique continuous semigroup
homomorphism ϕ̂ : F̂V(A) → S such that ϕ̂ ◦ ι = ϕ. Hence, we say that

F̂V(A) is the free pro-V semigroup generated by A, or that it is the free profi-
nite semigroup relative to V generated by A.

Let V be a pseudovariety of semigroups containing the pseudovariety N of
finite nilpotent semigroups. Then the unique extension of ι : A → F̂V(A) to

a semigroup homomorphism A+ → F̂V(A) is an injective map, and it is from
this viewpoint that we consider ι as the inclusion and A+ as a subsemigroup
of F̂V(A). One should bear in mind that A+ is dense in F̂V(A). Moreover,
the hypothesis N ⊆ V guarantees that the elements of A+ are isolated in
F̂V(A). Hence, one may view the elements of F̂V(A) as generalizations of
finite words, for which reason we call them pseudowords, and we are justified
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to say that the elements of A+ are the finite pseudowords of F̂V(A), while

those of F̂V(A) \ A+ are the infinite pseudowords of F̂V(A).
The following theorem gives us a glimpse of the reasons why relatively free

profinite semigroups and pseudowords are useful. It essentially says that
F̂V(A) is the Stone dual of the Boolean algebra of languages recognized by
semigroups of V ⊇ N.

Theorem 3.2 (cf. [Alm95, Theorem 3.6.1]). Let V be a pseudovariety of
semigroups containing N. Then a language L ⊆ A+ is recognized by a semi-
group of V if and only if its topological closure L in F̂V(A) is open, if and

only if L = K ∩ A+ for some clopen subset K of F̂V(A).

Given a semigroup S, we denote by SI the monoid S ] {I} extending the
semigroup operation of S by adjoining an identity I. For example, A∗ is
(isomorphic to) the monoid (A+)I . If S is a compact semigroup, then we
view SI as a compact monoid extending S, by letting I be an isolated point.
If ϕ : S → T is a function between semigroups, then its extension SI → T I

that maps I to I, may still be denoted by ϕ, in the absence of confusion.

3.3. Pseudowords defined by subshifts. We briefly review some data
relating relatively free profinite semigroups with symbolic dynamics, in part
already met in Section 1, most of which is explained in [Cos06, Section 3.2]
or [AC09]. Fix a semigroup pseudovariety V containing LSl. The mirage of a

subshift X ⊆ AZ is the setMV(X ) of elements of F̂V(A) whose finite factors

are in L(X ). It helps to also consider the setMV,k(X ) of elements of F̂V(A)
whose finite factors of length at most k belong to L(X ). One clearly has
MV(X ) =

⋂
k≥1MV,k(X ).

Remark 3.3. The setMV,k(X ) is the finite intersection of subsets of F̂V(A)

of the form F̂V(A) \ A∗uA∗, with u ∈ A+ \ L(X ) having length at most k.
Hence, MV,k(X ) is clopen, in view of Theorem 3.2, as the locally testable
language A∗uA∗ is recognized by a semigroup of LSl.

A subset K of a semigroup S is said to be factorial if every factor of an
element of K belongs to K, and is said to be prolongable with respect to a
subset A of S if uA ∩K 6= ∅ and Au∩K 6= ∅ for each u ∈ K. The languages
of the form L(X ), with X a subshift of AZ, are precisely the nonempty
languages of A+ that are factorial and prolongable with respect to A. With
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routine topological arguments, one easily deduces that L(X ), MV,k(X ) and

MV(X ) are prolongable subsets of F̂V(A), with respect to A. Note also
that each of these sets contains infinite pseudowords, for example, every
accumulation point of a sequence of words in L(X ) with increasing length.

Again applying standard topological arguments, one sees that the inclusion
L(X ) ⊆MV(X ) holds. This inclusion may be strict. In fact, it is clear that

MV,k(X ) and MV(X ) are factorial, but the next example shows that L(X )
may not be factorial, as seen in Example 3.4, taken from [Cos07b]. In that
example, we use the notation sω, standard in (pro)finite semigroup theory,
for the unique idempotent in the closed subsemigroup of S generated by s,
where s is an element in a compact semigroup S. If S is profinite, one has
s = lim sn!.

Example 3.4. Let A = {a, b, c, d} and consider the sofic subshift X of AZ

presented in Figure 2. In F̂LSl(A), the pseudoword v = aωbaωcaω belongs to

a

a

a
b c

d

Figure 2. An irreducible sofic subshift.

L(X ), since one clearly has a∗ba∗ca∗ ⊆ L(X ). Moreover, in F̂LSl(A) we have
aωcv = v and so cv is a factor of v. The topological closure of the locally
testable language K = cA∗ ∩ A∗bA∗ ∩ A+ \ A∗dA∗ is a clopen neighborhood

of cv (cf. Theorem 3.2). Therefore, if we had cv ∈ L(X ), then we would have
L(X ) ∩K 6= ∅, which is false.

On the other hand, if V = A©m V (for example, if V = H), then L(X )
is factorial [AC09]. For arbitrary V, consider another set, the shadow of

X , denoted by ShaV(X ), defined as the union of the J -classes of F̂V(A)

intersecting L(X ). Note that ShaV(X ) = L(X ) if L(X ) is factorial. One has
ShaV(X ) ⊆ MV(X ), with equality if X is of finite type. The equality also
holds if X is minimal, a fact recorded in Theorem 3.6 below.

We already mentioned that X is irreducible if and only if L(X ) is an irre-
ducible subset of A+. From that, again with routine topological arguments,
one deduces that if X is irreducible then L(X ), ShaV(X ) andMV(X ) are ir-
reducible. If K is a nonempty closed irreducible factorial subset of a compact
semigroup, then it contains a J -minimum J -class, which is regular, as seen
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in [CS11]. All elements of K are then factors of all elements of such J -class.
Therefore, if X is irreducible, ShaV(X ) contains a J -minimum J -class JV(X )

and MV(X ) contains a J -minimum J -class J̃V(X ), both regular J -classes.

A J -maximal infinite element of F̂V(A) is an element u of F̂V(A) such that
u ≤J v implies v ∈ A+.

Remark 3.5. Every infinite pseudoword has some infinite idempotent as
a factor [Alm95, Corollary 5.6.2], and so every J -maximal infinite element

of F̂V(A) is regular. Moreover, every infinite pseudoword w has some J -
maximal infinite element as a factor, by Zorn’s Lemma, because, by compact-
ness, every ≤J -chain of infinite pseudowords that are factors of w clusters to
an infinite pseudoword which is also a factor of w.

A J -maximal infinite J -class of F̂V(A) is a J -class consisting of J -maximal

infinite elements of F̂V(A).

Theorem 3.6. Let V be a pseudovariety of semigroups containing LSl. The
correspondence X 7→ JV(X ) is a bijection from the set of minimal subshifts

of AZ to the set of J -maximal infinite classes of F̂V(A). Moreover, for every
minimal subshift X , the equalities ShaV(X ) = L(X )∪JV(X ) =MV(X ) hold.

Theorem 3.6 is from [Alm05a]. Another proof, substantially different, is
given in [AC09]. The following related proposition will be used in Section 7.

Proposition 3.7. Let X be a subshift of AZ. Consider a pseudovariety
of semigroups containing LSl. The J -maximal infinite elements of F̂V(A)

contained inMV(X ) are the J -maximal infinite elements of F̂V(A) contained
in ShaV(X ).

Proof : Since the factorial setMV(X ) contains infinite pseudowords, we may

take some J -maximal infinite element w of F̂V(A) belonging to MV(X )
(cf. Remark 3.5,). By Theorem 3.6, there is a minimal subshift Y such
that w ∈MV(Y) and all elements of L(Y) are finite factors of w. By the def-
inition ofMV(X ), we then have L(Y) ⊆ L(X ), whence ShaV(Y) ⊆ ShaV(X ).
Looking again at Theorem 3.6, one sees thatMV(Y) = ShaV(Y). Therefore,
we have w ∈ ShaV(X ).

4. Pseudoword block codes
In this section we present a technique emulating for pseudowords the sliding

block code process used for bi-infinite sequences. This will permit to build
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in Section 5 the functors mentioned in Section 1. This technique was applied
in [Cos06], explicitly for free profinite semigroups over S, implicitly for free
profinite semigroups over pseudovarieties V such that V = V∗D and V ⊇ LSl.
In Theorem 4.2 we see that these pseudovarieties give the exact scope of
validity of this technique. While the facts in Theorem 4.2 are not original,
they are dispersed in the literature and may not be easily accessible (for
example, that all pseudovarieties V for which the technique holds satisfy
V = V ∗D is, as far as we know, only explicitly mentioned, en passant, in the
thesis [Cos07b], written in Portuguese).

4.1. Word and pseudoword block codes. We use the following conve-
nient notation: given a word u of length n ≥ 1, over the alphabet A, if
u = a1a2 · · · an, with ai ∈ A for each i ∈ {1, . . . , n}, we represent by u[p,q] the
word apap+1 · · · aq−1aq, whenever 1 ≤ p ≤ q ≤ n. If 1 ≤ k ≤ n, then we define
ik(u) = u[1,k] and tk(u) = u[n−k+1,n], that is, ik(u) and tk(u) are respectively
the unique prefix and the unique suffix of u with length k. If k > n, then we
let ik(u) = u = tk(u). Moreover, for k = 0, we make i0(u) = ε = t0(u).

If V contains LI, then the maps u 7→ tk(u) and u 7→ ik(u), with u ∈
A∗, admit a unique continuous extension to maps ik : F̂V(A)I → A∗ and

tk : F̂V(A)I → A∗, respectively, where we consider the discrete topology on
A∗ (take [Alm95, Sections 3.7 and 5.2] as reference, with [AC09, Section 2.5]

as a possible helpful text). Hence, for every pseudoword u ∈ F̂V(A)\A+, the
word ik(u) (respectively, tk(u)) is the unique prefix (respectively, suffix) of u
which is a word of length k.

Given a block map Ψ: AN → B, we are interested in the map Ψ: A∗ →
B∗ defined as follows: if u is a word of A∗ of length at most N − 1 then
Ψ(u) = 1, and if u = a1 · · · aM is a word of length M ≥ N , with ai ∈ A for
all i ∈ {1, . . . ,M}, then we have

Ψ(u) = Ψ(u[1,N ]) ·Ψ(u[2,N+1]) ·Ψ(u[3,N+2]) · · ·Ψ(u[M−N+1,M ]). (4.1)

Example 4.1. Let Ψ be a central block map A2k+1 → B. Consider the sliding
block code ψ : AZ → BZ having Ψ as a central block map. Let x ∈ AZ, and
y = ψ(x). Then, for all i ∈ Z, we have

Ψ(x[i−k,i+k]) = yi

and so, applying formula (4.1), we obtain

Ψ(x[i−k,j+k]) = y[i,j]
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whenever i, j ∈ Z are such that i ≤ j.

Intuitively, what Ψ does is to “encode” the word u into a new word Ψ(u)
of B∗, by “reading” the consecutive factors on length N and assigning the
corresponding letters from B. Loosely speaking, we are coding words as we
code elements of a subshift via block maps, for which reason we say that Ψ
is a word block code. Theorem 4.2 below characterizes the pseudovarieties for
which we can extend this process in the most natural way, to what we shall
call pseudoword block codes.

In preparation for Theorem 4.2, we introduce some notation. For each
alphabet A and positive integer N , we denote by A(<N) the set of elements
of A∗ with length at most N−1. We will sometimes view the set AN , of words
of A+ with length N , as an alphabet of its own. Viewed as an alphabet, AN

may be denoted AN , to facilitate the understanding of the context in which
the elements of AN are being seen.

For the special case where Ψ is the identity map AN → AN , we use
the notation ΥN for the corresponding word code Ψ. In the literature
(eg. [Alm95, AK20, PW02]), the map ΥN is sometimes denoted by ΦN−1

or σN−1. These two notations are somewhat unfortunate in the context of
this paper, the latter because of the standard notation for the shift map, the
former because it is also usual, in the symbolic dynamics literature, to use
the letter Φ to denote arbitrary block maps (see eg. [LM95]).

In this section we work with pseudovarieties V satisfying V = V ∗ D and
LI ⊆ V. After the next theorem, we deal with them using their character-
ization in the theorem, without needing the original definition in terms of
semidirect products.

Theorem 4.2. Let V be a pseudovariety of semigroups containing LI. The
following conditions are equivalent:

(1) V = V ∗ D;
(2) for every alphabet A and every positive integer N , the word block code

ΥN : A∗ → (AN)∗ admits a unique extension to a continuous mapping

ΥV
N : F̂V(A)I → F̂V(AN)I;

(3) for every alphabet A, positive integer N , and block map Ψ: AN →
B, the word block code Ψ: A∗ → B∗ admits a unique extension to a
continuous mapping ΨV : F̂V(A)I → F̂V(B)I.
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Moreover, assuming the equivalent conditions (1)-(3), and denoting by λV the

unique continuous homomorphism F̂V(AN)→ F̂V(A) such that λV(u) = i1(u)
for each u ∈ AN :

(4) we have the equality

λV(ΥV
N(uv)) = u (4.2)

for every u ∈ F̂V(A) and v ∈ AN−1, so that in particular ΥV
N is injec-

tive on F̂V(A) \ A(<N).

Theorem 4.2 derives from [Alm95, Chapter 10], and some parts are more
or less explicitly stated there. In the paper [AK20] and in the thesis [Cos07b]
(written in Portuguese) more details are given for other parts. The following
proof is for the reader’s convenience, so that the proof can be found in one
location.

Proof of Theorem 4.2: Throughout the proof, we refer to the pseudovariety
Dk of finite semigroups such that St = {t} whenever t ∈ Sk, where k is a
positive integer. By convention, one has D0 = I. In fact, the equality D =⋃
k≥1 Dk holds (cf. [Alm95, Sections 10.4 and 10.6]), and V∗D =

⋃
k≥1 V∗Dk.

We proceed in several steps.
(1) ⇒ (2): The validity of this implication when V = S is Lemma 10.6.11

from [Alm95].
For each alphabet X, denote by pVX the unique continuous homomorphism

from F̂S(X) onto the X-generated profinite semigroup F̂V(X) that extends
the identity on X. As before, we also use the notation pVX for the extension

F̂S(X)I → F̂V(X)I mapping I to I. In a somewhat different language, The-
orem 10.6.12 from [Alm95] affirms in particular that if W is a pseudovariety
strictly containing LI and such that W = W ∗ DN−1, then one has

p
W∗DN−1

A (u) = p
W∗DN−1

A (v)⇔


pWAN (ΥS

N(u)) = pWAN (ΥS
N(v))

iN−1(u) = iN−1(v)

tN−1(u) = tN−1(v)

(4.3)

for all u, v ∈ F̂S(A). But this equivalence is also valid when V = LI, because,
in what is a well-know property of pseudowords (see [Cos01, Section 2.3]

for example∗), when u, v ∈ F̂V(A) one has pLIA (u) = pLIA (v) if and only if

∗We give [Cos01, Section 2.3] as a reference for this property of LI for the sake of better readabil-
ity, but the property was known before: in the language of pseudowords, it is implicit in [Alm95,
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ik(u) = ik(v) and tk(u) = tk(v) for every positive integer k (in particular,
either u = v or u, v are infinite pseudowords with the same finite prefixes and
the same finite suffixes). So, we may in fact suppose that V ⊇ LI. Taking
W = V, and since V = V ∗ D = V ∗ D ∗ DN−1 = V ∗ DN−1 (as D = D ∗ DN−1,
cf. [Alm95, Sections 10.4 and 10.6]), we obtain the implication

pVA(u) = pVA(v)⇒ pVAN (ΥS
N(u)) = pVAN (ΥS

N(v))

and so we may define a (unique) map ΥV
N : F̂V(A)→ F̂V(AN)

I
for which the

diagram

F̂S(A)
ΥS

N //

pVA ��

F̂S(AN)I

pVAN��

F̂V(A)
ΥV

N // F̂V(AN)I

(4.4)

commutes. Finally, because the other maps in the diagram are continuous
maps between compact spaces, one sees that ΥV

N is also continuous†.
(2)⇒ (4): Consider words v, w ∈ A+ with length N−1, and letters a, b ∈ A

such that av = wb. By definition, we have λV(ΥV
N(av)) = a. This provides

the base step for the following inductive argument to show the equality (4.2)
for words, inducting on the length of words. If z ∈ A+ has length M ≥ N ,
then, according to formula (4.1) applied to the case where Ψ acts in AN as
the identity, we have

ΥV
N(z) = ΥV

N(z[1,M−1]) ·ΥV
N(z[M−N+1,M ]). (4.5)

Therefore, for every u ∈ A+, by putting z = uav = uwb in (4.5), one has the
equality ΥV

N(uav) = ΥV
N(uw) ·ΥV

N(av), so that

λV(ΥV
N(uav)) = λV(ΥV

N(uw)) · λV(ΥV
N(av)) = λV(ΥV

N(uw)) · a = ua,

where in the last equality we use the induction hypothesis. Since A+ is dense
in F̂V(A), and λV ◦ΥV

N is continuous on A+ \ A(<N), we immediately extend

the scope of equality (4.2) to every u ∈ F̂V(A) and v ∈ AN−1.

Section 3.7], and in fact it amounts to the fact that LI is the join of D and its dual K, a fact already
appearing in [Eil76].
†The arguments used in the proof of this implication are basically the same that were used in the

proof of [AK20, Lemma 2.2], but there one finds the assumption that V contains Sl to guarantee that
V does contain nontrivial monoids and therefore is according to the statement in [Alm95, Theorem
10.6.12]. As seen in our recapitulation of those arguments, such assumption is unnecessary.
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Let w ∈ F̂V(A) \ A(<N). Then w = uv, for some u ∈ F̂V(A)I and v ∈ AN .
Let (wk)k be a sequence of words of length at least N converging to w. By the
continuity of tN , we have v = tN(wk) = tN(w) for all sufficiently large k. If we
see v as letter of AN , then, by the continuity of ΥV

N , for all sufficiently large
k we have v = t1(Υ

V
N(wk)) = t1(Υ

V
N(w)). Therefore, if w and w′ are elements

of F̂V(A) \A(<N) such that ΥV
N(w) = ΥV

N(w′), then tN(w) and tN(w′) are the
same word v. In particular, tN−1(w) and tN−1(w

′) are both equal to the word
ṽ = tN−1(v). On the other hand, we have factorizations w = uṽ and w′ = u′ṽ,

for some u, u′ ∈ F̂V(A). Since u = λV(ΥV
N(uṽ)) = λV(ΥV

N(u′ṽ)) = u′, we
conclude that w = w′ and that ΥV

N is injective.

(2) ⇒ (3): Let Ψ̂ be the unique continuous homomorphism F̂V(AN) →
F̂V(B) such that Ψ̂(u) = Ψ(u) for every u ∈ AN . We also work with the

extension F̂V(AN)I → F̂V(B)I , still denoted Ψ̂, mapping I to I. By the

hypothesis that (2) holds, the composition ΨV = Ψ̂V ◦ ΥV
N is a continuous

mapping from F̂V(A)I into F̂V(B)I . One sees straightforwardly by induction
on the length of u ∈ A+ that ΨV(u) = Ψ(u) for every u ∈ A+. Since A∗

in dense in F̂V(A)I , the mapping ΨV is the unique continuous extension of

Ψ: A∗ → B∗ to a mapping F̂V(A)I → F̂V(B)I .
Observing that (3)⇒ (2) is trivial, it remains to check (2)⇒ (1). We shall

use the following facts, valid for all pseudovarieties V and W:

• if W ⊇ V, then the kernel of W is contained in the kernel of V (this is

because F̂V(A) is a pro-W semigroup when V ⊆ W);
• pWX and pVX have the same kernel if and only if V = W (this is just

a reformulation of the fact that V and W are equal if and only if
they satisfy the same “pseudoidentities”, see for example [Alm05b]
for details if necessary).

Observe Diagram (4.4), which, under our assumption that (2) holds, is com-
mutative: indeed, the restrictions to A+ of the continuous mappings pVAN

◦ΥS
N

and ΥV
N ◦ pVA clearly coincide, and A+ is dense in F̂V(A). As already seen in

the proof of the implication (1)⇒ (2), if W is a pseudovariety containing LI,
then the equivalence (4.3) holds for all u, v ∈ F̂V(A). Taking W = V, and
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using the commutativity of Diagram (4.4), we then get the equivalence

p
V∗DN−1

A (u) = p
V∗DN−1

A (v)⇔


ΥV
N [pVA(u)] = ΥV

N [pVA(v)]

iN−1(u) = iN−1(v)

iN−1(u) = iN−1(v)

(4.6)

for all u, v ∈ F̂V(A). We claim that in fact we have

p
V∗DN−1

A (u) = p
V∗DN−1

A (v)⇔ pVA(u) = pVA(v).

Since V ∗ DN−1 contains V, the direct implication is immediate. Conversely,

suppose that u, v ∈ F̂V(A) are such that pVA(u) = pVA(v). Since V contains
LI, this implies pLIA (u) = pLIA (v), which is the same as having ik(u) = ik(v)
and tk(u) = tk(v) for every positive integer k. It then follows from (4.6) that

p
V∗DN−1

A (u) = p
V∗DN−1

A (v). Therefore, pVA and p
V∗DN−1

A have the same kernel,
whence V = V ∗ DN−1. As this is true for all N ≥ 1, we conclude that
V = V ∗ D.

Given a block map Ψ: AN → B, we say that the map ΨV : F̂V(A)I → F̂V(B)I ,
introduced in Theorem 4.2, is a pseudoword block code.

The next corollary is in [AK20], with the additional hypothesis that V is
monoidal.

Corollary 4.3. Let V be a pseudovariety of semigroups such that V = V ∗D
and LI ⊆ V. If u, v are words of A∗ with the same length, and π, ρ ∈ F̂V(A)
are such that πu = ρv or that uπ = vρ, then u = v and π = ρ.

Proof : Let n be the length of u and v. If πu = ρv, then u = tn(πu) =
tn(ρv) = v, and the equality π = ρ follows from equality (4.2) in Theorem 4.2
(with N = n+ 1). The case uπ = vρ is treated similarly, using the dual of
equality (4.2).

If we are in the conditions of Corollary 4.3, then, for each positive integer
N , and pseudoword u ∈ F̂V(A) \ A+, we denote by iN(u)−1 · u the unique
pseudoword u′ such that u = iN(u) · u′. Similarly, we denote by u · tN(u)−1

the unique pseudoword u′′ such that u = u′′ · tN(u).

Lemma 4.4. The maps u 7→ iN(u)−1 · u and u 7→ u · tN(u)−1 are continuous

on the space F̂V(A) \ A+.

Proof : Suppose that (un)n converges to u in F̂V(A) \ A+. As iN is contin-
uous, we have iN(un) = iN(u) for all large enough n. Therefore, we have
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un = iN(u)vn for all large enough n, where vn = iN(un)
−1 ·un. Every accumu-

lation point v of (vn)n is such that u = iN(u)v, that is, v = iN(u)u−1. Since we
are dealing with a compact space, this means that iN(un)

−1 ·un → iN(u)−1 ·u.
Similarly, we have un · tN(un)

−1 → u · tN(u)−1.

4.2. Some properties of pseudoword block codes. We now introduce
some useful properties of pseudoword block codes. Until the end of this
section, we work with a fixed pseudovariety of semigroups such that V = V∗D
and LI ⊆ V. In the absence of confusion, we may denote a pseudoword block
code ΨV, from F̂V(A)I to F̂V(B)I , simply by Ψ, dropping the subscript V.

Lemma 4.5. Consider a pseudovariety of semigroups V such that V = V ∗D
and LI ⊆ V. Let ϕ : X → Y be a morphism of subshifts with central block
map Φ: A2k+1 → B. Take a morphism of subshifts ψ : Y → Z with central
block map Ψ: B2l+1 → C. Then the map Λ: A2k+2l+1 → C defined by Λ(u) =
Ψ ◦ Φ(u) is a central block map for ψ ◦ ϕ. Moreover, the equality

Λ(u) = Ψ ◦ Φ(u) (4.7)

holds for every u ∈ F̂V(A).

Proof : Let x ∈ X , y = ϕ(x) and z = ψ(y). Note that (cf. Example 4.1) for
each i ∈ Z, we have

zi = Ψ([y[i−l,i+l]]) = Ψ

( ∏
j∈[i−l,i+l]

Φ(x[j−k,j+k])

)
= Ψ(Φ(x[i−l−k,i+l+k])),

and so Λ is indeed a central block map for ψ ◦ ϕ.
We may in particular suppose that X = AZ, Y = BZ and Z = CZ. Let u

be a word of A+ of length n ≥ 2k + 2l + 1. Then u = x[1,n] for some x ∈ X .
As we already checked that Λ is a central block map for ϕ◦ψ, we know that,
for y = ϕ(x) and z = ψ(y), the following chain of equalities holds:

Λ(x[1,n]) = z[1+k+l,n−k−l] = Ψ(y[1+k,n−k]) = Ψ(Φ(x[1,n])).

Hence, equality (4.7) holds for every u ∈ A+ of length at least 2k+ 2l+ 1. It
also holds if u has smaller length: in that case, we have Λ(u) = ε = Ψ(Φ(u))
(for the latter equality, note that the length of Φ(u) will be smaller than

2l + 1). As Λ, Ψ and Φ are continuous in F̂V(A)I = A∗, it follows that (4.7)

holds for every u ∈ F̂V(A)I .
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Proposition 4.6. Take a pseudovariety of semigroups V such that V = V∗D
and LI ⊆ V. Consider a block map Ψ: AN → B. For all pseudowords u and v
of F̂V(A), we have

Ψ(uv) = Ψ(u iN−1(v)) ·Ψ(v) = Ψ(u) ·Ψ(tN−1(u)v). (4.8)

If, moreover, N = 2k + 1, then

Ψ(uv) = Ψ(u ik(v)) · Φ(tk(u) v) (4.9)

holds.

For Ψ = ΥN , the property in (4.8) is [Alm95, Exercise 10.6.6]. In its
entirety, Proposition 4.6 is proved in the thesis [Cos07b]. For the reader’s
convenience, a short proof is given here, which seems more transparent than
that in [Cos07b].

Proof : By the continuity of Ψ, and since A+ is dense in F̂V(A), it suffices to
check (4.8) and (4.9) for elements of A+. We only do it for (4.9), as (4.8) may
be treated similarly. Let u, v ∈ A+ be words of lengths n and m, respectively.
If n ≤ k, then tk(u) = u and |u ik(v)| < 2k + 1, whence Ψ(u ik(v)) = ε and
the equality holds trivially. Similarly for the case m ≤ k. Finally, suppose
that n,m > k. Consider the sliding block code ψ : AZ → BZ having Ψ as a
central block map. Then, we may choose some x ∈ AZ such that u = x[1,n]

and v = x[n+1,n+m]. Let y = ψ(x). Since n+m > 2k + 1, we have

Ψ(uv) = Ψ(x[1,n+m]) = y[1+k,n+m−k] = y[1+k,n] · y[n+1,n+m−k]

= Ψ(x[1,n+k]) ·Ψ(x[n+1−k,n+m])

= Ψ(u ik(v)) ·Ψ(tk(u) v),

establishing the equality (4.9).

Pseudoword block codes behave well with respect to the sets L(X ) and
MV(X ), in the sense of the next proposition. Note the assumption that V
contains LSl is necessary because in the proof we need to guarantee that
MV,k(X ) is clopen, for every positive integer k. Recall that, under the hy-
pothesis V = V ∗ D, the inclusion LSl ⊆ V is equivalent to Sl ⊆ V, since
LSl = LSl ∗ D.

Proposition 4.7. Consider a pseudovariety of semigroups V such that V =
V ∗ D and LSl ⊆ V. Let ϕ : X → Y be a sliding block code of subshifts, with
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central block map Φ. The inclusions Φ
(
L(X )

)
⊆ L(Y)∪ {ε}, Φ

(
MV(X )

)
⊆

MV(Y) ∪ {ε} and Φ
(
ShaV(X )

)
⊆ ShaV(Y) ∪ {ε}, hold.

We omit the routine proof of Proposition 4.7, appearing in [Cos06, Lemma 3.2]
under the assumption V = S, irrelevant for the proof given there. Proposi-
tion 4.7 is also proved in the thesis [Cos07b] (with exactly the same hypothesis
as here). We just underline that the last of the three inclusions is a direct
consequence of the first inclusion and of the implication u ≤J v ⇒ Φ(u) ≤J
Φ(v), justified by Proposition 4.6. More precisely, if Φ has window size N ,
and u = xvy, then

Φ(u) = Φ(x iN−1(vy)) · Φ(vy) = Φ(x iN−1(vy)) · Φ(v) · Φ(tN−1(v)y) ≤J Φ(v).

5. A functorial correspondence from subshifts to cate-
gories

By a compact category we mean a small category C such that:

(1) the set Obj(C) of objects of C and the set Mor(C) of arrows (i.e.,
morphisms) of C are both compact topological spaces;

(2) both incidence maps, respectively assigning the domain d(e) = x and
the co-domain r(e) = y to each arrow e : x→ y, are continuous maps
from the space of arrows to the space of objects;

(3) the map x 7→ 1x is continuous, where 1x denotes the identity at x;
(4) the map (s, t) 7→ st defined on the set of composable arrows is con-

tinuous.

The morphisms between compact categories are the functors that restrict
to continuous mappings between the corresponding spaces of objects and
arrows.

For each semigroup S, we denote by E(S) the set of idempotents of S. The
Karoubi envelope of a semigroup S is a small category K(S), whose objects
are the idempotents of S, and whose morphisms f → e are triples (e, s, f) ∈
E(S) × S × E(S) such that s = esf , with composition (e, s, f)(f, t, g) =
(e, st, g). The identity morphism 1e at object e is the triple (e, e, e). If S is
a compact semigroup, then E(S) is a nonempty compact subspace [CHK83,
Theorem 3.5], and K(S) becomes a compact category, if we consider the
space of morphisms endowed with the topology induced from the product
space E(S)× S × E(S).
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Remark 5.1. Each continuous homomorphism ϕ : T → R of compact semi-
groups induces a continuous functor K(ϕ) : K(T ) → K(R), with K(ϕ)(e) =
ϕ(e) when e ∈ E(T ), and K(ϕ)(e, s, f) = (ϕ(e), ϕ(s), ϕ(f)) when (e, s, f) is
an arrow of K(T ). Moreover, an inverse limit S = lim←−Si of finite semigroups
induces the equality K(S) = lim←−K(Si). A compact category is profinite when
it is the inverse limit of an inverse system of finite categories. Hence, the
Karoubi envelope of a profinite semigroup is a profinite category. We shall
not need this fact, but one should have it in mind, as we will work with
Karoubi envelopes of (free) profinite semigroups.

For later reference, we collect a couple of simple facts about the Karoubi
envelope of a semigroup. For each idempotent e of a semigroup S, let Ge be
the H-class of e, that is, Ge is the group of units of the monoid eSe. Recall
that Ge is a compact/profinite group if S is compact/profinite.

Proposition 5.2. If e is an idempotent of the compact semigroup S, then
the group of automorphisms of e in K(S) is a compact group isomorphic to
Ge.

Proof : The map (e, s, e) 7→ s is an isomorphism from the group of automor-
phisms of e in K(S) onto Ge (see for example [CS15]). This map is clearly
continuous.

In a category, an object c is a retract of an object d, denoted c ≺ d, if there
are arrows ϕ : c → d and ψ : d → c with ψ ◦ ϕ = 1c. The relation ≺ is a
partial order.

Proposition 5.3. Let e, f be idempotents of the semigroup S. Then e ≤J f
if and only if e ≺ f .

Proof : If e = xfy, with x, y ∈ SI , then 1e = (e, exf, f)(f, fye, e), es-
tablishing the “only if” part. Conversely, if 1e = (e, s, f)(f, t, e), then
e = st = sft.

If F is a closed factorial subset of S, we denote by K(F ) the subgraph of
K(S) whose edges are the morphisms (e, s, t) such that s ∈ F , and whose
objects are the idempotents of S belonging to F . The graph K(F ) may not
be a subcategory.

Example 5.4. Let X be the even subshift from Example 2.5. Then s =
(aω, aωbω, bω) and t = (bω, bω+1aω, aω) belong to K(ShaV(X )), but not st =
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(aω, aωbω+1aω, aω). Indeed, aωbω+1aω belongs to K = a+(b2)∗ba+, and so,

since K ∩ L(X ) = ∅ and K is open, one has aωbω+1aω /∈ L(X ).

Let X be a subshift of AZ and let V be a pseudovariety containing LSl. Sup-
pose that (e, u, f) and (f, v, g) are arrows of K(F̂V(A)) with u, v ∈ MV(X ).
Then, we have uv = ufv ∈ MV(X ): indeed, in what has some similarity
with properties of ordinary words, a finite factor in a product w1 · · ·wn of
infinite pseudowords over V ⊇ LSl is either a factor of some wi, or a product
of a suffix of wi and a prefix of wi+1, for some i (see [AV06, Lemma 8.2]
for a formal statement and proof), so that a finite factor of ufv is either a
factor of uf = u or of v = fv. Hence K(MV(X )) is a compact subcategory

of K(F̂V(A)).
In this section, V is always a pseudovariety of semigroups containing LSl

and such that V = V ∗ D.

Lemma 5.5. Consider a central block map Φ: A2k+1 → B. For every idem-
potent e of F̂V(A), the pseudoword Φ(tk(e) · e · ik(e)) is an idempotent of

F̂V(B).

Proof : Applying the property expressed in equality (4.9), from Proposi-
tion 4.6, to the pseudowords u = tk(e) · e and v = e · ik(e), we obtain

Φ(tk(e) · e · ik(e)) ·Φ(tk(e) · e · ik(e)) = Φ(tk(e) · e · e · ik(e)) = Φ(tk(e) · e · ik(e)),

showing that Φ(tk(e) · e · ik(e)) is an idempotent.

In the setting of Lemma 5.5, we denote the idempotent Φ(tk(e) · e · ik(e))
by ΦK(e).

Proposition 5.6. Consider a central block map Φ: A2k+1 → B. The follow-
ing data defines a functor:

ΦKV
: K(F̂V(A)) → K(F̂V(B))

e 7→ ΦKV
(e)

(e, u, f) 7→
(

ΦKV
(e),Φ(tk(e)u ik(f)),ΦKV

(f)
)

Proof : Thanks to Lemma 5.5, we already know that this correspondence is
correctly defined on objects. Since u = euf , we have ik(u) = ik(e), tk(u) =
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tk(f), and therefore, applying (4.9), we get the following chain of equalities:

Φ(tk(e)u ik(f)) = Φ(tk(e) e · u ik(f))

= Φ(tk(e) e ik(e)) · Φ(tk(e)u ik(f))

= Φ(tk(e) e ik(e)) · Φ(tk(e)u · f ik(f))

= Φ(tk(e) e ik(e)) · Φ(tk(e)u ik(f)) · Φ(tk(f) f ik(f)).

This shows that ΦKV
is a morphism of graphs. Similarly, if (e, u, f) and

(f, v, g) are two composable arrows of K(F̂V(A)), by applying again (4.9) we
get

Φ(tk(e)u ik(f)) · Φ(tk(f) v ik(g)) = Φ(tk(e)uv ik(g)),

thus establishing that ΦKV
is a functor.

For u ∈ F̂V(A) and idempotents e, f with u = euf , one has u J tk(e)u ik(f),
thus u ∈MV(X ) if and only if tk(e)u ik(f) ∈MV(X ). Therefore, by Propo-
sition 4.7, the functor ΦKV

restricts to a functor K(MV(X )) → K(MV(Y))
whenever Φ is a central block map of a sliding block code ϕ : X → Y . We
proceed to show that this restriction depends on ϕ only.

Lemma 5.7. Consider a sliding block code ϕ : X → Y, where X is a subshift
of AZ and Y is a subshift of BZ. Suppose that Φ and Ψ are central block
maps of ϕ, with wings l and k, respectively, and suppose that k ≥ l. Take
v ∈ F̂V(A) and words u,w of A∗ with length k and such that every factor of
uvw with length 2k + 1 belongs to L(X ). Then the equality

Ψ(uvw) = Φ(tl(u) v il(w))

holds.

Proof : As reasoned in previous proofs, it suffices to consider the case v ∈ A+.
Suppose first that v ∈ A. Then, uvw is a word of length 2k + 1, and so
uvw = x[−k,k] for some x ∈ X . Then (cf. Example 4.1), we have

Ψ(uvw) = (ϕ(x))0 = Φ(x[−l,l]) = Φ(tl(u) v il(w)),

settling the case where v is a letter. Let ϕ′ (respectively, ϕ′′) be the sliding
block code AZ → BZ having Φ (respectively, Ψ) as a central block map. Let
x ∈ AZ and n ≥ 2k + 1 be such that x[1,n] = uvw. Take y = ϕ′(x) and
z = ϕ′′(x). Assuming 1 + k ≤ i ≤ n− k, the word x[i−k,i+k] belongs to L(X ),
as it has length 2k + 1. By the already settled case, we know that

yi = Ψ(x[i−k,i+k]) = Φ(x[i−l,i+l]) = zi,
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whenever 1 + k ≤ i ≤ n− k. Finally, we have

Φ(tl(u) v il(w)) = Φ(x[1+(k−l),n−(k−l)]) = z[1+k,n−k]

= y[1+k,n−k] = Ψ(x[1,n]) = Ψ(uvw),

establishing the result.

Corollary 5.8. Consider a sliding block code ϕ : X → Y, with X ⊆ AZ

and Y ⊆ BZ. If Φ and Ψ are central block maps of ϕ, then the restrictions
of ΦKV

and ΨKV
to K(MV(X )) are equal.

Proof : Suppose that the wings of Φ and Ψ are respectively l and k. Let u
be an element of MV(X ) such that u = euf for some idempotents e and f

of F̂V(A). Then we have Ψ(tk(e)u ik(f)) = Φ(tl(e)u il(f)) by Lemma 5.7.

Definition 5.9. Let ϕ : X → Y be a sliding block code, with X ⊆ AZ

and Y ⊆ BZ. We define the functor ϕKV
: K(MV(X )) → K(MV(Y)) as be-

ing the restriction to K(MV(X )) of the functor ΦKV
: K(F̂V(A))→ K(F̂V(B)),

whenever Φ is a central block map of ϕ (remember that ΦKV

(
K(MV(X ))

)
is

indeed contained in K(MV(Y)), as observed in the paragraph before Lemma 5.7).
By Corollary 5.8, the map ϕKV

does not depend on the choice of Φ.

Remark 5.10. Let X be a subshift of AZ. The identity 1A : A → A is a
central block map of the identity 1X : X → X , and so the formula (1X )KV

=
1MV(X ) holds.

Remark 5.11. By Proposition 4.7, ϕKV
(ShaV(X )) ⊆ ShaV(Y) for every mor-

phism ϕ : X → Y .

The next proposition is the first step to show that the correspondence
ϕ 7→ ϕKV

defines a functor.

Proposition 5.12. Let ϕ : X → Z and ψ : Z → Y be sliding block codes
such that either ϕ or ψ is a 1-code. Then ψKV

◦ ϕKV
= (ψ ◦ ϕ)KV

.

Proof : Note that it suffices to prove that the restrictions of ψKV
◦ ϕKV

and
(ψ ◦ϕ)KV

to the set of morphisms of K(MV(X )) are equal. Let (e, u, f) be a
morphism of K(MV(X )). Suppose that Φ and Ψ are central block maps of
ϕ and ψ, respectively.

Suppose first that Ψ has wing 0, and let k be the wing of Φ. Then ψKV
◦

ϕKV
(e, u, f) is equal to the triple(

Ψ ◦ Φ̄[tk(e) e ik(e)],Ψ ◦ Φ[tk(e) euf ik(f)],Ψ ◦ Φ[tk(f) f ik(f)]
)
.
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By Lemma 4.5, the latter is equal to (ψ ◦ ϕ)KV
(e, u, f).

It remains to consider the case in which Φ has wing 0. Let k be the wing
of Ψ. Then

ψKV
◦ ϕKV

(e, u, f) =

= ΨKV

(
Φ(e),Φ(u),Φ(f)

)
=
(

Ψ[tk(Φ(e)) · Φ(e) · ik(Φ(e))], Ψ[tk(Φ(e)) · Φ(u) · ik(Φ(f))], Ψ[tk(Φ(f)) · Φ(f) · ik(Φ(f))]
)

=
(

Ψ ◦ Φ[tk(e) · e · ik(e)], Ψ ◦ Φ[tk(e) · u · ik(f)], Ψ ◦ Φ[tk(f) · f · ik(f)]
)
,

where the last equality holds because Φ is a homomorphism. Again by
Lemma 4.5, we conclude that ψKV

◦ ϕKV
(e, u, f) = (ψ ◦ ϕ)KV

(e, u, f).

Proposition 5.13. If the sliding block code ϕ : X → Y is a conjugacy of
subshifts, then the functor ϕKV

: K(MV(X ))→ K(MV(Y)) is an isomorphism
of compact categories, and the equality

(ϕ−1)KV
= (ϕKV

)−1

holds.

Proof : By Proposition 2.4, if the sliding block code ϕ is a conjugacy, then
there are 1-conjugacies α and β such that the following diagram commutes:

Z
β

��

α

z�

X ϕ
// Y
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Using several times Proposition 5.12, we deduce the following chain of equal-
ities:

1K(MV(X )) = (1X )KV

= (α ◦ α−1)KV

= αKV
◦ (α−1)KV

(since α is a 1-code)

= αKV
◦ 1K(MV(Z)) ◦ (α−1)KV

= αKV
◦ (1Z)KV

◦ (α−1)KV

= αKV
◦ (β−1 ◦ β)KV

◦ (α−1)KV

= αKV
◦ (β−1)KV

◦ βKV
◦ (α−1)KV

(since β is a 1-code)

= (α ◦ β−1)KV
◦ (β ◦ α−1)KV

(because β and α are 1-codes)

= (ϕ−1)KV
◦ ϕKV

.

Similarly, the next chain of equalities is valid:

1K(MV(Y)) = (1Y)KV

= (β ◦ β−1)KV

= βKV
◦ (β−1)KV

(since β is a 1-code)

= βKV
◦ 1K(MV(Z)) ◦ (β−1)KV

= βKV
◦ (1Z)KV

◦ (β−1)KV

= βKV
◦ (α−1 ◦ α)KV

◦ (β−1)KV

= βKV
◦ (α−1)KV

◦ αKV
◦ (β−1)KV

(since α is a 1-code)

= (β ◦ α−1)KV
◦ (α ◦ β−1)KV

(because α and β are 1-codes)

= ϕKV
◦ (ϕ−1)KV

.

Therefore, the proposition holds.

The following statement is now obvious.

Corollary 5.14. Let V be a pseudovariety of semigroups containing LSl and
such that V = V ∗ D. The compact category K(MV(X )) is a conjugacy
invariant, up to isomorphism of compact categories.

Assuming X is irreducible, we may consider the J -minimum J -class JV(X )

of ShaV(X ) and the J -minimum J -class J̃V(X ) of MV(X ). To such X we
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associate two profinite groups: the Schützenberger group GV(X ) of JV(X )

and the Schützenberger group G̃V(X ) of J̃V(X ), respectively isomorphic to

the maximal subgroups of JV(X ) and to the maximal subgroups of J̃V(X ).
The following straightforward consequence of Proposition 5.13 was first es-
tablished in [Cos06].

Corollary 5.15. Let V be a pseudovariety of semigroups containing LSl and
such that V = V ∗ D. Suppose that the subshift X is irreducible. Then the
profinite groups GV(X ) and G̃V(X ) are conjugacy invariants, up to isomor-
phism of profinite groups.

Proof : The idempotents of J̃V(X ) are the minimal objects of K(MV(X ))
with respect to the retraction order ≺, by Proposition 5.3. The partial
order ≺ is clearly preserved by isomorphisms of categories. Hence, in view
of Proposition 5.13, if ϕ : X → Y is a conjugacy, then each idempotent e
in J̃V(X ) is mapped via ϕKV

to an idempotent f = ϕKV
(e) in J̃V(Y). In

particular, the profinite groups Ge and Gf are isomorphic, by Proposition 5.2,

establishing the conjugacy invariance of G̃V(X ).
As ϕKV

(ShaV(X )) ⊆ ShaV(Y) and ϕ−1
KV

(ShaV(Y)) ⊆ ShaV(X ) (Remark 5.11),
the arguments in the previous paragraph also yeld the conjugacy invariance
of the profinite group GV(X ).

We now establish the functoriality of the correspondence X 7→ K(MV(X )).

Theorem 5.16. Let V be a pseudovariety of semigroups containing LSl and
such that V = V ∗ D. The following data defines a functor from the category
of shifts to the category of compact categories.

X //

ϕ
��

K(MV(X ))

ϕKV
��

Y // K(MV(Y))

Proof : Consider composable sliding block codes ϕ : X1 → X2 and ψ : X2 → X3.
Then, by Proposition 2.4, we may build a commutative diagram of sliding
block codes, displayed in Figure 3, such that all the maps not in the base of
the outer triangle (the maps α, β, γ, δ, µ and ν) are 1-codes, with α, γ and
µ being conjugacies.
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Z
µ

y�

ν

!!

Y1
α

z�

β

  

Y2
δ

  

γ

z�

X1
ϕ

// X2
ψ

// X3

Figure 3. Triangle with base ψ ◦ ϕ.

Applying several times Proposition 5.12 and 5.13, we deduce the following
chain of equalities:

(ψ ◦ ϕ)KV
= ((δ ◦ ν) ◦ (α ◦ µ)−1)KV

= (δ ◦ ν)KV
◦ ((α ◦ µ)−1)KV

(by Proposition 5.12, since δ ◦ ν is a 1-code)

= (δ ◦ ν)KV
◦ ((α ◦ µ)KV

)−1 (by Proposition 5.13)

= δKV
◦ νKV

◦ (αKV
◦ µKV

)−1 (by Proposition 5.12, as δ, ν, α and µ are 1-codes)

= δKV
◦ νKV

◦ (µKV
)−1 ◦ (αKV

)−1

= δKV
◦ νKV

◦ (µ−1)KV
◦ (α−1)KV

(by Proposition 5.13)

= δKV
◦ (ν ◦ µ−1)KV

◦ (α−1)KV
(by Proposition 5.12, as ν is a 1-code)

= δKV
◦ (γ−1 ◦ β)KV

◦ (α−1)KV

= δKV
◦ (γ−1)KV

◦ βKV
◦ (α−1)KV

(by Proposition 5.12, as β is a 1-code)

= (δ ◦ γ−1)KV
◦ (β ◦ α−1)KV

(by Proposition 5.12, as δ and β are 1-codes)

= ψKV
◦ ϕKV

,

thus establishing the result.

Our proof of Theorem 5.16 depends on the Curtis–Hedlund–Lyndon theo-
rem (Theorem 2.1). It may be interesting to obtain a more direct proof, not
depending on the use of block maps. We leave that as an open problem.

6. Flow equivalence
We turn our attention to flow equivalence, having [LM95, Section 13.7]

and [BBEP10] as guiding references. Two discrete-time dynamical systems
are flow equivalent if their suspension flows (or mapping tori) are conjugate
modulo a time change. Parry and Sullivan showed that within the class
of subshifts, flow equivalence is the equivalence relation between subshifts
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generated by conjugacy and symbol expansion [PS75], described next. Fix
an alphabet A and a letter α of A. Let � be a letter not in A, and let B =
A ∪ {�}. The symbol expansion of A associated to α is the homomorphism
E : A+ → B+ such that E(α) = α� and E(a) = a for all a ∈ A \ {α}. The
symbol expansion of a subshift X of AZ relative to α is the least subshift X ′ of
BZ such that L(X ′) contains E(L(X )). A symbol expansion of X is a symbol
expansion of X relative to some letter.

Remark 6.1. Using induction on the length of words, one verifies that

E(A+) = B+ \
(
�B∗ ∪B∗α ∪

⋃
x∈A

B∗αxB∗ ∪
⋃

x∈B\{α}

B∗x �B∗
)
.

In particular, one sees that E(A+) is a locally testable language.

Throughout this section, as in Section 5, V will always be a pseudovariety
of semigroups containing LSl such that V = V ∗ D, but (unlike Section 5)
with the additional requirement that V is monoidal. It is folklore that if V
is monoidal and contains Sl, then S ∈ V if and only if SI ∈ V [Eil76]. From

that it follows that F̂V(A)I is pro-V whenever V is monoidal and contains Sl,
a property that we shall need.

Let us return to the symbol expansion homomorphism E : A+ → B+ in-
troduced in the first paragraph of this section. The unique extension of E
to a continuous homomorphism F̂V(A) → F̂V(B) will also be denoted by E .

We let E(I) = I = ε. Because F̂V(A)I is a pro-V semigroup, as we are as-
suming V to be monoidal, we may consider the unique continuous semigroup
homomorphism C : F̂V(B) → F̂V(A)I such that C(�) = ε = I and C(a) = a
for all a ∈ A. The notation C is used because its restriction to B+ is said
to be a symbol contraction. Note that C ◦ E(u) = u for all u ∈ F̂V(A), since
this is clearly true for finite words and C ◦ E is continuous. In particular,
E is injective, and we may use the notation E−1 for the restriction of C to
E(F̂V(A)). Observe that E(F̂V(A)) is clopen by Remark 6.1.

Lemma 6.2. Let v ∈ F̂V(A). The following properties hold:

(1) For x, y, u ∈ F̂V(B)I, if x · E(v) · y = E(u) then x, y ∈ E(F̂V(A)I) and
u = E−1(x)vE−1(y).

(2) If E(v) ∈ L(X ′), then we have v ∈ L(X ).

Proof : The case where x, y, v, u are finite words is Lemma 12.3 in [CS16],
following very easily from Remark 6.1.
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For the general case, suppose that x · E(v) · y = E(u) and let (xn)n,
(vn)n, (yn)n be sequences of words respectively converging to x, v and y.

Since E(F̂V(A)) is open, for all large enough n there is a word un such
that xn · E(vn) · yn = E(un). Taking subsequences, we may as well sup-
pose that un → u. By the special case for words, we have xn, yn ∈ E(A∗)
and un = E−1(xn)vnE−1(yn) (bear in mind that E is injective). Because the

mapping E−1, from the closed space E(F̂V(A)I) to F̂V(A)I , is continuous, we
deduce that u = E−1(x)vE−1(y).

Suppose now that E(v) ∈ L(X ′). There is a sequence (un)n of elements of

L(X ′) converging to E(v). Because E(F̂V(A)) is clopen, and by compactness,
by taking subsequences we may in fact suppose that un = E(wn) ∈ L(X ′)
for a sequence (wn)n converging to some w ∈ F̂V(A). Again by the case for

words, we get wn ∈ L(X ), thus w ∈ L(X ). Since E is continuous, we have

E(v) = limun = E(w), whence v = w ∈ L(X ), as E is injective.

In what follows, X is a subshift of AZ. We begin to record that the shadow
of X is preserved by the symbol expansion.

Lemma 6.3. The inclusion E(ShaV(X )) ⊆ ShaV(X ′) holds.

Proof : This is immediate, since E(L(X )) ⊆ L(X ′) by the definition of X ′ and

because E : F̂V(A)→ F̂V(B) is a continuous homomorphism.

We next prove that the mirage is also preserved by the symbol expansion.

Lemma 6.4. The inclusion

E(MV(X )) ⊆MV(X ′)
holds. More precisely, one has

E(MV,k(X )) ⊆MV,k(X ′)
for every positive integer k.

Proof : Clearly, it suffices to show the second inclusion, asMV(Z) =
⋂
k≥1MV,k(Z)

for every subshift Z.
Let u be an element of MV,k(X ). Suppose that w ∈ B+ is a finite factor

of E(u) with length at most k. Let (un)n be a sequence of elements of A+

converging to u. Then un ∈MV,k(X ) for all sufficiently large n, asMV,k(X )
is a (clopen) neighborhood of u (cf. Remark 3.3). On the other hand, B∗wB∗

is a clopen of F̂V(B) containing E(u). Since E is continuous, we also have



32 A. COSTA AND B. STEINBERG

E(un) ∈ B∗wB∗ for all sufficiently large n. Therefore, we may take some
word um in the intersection MV,k(X ) ∩ E−1(B∗wB∗). Since w is a factor of
E(um), in view of the equality in Remark 6.1, we see that there are words
p, q ∈ B∗, x ∈ {α, ε} and y ∈ {�, ε} such that E(um) = pxwyq and xwy
belongs to the image ImE , the possibilities for x and y depending on whether
w starts with � or not, and whether w ends with α or not. By Lemma 6.2,
the words p and q also belong to ImE and

um = E−1(p) · E−1(xwy) · E−1(q). (6.1)

Moreover, if x = α, then w starts with the letter �. Hence, if x = α or
y = �, then xwy has at least one occurrence of the letter �, and it has at
least two occurrences if x = α and y = �. Therefore, for whatever possibility
for x ∈ {α, ε} and y ∈ {�, ε}, it follows from the definition of the symbol
contraction C that |E−1(xwy)| ≤ |w| ≤ k. Since um ∈ MV,k(X ) and (6.1)
holds, it follows that E−1(xwy) ∈ L(X ). Therefore, xwy ∈ L(X ′), and so
w ∈ L(X ′). This proves that E(u) ∈MV,k(X ′).

Concerning the contraction homomorphism, we first note the following fact.

Lemma 6.5. The inclusion C(L(X ′) \ {�}) ⊆ L(X ) holds, and so does the
inclusion C(ShaV(X ′) \ {�}) ⊆ ShaV(X ).

Proof : If u ∈ L(X ′), then u is a factor of E(v) for some v ∈ L(X ), whence
C(u) is a factor of C ◦ E(v) = v, showing that C(L(X ′)) ⊆ L(X ) ∪ {ε}.
Moreover, if u ∈ L(X ′) \ {�}, then at least one letter appearing in u is not �
(as �� 6∈ L(X ′)), thus C(u) 6= ε. Since C is a continuous homomorphism from

F̂V(B) to F̂V(A)I , we immediately obtain C(ShaV(X ′) \ {�}) ⊆ ShaV(X ).

We will need the following lemma.

Lemma 6.6. Every pseudoword u in MV,2(X ′) is of one, and only one, of
the following four types:

(1) u ∈ {α, �}
(2) u ∈ E(F̂V(A))

(3) u = �v for some v ∈ E(F̂V(A))

(4) u = vα for some v ∈ E(F̂V(A))

(5) u = �vα for some v ∈ E(F̂V(A)) ∪ {ε}

Proof : We assume u ∈ B+ first. We prove, by induction on the length of
the word u, that if u belongs to MV,2(X ′) ∩ B+, then u is of one of five
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types (1)-(5). The base step is immediate: if the length of u is one, then u
is of type (1) or (2).

Suppose that u is a word with length at least two and that the lemma
holds for words of smaller length. Consider first the case in which u starts
with the letter �, and take a factorization u = �w. Since w also belongs to
the factorial setMV,2(X ′), we may apply the induction hypothesis to w. Let
us see what happens in each case:

• If w is of type (1), then from u = �w ∈ L(X ′) we get w = α, and so
u is of type (5).
• If w falls into type (2), then u is of type (3).
• It is impossible that w falls into types (3) or (5), otherwise � � would

be a prefix of u, contradicting that every factor of length two of u is
in L(X ′).
• If w falls into type (4), then u is of type (5).

Therefore, in all possible cases, u is of one of the listed types, whenever
u ∈ �B∗.

Suppose now that u starts with the letter α. Since the factors of length
two of u belong to L(X ′), we must have u = α � w = E(α) · w for some
w ∈ B∗ \ �B∗. Applying the induction hypothesis to w, one sees that u must
be either of type (2) or (4). A similar reasoning is valid if u starts with a
letter a ∈ A\{α}, as we then have u = aw = E(a) ·w for some w ∈ B∗ \�B∗.
We have thus concluded that the inductive step holds, and that the lemma
is valid for every u ∈MV,2(X ′) ∩B+.

Now, let u be a pseudoword belonging to MV,2(X ′). Since MV,2(X ′) is
clopen, there is a sequence (un)n of elements ofMV,2(X ′)∩B+ converging to
u. As the number of possible types is finite, taking subsequences, we may as
well suppose that all elements of (un)n are of the same type, among the five

possible types (1)-(5). Since E(F̂V(A)) is a closed set and the multiplication
is continuous, it follows that u is of the same type as that of the terms un.

We end by observing that no pseudoword can be of more than one of the
five types (1)-(5), since no element of E(F̂V(A)) starts with � or ends with
α.

Next is a sort of weak converse of Lemma 6.4.

Lemma 6.7. The inclusion

C(MV(X ′) \ {�}) ⊆MV(X )
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holds. More precisely, one has

C(MV,2k(X ′) \ {�}) ⊆MV,k(X )

for every positive integer k.

Proof : Because MV(Z) =
⋂
k≥1MV,2k(Z) for every subshift Z, we are re-

duced to showing the second inclusion.
Let u ∈ MV,2k(X ′) \ {�}. Let w be a finite factor of C(u) of length at

most k. By Lemma 6.6, there are x ∈ {�, ε}, y ∈ {α, ε} and v ∈ F̂V(A)I such
that

u = xE(v)y.

Since C ◦ E is the identity, we have

C(u) = vy.

Hence E(w) is a finite factor of E(v) · E(y). Observe that |E(w)| ≤ 2|w| ≤ 2k.
Suppose that y = ε. Then E(w) is a factor of E(v), and so it is a factor of u.

Since u ∈ MV,2k(X ′), it follows that E(w) ∈ L(X ′). Applying Lemma 6.2,
we then get w ∈ L(X ).

Finally, suppose that y = α. Then we have u � = xE(v)α � = xE(v)E(α),
and E(w) is a factor of u �. As discussed in Section 3.3, the setMV,2k(X ′) is
prolongable, whence ub ∈ MV,2k(X ′) for some letter b. But y = α is a suffix
of u, and so αb is a finite suffix of u�. In particular, αb ∈ L(X ′), implying
b = �. Therefore, we have u� ∈ MV,2k(X ′). Since E(w) is a finite factor of
u� of length at most 2k, we must have E(w) ∈ L(X ′). Again by Lemma 6.2,
we conclude that w ∈ L(X ).

The following improvement of Lemma 6.6 is not necessary for the sequel,
but it may be worthwhile to have it in mind.

Corollary 6.8. The equality

MV(X ′) ∩ E(F̂V(A)) = E(MV(X )). (6.2)

holds. Consequently, every pseudoword u inMV(X ′) is of one, and only one,
of the following four types:

(1) u ∈ {α, �}
(2) u ∈ E(MV(X ))
(3) u = �v for some v ∈ E(MV(X ))
(4) u = vα for some v ∈ E(MV(X ))
(5) u = �vα for some v ∈ E(MV(X )) ∪ {ε}
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Proof : The inclusion E(MV(X )) ⊆ MV(X ′) ∩ E(F̂V(A)) is in Lemma 6.4.

Conversely, if v ∈MV(X ′)∩E(F̂V(A)), then, by Lemma 6.7, we have E−1(v) =
C(v) ∈MV(X ), and so (6.2) holds.

Let u ∈ MV(X ′). Then u is in one of the situations of Lemma 6.6. Since
MV(X ′) is factorial and the equality (6.2) is valid, we conclude that in the list

given for such u by Lemma 6.6, we may replace E(F̂V(A)) by E(MV(X )).

We adapt to compact categories the notions of isomorphism of functors
and of equivalence of categories. For that purpose, the following simple fact
is needed.

Lemma 6.9. In a compact category C, the set of isomorphisms is a closed
subspace of Mor(C), and the mapping ϕ 7→ ϕ−1 is continuous on this sub-
space.

Proof : Observe first that the set of identities {1c | c ∈ Obj(C)} is a closed
subspace of Mor(C), since the map c ∈ Obj(C) 7→ 1c is continuous and
Obj(C) is compact. Therefore, if the net (ϕi)i∈I of isomorphisms of C con-
verges to ϕ then, by the continuity of the composition, every convergent
subnet of (ϕ−1

i )i∈I converges to an inverse of ϕ. As Mor(C) is compact, we
deduce that (ϕ−1

i )i∈I converges to ϕ−1.

Two continuous functors F,G : C → D between compact categories are
continuously isomorphic, written F ∼= G, when there is a continuous natural
isomorphism η : F ⇒ G, which we define as natural isomorphism η : F ⇒ G
such that the function Obj(C) → Mor(D) mapping each object c of C to
the morphism ηc : F (c)→ G(c) is continuous. By Lemma 6.9, the inverse of
a continuous natural isomorphism is a continuous natural isomorphism, and
so the relation ∼= is symmetric. Moreover, it is straightforward that for all
continuous functors F,G : C → D and H,K : D → E of compact categories,
if F ∼= G and H ∼= K then H ◦ F ∼= K ◦G.

A functor F : C → D between compact categories C and D is a continuous
equivalence if there is a continuous functor G : D → C, such that F ◦G ∼= 1D
and G ◦ F ∼= 1C . Such G is a continuous pseudo-inverse of F . We say
that C and D are continuously equivalent if there is a continuous equivalence
F : C → D. Note that the continuous equivalence of compact categories is
an equivalence relation.
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We are now ready to state the next theorem. We mention that it applies
in particular when V = H, for a pseudovariety of groups H, as the equality
H = H ∗ D holds, and H ⊇ A ⊇ LSl [Eil76, RS09].

Theorem 6.10. Let V be a monoidal pseudovariety of semigroups containing
LSl and such that V = V ∗ D. With respect to the continuous equivalence of
compact categories, the equivalence class of the compact category K(MV(X ))
is a flow equivalence invariant.

Proof : Thanks to Corollary 5.14, to show the flow invariance of the con-
tinuous equivalence class of K(MV(X )), it only remains to show that it is
invariant under symbol expansion.

Lemmas 6.4 and 6.7 guarantee the correctness of the choice of the co-
domains in the definition of both of the continuous functors F : K(MV(X ))→
K(MV(X ′)) and G : K(MV(X ′))→ K(MV(X )) given by the rules

F (e, u, f) = (E(e), E(u), E(f)) and G(e, u, f) = (C(e), C(u), C(f)).

We prove the theorem by showing that F and G are continuous pseudo-
inverses. Clearly, 1K(MV(X )) = G ◦ F .

In the next lines, we use the notation u′ for the pseudoword (i1(u)−1u) ·
t1(u)−1, where u is an infinite pseudoword. Note that the map u′ 7→ u is
continuous, by Lemma 4.4. Suppose that e is an idempotent ofMV(X ′) not
belonging to the image of E . Then, by Lemma 6.6, either the first letter of
e is �, or the last letter of e is α. Since every finite factor of e belongs to
L(X ′) and e = e · e, if follows that in fact both situations happen, entailing
e = � e′α. Note that e′ ∈ ImE according to Lemma 6.6 and the definition
of the pseudoword e′. Since C ◦ E is the identity, and e′ ∈ ImE , we have
e′ = E ◦ C(e′), and so

F (G(e)) = E(C(� e′α)) = E(C(e′) · α) = E(C(e′)) · E(α) = e′α � . (6.3)

If the idempotent e of MV(X ′) belongs to the image of E , define ηe =
(e, e, e); if e /∈ ImE , then we define ηe = (e, e�, e′α�). Note that in both cases
ηe is an isomorphism of K(MV(X ′)), in the second case the inverse being
(e′α�, e′αe, e).

Let (en)n∈N be a sequence of idempotents of MV(X ), converging to the
idempotent e. Since E(A+) is a locally testable set (cf. Remark 6.1), we

know that E(F̂V(A)) = E(A+) is clopen. Therefore, there is p ∈ N such that
either en ∈ ImE for all n ≥ p, or en /∈ ImE for all n ≥ p. Since lim(en)

′ = e′,
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by continuity of the operator u 7→ u′, we conclude that the mapping e 7→ ηe
is continuous, viewing ηe as an element of the space F̂V(B)× F̂V(B)× F̂V(B).

Let (e, u, f) be a morphism of KV(M(X )). The proof of the theorem is
now reduced to showing that Diagram 6.4 commutes.

e F ◦G(e)
ηeoo

f

(e,u,f)

OO

F ◦G(f)ηf
oo

F◦G(e,u,f)

OO

(6.4)

We have several cases to consider:

(i) Suppose first that e ∈ ImE . If b is the first letter of E−1(e), then the
first letter of E(b) is the first letter of u = eu. Hence, the first letter
of u is not �. We have two subcases to consider:
(a) If f ∈ ImE , then just as we reasoned for the first letter of u,

we see that the last letter of u = uf is not α. Since u ∈
MV(X ′), it follows from Lemma 6.6 that u ∈ ImE . Therefore,
as E ◦ C restricts to the identity on ImE , we have F ◦G(e, u, f) =
(E(C(e)), E(C(u)), E(C(f))) = (e, u, f). And since in this case
ηe = 1e and ηf = 1f , the commutativity of Diagram 6.4 is imme-
diate.

(b) If f /∈ ImE , then we have the factorization f = � f ′α, entailing
F (G(f)) = f ′α� (cf. (6.3)). The last letter of u = uf is α, while
first letter is not �, and so by Lemma 6.6 we have u = E(w)α

for some w ∈ F̂V(A). It follows that E ◦ C(u) = E ◦ C(E(w)α) =
E(w)α� = u� and F ◦ G(e, u, f) = (e, u�, f ′α�). Then, by the
definition of ηf when f /∈ ImE , we have

ηe ◦ (F ◦G)(e, u, f) = 1e ◦ (e, u�, f ′α�) = (e, uf�, f ′α�)
= (e, u, f) ◦ (f, f�, f ′α�) = (e, u, f) ◦ ηf ,

establishing that Diagram 6.4 is commutative in this case.
(ii) Suppose now that e /∈ ImE , so that e = � e′α. As u = eu ∈ MV(X ),

the first letter of u must be �. Recall also that F (G(e)) = e′α�
(cf. (6.3)). Again, we have two subcases to consider:
(a) If f ∈ ImE , then, as seen in case (i), the last letter of u = uf is

not α. It follows from Lemma 6.6 that u = � E(w) for some w ∈
F̂V(A). Then we have E(C(u)) = E(C(� E(w))) = E(C(E(w))) =
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E(w). On the other hand, � E(w) = u = eu = � e′αu, thus
E(w) = e′αu (cf. Corollary 4.3). We conclude that F ◦G(e, u, f) =
(e′α�, e′αu, f), thus

ηe ◦ (F ◦G)(e, u, f) = (e, e�, e′α�)(e′α�, e′αu, f)

= (e, e · (�e′α)︸ ︷︷ ︸
=e

· u, f) = (e, u, f) = (e, u, f) ◦ ηf ,

proving that Diagram 6.4 commutes in this case also.
(b) If f /∈ ImE , then we have the factorization f = � f ′α. Since the

first and last letters of u = euf are respectively � and α, applying
Lemma 6.6 we conclude that u = � E(w)α for some w ∈ F̂V(A).
Therefore, E ◦ C(u) = E(wα) = E(w)α�. On the other hand,
because � E(w)α = u = eu = � e′αu, we have E(w)α = e′αu by
Corollary 4.3, and so we get F ◦ G(e, u, f) = (e′α�, e′αu�, f ′α�).
Finally, we have

ηe ◦ (F ◦G)(e, u, f)

= (e, e�, e′α�)(e′α�, e′αu�, f ′α�) = (e, e(�e′α)u�, f ′α�)
= (e, u�, f ′α�) = (e, u(f�), f ′α�) = (e, u, f) ◦ (f, f�, f ′α�)
= (e, u, f) ◦ ηf .

With all cases having been exhausted, the proof is concluded.

Remark 6.11. By Lemmas 6.3 and 6.5, the functors F and G in the proof of
Theorem 6.10 restrict to graph homomorphisms K(ShaV(X ))→ K(ShaV(X ′))
and K(ShaV(X ′))→ K(ShaV(X )), respectively.

In the appendix section at the end of this paper we describe a labeled
poset considered in [Cos06], and check that it is encapsulated in K(MV(X )).
The invariance under flow equivalence of such labeled poset then follows
from Theorem 6.10. A direct proof of the conjugacy invariance was given in
[Cos06]. The description of the labeled poset and the proof of its invariance
are somewhat technical. The most interesting information associated to that
labeled poset is the following more palatable result, which we next easily
deduce directly from the proof of Theorem 6.10.

Corollary 6.12. Suppose that X is an irreducible subshift. Let V be a
monoidal pseudovariety of semigroups containing LSl and such that V =
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V ∗ D. The profinite groups GV(X ) and G̃V(X ) are flow equivalence invari-
ants.

Proof : By Corollary 5.15, to show the flow invariance of G̃V(X ) we only need

to check that G̃V(X ) and G̃V(X ′) are isomorphic profinite groups. By The-
orem 6.10, there is a continuous equivalence F : K(MV(X ))→ K(MV(X ′)).
In every category, the retraction order ≺ is preserved by every equivalence
functor, and so if e is an idempotent in J̃V(X ), then F (e) is an idempotent

in J̃V(X ′), by Proposition 5.3. Also, every continuous equivalence functor of
compact categories preserves the compact group of automorphisms in each
object, so that Ge and GF (e) are isomorphic compact groups, establishing the

flow invariance of G̃V(X ).
For what follows we use the specific functor F : K(MV(X ))→ K(MV(X ′))

given by F (e, u, f) = (E(e), E(u), E(f)), already met in the proof of The-
orem 6.10, where we saw that it is indeed a continuous equivalence. By
Lemma 6.3, if e is an idempotent in JV(X ), then F (e) is an idempotent in
JV(X ′), also because of the preservation of the retraction order by equiva-
lence functors. And as Ge will then be isomorphic to GF (e), we get the flow
invariance of GV(X ).

Remark 6.13. In the paper [AC16] a sort of geometric interpretation was

given to GS(X ) when X is minimal, in which case GS(X ) = G̃S(X ): there
it was shown that the profinite group GS(X ) is an inverse limit of profinite
completions of fundamental groups in an inverse system of the so called Rauzy
graphs of X . A geometric interpretation of this sort is yet to be obtained
in the general case in which X is irreducible but may be non-minimal. The
approach followed in [AC16] was based on exploring a profinite semigroupoid
(a semigroupoid is a “category possibly without identities”), there denoted

Σ̂∞(X ), and already considered in [AC09], which is determined by the infinite
paths in the free profinite semigroupoid generated by the inverse limit of
the Rauzy graphs of X . The proof for the geometric interpretation made
in [AC16] included the proof that if X is minimal then K(MS(X )) and Σ̂∞(X )
are isomorphic compact categories. But that no longer holds if X is not
minimal, as then Σ̂∞(X ) is not a category.

7. Relationship with the zeta function
The orbit of an element x of AZ is the set O(x) = {σn(x) | n ∈ Z}.

An element x of AZ is said to be a periodic point, if σn(x) = x for some
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positive integer n, equivalently, if O(x) is finite. A positive integer n such
that σn(x) = x is a period of x. The least period of a periodic point x is the
smallest positive integer n such that σn(x) = x, that is, the least period of
such x is the cardinal of O(x). A subshift X of AZ is said to be a periodic
subshift if X = O(x) for some periodic point x of AZ. Every periodic subshift
is both minimal and of finite type.

Given a subshift X of AZ, we denote by pX (n) the number of periodic
points with period n (i.e., with least period dividing n), and by qX (n) the
number of periodic points with least period n. The sequences (pX (n))n≥1 and
(qX (n))n≥1 determine each other [LM95, Exercise 6.3.1]. The zeta function
of X , defined by

ζX (t) = exp
(+∞∑
n=1

pX (n)

n
tn
)

encodes the sequence (pX (n))n≥1 enumerating the number of periods, and
so it also encodes the sequence (qX (n))n≥1 enumerating the number of least
periods. The zeta function is an important conjugacy invariant, namely of
sofic subshifts (cf. [LM95]). In this section, we show that the zeta function
of X is encoded in K(MV(X )) as an invariant of isomorphism of compact
categories (Corollary 7.10).

Two elements u and v in a semigroup S are said to be conjugate, and
we write u ∼c v, if there are elements x, y ∈ SI such that u = xy and
v = yx. For each u ∈ S, the elements v such that v ∼c u are the conjugates
of u. In the next few lines, we focus on S = A+, in which case ∼c is an
equivalence relation. Indeed, the words conjugate to u ∈ A+ are those of
the form v = p−1up, for some prefix p of u. A word v ∈ A+ is primitive if
v = wk implies that v = w. Every conjugate of a primitive word is primitive,
and the number of conjugates of a primitive word v is the length of v. The
latter fact may be seen as a consequence of one of the most basic properties
of combinatorics of words (cf. [Lot83, Proposition 1.3.2]): if x, y ∈ A∗ are
words such that xy = yx, then there is z ∈ A∗ such that x, y ∈ z∗.

Given a word v of length n of A+, we denote by v∞ the unique element x
of AZ such that x[0,n−1] = v and σn(x) = x. Likewise, we shall also use the

notation v+∞ for the right infinite sequence x ∈ AN such that x[kn,(k+1)n−1] = v

for every k ≥ 0, and v−∞ will be the left infinite sequence x ∈ AZ−
such that

x[kn,(k+1)n−1] = v for every k ≤ −1. When y ∈ AN and x ∈ AZ−
, we use the
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notation z = x.y for z ∈ AZ such that zi = xi and zj = yj for every i ∈ Z−
and j ∈ N. Hence, v∞ = v−∞.v+∞ if v is a word.

The notion of primitive word is useful for dealing with periodic points,
because of the following simple fact.

Fact 7.1. Let x be a periodic element of AZ. Then, there is a unique primitive
word v ∈ A+ such that x = v∞. Moreover, we have the equalityO(x) = {u∞ |
u ∼c v}, and the least period of x is the length of v.

We collect some more properties of primitive words.

Lemma 7.2. If v is a primitive word of A+, then the language v+ is locally
testable.

Proof : Let X = O(v∞). Then, denoting by [v]∼c
the ∼c-class of v, we have

the equality

v+ = (L(X ) \ A(<|v|)) \
⋃

u,w∈[v]∼c\{v}

(uA∗ ∪ A∗w).

Since X is of finite type, the language L(X ) is locally testable. As A(<|v|), uA∗

and A∗w are also locally testable, we conclude that v+ is locally testable.

Lemma 7.2 may be seen as an application of the main result of [Res74],
a more general result about very pure codes (see also [BPR10, Proposition
7.1.1]).

Lemma 7.3. If v is a primitive word of A+ with length n, then the inclusion
v∗ · v2 · A(<n) ∩ A∗ · v2 ⊆ v+ holds.

Proof : Let w ∈ v∗ ·v2 ·A(<n)∩A∗ ·v2. Then w = vkq for some k ≥ 2 and some
(possibly empty) word q of length at most n − 1, and v2 is a suffix of v2q.
We are reduced to showing that q = ε. Take the word p such that v2q = pv2.
Then we have |p| = |q| < |v|, and v = pv′ = v′′q for some v′, v′′ ∈ A+ such
that |v′| = |v′′|. As the following chain of equalities

p · v′′ · qv = p · (v′′q) · v = pv2 = v2q = p · v′ · vq

holds, comparing the extremities of the chain, we deduce from |v′′| = |v′| that
qv = vq. Therefore, by the aforemention property of commuting words, one
concludes that v, q ∈ w∗ for some word w. But as v is primitive and |q| < |v|,
one must have w = v and q = ε.
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We remark, en passant, that the word v2 is really relevant in Lemma 7.3.
More precisely, the inclusion v∗ · v ·A(<|v|)∩A∗ · v ⊆ v+ fails, for example, for
A = {a, b} and the primitive word v = bab, since (bab)ab = ba(bab) is not a
power of bab.

We turn now our attention to pseudowords. Let V be a pseudovariety of
semigroups containing LI. Suppose that u ∈ F̂V(A) \ A+. We denote by −→u
the unique element x = (xi)i∈N of AN such that x[0,n−1] is the prefix of length
n of u, whenever n is a positive integer. We say that −→u is the positive ray of
u. Symmetrically, the negative ray of u, denoted ←−u , is the unique element
x = (xi)i∈Z− of AZ−

such that x[−n,−1] is the suffix of length n of u, whenever

n is a positive integer. Let u and v be elements of F̂V(A) \ A+. Note that

if u = vw for some w ∈ F̂V(A)I , then −→u = −→v , but the converse is not true:
u = aωb and v = aωc are such that −→u = −→v , but neither u ≤R v nor v ≤R u.
In contrast, we have the following proposition.

Proposition 7.4 ([AC09, Lemma 6.6] and [AC12, Lemma 5.3]). Consider a
pseudovariety of semigroups V containing LSl. Let X be a minimal subshift.
For every u, v ∈ JV(X ), the equivalences

u R v ⇔ −→u = −→v and u L v ⇔←−u =←−v

hold, and therefore so does the equivalence

u H v ⇔←−u .−→u =←−v .−→v .

Moreover, the H-class of u ∈ JV(X ) is a maximal subgroup of JV(X ) if and
only if ←−u .−→u ∈ X .

In other words, Proposition 7.4 states in particular that if X is minimal
then the R-classes and the L-classes of JV(X ) are respectively parameterized
by the positive rays of X and the negative rays of X , provided V contains
LSl.

Corollary 7.5. Consider a pseudovariety of semigroups V containing LSl.
Let X be a minimal subshift. If X is not a periodic subshift, then JV(X )
contains 2ℵ0 many R-classes and 2ℵ0 many L-classes. If X is a periodic
subshift of least period n, then X contains precisely n R-classes, n L-classes,
n2 H-classes and n idempotents, and these idempotents are the pseudowords
of the form uω with u a conjugate word of v, where v is a primitive word of
length n such that X = O(v∞).
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Proof : It suffices to combine Proposition 7.4 with the following facts that we
recall. First, it is known that a nonperiodic minimal subshift has 2ℵ0 many
negative rays, and 2ℵ0 many positive rays (cf. [Lot02, Chapter 2]). Second,
if we assume that X is a periodic subshift of period n, with X = O(v∞) for
some primitive word v of length n, then it is clear that X has n positive rays,
namely those of the form u−∞ with u a conjugate of v. And whenever u and
w are conjugates of v, one has u−∞.w+∞ ∈ X if and only if u = w, since
periodic shifts are minimal and hence Proposition 7.4 applies. Finally, if u is
conjugate with the primitive word v, then uω is an idempotent in JV(X ), the
one in the unique maximal subgroup of JV(X ) whose elements have negative
ray u−∞ and positive ray u+∞.

For later reference, we state the next well known and easy to prove lemma.

Lemma 7.6. Suppose that xy is an idempotent in a semigroup S, and con-
sider the conjugate yx. Then (yx)2 is an idempotent of S which is J -
equivalent to xy.

Next is another well known fact (cf. [RS09, Propositions A.1.15 and 3.1.10])
that we shall use.

Lemma 7.7. In a compact semigroup, every two J -equivalent idempotents
are conjugate.

In what follows, Je denotes the J -class of e.

Proposition 7.8. Let V be a pseudovariety of semigroups containing LSl.
Let e be an idempotent of F̂V(A). The following conditions are equivalent:

(1) e = uω for some u ∈ A+;
(2) Je contains a finite number of H-classes;
(3) Je contains a finite number of R-classes;
(4) Je contains a finite number of L-classes;
(5) Je contains a finite number of idempotents.

In the following proof of Proposition 7.8 we use profinite powers uν, with ν
belonging to the profinite completion N̂ of N (details may be found in [AV06,
Section 2]). The power uω is an example of such powers, with ω = limn! in

N̂. What is most relevant for the proof is that, for every u ∈ A+, the power
uν belongs to the maximal subgroup of F̂V(A) containing uω if and only if

ν ∈ N̂ \ N.
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Proof of Proposition 7.8: The implication (1)⇒ (2) is encapsulated in Corol-
lary 7.5. The implications (2) ⇒ (3) and (2) ⇒ (4) follow immediately from
each R-class and each L-class being a union of H-classes.

(3) ⇒ (1): Suppose there is no u ∈ A+ such that e = uω. Let f be a
J -maximal idempotent such that e ≤J f . Such an idempotent f exists, as

mentioned in Remark 3.5. Let x, y ∈ F̂V(A) be such that e = xfy. Since
fy · xf is a conjugate of xf · fy = e, the pseudoword h = (fyxf)2 is an
idempotent in Je, by Lemma 7.6. Let f ′ be an idempotent in Jf . Then f = zt

and f ′ = tz for some z, t ∈ F̂V(A) (Lemma 7.7). Since e = xfzf ′ty, we know
that h′ = (f ′tyxfz)2 is an idempotent in Je (Lemma 7.6). By Proposition 7.4,

if f and f ′ are not R-equivalent then
−→
f 6=

−→
f . Since h = fh and h′ = f ′h′,

the inequality
−→
f 6=

−→
f in turn implies the inequality

−→
h 6=

−→
h ′. This shows

that if f and f ′ are not R-equivalent, then h and h′ are not R-equivalent,
and so Jh has at least as many R-classes as Jf has. By Corollary 7.5, if f
is not of the form vω, then Jf has 2ℵ0 R-classes, and so Je = Jh has at least
2ℵ0 R-classes.

From hereon, we suppose that f = vω for some word v ∈ A+, which we
may as well assume to be primitive. Since h = vωhvω, one has

h ∈ v2 · v+ · A∗ ∩ A∗ · v+ · v2, (7.1)

a fact which is the base of the reasoning that follows. Let n = |v|. For each
z ∈ An, consider the language Kz = v+ · z · A∗. Note that,

v2 · v+ · A∗ ∩ A∗ · v+ · v2 ⊆

[ ⋃
z∈An\{v}

Kz

]
∪ (v+ · v2 · A(<n) ∩ A∗ · v2). (7.2)

Since v is primitive, we know by Lemma 7.3 that the inclusion

v+ · v2 · A(<n) ∩ A∗ · v2 ⊆ v+ (7.3)

holds. Combining (7.1), (7.2) and (7.3), and noticing that the family (Kz)z
is finite, we conclude that

h ∈

[ ⋃
z∈An\{v}

Kz

]
∪ v+.

If h ∈ v+, then h is the unique idempotent vω in v+, thus e ∈ Jvω . By
Corollary 7.5, this contradicts our assumption that e is not of the form uω

with u ∈ A+.



THE KAROUBI ENVELOPE OF THE MIRAGE OF A SUBSHIFT 45

Therefore, we may take z ∈ An \ {v} such that h ∈ Kz. Take a sequence
(hk)k = (vrkzwk)k of words of Kz converging to h, with rk ≥ 1. By taking
subsequences, we may as well suppose that (vrk)k and (wk)k respectively

converge to some pseudowords vα and w of F̂V(A)I , with α ∈ N̂, thanks to

the compactness of F̂V(A) and N̂. Note that h = vα ·z ·w. If α ∈ N, then vα ·z
is the prefix of length (α+ 1) ·n of h. But since h = vωh, the prefix of length
(α+1) ·n of h is actually vα+1, and so we reached a contradiction with v 6= z.

To avoid the contradiction, we must have α ∈ N̂ \ N. Therefore, for each
positive integer k, we may consider the pseudoword gk = (vk · z · w · vα−k)2,
which is an idempotent J -equivalent to h (Lemma 7.6). If k < `, then the
prefix of length (k + 1)n of g` is vk+1, while the prefix of the same length of
gk is vkz 6= vk+1. Hence, we conclude that gk and g` are not R-equivalent
whenever k 6= `, thus showing that Je = Jh has at least ℵ0 R-classes.

(4) ⇒ (1): This implication holds with a proof entirely symmetric to the
proof of the implication (3) ⇒ (1).

At this point, we have established the equivalences (1) ⇔ (2) ⇔ (3) ⇔
(4). The implication (1)⇒ (5) is also encapsulated in Corollary 7.5. Finally,
the implication (5) ⇒ (1) follows from the well-know fact that, in a stable
semigroup, every R-class contained in a regular J -class contains at least one
idempotent.

Corollary 7.9. Let X be a subshift of AZ. Suppose that V is a pseudovariety
of semigroups containing LSl. Then qX (n) is the number of objects of the
category K(MV(X )) whose isomorphism class is a set of cardinal n.

Proof : Let P be the set of primitive words with length n belonging to L(X ).
Then the mapping u 7→ u∞ is a bijection between P and the set of periodic
points of X with least period n. Moreover, the mapping ψ : u∞ 7→ uω, with
u ∈ P , is injective, and for every u ∈ P the idempotent uω is an object of
K(MV(X )) whose isomorphism class is a set with n elements (cf. Proposi-
tion 7.4 and Corollary 7.5).

On the other hand, by Proposition 7.8, if e is an object of K(MV(X ))
whose isomorphism class has n elements, then e = uω for some primitive
word u ∈ L(X ), which, by Corollary 7.5, has length n. Therefore, the image
of the injective map ψ is the set of objects of the category K(MV(X )) whose
isomorphism class is a set of cardinal n.
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The following perspective about zeta functions is immediate from Corol-
lary 7.10.

Corollary 7.10. Let X and Y be subshifts such that K(MV(X )) and K(MV(Y))
are isomorphic, where V is a pseudovariety of semigroups containing LSl.
Then we have ζX = ζY .

Appendix A.A labeled topological poset
Here a topological poset T is a partially ordered set T such that T is a

topological space and the partial order ≤ of T is a closed subset of T × T .
A labeled topological poset is a topological poset T together with a labeling
map λ, of domain T , assigning to each element t of T its label, denoted λ(t).

Consider labeled topological posets T and R, respectively with partial or-
ders ≤T and ≤R, and labeling maps λT and λR. An isomorphism of labeled
topological posets between T and R is a homeomorphism ϕ : T → R that
preserves orders (that is, t1 ≤T t2 ⇔ ϕ(t1) ≤R ϕ(t2) for every t1, t2 ∈ T ) and
labels (that is, λR(ϕ(t)) = λT (t) for every t ∈ T ). Naturally, T and R are
said to be isomorphic labeled topological posets when such an isomorphism
exists.

An element s of a semigroup S is said to have local units in S if s = esf
for some idempotents e, f of S.

Suppose that s ∈ S has local units and let t ∈ S be J -equivalent to s.
Since s ∈ SsS, there are x, y ∈ S such that t = xty, whence t = xktyk

for every k ≥ 1. Since in a compact semigroup the closure of a monogenic
semigroup contains an idempotent [CHK83, Theorem 3.5], we conclude that
t also has local units. Therefore, in a compact semigroup, the set of local
units is a union of J -classes.

For each subset K of a semigroup S, we denote by LU(K) the set of
elements of K which have local units in S. Suppose that S is a compact
semigroup and that K is a closed subset of S which is factorial. We associate
to LU(K) a labeled topological poset, denoted by LU(K)†, as follows:

(1) The underlying space of LU(K)† is the quotient of the space LU(K)
by the restriction to LU(K) of the relation J . In other words, the
underlying space is the space of J -classes contained in LU(K).

(2) One has J1 ≤ J2 in LU(K)† if and only if u ≤J v for some (equiv-
alently, for all) elements u ∈ J1 and v ∈ J2, whenever J1 and J2 are
J -classes contained in LU(K).
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(3) The label of each regular J -class contained in K is the pair (ε,Γ(J))
such that ε = 1 if J is regular and ε = 0 if J is not regular, and Γ(J) is
the isomorphism class of the Schützenberger group of J , as a compact
group.

Proposition A.1. Let X ,Y be subshifts for which there is a continuous
equivalence functor F : K(MV(X )) → K(MV(Y)). Then the labeled topo-
logical posets LU(MV(X ))† and LU(MV(Y))† are isomorphic. If, moreover,
F is such that the inclusion F (K(ShaV(X ))) ⊆ K(ShaV(Y)) holds, and for
some continuous pseudo-inverse G of F , the inclusion G(K(ShaV(Y))) ⊆
K(ShaV(X )) also holds, then the labeled topologically posets LU(ShaV(X ))†

and LU(ShaV(Y))† are isomorphic.

The proof of Proposition A.1 will be later deduced as a consequence of
some intermediate technical results.

Remark A.2. A reader familiar with the paper [CS15] will note the simi-
larity of Proposition A.1 with the Theorem 6.3 from [CS15], which concerns
labeled posets, without topology, with the Schützenberger groups in the la-
bels not being viewed as topological groups. But the techniques of [CS15]
are not suitable for the topological ingredients which we add here. Indeed,
one crucial step of the approach made in [CS15] consists of the following: for
each element s with local units in a semigroup S, choose idempotents es, fs
such that s = essfs. There is no reason to expect continuous choices s 7→ es
and s 7→ fs.

Combining Proposition A.1 with Theorems 5.14 and 6.10, one immediately
gets the following consequence, which is the reason for this appendix.

Corollary A.3. Let V be a pseudovariety of semigroups containing LSl and
such that V = V ∗ D. The labeled topological posets LU(MV(X ))† and
LU(ShaV(X ))† are conjugacy invariants, and they are invariants of flow
equivalence if V is monoidal.

Remark A.4. Note that, when X is irreducible, the conjugacy/flow invari-

ance of G̃V(X ) and of GV(X ), stated in Corollaries 5.15 and 6.12, may also

be derived from Corollary A.3, because J̃(X ) is the minimum element of
LU(MV(X ))† and J(X ) is the minimum element of LU(ShaV(X ))†.

In what follows, when we refer to a “category”, we mean a “small category”.
The Green relations on the set of morphisms of a category C may be defined
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by adapting in a direct and natural manner the usual definitions of the Green
relations on a monoid. Alternatively, one may use a classical construction,
the semigroup Ccd, which is called the consolidation of C. The elements of
Ccd are the morphisms of C together with an extra element 0, which is as
zero of Ccd. For any morphisms ϕ, ψ of C, the product ϕψ in Ccd equals the
composition ϕ ◦ψ when d(ϕ) = r(ψ), and equals 0 when d(ϕ) 6= r(ψ). Then,
for each K ∈ {R,L,D,H,J ,≤R,≤L,≤J }, one has ϕ K ψ in C if and only
if ϕ K ψ in Ccd, for all morphisms ϕ, ψ of C.

Lemma A.5. In a compact category C, each relation R,L,D,H,J ,≤R,≤L
,≤J is a closed set of Mor(C) ×Mor(C). Moreover, the K-classes of mor-
phisms are closed sets, for each K ∈ {R,L,D,H,J }.

Proof : Consider a net (ϕi, ψi)i∈I of morphisms of C, converging to (ϕ, ψ),
such that ϕi ≤J ψi for all i ∈ I. Then we have factorizations ϕi = αi ◦ψi ◦βi
for some nets (αi)i∈I and (βi)i∈I of morphisms of C. As C is compact, we may
take a cluster point (α, β) of (αi, βi)i∈I . By continuity of the composition, we
get ϕ = α ◦ ψ ◦ β, thus ϕ ≤J ψ. This proves that ≤J is closed. The proofs
for the other relations are similar. Since each class of a closed equivalence
relation in a compact space is a closed set (cf. [RS09, Exercise 3.17]), we are
done.

As another expression of the link between C and Ccd, a morphism of C is
said to be regular when it is a regular element of Ccd, and a J -class of C is
regular when it is a regular J -class of Ccd.

Let H be an H-class of morphisms of the category C. Note that H ⊆
C(c, d) for some objects c, d. The Schützenberger group of H in C, denoted
Γ(H), is the quotient of the monoid

T (H) = {α ∈ C(c, c) | H ◦ α ⊆ H}
by the monoid congruence ≈H on T (H) given, whenever α, β ∈ T (H), by

α ≈H β ⇔ [∀ϕ ∈ H : ϕ ◦ α = ϕ ◦ α],

or, in what is easily seen to be an equivalent formulation,

α ≈H β ⇔ [∃ϕ ∈ H : ϕ ◦ α = ϕ ◦ α].

The useful equality T (H) = {α ∈ C(c, c) | H ◦ α ∩ H 6= ∅} is also easy to
check. The monoid quotient T (H)/≈H is indeed a group; clearly, it coincides
with the classical Schützenberger group in Ccd of H, if we view H as an H-
class of Ccd. Moreover, if C is a compact category, then T (H) is a closed
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submonoid of C(c, c) and ≈H is a closed relation, by the same arguments
used in the proof of Lemma A.5, and then the quotient Γ(H) = T (H)/≈H
becomes a compact group (cf. [CHK83, Theorem 1.54]). It is this compact
group that will be for us the Schützenberger group of H in C, when C is a
compact category.

Remark A.6. If H contains some idempotent (which implies c = d), then
Γ(H) is isomorphic to H, via the mapping ϕ ∈ H 7→ [ϕ]≈H

∈ Γ(H), and this
mapping is continuous if C is a compact category.

Lemma A.7. If C is a profinite category, then Γ(H) is a profinite group.

Proof : Let C = lim←−i∈I Ci be an inverse limit of finite categories. Let ϕ, α, β
be morphisms of C with ϕ ◦ α H ϕ ◦ β H ϕ and ϕ ◦ α 6= ϕ ◦ β. For ψ ∈ C,
denote by ψi its projection on Ci, where i ∈ I. Let H be the H-class of ϕ
and Hi be the H-class of ϕi. Take i0 ∈ I such that ϕi0 ◦ αi0 6= ϕi0 ◦ βi0.
We have a well defined continuous homomorphism Γ(H)→ Γ(Hi0) given by
the assignment [γ]≈H

7→ [γi]≈Hi
, and we also know that [αi0]≈Hi0

6= [βi0]≈Hi0
.

Therefore Γ(H) is profinite: in fact Γ(H) embeds as a closed subgroup of the
natural inverse limit lim←−i∈I Γ(Hi).

We may use for compact semigroups some of the notation employed for
compact categories. For example, Γ(H) is the Schützenberger group (as a
compact group) of an H-class H of a compact semigroup S. In fact, when S
is a compact semigroup, we may view SI as compact category with a unique
object and the elements of SI as the morphisms.

For any compact category C, the compact groups Γ(H) and Γ(K) are
isomorphic when H and K are H-classes of morphisms of C contained in the
same J -class (see the proof of [CHK83, Theorem 3.61]). Hence, when in a
compact category C, we may associate to each J -class J its Schützenberger
group Γ(J), which is (the isomorphism class of) the Schützenberger group of
any of the H-classes contained in J . We next consider the labeled topological
poset C† defined by:

(1) the underlying space is the quotient space Obj(C)/J ;
(2) one has J1 ≤ J2 in C† if and only if ϕ ≤J ψ for some (equivalently,

for all) morphisms ϕ ∈ J1 and ψ ∈ J2;
(3) the label of each element J of C† is the pair (ε,Γ(J)) such that ε = 1

if J is regular and ε = 0 if J is not regular, where Γ(J) is taken as an
isomorphism class of compact groups.
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Let F : C → D be a continuous functor between compact categories. We
define a map F † : C† 7→ D† by letting F †([ϕ]J ) = [F (ϕ)]J . This map is well
defined, indeed it is immediate that ϕ ≤J ψ in C implies F (ϕ) ≤J F (ψ)
in D. Note also that F † is continuous, because it is the map Obj(C)/J →
Obj(D)/J naturally induced by the continuous map F : Obj(C)→ Obj(D),
and we are dealing with compact quotients of compact spaces (cf. [Wil70,
Theorems 9.2 and 9.4]).

Proposition A.8. Let C,D,E be compact categories. The following hold:

(1) if the continuous functors F,G : C → D are isomorphic, then F † =
G†;

(2) if F is the identity functor C → C, then F † is the identity C† → C†;
(3) for any functors F : C → D and G : D → E, we have G† ◦ F † =

(G ◦ F )†;
(4) if F : C → D is a continuous equivalence, then F † preserves labels.

Proof : If η : F ⇒ G is a natural isomorphism, then, for every ϕ ∈ C(c, d),
one has G(ϕ) = ηd◦F (ϕ)◦η−1

c and F (ϕ) = η−1
d ◦G(ϕ)◦ηc, thus F (ϕ) J G(ϕ).

This establishes the first item. Items 2 and 3 are immediate.
Concerning the last item, it is immediate that if ϕ is regular then F (ϕ) is

regular, where F : C → D is a functor. If F is an equivalence with pseudo-
inverse G, then G(F (ϕ)) J ϕ, and so if F (ϕ) is regular then so is ϕ. Finally,
for every morphism ϕ of C, if Hϕ and HF (ϕ) are respectively the H-classes
of ϕ and F (ϕ), then one clearly has F (T (Hϕ)) ⊆ T (HF (ϕ)), with equality
if F is an equivalence. This induces a well defined map Γ(Hϕ) → Γ(HF (ϕ))
assigning each class [α]≈Hϕ

to [F (α)]≈HF (ϕ)
, such map being a bijection if F

is an equivalence. This map is continuous, as we are dealing with compact
quotients of compact spaces. Therefore, the Schützenberger groups of ϕ and
F (ϕ) are indeed isomorphic compact groups.

Corollary A.9. If C and D are equivalent compact categories, then C† and
D† are isomorphic labeled topological posets.

Next we show the last piece needed for the proof of Proposition A.1.

Proposition A.10. The mapping PX : K(MV(X ))† → LU(MV(X ))† defined
by PX ([(e, u, f)]J ) = [u]J is an isomorphism of labeled topological posets, for
every subshift X of AZ.

Proof : It is trivial that PX is surjective. Let us check that it satisfies the
remaining conditions for being an isomorphism of posets. Take morphisms
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(e, u, f) and (e′, v, f ′) ofMV(X ). Suppose u = xvy for some x, y ∈ F̂V(A). As
u = euf and v = e′vf ′, we may assume that x = exe′ and y = f ′yf , yielding
(e, u, f) = (e, x, e′)(e′, v, f ′)(f ′, y, f) and (e, u, f) ≤J (e′, v, f ′). Conversely, if
(e, u, f) = (e, x, e′)(e′, v, f ′)(f ′, y, f) then u = xvy. This shows that PX is a
well defined isomorphism of posets.

Because the map (e, u, f) 7→ u is continuous, and since we are dealing with
compact spaces and their compact quotients, the map PX is continuous.

Fix a morphism (e, u, f) of K(MV(X )). Suppose that u is regular. Then

u = uxu for some x ∈ F̂V(A). Since u = uf = eu, we may suppose that
x = fxe, thus (e, u, f) = (e, u, f)(f, x, e)(e, u, f) and so (e, u, f) is regular.
Conversely, if (e, u, f) is regular then it is immediate that u is regular.

It remains to show that the Schützenberger groups of (e, u, f) and u are
isomorphic compact groups. Let H be the H-class of (e, u, f) in K(MV(X )),

and let K be the H-class of u in F̂V(A). Suppose that (f, x, f) and (f, y, f)
are elements of T (H) such that (f, x, f) ≈H (f, y, f). This means that we
have (e, u, f)(f, x, f) = (e, u, f)(f, y, f) ∈ H. Hence ux = uy = zu for
some z, and, according to what we already saw in the first paragraph of
the proof, we also know that ux and u are J -equivalent. Since F̂V(A) is a
stable semigroup, we conclude that u H ux, and, similarly, u H uy, thus
x ≈K y. Therefore, we have a well defined map ϕ : Γ(H) → Γ(K) given
by ϕ([(f, x, f)]≈H

) = [x]≈K
. This map is continuous, again because we are

dealing with compact spaces and their compact quotients. Moreover, ϕ is
clearly a homomorphism.

Suppose that x ∈ T (K). Then u = uf yields f ∈ T (K) and fxf ∈
T (K), thus [x]≈K

= [fxf ]≈K
as f = f 2 and Γ(K) is a group. Consider the

equality (e, u, f)(f, fxf, f) = (e, ux, f), entailing (e, u, f) ≤R (e, ux, f) in
K(MV(X )). Since x is an arbitrary element of T (K), we know that ux may
be any element of K, and so, by the symmetry of the H-relation, we conclude
that (e, u, f) H (e, ux, f). Therefore, (e, u, f)(f, fxf, f) = (e, ux, f) implies
that (f, fxf, f) ∈ T (H). We deduce that [x]≈K

= ϕ([(f, fxf, f)]≈H
), and so

ϕ is onto.
If (f, x, f) is an element of T (H) such that [x]≈K

is the identity of Γ(H),
then we have ux = u, implying (e, u, f)(f, x, f) = (e, u, f). The latter equal-
ity entails that [(f, x, f)]≈H

is the identity of Γ(H). This shows that ϕ is a
continuous isomorphism of compact groups, concluding the proof.
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Proof of Proposition A.1: According to Propositions A.10 and A.8, the map-
ping PY ◦F † ◦P−1

X is an isomorphism between the labeled topological posets
LU(MV(X ))† and LU(MV(Y))†, which restricts to an isomorphism between
LU(ShaV(X ))† and LU(ShaV(Y))†.
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