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1. Introduction
In the paper [13], preordered groups have been studied from a categorical

point of view. On one hand, using the analogies of topological nature be-
tween the categories Ord of preordered sets and monotone maps and Top of
topological spaces and continuous maps, one can describe limits and colimits
in the category OrdGrp of preordered groups using the properties of the
forgetful functors to Ord and to the category Grp of groups. On the other
hand, the main difference between topological groups and preordered ones is
that the former are internal groups in Top while the latter aren’t, since it
is not required that the inversion map is monotone. For these reasons, the
algebraic properties of OrdGrp are not so good as the ones of topological
groups (for instance, the Split Short Five Lemma does not hold in OrdGrp).
In order to understand better the algebraic behaviour of OrdGrp, the strat-
egy used in [13] was mainly based on the well known fact that a compatible
preorder on a group is completely determined by the submonoid of positive
elements. Using this observation, it was shown in [13] that OrdGrp shares
many categorical-algebraic properties with the category Mon of monoids.
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In particular, in both categories it is possible to identify intrinsically a full
subcategory, of so-called protomodular objects [23], which has basically the
same algebraic properties of Grp. In the case of monoids, this subcategory
is precisely Grp, while in OrdGrp it is the subcategory whose objects are
the groups equipped with a compatible preorder which is symmetric, i.e. a
congruence. These are precisely the internal groups in Ord.

Another approach is possible. Indeed, it is known [20] that preordered sets
can be seen as categories enriched in the lattice 2 = {⊥,>}, with ⊥ < >.
Following this point of view, preordered groups can be seen as those monoid
objects in the monoidal category 2-Cat (of categories enriched in 2) that are
groups. In [20] several other examples of categories enriched in a quantale
(i.e. in a complete lattice equipped with a tensor product which is distribu-
tive w.r.t. arbitrary joins) are considered, allowing to describe in this way
important mathematical structures, like metric spaces.

The aim of the present paper is to follow this alternative approach, based
on V -categories, where V is a quantale satisfying suitable properties, to study
in a common framework structures like preordered groups and metric groups.
We consider what we call V -groups, namely monoid objects in the monoidal
category V -Cat, of V -categories and V -functors, that are groups. The ad-
vantage of working in this setting is twofold. On one hand it allows to extend
to a wide class of situations the results obtained for preordered groups in [13].
Actually, some of these results appear even more interesting in some of the
new examples. For instance, the “good” objects in OrdGrp are those whose
preorder is symmetric, and this somehow destroys the ordered structure of
the object (in particular, if we restrict our attention to partially ordered
groups, the only good ones are the discrete groups), while requiring symme-
try for metric groups is much more classical and natural. On the other hand,
the proofs we get following the V -categorical approach are significantly sim-
pler than the ones we had in [13] for preordered groups, using the positive
cone.

After recalling the necessary background on V -categories, we obtain rele-
vant information on limits, colimits and factorization systems in the category
V -Grp of V -groups using the properties of the forgetful functors into V -Cat
and Grp, as well as some topological properties of V -groups. Then we will
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concentrate our attention on the algebraic properties of V -groups, observing
that they are well-behaved especially when V is a frame, which means that
the tensor product defined on V coincides with the meet operation. Under
this assumption, we show that the protomodular objects are precisely the
symmetric V -groups, and hence the full subcategory of V -Grp whose ob-
jects are the symmetric V -groups is protomodular. Furthermore, observing
that symmetric V -groups are precisely the internal groups in the cartesian
closed category V -Cat, we show that the full subcategory V -Grpsym of sym-
metric V -groups has representable actions (in the sense of [4]) and is locally
algebraically cartesian closed (in the sense of [14]). Finally, we study split
extensions in V -Grp, showing that all the compatible V -category structures
on the semidirect product of two V -groups are intermediate between the one
given by the tensor and a lexicographic one, a generalization of the lexico-
graphic order on a product.

2. V -categories
Let V be a commutative and unital quantale, that is, V is a complete

lattice (with top element > and bottom ⊥) equipped with a symmetric and
associative tensor product ⊗, with unit k, which preserves joins, that is,

v ⊗
∨
i

ui =
∨
i

(v ⊗ ui), and v ⊗⊥ = ⊥

for every v ∈ V , and family (ui)i∈I in V . Therefore it has a right adjoint,
hom; that is, for all u ∈ V , ( )⊗ u : V → V is left adjoint to hom: V → V ,
or, equivalently, for every v, w ∈ V ,

v ⊗ u ≤ w ⇐⇒ v ≤ hom(u,w).

Moreover, we also assume that arbitrary joins distribute over finite meets,
that is, as a lattice, V is a frame.

Example 2.1. Any frame V defines a commutative and unital quantale,
with ⊗ = ∧ and k = >. This type of quantales will be used often, and we
will refer to them saying that the quantale V is a frame. (It should not be
confused with our additional assumption that V , as a lattice, is a frame.)

In order to define a V -category, we will make use of the bicategory V -Rel,
whose objects are sets and whose morphisms r : X−→7 Y are V -relations, i.e.
maps X × Y → V ; the composition of V -relations r : X−→7 Y , s : Y−→7 Z is
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a V -relation X−→7 Z defined by relational composition:

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z).

The identity morphism X−→7 X is given by

1X(x, x′) =

{
k if x = x′,
⊥ elsewhere.

In general every map f : X → Y can be considered as the V -relation

f(x, y) =

{
k if y = f(x),
⊥ elsewhere,

so there is a (non-full, bijective on objects) inclusion Set→ V -Rel.
Given r, r′ : X−→7 Y , r ≤ r′ if, for all x ∈ X, y ∈ Y , r(x, y) ≤ r′(x, y) in V .
A V -category is a pair (X, a), where X is a set and a : X−→7 X is a V -

relation such that

1X ≤ a and a · a ≤ a;

in pointwise notation this means that:

(R): (∀x ∈ X) k ≤ a(x, x),
(T): (∀x, x′, x′′ ∈ X) a(x, x′)⊗ a(x′, x′′) ≤ a(x, x′′);

Property (R) is usually called reflexivity while (T) is transitivity ; they are
also called, respectively, unit and associativity axioms. Pairs (X, a) satisfying
(R) are called V -graphs.

Given two V -categories (or V -graphs) (X, a) and (Y, b), a map f : X → Y
is a V -functor f : (X, a) → (Y, b) if f · a ≤ b · f ; in pointwise notation this
means

(∀x, x′ ∈ X) a(x, x′) ≤ b(f(x), f(x′)).

It is easy to check that V -categories and V -functors define a category, denoted
by V -Cat; the category of V -graphs and V -functors is denoted by V -Gph.

Remark 2.2. For each V -relation r : X−→7 Y we can define the opposite re-
lation r◦ : Y−→7 X by r◦(y, x) = r(x, y). Given a V -category (X, a), (X, a◦) is
also a V -category, usually called the dual of (X, a). Based on the lemma be-
low, we can conclude that this assignment defines a functor ( )op : V -Cat→
V -Cat, with (X, a)op = (X, a◦) and f op = f .

When a = a◦ we call the V -category (X, a) symmetric. The full subcate-
gory of V -Cat of symmetric V -categories will be denoted by V -Catsym.
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The proof of the following Lemma is straightforward, and can be found in
[11].

Lemma 2.3. (1) If we consider the map f : X → Y as a V -relation, we
have that

f · f ◦ ≤ 1Y and 1X ≤ f ◦ · f ;

that is, f ◦ is the right adjoint of f .
(2) For V -categories (X, a), (Y, b) and a map f : X → Y , the following

conditions are equivalent to f : (X, a)→ (Y, b) being a V -functor:
(a) a ≤ f ◦ · b · f ;
(b) f · a · f ◦ ≤ b;
(c) f · a◦ ≤ b◦ · f .

Consider the following commutative diagram

V -Catsym
I2 //

&&

V -Cat
I1 //

��

V -Gph

yy

Set,

where the horizontal functors are embeddings and the vertical ones are for-
getful functors.

Proposition 2.4. (1) The functor I1 is a right adjoint, that is, V-Cat is
a reflective subcategory of V-Gph.

(2) The functor I2 has both a left and a right adjoint, that is, V -Catsym

is both a reflective and a coreflective subcategory of V-Cat.
(3) The forgetful functors V -Gph→ Set, V -Cat→ Set, and V -Catsym →

Set are topological.

Proof : (1) The left adjoint is built by iteration of the pointed endofunctor
V -Gph→ V -Gph that assigns to each (X, a) the V -graph (X, a ·a) (see [11,
Theorem 4.4] for details).

(2) The symmetrization of a V -category (X, a) is defined by â(x, x′) =
a(x, x′) ∧ a(x′, x), for every x, x′ ∈ X. It is easily checked that this defines
the right adjoint to I2. The left adjoint of I2 is built in two steps: first
define ã(x, x′) = a(x, x′)∨ a(x′, x), and then ǎ is obtained by iteration of the
pointed endofunctor V -Gph→ V -Gph of (1), applied to ã. It is clear that
the symmetry of ǎ follows from the symmetry of ã.
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To show (3), using (1) and (2) it is enough to prove that V -Gph→ Set is
topological (see [1]). This follows the arguments of [11, Theorem 4.5]. Given
fi : X → (Yi, bi), the largest possible V -graph structure on X that makes all
the fi V -functors is

a :=
∧
i∈I

f ◦i · b · fi,

and it is easy to check that a verifies (R).

The monoidal structure of V induces a monoidal structure on V -Cat; in-
deed, for V -categories (X, a) and (Y, b), we define (X, a) ⊗ (Y, b) by (X ×
Y, a⊗ b), where (a⊗ b)((x, y), (x′, y′)) = a(x, x′)⊗ b(y, y′), with f⊗g = f×g.
The unit is the V -category I = ({∗}, κ), where κ(∗, ∗) = k.

Theorem 2.5. V -Cat is a monoidal closed category.

Proof : It is straightforward to prove that ( ) ⊗ (X, a) : V -Cat → V -Cat
is left adjoint to [(X, a), ( )] : V -Cat → V -Cat, where [(X, a), (Y, b)] =
({f : (X, a)→ (Y, b) V -functor}, [ , ]), with

[f, g] =
∧
x∈X

b(f(x), g(x)),

for every pair of V -functors f, g : (X, a)→ (Y, b). (See [20] for details.)

Remark 2.6. It is clear that, with the same construction, V -Gph and
V -Catsym are also monoidal closed categories.

Remark 2.7. As shown in [17, Section 3.5], every lax homomorphism ϕ : V →
W of quantales, so that ϕ is order preserving, ϕ(u)⊗ ϕ(v) ≤ ϕ(u⊗ v), and
l ≤ ϕ(k), where u, v ∈ V and k, l are the units of V and W respectively,
induces a functor Bϕ : V -Cat → W -Cat, with Bϕ(X, a) = (X,ϕ · a), and
Bϕ(f) = f . Moreover, any adjunction ψ a ϕ of lax homomorphisms of
quantales induces an adjunction Bψ a Bϕ.

In particular, for every non-degenerate quantale V , we may define two
lax homomorphisms ι, τ : 2 → V , with ι(⊥) = τ(⊥) = ⊥, ι(>) = k, and
τ(>) = > (which obviously coincide when the quantale is integral, that is
k = >); ι has always a right adjoint, the so called pessimist’s map p : V → 2,
with p(v) = > ⇐⇒ v ≥ k. The optimist’s map o : V → 2, defined by
o(v) = > ⇐⇒ v 6= ⊥, is a lax homomorphism if, and only if, for any
u, v ∈ V ,

u⊗ v = ⊥ =⇒ u = ⊥ or v = ⊥.
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We call these quantales optimistic. For optimistic quantales the optimist’s
map o is left adjoint to τ . Therefore, when V is integral and optimistic, we
have a chain of adjunctions

2 ι // V

o
ww

p

gg ⊥
⊥

.

Examples 2.8. (1) If V = 2 = ({⊥,>},≤) with ⊗ = ∧, then 2-Cat is
the category Ord of preordered sets and monotone maps.

(2) When V = P+ = ([0,∞],≥) is the complete real half-line as studied
by Lawvere in [20], with ⊗ = +, and then hom(u, v) = v 	 u =
max(v − u, 0), P+-Cat is the category Met of Lawvere (generalized)
metric spaces and non-expansive maps. Since P+ is both integral and
optimistic, thanks to Remark 2.7 Ord embeds in Met both reflectively
and coreflectively:

Ord Bι // Met

Bo
tt

Bp

jj ⊥
⊥

.

If we take instead Pmax, so that in ([0,∞],≥) we take ⊗ = ∧
(note that this is max for the usual order in the real numbers), then
Pmax-Cat is the category UMet of ultrametric spaces and non-expansive
maps. The identity Pmax → P+ is a lax homomorphism, inducing an
embedding UMet→Met.

(3) The unit interval [0, 1], with its usual order, is a complete lattice.
It can be equipped with different tensor products, making ([0, 1],≤)
a quantale. Here we mention the most relevant ones: the minimum
∧, the multiplication ×, and the  Lukasiewicz tensor ⊕, defined by
u ⊕ v = max(u + v − 1, 0), the three of them with unit 1. We will
denote the corresponding quantales respectively by [0, 1]∧, [0, 1]×, and
[0, 1]⊕.

The bijection ϕ : [0, 1]→ [0,∞], with u 7→ − lnu, defines an isomor-
phism of quantales [0, 1]× → P+, and therefore the category [0, 1]×-Cat
is isomorphic to P+-Cat, i.e., the category Met of generalized metric
spaces.
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The same map ϕ induces an isomorphism of quantales [0, 1]∧ →
Pmax, henceforth [0, 1]∧-Cat is isomorphic to the category UMet of
ultrametric spaces.

The category [0, 1]⊕-Cat is worth to be mentioned: it is isomorphic
to the category Met1 of (generalized) metric spaces bounded by 1 and
non-expansive maps. Indeed, ψ : [0, 1]⊕ → P+, with ψ(u) = 1 − u
for every u ∈ [0, 1], is a lax homomorphism of quantales, defining
a functor Bψ : [0, 1]⊕-Cat → Met. It is easily checked that it is
an embedding, with image Met1. The isomorphism [0, 1]⊕-Cat →
Met1 assigns to each [0, 1]⊕-category (X, a) the metric space (X, a),
with a(x, x′) = 1− a(x, x′) for every x, x′ ∈ X, and keeps morphisms
unchanged. (For more information on tensor products on ([0, 1],≤)
see for instance [12] and the references there.)

(4) When V is the quantale ∆ of distribution functions, that is,

∆ = {ϕ : [0,∞]→ [0, 1] |ϕ is monotone and ϕ(x) =
∨
y<x

ϕ(y)}

with the pointwise order and ⊗ given by

(ϕ⊗ ψ)(x) =
∨

y+z≤x
ϕ(y)× ψ(z),

then ∆-Cat is the category ProbMet of probabilistic metric spaces
and non-expansive maps, as studied in [16] (see also [12]).

We note that, as observed in [16, Section 3.3], the natural embedding
P+ → ∆ has both a left and a right adjoint, and so we have the
following chain of adjunctions

Ord Bι // Met

Bo
tt

Bp

jj ⊥
⊥ // ProbMet

tt
jj ⊥

⊥
; (2.i)

hence, Met embeds both reflectively and coreflectively in ProbMet.
If we take ∆∧, that is, ∆ together with the tensor product ∧ defined

pointwise, then ∆∧-Cat is the category ProbUMet of probabilistic ul-
trametric spaces and non-expansive maps, where UMet embeds both
reflectively and coreflectively.

For more examples and information on V -categories we refer to [15, Ap-
pendix], and [12, 16].
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3. Basic results on V -groups
A V -category (X, a) equipped with a group structure (X,+: X × X →

X, i : X → X, 0: I → X) such that +: (X, a) ⊗ (X, a) → (X, a) is a V -
functor is said to be a V -group. Note that 0 : (I, κ) → (X, a), as every map
from (I, κ) to (X, a), is a V -functor, and that we do not impose that the
inversion (X, a) → (X, a) is a V -functor. We will use the additive nota-
tion although our groups need not be abelian. Given two V -groups (X, a),
(Y, b), a V -homomorphism f : (X, a)→ (Y, b) is a V -functor which is a group
homomorphism. We will denote by V -Grp the category of V -groups and V -
homomorphisms. We observe that a V -group is precisely a monoid object in
the monoidal category (V -Cat,⊗) which is a group.

Proposition 3.1. Let (X,+) be a group and (X, a) be a V -graph. The
following conditions are equivalent:

(i) +: (X, a)⊗ (X, a)→ (X, a) is a V -functor;
(ii) (X, a) is a V -category and a is invariant by shifting, that is,

(∀x, x′, x′′ ∈ X) a(x′, x′′) = a(x′ + x, x′′ + x). (3.i)

Proof : If +: (X, a)⊗ (X, a)→ (X, a) is a V -functor, then, for every x ∈ X,
the maps x+ ( ): (X, a)→ (X, a) and ( ) + x : (X, a)→ (X, a), defined by

X
∼= // I ⊗X x⊗idX// X ⊗X + // X and X

∼= // X ⊗ I idX⊗x// X ⊗X + // X ,

are V -functors; hence,

a(x′, x′′) ≤ a(x′ + x, x′′ + x) ≤ a(x′ + x− x, x′′ + x− x) = a(x′, x′′);

moreover,

a(x, x′)⊗a(x′, x′′) = a(x, x′)⊗a(0,−x′+x′′) ≤ a(x+0, x′−x′+x′′) = a(x, x′′).

Conversely, if (3.i) holds, then, for every x1, x2, x
′
1, x
′
2 ∈ X,

a(x1, x2)⊗ a(x′1, x
′
2) = a(0,−x1 + x2)⊗ a(−x1 + x2,−x1 + x2 + x′2 − x′1)
≤ a(0,−x1 + x2 + x′2 − x′1) = a(x1 + x′1, x2 + x′2).

Corollary 3.2. Any lax homomorphism ϕ : V → W of quantales induces a
functor Gϕ : V -Grp → W -Grp. Moreover, any adjunction ψ a ϕ induces
and adjunction Gψ a Gϕ.
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Proof : It follows from Proposition 3.1, since with a also ϕ · a is invariant by
shifting.

Corollary 3.3. If (X, a,+) and (Y, b,+) are V -groups and f : X → Y is a
homomorphism, then f is a V -functor if, and only if,

(∀x ∈ X) a(0, x) ≤ b(0, f(x)).

Proof : For each x, x′ ∈ X,

a(x, x′) = a(0, x′ − x) ≤ b(0, f(x′ − x)) = b(0, f(x′)− f(x)) = b(f(x), f(x′)).

Remark 3.4. (1) If (X, a) is a V -group, then (X, a◦) is also a V -group.
From (3.i) it follows that the inversion is an isomorphism of V -groups
i : (X, a)→ (X, a◦), since

a(x, y) = a(−x+ x− y,−x+ y − y) = a(−y,−x) = a◦(−x,−y).

(We thank Dirk Hofmann for this observation.) Moreover, the inver-
sion i : (X, a) → (X, a) is a V -functor if, and only if, the V -category
(X, a) is symmetric, that is, if (X, a,+) and (X, a◦,+) coincide. A V -
group (X, a) with i a V -functor will be called a symmetric V -group.
When ⊗ = ∧, a symmetric V -group is exactly an internal group in
V -Cat. We will denote by V -Grpsym the full subcategory of V-Grp
consisting of the symmetric V -groups.

(2) When ⊗ = ∧, any finite group (X, a,+) is a symmetric V -category.
Indeed, if x 6= 0, then −x = nx for some n, and so

a(0,−x) = a(0, nx) ≥ a(0, x)⊗ · · · ⊗ a(0, x) = a(0, x).

Proposition 3.5. V -Grpsym is both a reflective and a coreflective subcate-
gory of V-Grp.

Proof : Using Proposition 3.1, it is enough to show that, for every V -group
(X, a,+), â and ǎ, defined in the proof of Proposition 2.4, are invariant by
shifting, which follows from the fact that invariance by shifting is preserved
by meets, joins, and composition of V -relations.

Examples 3.6. For each quantale V described in Examples 2.8, we can now
consider the corresponding category V -Grp. Namely,

(1) when V = 2, 2-Grp is the category OrdGrp of preordered groups
and monotone group homomorphisms studied in [13];
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(2) P+-Grp is the category MetGrp whose objects are the (generalized)
metric groups, i.e. the Lawvere generalized metric spaces with a group
structure which is a non-expansive map, and whose arrows are the
non-expansive group homomorphisms;

(3) Pmax-Grp is the category of (generalized) ultrametric groups and non-
expansive group homomorphisms;

(4) when V = ∆ (resp. V = ∆∧), V -Grp is the category ProbMetGrp
of probabilistic metric (resp. ultrametric) groups.

Thanks to Corollary 3.2, when V is an integral and optimistic quantale,
OrdGrp embeds both reflectively and coreflectively in V -Grp:

OrdGrp Gι // V -Grp

Go
rr

Gp

ll ⊥
⊥

;

and, moreover, all the embeddings of categories of V -categories we mentioned
in Examples 2.8 restrict to embeddings of V-Grp. Namely, (2.i) gives rise to
the following chain of adjunctions

OrdGrp Gι // MetGrp

Go
rr

Gp

ll ⊥
⊥ // ProbMetGrp

rr

ll ⊥
⊥

.

Proposition 3.7. If (X, a,+) is a V -group, Y is a group, and f : X → Y
is a surjective group homomorphism, then b := f · a · f ◦ makes (Y, b,+) a
V -group and f a V -homomorphism.

Proof : Using Proposition 3.1, it is enough to show that (Y, b) is a V -category
and b satisfies (3.i). Note that, for every y1, y2 ∈ Y ,

b(y1, y2) =
∨

x,x′∈X

f ◦(y1, x)⊗ a(x, x′)⊗ f(x′, y2) =
∨

f(xi)=yi

a(x1, x2).

For each y, y1, y2, y3 ∈ Y ,

• b(y, y) =
∨

f(x)=f(x′)=y

a(x, x′) ≥
∨

f(x)=y

a(x, x) ≥ k;
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• if f(x) = y, then

b(y1, y2) =
∨

f(xi)=yi

a(x1, x2) =
∨

f(xi)=yi

a(x1 + x, x2 + x)

=
∨

f(x′i)=yi+y

a(x′1, x
′
2) = b(y1 + y, y2 + y);

• and

b(y1, y2)⊗ b(y2, y3) =
∨

f(xi)=yi

a(x1, x2)⊗
∨

f(x′i)=yi

a(x′2, x
′
3)

=
∨

f(xi)=yi=f(x′i)

a(x1, x2)⊗ a(x′2, x
′
3)

=
∨

f(xi)=yi=f(x′i)

a(x1 − x2 + x′2, x
′
2)⊗ a(x′2, x

′
3)

≤
∨

f(xi)=yi=f(x′i)

a(x1 − x2 + x′2, x
′
3) = b(y1, y3).

We point out that the structure b defined above is the least V -category
structure making f a V -functor. These V -homomorphisms are exactly the
extremal epimorphisms in V -Grp, and the structure b is the final structure
with respect to the topological functor V -Grp→ Grp we study next.

4. The category V -Grp
It is well-known that the forgetful functor | | : Grp → Set is monadic,

while, as we have already shown, the forgetful functor | | : V -Cat→ Set is
topological. Next we will check that these properties transfer to the forgetful
functors U1 : V -Grp → Grp and U2 : V -Grp → V -Cat, with U1 forgetting
the V-categorical structure and U2 the group structure.
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Theorem 4.1. The functor U1 is topological, and the functor U2 : V -Grp→
V -Cat is monadic. Therefore we have the following commutative diagram

V -Grp
(topological) U1

yy

U2 (monadic)

%%

Grp

(monadic) | | %%

V -Cat

| | (topological)xx
Set

Proof : To show that U1 is a topological functor, let (fi : X → (Xi, ai))i∈I be
a family of group homomorphisms, with (Xi, ai), i ∈ I, V -groups. Then the
initial structure on V -Cat

a(x, y) =
∧
i∈I

ai(fi(x), fi(y)) (4.i)

makes X a V -group, and this defines clearly the U1-initial lifting for (fi).
Indeed, to check that (X, a,+) is a V -group it is enough to verify that (3.i)
holds: for every x, y, z ∈ X,

a(x+z, y+z) =
∧
i∈I

ai(fi(x)+fi(z), fi(y)+fi(z)) =
∧
i∈I

ai(fi(x), fi(y)) = a(x, y).

Topologicity of U1 gives that, with Grp, also V -Grp is complete and cocom-
plete.

To show that U2 is monadic, we will use [21, Theorem 2.4].
(a) U2 : V -Grp → V -Cat has a left adjoint : Given a V -category (X, a), let
FX be the free group generated by X, and ηX : X → FX the insertion of
generators. Then, for each V -group (Y, b,+) and each V -functor f : (X, a)→
U2(Y, b,+), there is a homomorphism f : FX → Y such that f · ηX = f .
Equipping FX with the initial V -category structure â with respect to all the
f : FX → (Y, b,+) as defined in (4.i), the inclusion ηX : (X, a) → U2(FX, â)
is a V -functor and it is universal from X to U2, therefore U2 has a left adjoint
as claimed.
(b) U2 reflects isomorphisms : given a morphism f : (X, a,+) → (Y, b,+) in
V -Grp, if U2(f) is an isomorphism in V -Cat then f is a bijective homomor-
phism and, for every x, x′ ∈ X, a(x, x′) = b(f(x), f(x′)). Therefore its inverse
map is both a homomorphism and a V -functor, and so f is an isomorphism
in V -Grp.
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(c) V -Grp has and U2 preserves coequalizers of all U2-contractible coequalizer
pairs. First recall that the functor | | : Grp → Set is monadic. Given
morphisms f, g : X → Y in V -Grp such that U2(f),U2(g) is a contractible
pair in V -Cat, we know that the coequalizer q : Y → Q in V -Grp is preserved
by U1, and so it is also preserved by | | · U1, since | | is monadic and
|U1(f)|, |U1(g)| form a contractible pair in Set. Therefore U2(q), as a split
epimorphism that coequalizes |U1(f)|, |U1(g)| in Set, is the coequalizer of
U2(f),U2(g) in V -Cat.

We collect below properties of V -Grp that follow from this proposition.

Remark 4.2. (1) The functor U1 : V -Grp → Grp has both a left and
a right adjoint. The left adjoint L1 : Grp → V -Grp equips a group
X with the discrete V-category structure: a(x, y) = k if x = y, and
a(x, y) = ⊥ otherwise. The right adjoint R1 : Grp→ V -Grp equips a
group X with the indiscrete V -category structure: a(x, y) = > for all
x, y ∈ X. It is immediate to see that both structures are compatible
with the group operation.

(2) V-Grp is complete and cocomplete, as stated in the proof of Proposi-
tion 4.1. In particular, the initial object is ({∗}, κ) where κ(∗, ∗) = k,
while the terminal object is ({∗}, c), where c(∗, ∗) = >. Hence V -Grp
is a pointed category if and only if, in V , k = >.

(3) Limits are preserved by both forgetful functors. Therefore the product
X × Y , of two V -groups (X, a) and (Y, b), is the direct product of
groups equipped with the relation a ∧ b given by:

(a ∧ b)((x1, y1), (x2, y2)) = a(x1, x2) ∧ b(y1, y2).

Infinite products are obtained similarly. The equalizer of a pair
f, g : X → Y of parallel morphisms in V -Grp is the equalizer in Grp
equipped with the V -category structure induced by the one of X.

(4) Colimits are preserved by U1 : V -Grp→ Grp (but not by U2), so they
are formed like in Grp and equipped with the suitable V -category
structure, as outlined next.

Coequalizers are easily described. Given a pair of morphisms
f, g : (X, a) → (Y, b), let q : U1(Y ) → Q be the coequalizer in Grp
of U1(f),U1(g). Defining on Q the structure c = q · b · q◦, that is

c(z1, z2) =
∨

q(yi)=zi

b(y1, y2), thanks to Proposition 3.7 we know that
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q : (Y, b) → (Q, c) is a V -homomorphism. The universal property is
easily checked. This construction shows that the regular epimorphisms
in V-Grp are exactly the surjective V -homomorphisms f : (X, a) →
(Y, b) such that b = f · a · f ◦.

Coproducts are a bit more difficult. As a group, the coproduct (Y, b)
of a family (Xi, ai) of V -groups is the coproduct formed in Grp with
the final structure with respect to the forgetful functor into Grp.
There is no easy way of describing this final structure.

(5) In V -Grp a V -homomorphism f : (X, a) → (Y, b) is an epimorphism
if and only if it is surjective: the preservation of colimits by U1 and
its faithfulness imply that U1 preserves and reflects epimorphisms;
therefore f is an epimorphism in V -Grp if and only if U1(f) is an
epimorphism in Grp, that is, f is surjective. Regular monomorphisms
in V -Grp are the morphisms f : (X, a)→ (Y, b) that are injective and
with a(x, x′) = b(f(x), f(x′)), for every x, x′ ∈ X. It is easily seen
that (epi, reg mono) is a stable factorization system in V-Grp: every
f : X → Y can be factored as

(X, a)
f

//

e
%%

(Y, b),

(f(X), b)

m

99

and epimorphisms are pullback stable (just because surjective homo-
morphisms are pullback stable in Grp).

(6) From the construction of coequalizers it follows that a morphism
f : (X, a) → (Y, b) is a regular epimorphism in V -Grp if, and only

if, it is surjective and final, that is, b(y1, y2) =
∨

f(xi)=yi

a(x1, x2); and

f is a monomorphism exactly when it is an injective map. Next we
prove that (reg epi, mono) is a stable factorization system in V-Grp.
Indeed, every f : (X, a)→ (Y, b) can be factored as

(X, a)
f

//

e
%%

(Y, b),

(f(X), c)

m

99
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with c(y1, y2) =
∨

f(xi)=yi

a(x1, x2). Pullback-stability of regular epimor-

phisms is easily checked: if

(X ×Y Z, a ∧ c)
π2 //

π1
��

(Z, c)

g
��

(X, a)
f

// (Y, b)

is a pullback diagram and f is a regular epimorphism, then π2 is
surjective and

c(z1, z2) = b(g(z1), g(z2)) ∧ c(z1, z2)

=

 ∨
f(xi)=g(zi)

a(x1, x2)

 ∧ c(z1, z2)

=
∨

f(xi)=g(zi)

(a(x1, x2) ∧ c(z1, z2)) ;

hence π2 is also final.

Proposition 4.3. The category V-Grp is a regular category in the sense of
Barr [2]. Moreover, when V is integral (i.e. k = >) it is normal in the sense
of Z. Janelidze [19]: every regular epimorphism is a cokernel.

Proof : As stated above, V -Grp is a (finitely) complete category with a stable
factorization system (reg epi, mono), hence it is regular. To show that it is
normal when V is integral, we observe that it is pointed and that, for every
regular epimorphism f : (X, a) → (Y, b), U1(f) is a regular epimorphism in
Grp, hence it is the cokernel of its kernel in Grp. Then f is the cokernel of
its kernel also in V -Grp, indeed, thanks to Remark 4.2.(4), the structure b
on Y is the final one: b = f · a · f ◦.

In general, the category V -Grp is not Barr-exact [2]: see, for example,
Remark 2.6 in [13] for an example of an equivalence relation which is not
effective, in the case V = 2. However, V -Grp satisfies a slightly weaker
property: it is efficiently regular in the sense of [8]:

Proposition 4.4. V -Grp is efficiently regular: it is regular and, if R is an
effective equivalence relation over an object X and T is another equivalence
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relation over X which is a regular subobject j : T � R of R (i.e. j is a
regular monomorphism in V -Grp), then T is itself effective.

Proof : If T
t2
//

t1 // X is an equivalence relation in V -Grp as in the statement

above, then U1(T ) is a kernel pair of a morphism in Grp, since Grp is
Barr-exact; hence the following is a pullback in Grp

U1(T )
U1(t1)

//

U1(t2)
��

U1(X)

q
��

U1(X) q
// Y,

where q : U1(X)→ Y is the coequalizer of U1(t1) and U1(t2) in Grp. Putting
on Y the final structure described in Remark 4.2.(4), the square above be-
comes a commutative diagram in V -Grp. It is a pullback in V -Grp, be-
cause 〈t1, t2〉 : T → X × X is a regular monomorphism in V -Grp. Indeed,

R
r2
//

r1 // X is an effective equivalence relation in V -Grp, and so the monomor-

phism 〈r1, r2〉 : R→ X×X is a regular monomorphism in V -Grp. Moreover,
being j a regular monomorphism in V -Grp, we obtain from Remark 4.2.(5)
that also the monomorphism 〈t1, t2〉 = 〈r1, r2〉 ◦ j is regular in V -Grp. We
conclude that T is effective in V -Grp.

The main reason why this property is interesting is the fact that, in an
efficiently regular category, a morphism is effective for descent if and only if
it is a regular epimorphism. This follows from [8, Proposition 1.2] and [18,
Theorem 3.7].

5. Topological properties
Regularity of topological groups and openness of quotient maps between

topological groups play a crucial role in the topological behaviour of the cat-
egory of topological groups. Following the approach of [10], where, inspired
by the description of topological spaces and continuous maps as (T, V )-
categories and (T, V )-functors (for T the ultrafilter monad and V = 2),
several topological properties were explored, we show next that in V -Grp
these properties play also a crucial role.

We start by recalling some notions, studied in [10], in the context of V -
categories.
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Definition 5.1. A V -functor f : (X, a) → (Y, b) is proper if b · f ≤ f · a,
while it is open if b◦ · f ≤ f · a◦.

Recalling that a map f : (X, a) → (Y, b) is a V -functor if f · a ≤ b · f ,
or, equivalently, f · a◦ ≤ b◦ · f , one concludes that f is proper exactly when
b·f = f ·a, while f is open when b◦ ·f = f ·a◦. Therefore, f : (X, a)→ (Y, b) is
proper if, and only if, f : (X, a◦)→ (Y, b◦) is open; using pointwise notation,
f is proper when, for x ∈ X, y ∈ Y ,

b(f(x), y) =
∨

f(x′)=y

a(x, x′),

and f is open when

b(y, f(x)) =
∨

f(x′)=y

a(x′, x).

Definition 5.2. A V -category (X, a) is said to be regular if a · a◦ ≤ a,
which is equivalent to a = a◦, that is, it is symmetric. Indeed, regularity
means that, for all x1, x2, x3 ∈ X, one has a(x1, x2) ⊗ a(x1, x3) ≤ a(x2, x3).
Clearly, if (X, a) is symmetric, then this condition is satisfied. Conversely,
from regularity one obtains, choosing x1 = x3:

a(x3, x2) = a(x3, x2)⊗k ≤ a(x3, x2)⊗a(x3, x3) ≤ a(x2, x3) for all x2, x3 ∈ X.

As a side remark we observe that regularity of the V -relation a coincides
with other properties studied in diverse algebraic settings.

Lemma 5.3. For a V -category (X, a), the following conditions are equiva-
lent:

(i) (X, a) is regular,
(ii) (X, a) is a symmetric V -category,
(iii) a is a positive V -relation (see [25]), i.e. a = b◦ · b for some V -relation

b,
(iv) a is difunctional (see [24]), i.e. a · a◦ · a ≤ a. �

Corollary 5.4. A V -group is regular if, and only if, it is symmetric; hence,
when ⊗ = ∧, a V -group is regular if, and only if, it is an internal group in
V-Cat. �

Proposition 5.5. A V -homomorphism f : (X, a)→ (Y, b) between V -groups
is open if, and only if, it is proper.
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Proof : For every x ∈ X, y ∈ Y , b(f(x), y) = b(−y,−f(x)) = b(−y, f(−x)),
and the result follows.

Remark 5.6. For inclusions, the notion of proper V -functor is the right sub-
stitute for closed subobject. In fact, as proper map in topology means stably
closed map, and closed embeddings are pullback stable, a topological embed-
ding is closed if, and only if, it is proper. Having this in mind, the following
statement corresponds to the well-known fact that every open subgroup of a
topological group is closed.

Corollary 5.7. If S is a subgroup of (X, a,+), then S is open in X if and
only if it is proper. �

Theorem 5.8. Every regular epimorphism in V-Grp is both open and proper.

Proof : As we checked in Remark 4.2, a regular epimorphism f : (X, a) →
(Y, b) in V-Grp is a surjective map such that b = f · a · f ◦, that is, for every

y1, y2 ∈ Y , b(y1, y2) =
∨

f(xi)=yi

a(x1, x2). Hence,

b(y, f(x)) =
∨

f(x′)=y, f(x′′)=f(x)

a(x′, x′′) =
∨

f(x′)=y, f(x′′)=f(x)

a(x′ − x′′ + x, x)

=
∨

f(z)=y

a(z, x).

6. Algebraic properties
The aim of this section is to study the algebraic properties of V -groups.

From now on, we will always assume that, in V , the equality k = > holds.
This assumption is not particularly restrictive: all the examples we men-
tioned in the previous sections satisfy it. But, as we observed in Remark
4.2.(2), it implies that the category V -Grp is pointed. Note that, if k = >,
then the condition for (X, a) to be a V -graph becomes a(x, x) = k = > for
all x ∈ X.

Moreover, due to Proposition 6.1 below, we will concentrate mainly in the
case of V being a frame, i.e. ⊗ = ∧ in V : under this assumption, we will
explore the main categorical-algebraic notions, showing that, in general, the
whole category V -Grp satisfies only relatively weak properties. However, if
we restrict our attention to symmetric V -groups, we will see that the algebraic
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behaviour is very similar to the one of the category Grp of groups. We start
by observing that the property of being unital holds in V -Grp if and only if
V is a frame.

We recall that a pair of morphisms with the same codomain in a finitely
complete category is jointly strongly epimorphic if, whenever both morphisms
factor through a monomorphism m, m is an isomorphism. A pointed, finitely
complete category is unital [7] if, for any two objects X and Y , the canonical
morphisms

X
〈1,0〉

// X × Y Y,
〈0,1〉
oo

induced by the universal property of the product, are jointly strongly epi-
morphic. We remark that, for (X, a) and (Y, b) V -groups, the V -category
structure on (X, a)× (Y, b) is a ∧ b.

Proposition 6.1. V -Grp is a unital category if and only if V is a frame.

Proof : Suppose first that V is a frame. Given X, Y, Z ∈ V -Grp, consider
the following commutative diagram

X
〈1,0〉

//

f ##

X × Y Y,
〈0,1〉
oo

g
{{

Z

m

OO

where m is a monomorphism. Since Grp is a unital category, m is an isomor-
phism of groups; it only remains to show that its inverse t is a V -functor. The
morphism t is defined by t(x, y) = f(x)+g(y). In other terms, t = +◦(f×g).
Hence t is a V -functor, being the composite of two V -functors.

Conversely, suppose that V is not a frame. Hence there exist u, v ∈ V such
that u ⊗ v < u ∧ v (observe that, under the assumption that k = >, it is
always true that u ⊗ v ≤ u ∧ v for all u, v ∈ V ). Given any pair (X, a) and
(Y, b) of V -groups, the identity map

(X, a)⊗ (Y, b)
1X×Y // (X, a)× (Y, b)
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is a monomorphism in V -Grp. Moreover, we always have the following
commutative diagram in V -Grp:

(X, a)
〈1,0〉

//

1⊗0 ''

(X × Y, a ∧ b) (Y, b),
〈0,1〉
oo

0⊗1ww

(X × Y, a⊗ b)

1X×Y

OO

where (1⊗0)(x) = (x, 0) and (0⊗1)(y) = (0, y). We want to show that 1X×Y
is not always an isomorphism. We define, on the additive group Z2 = Z/2Z,
two V -group structures a and b as follows:

a(0, 1) = a(1, 0) = u, a(0, 0) = a(1, 1) = k;

b(0, 1) = b(1, 0) = v, b(0, 0) = b(1, 1) = k.

Then

(a⊗ b)((0, 0), (1, 1)) = a(0, 1)⊗ b(0, 1) = u⊗ v < u ∧ v
= a(0, 1) ∧ b(0, 1) = (a ∧ b)((0, 0), (1, 1)).

One of the key categorical-algebraic notions is the one of protomodular cate-
gory [6]: for pointed, finitely complete categories, it is equivalent to the valid-
ity of the Split Short Five Lemma, and it has several important consequences,
mainly related to the homological properties of the category. Unfortunately,
if V is non-degenerate (i.e. ⊥ 6= >), V -Grp is not a protomodular category.
Indeed, as shown in [13], OrdGrp is not protomodular. Moreover, when V
is integral and non-degenerate, using the inclusion ι : 2 → V described in
Section 2 it is not difficul to see that OrdGrp can be identified with a full
subcategory of V -Grp closed under finite limits. Therefore V -Grp is not
a protomodular category, since it has a full subcategory, OrdGrp, which is
closed under finite limits and not protomodular. However, when V is a frame,
V -Grp is good enough to identify, inside of it, an important full subcategory,
which turns out to be the one of symmetric V -groups, which is protomodular
(and, actually, it satisfies even stronger algebraic properties, as we will see in
Section 8). In order to see this, we follow the objectwise approach introduced
in [23]: the idea is to identify a class of objects, in a category with weak al-
gebraic properties, such that the main categorical-algebraic properties hold
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locally for constructions involving these “good” objects. In order to define
formally such objects, we need the notion of stably strong point:

Definition 6.2. A point (i.e. a split epimorphism with a fixed section)

A
f
// Y

soo with kernel n : X → A in a pointed finitely complete category is

strong if n and s are jointly strongly epimorphic. It is stably strong if every
pullback of it along any morphism g : Z → Y is strong.

Definition 6.3 ([23]). An object Y of a pointed, finitely complete category
C is

(1) a strongly unital object if the point Y × Y
π2
// Y

〈1,1〉
oo is stably strong;

(2) a Mal’tsev object if, for every pullback of split epimorphisms over Y
as in the following diagram

A×Y Z

πA

��

πZ
// Z

g

��

〈sg,1Z〉oo

A

〈1A,tf〉

OO

f
// Y,

soo

t

OO

the morphisms 〈1A, tf〉 and 〈sg, 1Z〉 are jointly strongly epimorphic;
(3) a protomodular object if every point over Y is stably strong.

Proposition 6.4. If (Y, b,+) is a strongly unital V -group, then, for every
y ∈ Y ,

b(0, y) = b(y, 0)⊗ b(0, y).

Proof : Assume there is x ∈ Y such that b(x, 0)⊗ b(0, x) 6= b(0, x). Consider
the subgroup X of Y generated by x, equipped with the V -categorical struc-
ture induced by b (and that we will denote also by b). We show next that,
in the following diagram

Y
〈1,0〉

// Y ×X
1×j
��

π2
// X

〈j,1〉
oo

j
��

Y
〈1,0〉

// Y × Y
π2
// Y,

〈1,1〉
oo
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with X × Y equipped with the product structure

d((0, 0), (y, y′)) = b(0, y) ∧ b(0, y′),

(Y, b)
〈1,0〉

// (Y ×X, d) (X, b)
〈j,1〉
oo are not jointly strongly epimorphic, that

is, d is not the final structure c for (〈1, 0〉, 〈j, 1〉).
To define c we first note that, since (y, z) = 〈1, 0〉(y− z) + 〈j, 1〉(z), neces-

sarily

c((0, 0), (y, z)) ≥ b(0, y − z)⊗ b(0, z) = b(z, y)⊗ b(0, z).
Let us define c̃ : (Y ×X)× (Y ×X)→ V by:

c̃((0, 0), (y, z)) = b(z, y)⊗ b(0, z),

and extend it by shifting. Then (Y × X, c̃) is a V -graph and, since c̃ may
be neither transitive nor compatible with the addition on Y ×X, we define
then c by

c((0, 0), (y, z)) =
∨

c̃((0, 0), (y1, z1))⊗ · · · ⊗ c̃((0, 0), (yn, zn)),

where y1 + · · ·+ yn = y and z1 + · · ·+ zn = z, and extend it by shifting.
To show that (Y × X, c,+) is a V -group, thanks to Proposition 3.1, it is

enough to show that +: (Y ×X) × (Y ×X) → Y ×X is a V -functor. Let
y, y′ ∈ Y , z, z′ ∈ X; then

c((0, 0), (y, z))⊗ c((0, 0), (y′, z′)) =

=
∨

c̃((0, 0), (y1, z1))⊗· · ·⊗c̃((0, 0), (yn, zn))⊗c̃((0, 0), (y′1, z
′
1))⊗· · ·⊗c̃((0, 0), (y′m, z

′
m)),

where y1 + . . . yn = y, z1 + · · ·+ zn = z, y′1 + · · ·+ y′m = y′, z′1 + · · ·+ z′m = z′,
and this is clearly less or equal to∨

c̃((0, 0), (y∗1, z
∗
1))⊗ · · · ⊗ c̃((0, 0), (y∗l , z

∗
l )),

with y∗1 + · · ·+y∗l = y+y′, z∗1 + . . . z∗l = z+z′, that is, c((0, 0), (y+y′, z+z′)).
Finally we are going to show that

c((0, 0), (0, x)) = c̃((0, 0), (0, x)) = b(x, 0)⊗ b(0, x),

which shows that c 6= d since d((0, 0), (0, x)) = b(0, x), which is different from
b(x, 0)⊗ b(0, x) by hypothesis. On one hand, we always have c̃ ≤ c. On the
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other hand, given y1, . . . , yn ∈ Y , z1, . . . , zn ∈ X such that y1 + · · · + yn = 0
and z1 + · · ·+ zn = x,

c̃((0, 0), (y1, z1))⊗ · · · ⊗ c̃((0, 0), (yn, zn)) =

= b(z1, y1)⊗ b(0, z1)⊗ · · · ⊗ b(zn, yn)⊗ b(0, zn)
= b(z1, y1)⊗ · · · ⊗ b(zn, yn)⊗ b(0, z1)⊗ · · · ⊗ b(0, zn)
≤ b(z1 + · · ·+ zn, y1 + · · ·+ yn)⊗ b(0, z1 + · · ·+ zn)

= b(x, 0)⊗ b(0, x),

which shows that

c((0, 0), (0, x)) =
∨

c̃((0, 0), (y1, z1))⊗ · · · ⊗ c̃((0, 0), (yn, zn)),

where y1 + · · · + yn = 0, z1 + · · · + zn = x, is less than or equal to b(x, 0)⊗
b(0, x).

Theorem 6.5. When ⊗ = ∧ in V , for a V -group (Y, b,+), the following
conditions are equivalent:

(i) (Y, b,+) is a protomodular object in V -Grp;
(ii) (Y, b,+) is a Mal’tsev object in V -Grp;
(iii) (Y, b,+) is a strongly unital object in V -Grp;
(iv) (Y, b) is a symmetric V -category;
(v) (Y, b,+) is an internal group in V -Cat.

Proof : The implications (i) =⇒ (ii) =⇒ (iii) follow from Propositions 7.2
and 6.3 in [23], because V -Grp is a regular category, as observed in Remark
4.2.(6).

(iii) =⇒ (iv) ⇐⇒ (v): follows from the previous proposition since, when-
ever ⊗ = ∧, from

b(0, y) = b(y, 0)∧b(0, y) = b(0,−y)∧b(−y, 0) = b(−y, 0)∧b(0,−y) = b(0,−y)

we conclude that b(0, y) = b(0,−y) = b(y, 0), and therefore (Y, b) is a sym-
metric V -category, or, equivalently, the inversion is a V -functor, as we ob-
served in Remark 3.4.
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It remains to show that (v) =⇒ (i): given an internal group (Y, b,+),
consider the following diagram in V -Grp

N

��

n // (Z ×Y X, d)

f ′

��

h′ // (X, a)

f
��

0 // (Z, c)

〈1Z ,sh〉
OO

h
// (Y, b),

s

OO

where both downwards squares are pullbacks. The pullback structure d on
Z ×Y X is given by

d((0, 0), (z, x)) = c(0, z) ∧ a(0, x),

for every (z, x) ∈ Z ×Y X. To show that d coincides with the final structure
d′ for n and 〈1Z , sh〉, we note that, for every (z, x) ∈ Z ×Y X,

(z, x) = (0, x− sf(x)) + (z, sf(x)) = (0, x− sf(x)) + (z, sh(z)).

From V -functoriality of 〈1Z , sh〉 one gets immediately that

d′((0, 0), (z, sh(z)) ≥ c(0, z).

Now, using V -functoriality of s and f , and symmetry of (Y, b),

d′((0, 0), (0, x− sf(x)) ≥a(0, x− sf(x)) ≥ a(0, x) ∧ a(0, s(−f(x)))

≥a(0, x) ∧ b(0,−f(x)) = a(0, x) ∧ b(0, f(x)) = a(0, x).

Therefore d′ ≥ d. In other terms, the identity morphism 1Z×YX : (Z ×Y
X, d) → (Z ×Y X, d′) is a V -functor. But 1Z×YX is clearly a monomor-
phism, and n and 〈1Z , sh〉 factor through it. Being d′ the final structure for
these two morphisms, we get that 1Z×YX : (Z ×Y X, d)→ (Z ×Y X, d′) is an
isomorphism, i.e. d′ = d.

As a reflective subcategory of V -Grp (see Proposition 3.5), V -Grpsym is
closed under limits in V -Grp. Hence V -Grpsym is a protomodular category,
thanks to [23, Corollary 7.4]. Indeed, by the previous theorem, V -Grpsym is
the full subcategory of protomodular objects of V -Grp. In particular we get
the following examples which give rise to protomodular categories:

(1) When V = 2, OrdGrpsym is the category of groups equipped with
a congruence, or in other terms the category whose objects are pairs
(G,N) where G is a group and N is a normal subgroup of G, and
whose arrows are the group homomorphisms that restrict to the nor-
mal subgroups.
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(2) When V = Pmax, UMetGrpsym is the category of symmetric ultra-
metric groups, i.e. ultrametric groups in which the distance is sym-
metric, and non-expansive homomorphisms. Moreover, if we consider
the full subcategory UMetGrpsym,0 of (classical) ultrametric groups,
i.e. of those ultrametric groups that are symmetric, separated (if
d(x, y) = 0, then x = y) and finitary (for all x, y d(x, y) < ∞), it
is easy to observe that this subcategory is closed in V -Grpsym un-
der finite limits, hence it is itself protomodular (since the notion of
protomodularity can be expressed only by means of finite limits).

(3) When V = ∆∧, ProbMetGrpsym is the category of symmetric prob-
abilistic ultrametric groups.

In Section 8 we will investigate more in detail the algebraic properties of
V -Grpsym.

7. Split extensions
In this section we investigate the split extensions in V -Grp. We will always

assume that k = > in V , so that V -Grp is pointed, but we do not require

that V is a frame. Let (X, a)
n // (Z, c)

f
// (Y, b)

soo be a split extension

in V -Grp. Then X
n // Z

f
// Y

soo is a split extension in Grp, hence Z,

as a group, is isomorphic to the semidirect product X oϕ Y with respect
to the action ϕ : Y → Aut(X) of Y on X defined by ϕ(y)(x) = ϕy(x) =
s(y) + n(x)− s(y). Therefore we can restrict our study to split extensions of
the type

(X, a)
〈1,0〉

// (X oϕ Y, c)
π2
// (Y, b)

〈0,1〉
oo (7.i)

We recall that, for (x, y), (x′, y′) ∈ X×Y , (x, y)+ϕ(x′, y′) = (x+ϕy(x
′), y+y′).

In general we will omit the index ϕ in the sum +.
First we present a necessary condition for a V -category structure c on

X oϕ Y to make (7.i) a split extension in V -Grp.

Lemma 7.1. If (7.i) is a split extension in V-Grp then, for every y ∈ Y ,
ϕy : (X, a)→ (X, a) is a V -functor.
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Proof : Invariance of a by shifting gives that, for every x, x′ ∈ X,

a(x, x′) = c(n(x), n(x′)) = c(s(y) + n(x)− s(y), s(y) + n(x′)− s(y))

= c(ϕy(x), ϕy(x
′)) = a(ϕy(x), ϕy(x

′)).

As for preordered groups, there are two possible extremal structures to
be considered, a minimal one given by the tensor ⊗ in the product, and a
maximal one, a generalized lexicographic structure we introduce below.

Theorem 7.2. Let X and Y be groups, ϕ : Y → Aut(X) a group action, and
let (X o Y,+) be the semidirect product defined in Grp by ϕ. The following
assertions are equivalent:

(i) (X, a)
〈1,0〉

// (X o Y, a⊗ b)
π2
// (Y, b)

〈0,1〉
oo is a split extension in V -Grp;

(ii) the map ϕ : (X ⊗ Y, a⊗ b)→ (X ⊗ Y, a⊗ b), with (x, y) 7→ (ϕy(x), y),
is a V -functor.

Proof : (i) =⇒ (ii): (X o Y, a ⊗ b,+) is a V -group if, and only if, for all
x1, x2, x

′
1, x
′
2 ∈ X, y1, y2, y

′
1, y
′
2 ∈ Y ,

(a⊗ b)((x1, y1), (x2, y2))⊗ (a⊗ b)((x′1, y′1), (x′2, y′2))
≤ (a⊗ b)((x1, y1) + (x′1, y

′
1), (x2, y2) + (x′2, y

′
2));

that is,

a(x1, x2)⊗ b(y1, y2)⊗ a(x′1, x
′
2)⊗ b(y′1, y′2)

≤ a(x1 + ϕy1(x
′
1), x2 + ϕy2(x

′
2))⊗ b(y1 + y′1, y2 + y′2).

When x1 = x2 = 0 and y′1 = y′2 = 0, we obtain

a(x′1, x
′
2)⊗ b(y1, y2) ≤ a(ϕy1(x

′
1), ϕy2(x

′
2))⊗ b(y1, y2),

and this means exactly that ϕ is a V -functor.
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(ii) =⇒ (i): To verify that (XoY, a⊗b,+) is a V -group, let x1, x2, x
′
1, x
′
2 ∈

X and y1, y2, y
′
1, y
′
2 ∈ Y ; then

(a⊗b)((x1, y1), (x2, y2))⊗ (a⊗ b)((x′1, y′1), (x′2, y′2))
=a(x1, x2)⊗ b(y1, y2)⊗ a(x′1, x

′
2)⊗ b(y′1, y′2)

=a(x1, x2)⊗ a(x′1, x
′
2)⊗ b(y1, y2)⊗ b(y′1, y′2)

≤a(x1, x2)⊗ a(ϕy1(x
′
1), ϕy2(x

′
2))⊗ b(y1, y2)⊗ b(y′1, y′2) (ϕ is a V -functor)

≤a(x1 + ϕy1(x
′
1), x2 + ϕy2(x

′
2))⊗ b(y1 + y′1, y2 + y′2)

=(a⊗ b)((x1, y1) + (x′1, y
′
1), (x2, y2) + (x′2, y

′
2)).

It remains to show that the homomorphisms of the split extension are V -
functors, and that 〈1X , 0〉 is a kernel. The monomorphisms 〈1, 0〉 and 〈0, 1〉
are always V -functors, as well as π2, since it means that a(x, x′)⊗ b(y, y′) ≤
b(y, y′), and this is true because we are assuming that k = >; moreover, for
every x, x′ ∈ X, a(x, x′) = (a⊗ b)((x, 0), (x′, 0)), and so (X, a) has the initial
structure for the map 〈1, 0〉.

Remark 7.3. (1) Theorem 7.2 applied to the case V = 2 gives Proposi-
tion 5.2 of [13]: when V = 2, (X o Y, a ⊗ b,+) is a V -group if and
only if

(∀ y ≥ 0) (∀x ∈ X) ϕy(x) ≥ x.

Indeed, V -functoriality of ϕ gives:

b(0, y) = (a⊗ b)((x, 0), (x, y))

≤ (a⊗ b)((ϕ0(x), 0), (ϕy(x), y)) = a(x, ϕy(x))⊗ b(0, y).

Then, when V = 2 and y ≥ 0, i.e. b(0, y) = >, a(x, ϕy(x)) ∧ > ≥ >
means exactly that ϕy(x) ≥ x.

(2) The same theorem, applied to the case V = P+, says that (XoY, a⊗
b,+) is a V -group if and only if

∀x1, x2 ∈ X, ∀ y1, y2 ∈ Y with b(y1, y2) 6=∞, a(x1, x2) ≥ a(ϕy1(x1), ϕy2(x2)).

Indeed, ϕ is a V -functor (i.e. a non-expansive map) if and only if, for
all x1, x2 ∈ X, y1, y2 ∈ Y
(a⊗ b)((x1, y1), (x2, y2)) ≥ (a⊗ b)((ϕy1(x1), y1), (ϕy2(x2), y2)),

which is the same as to say that

a(x1, x2) + b(y1, y2) ≥ a(ϕy1(x1), ϕy2(x2)) + b(y1, y2).
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Next we analyse how to interpret the lexicographic structure in V -Grp.
For V -categories (X, a), (Y, b), consider lex : (X×Y )⊗ (X×Y )→ V defined
by

lex((x, y), (x′, y′)) =

{
a(x, x′) if y = y′

b(y, y′) if y 6= y′.

In general (X × Y, lex) is a V -graph but not necessarily a V -category, as
shown in the proof of the theorem below.

Theorem 7.4. Given V -groups (X, a), (Y, b), and a group action ϕ : Y →
Aut(X) with ϕy : (X, a)→ (X, a) a V -functor for every y ∈ Y , the following
conditions are equivalent:

(i) (X, a)
〈1,0〉

// (X o Y, lex)
π2
// (Y, b)

〈0,1〉
oo is a split extension in V -Grp;

(ii) for all x ∈ X and y ∈ Y \ {0}, b(y, 0)⊗ b(0, y) ≤ a(x, 0).

Proof : (ii) =⇒ (i): Thanks to Proposition 3.1, to show that (X o Y, lex)
is a V -group it is enough to show that + is a V -functor; that is, for each
x1, x2, x

′
1, x
′
2 ∈ X, y1, y2, y

′
1, y
′
2 ∈ Y ,

lex((x1, y1), (x2, y2))⊗ lex((x′1, y
′
1), (x

′
2, y
′
2))

≤ lex((x1 + ϕy1(x
′
1), y1 + y′1), (x2 + ϕy2(x

′
2), y2 + y′2)).

For that we consider the possible cases:

• y1 + y′1 = y2 + y′2, y1 = y2, y
′
1 = y′2:

a(x1, x2)⊗ a(x′1, x
′
2) ≤ a(x1, x2)⊗ a(ϕy1(x

′
1), ϕy1(x

′
2)) (ϕy1 V -functor)

≤ a(x1 + ϕy1(x
′
1), x2 + ϕy1(x

′
2)) ((X, a,+) V -group).

• y1 + y′1 = y2 + y′2 and y1 6= y2 (and so −y2 + y1 = y′2 − y′1 6= 0): Using
(ii) we conclude that

b(y1, y2)⊗b(y′1, y′2) = b(−y2+y1, 0)⊗b(0, y′2−y′1) ≤ a(x1+ϕy1(x
′
1), x2+ϕy2(x

′
2)).

• y1 + y′1 6= y2 + y′2 and y1 = y2:

a(x1, x2)⊗ b(y′1, y′2) ≤ b(y′1, y
′
2) = b(y1 + y′1, y2 + y′2).

• y1 + y′1 6= y2 + y′2 and y1 6= y2, y
′
1 6= y′2: immediate.

From the definition of lex it is clear that all the maps of (i) are V -functors,
and, moreover, 〈1, 0〉 is the kernel of π2.
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(i) =⇒ (ii): take (x, y) + (0,−y) = (x+ ϕy(0), 0) = (x, 0), for y 6= 0:

b(y, 0)⊗ b(−y, 0) = lex((x, y), (0, 0))⊗ lex((0,−y), (0, 0))

≤ lex((x, 0), (0, 0)) = a(x, 0).

Remark 7.5. (1) Theorem 7.4 applied to the case V = 2 gives Proposi-
tion 5.4 of [13]. Indeed, for V = 2 condition (ii) is trivially satisfied
when the preorder is antisymmetric:

(∀ y 6= 0) b(y, 0) ∧ b(0, y) = ⊥,
and, in the presence of a non-positive element x ofX, so that a(0,−x) =
⊥, (ii) implies antisymmetry of b.

This extends to optimistic quantales. Indeed, if V is optimistic and
X is such that ∧x∈X a(x, 0) = ⊥, then condition (ii) is valid for (Y, b)
if, and only if, for every y ∈ Y \ {0}, b(y, 0) = ⊥ or b(0, y) = ⊥. That
is, for V -groups (X, a), (Y, b), lex makes the semidirect product XoY
a V -group if, and only if, considering the reflections of (X, a) and (Y, b)
in OrdGrp, the corresponding lexicographic preorder makes X o Y
a preordered group.

In particular, when V = P+ or V = Pmax, if (X, a) is a non-bounded
(ultra)metric space, then the only (Y, b) which admit the lexicographic
order on X o Y are those with either b(y, 0) =∞ or b(0, y) =∞, for
any y 6= 0.

(2) As expected, for symmetric V -groups (Y, b) the lexicographic order
rarely makes XoY a V -group: if (X, a) is such that ∧x∈X a(x, 0) = ⊥,
then, for every y 6= 0, b(y, 0) = ⊥, since, for any quantale V and u ∈ V ,
u⊗ u = ⊥ implies u = ⊥.

Finally we establish the result announced before Theorem 7.2.

Proposition 7.6. If (X, a)
〈1,0〉

// (X o Y, c)
π2
// (Y, b)

〈0,1〉
oo is a split extension in

V-Grp, then
a⊗ b ≤ c ≤ lex.

Proof : From the equality (x, 0) + (0, y) = (x, y), for every x ∈ X and y ∈ Y ,
and the fact that 〈1X , 0〉 and 〈0, 1Y 〉 are V -functors, it follows that

a(0, x)⊗ b(0, y) ≤ c((0, 0), (x, 0))⊗ c((0, 0), (0, y)) ≤ c((0, 0), (x, y)).
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Moreover, V -functoriality of π2 gives that c((x, y), (x′, y′)) ≤ b(y, y′), for
every y, y′ ∈ Y . When y = y′, c((0, y), (x, y)) = c((0, 0), (x, 0)) = a(0, x),
because 〈1X , 0〉 is a kernel.

Proposition 7.7. When ⊗ = ∧ and (Y, b) is a symmetric V -category, the
only possible compatible structure on X o Y is a⊗ b = a ∧ b.

Proof : Let x ∈ X and y ∈ Y . By V -functoriality of π2, c((0, 0), (x, y)) ≤
b(0, y). Moreover, since (x, 0) = (x, y) + (0,−y), one gets

c((0, 0), (x, y)) = c((0, 0), (x, y)) ∧ b(0, y) = c((0, 0), (x, y)) ∧ b(0,−y) =

= c((0, 0), (x, y)) ∧ c((0, 0), (0,−y)) ≤ c((0, 0), (x, 0)) = a(0, x).

8. Symmetric V -groups
At the end of Section 6 we observed that the category V -Grpsym of symmet-

ric V -groups is protomodular, when ⊗ = ∧. One of the several equivalent
ways of formulating this property is in terms of the so-called fibration of
points : given a finitely complete category C, we denote by Pt(C) the cat-
egory of points in C, i.e. of split epimorphisms with a fixed section. The
functor

cod: Pt(C)→ C

which associates with every point its codomain is a fibration, called the fibra-
tion of points. Several categorical-algebraic properties of a category C can
be expressed in terms of the change-of-base functors of this fibration. In par-
ticular, C is protomodular if and only if, for every morphism f : E → B in
C, the change-of-base f ∗ : PtB(C)→ PtE(C) is conservative [6]. For pointed
categories, this is equivalent to the validity of the Split Short Five Lemma.
This means, in particular, that given a split extension

(X, a)
n // Z

f
// (Y, b)

soo (8.i)

in Grp, where (X, a) and (Y, b) are symmetric V -groups, there is at most one
V -category structure c on Z that turns (8.i) a split extension in V -Grpsym.
As we observed in Proposition 7.7, this structure is always the product struc-
ture described in Theorem 7.2.
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Moreover, the change-of-base functors of the fibration of points in V -Grpsym

are not only conservative, but actually monadic. Categories with this prop-
erty are called categories with semidirect products. The reason is that, in
such categories, the points (i.e. the split extensions) correspond to suitable
internal actions (in the sense of [5]). The fact that V -Grpsym has semidirect
products is a consequence of the following result (of which we recall here a
particular case):

Proposition 8.1 ([22], Proposition 7). Let C be a category with finite limits
such that the category Grp(C) of internal groups in C has pushouts of split
monomorphisms. Then Grp(C) has semidirect products.

Actually, V -Grpsym satisfies a stronger categorical-algebraic condition: for
any symmetric V -group X, the functor SplExt(−, X), associating with ev-
ery symmetric V -group Y the set of isomorphic classes of split extensions
in V -Grpsym with kernel X and cokernel Y , is representable. Taking into
account the equivalence between split extensions and internal actions men-
tioned before, categories with such a property are said to have representable
actions, or to be action representative [4]. The fact that V -Grpsym has rep-
resentable actions is a consequence of the following result:

Theorem 8.2 ([4], Proposition 1.5). If C is a finitely complete cartesian
closed category, then the category Grp(C) of internal groups in C is action
representative.

In fact, V -Grpsym is the category of internal groups in the finitely complete,
cartesian closed category V -Cat. Following the detailed proof of Theorem
8.2 (which can be found in [3]), we can conclude that the representing ob-
ject of the functor SplExt(−, X) is the V -group Aut(X) of maps that are
at the same time automorphisms of groups and of V -categories, with the
V -category structure induced by the exponential in V -Cat.

Coming back to the fibration of points, another strong property which
holds in V -Grpsym is that every change-of-base functor has a right adjoint.
This is formalized by saying that V -Grpsym is locally algebraically cartesian
closed (briefly: lacc) [14]. Once again, this is a consequence of the fact that
V -Grpsym is the category of internal groups in V -Cat:
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Proposition 8.3 ([14], Proposition 5.3). Let C be a cartesian closed category
with pullbacks. The pullback functor along any morphism in the category
Grp(C) of internal groups has a right adjoint.

This implies, in particular, that V -Grpsym is algebraically coherent in the
sense of [9].
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