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Abstract: We show the existence of an infinite collection of hyperbolic knots
where each of which has in its exterior meridional essential planar surfaces of arbi-
trarily large number of boundary components, or, equivalently, that each of these
knots has essential tangle decompositions of arbitrarily large number of strings.
Moreover, each of these knots has in its exterior meridional essential surfaces of any
positive genus and (even) number of boundary components. That is, the compact
surfaces that have a meridional essential embedding into a hyperbolic knot exterior
have meridional essential embeddings into each of these hyperbolic knots exteriors.

1. Introduction
In geometric topology it is a common approach to use codimension one

objects, and the resulting decompositions, to study manifold topology. On
the study of 3-manifolds, and knot exteriors in particular, since the work
of Haken and Waldhausen, it is common to study their topology through
decompositions along embedded surfaces. A very important class of surfaces
used in these decompositions are embedded essential surfaces, which has mo-
tivated research on the properties and existence of these embeddings. A par-
ticularly interesting phenomena is the existence of knots with the property
that their exteriors have properly embedded essential surfaces of arbitrarily
high Euler characteristics. The first examples of knots with this property
were given by Lyon [14], where he proves the existence of fibered knot ex-
teriors each of which with closed essential surfaces of arbitrarily high genus.
Later, other contributions by Oertel [23], Gustafson [7], Ozawa and Tsut-
sumi [26], Eudave-Muñoz and Neumann-Soto [2], Li [12] and more recently
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Lopez-Garcia [13], for instance, also gave examples of knots having closed
essential surfaces of arbitrarily high genus in their exteriors. These results
contrast with the number of non-isotopic closed essential surfaces that are
acylindrical, that is with no essential annulus in its exterior, in a 3-manifold
being finite, as proved by Hass in [8].

In the mentioned examples the Euler characteristics of the collection is un-
bounded because of the increasing genus. Along these lines, in [19] we have
shown that such a collection of surfaces can be of arbitrarily high genus and
two boundary components on a prime knot exterior. We have also proved
that a collection of compact surfaces embedded in a particular knot exterior
can have arbitrarily large Euler characteristics due to the number of bound-
ary components and not the genus. In fact, in [20] it was shown instead
that a particular knot exterior can have essential tangle decompositions of
any number of strings, that is, they have meridional planar essential surfaces
of any even number of boundary components. This is somewhat surprising
as in Proposition 2.1 of [17], Mizuma and Tsutsumi proved that for a given
knot the number of strings in essential tangle decompositions without par-
allel strings is bounded. Moreover, in [21] we use the results from [19] and
ideas from [20] to actually show the existence of knot exteriors where each
of which has meridional essential surfaces of any (even) number of boundary
components and genus. Hence, all compact surfaces that have a meridional
essential embedding into a knot exterior have one into each knot exterior of
[21]. However, these collections of knot exteriors with meridional essential
surfaces of arbitrarily high number of boundary components are not of hy-
perbolic knot exteriors.

For a hyperbolic knot exterior in particular, it is a result attributed to Haken
that it cannot have infinitely many surfaces of uniformly bounded Euler char-
acteristics. (See also [10] by Jaco and Oertel, or [8] by Hass.) Without
a bound on the Euler characteristics, among the collections of knots with
meridional essential surfaces in their exterior with arbitrarily large Euler
characteristics, a result in [21] includes hyperbolic knots exteriors in some
3-manifold where the unbounded Euler characteristics of surfaces in the col-
lection comes independently from both the number of boundary components
and the genus, but the genus is always higher than zero and the base 3-
manifold not necessarily S3. In this paper we consider the question whether
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a hyperbolic knot in the 3-sphere can also have a set of meridional planar
essential surfaces of unbounded Euler characteristics properly embedded in
its exterior, that is, with arbitrarily high number of boundary components.
In other words, we study if a single hyperbolic knot can have essential tangle
decompositions of any number (≥ 2) of strings as in [19]. We also consider
the more general question if the arbitrarily large Euler characteristics in the
collection of meridional essential surfaces in a single hyperbolic knot exterior
can be independently due from both the genus and the number of boundary
components. We prove the existence of a collection of hyperbolic knot exte-
riors where each of which has in its exterior all possible meridional essential
surfaces. That is, the compact surfaces that have a meridional essential em-
bedding into a hyperbolic knot exterior have meridional essential embeddings
into each of these hyperbolic knots exteriors. The main results of this paper
are summarized in the following theorem.

Theorem 1. There are infinitely many hyperbolic knots in the 3-sphere each
of which having in its exterior

(a) a meridional essential planar surface with 2n boundary components
for any integer n ≥ 2;

(b) a meridional essential surface of any positive genus with 2n boundary
components for any positive integer n.

The knots of Theorem 1 also have in their exteriors closed essential surfaces
of any genus greater than or equal to two. This follows from Theorem 2.0.3 of
[1], or the handle addition lemma [4], applied to the surfaces with two bound-
ary components in Theorem 1. Note that the knot exterior of 816 [11], which
is an alternating and hyperbolic knot, also has meridional essential surfaces
with two boundary components and any positive genus, together with the
corresponding swallow-follow closed surfaces. This derives from 816’s 2-string
essential tangle decomposition and [13], but it does not have meridional es-
sential planar surfaces of arbitrarily high number of boundary components
as its essential tangle decomposition is unique [25].

The statement of Theorem 1 also complements and contrasts with the result
of Oertel [24], extending work of Jaco and Sedgwick, saying in particular
that a knot exterior without essential genus one surface (with or without
boundary) has at most finitely many isotopy classes of compact essential
surfaces of uniformly bounded genus. In Theorem 1 we show that each those
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hyperbolic knot exteriors, that is without an essential torus, has infinitely
many essential surfaces of any genus, hence infinitely many isotopy classes
of surfaces of bounded genus. Therefore, from the above mentioned Oertel’s
result, these knot exteriors have necessarily some essential genus one surface
(with boundary for being hyperbolic). Such essential genus one surface is al-
ready observed for the knots in Theorem 1(b). The result of this paper also
complement the results of Menasco in [16] stating that non-split prime al-
ternating knots (which are hyperbolic excluding the alternating torus knots,
as proved in the cited paper) have at most finitely many meridional essen-
tial meridionally-incompressible surfaces of uniformly bounded genus. It is
relevant to note that all surfaces but the 4-punctured sphere as in the state-
ment of Theorem 1 are meridionally-compressible. In the opposite direction
of Theorem 1 we know that: small knot exteriors [1] have no meridional
essential surfaces; tunnel number one knot exteriors [6] and free genus one
knot exteriors [15] have no meridional essential planar surfaces. There are
also knots with an unique essential tangle decomposition [25].

The paper is organized as follows: In Section 2 we show the existence of
atoroidal 2-string essential tangles with meridional essential surfaces of any
positive genus and two boundary components. These tangles are a base to
construct in Section 3 a collection of hyperbolic knots which we use to prove
Theorem 1 in Section 4 recurring to branched surface theory. Throughout
this paper all manifolds are orientable, all submanifolds are assumed to be in
general position and we work in the smooth category. We use N(X) to denote
a regular neighborhood of X, and |X| to denote the number of components
of X.

2. Twice punctured meridional essential surfaces in 2-
string tangle exteriors

In this section we will show the existence of a 2-string essential tangle with
meridional essential surfaces of any genus and two boundary components.
Let J be an hyperbolic knot with a 2-string essential tangle decomposition
with tangles (Q+;u+∪v+) and (Q−;u−∪v−), defined by the sphere Z. From
Theorem 1.2 of [13], and its proof, there are meridional essential surfaces of
any positive genus and two boundary components in its exterior. The sur-
faces are as follows: there are two twice-punctured swallow-follow essential
tori with meridional boundary, obtained from Z, one in each tangle of the
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decomposition, denoted F+ and F−. Suppose F± is in Q± (where ± denotes
+ or −, respectively). The boundary components of F± are on the same
string, say u±. Each surface F± has accidental peripheral with meridional
slope, that is, it has an essential non-boundary parallel simple closed curve
co-bounding an annulus with a meridian of ∂N(J) in E(J) − F±, which is
referred as meridional accidental annulus. A meridional accidental annulus
A of F+ associated with the string v+ is not centered. That is, by numbering
the boundary components of F+ ∪ F− from ∂A ∩ N(J) in one direction by
{1, 2} and the other direction as {−1,−2}, the boundary components with
symmetric numbering, e. g. 1 and −1, don’t belong to the same surface F±.
(See [13].)

Continuing as in [13], we take n parallel copies of F+, F+
i for i = 1, . . . , n,

and one copy of F− and glue them through nested tubing operations, con-
necting their boundary components following the numeration from ∂A∩N(J)
in both directions of ∂N(J): {1, . . . , k} and {−1, . . . ,−k}, respectively. So,
the boundary component i is connected to the boundary component −i, for
i = 1, . . . , k − 1 in this order. The resulting surface F has genus n + 1 and
two meridional boundary components, the boundary components k and −k,
and is essential in the exterior of J . (See [13] for more details.)

F+
1

F+
2 F−

Q+

Q−

J

123

−1

−2 −3

Figure 1: A schematic representation of the surfaces F+
1 and F+

2 in Q+,
the surface F− in Q−, and the numbering of the boundary components of
F+
1 ∪ F+

2 ∪ F− from a meridional accidental annulus A of F+ in Q+.

If we order the copies of F+ on this construction from the inside of Q+ to
the outside, we have that k belongs to F+

1 and −k to F+
2 . (See Figure 1.) Let

us consider the surface S bounding a ball B′ intersecting u+ at a trivial arc
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between the points associated with k and −k, and the other ball bounded
by S let us denote it by B. Denote the string J −B′ ∩ u+ in B by s. Let Zi,
for i = 1, 2, be the copy of Z corresponding to F+

i . Let us consider the space
G between Z1 and Z2, and by GB the intersection B ∩ G. Denote the arc
component of u+ ∩ GB connecting S and Z1 by a+ and the arc component
of u+ ∩ GB disjoint from S by a′+. Let t be a properly embedded arc in B
that lies in the interior of GB. We choose t so that it is trivial in the exterior
of a+ in GB and co-bounds a disk in GB with an arc in S that intersects
a′+ once, being disjoint from s and F+

i , for i = 1, 2, otherwise. Consider the
tangle (B; s ∪ t). (See Figure 2.)

F

GB

S

t

s

B

Figure 2: A schematic illustration of the tangle (B; s∪ t) and the surface F
in the exterior of of s ∪ t in B, and the space GB.

Lemma 1. The tangle (B; s ∪ t) is essential, atoroidal, and each surface F
is essential in the exterior of s ∪ t in B.

Proof : First we observe that each surface F is essential in the exterior of s∪t
in B, denoted EB; otherwise, as the arc B′ ∩ J is a trivial single arc in B′, it
would be inessential in the exterior of J , which is a contradiction.
Now we show that the tangle (B; s∪t) is essential. Suppose, by contradiction,
that it is not, and D is a compressing disk for S − s ∪ t in B − s ∪ t. As
Z1 and Z2 are essential in EB we have that D is disjoint from Z1 and Z2: If
D intersects Zi it intersects it in simple closed curves each of which bounds
a disk in D. By choosing an innermost one in D, this curve also has to
bound a disk in Zi, which we can use to cut and paste D and eliminate
this intersection with Zi. Proceeding in this way we can assume that D is
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disjoint from Zi, i = 1, 2. Hence, D is in GB. Let E in GB be a disk co-
bounded by t and an arc in S, and intersecting a′+ once at a single point p.
If E is disjoint from D, as D is disjoint from Z1 ∪ Z2, it cuts a ball from B
containing E which is in GB. But then D separates E from a′+, which is a
contradiction as a′+ intersects E. Otherwise, assume the intersection of E
with D to be non-empty and with minimal number of components |E ∩D|.
In case there are simple closed curves in E ∩ D consider an innermost one
in E, say c. Let Ec be the disk cut by c in E. If Ec is disjoint from p, by
cutting and pasting D along this disk we reduce |E ∩ D|, contradicting its
minimality. If Ec contains p, together with the disk bounded by c in D we
have a sphere in S3 intersecting J once, which contradicts, for instance, the
3-dimensional Schoenflies theorem. Then, E∩D is a collection of arcs. Let b
be an innermost arc of E ∩D in E and E ′ the corresponding innermost disk.
Following as for the simple closed curve case we get a contradiction. Hence,
the tangle (B; s ∪ t) is essential.
At last we prove that (B; s ∪ t) is atoroidal. Let T be a torus in B − s ∪ t.
As J is hyperbolic the torus T is inessential in B− s. As the 2-string tangles
(Q±;u± ∪ v±) are atoroidal, for J being hyperbolic, the torus T is in GB,
disjoint from Z1 and Z2. As t is trivial in the exterior of a+ in GB there
is a disk O co-bounded by t and an arc in ∂(GB − N(a+)). If T intersects
O by considering an innermost curve c of this intersection in O we obtain a
compressing disk for T in B−s∪ t or we eliminate that intersection in case c
bounds a disk in T by cutting and pasting. If DT is a compressing disk of T
in B − s. Suppose DT intersects O and assume that |DT ∩O| is minimal. If
there is a simple closed curve in DT ∩O, consider an innermost one in O with
innermost disk O′. By cutting and pasting DT along O′ we eliminate this
intersection, reducing |DT ∩ O| and contradicting its minimality. If DT ∩ O
has no simple closed curves, let b be an outermost arc of the intersection in
O with corresponding outermost disk O′. The ends of b are in t, as DT is
disjoint from ∂GB, and we can isotope t along O′ through DT eliminating
this intersection and contradicting the minimality of |DT ∩ O|. Then DT is
disjoint from O, and, therefore, T is inessential in B − s∪ t. So, (B; s∪ t) is
atoroidal.

3. A collection of hyperbolic knots
Let us consider a knot K decomposed into two 2-string tangles by the

sphere S: a 2-string essential atoroidal tangle (B; s ∪ t) with meridional
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essential surfaces of any positive genus and exactly two boundary components
in ∂N(s), which from Lemma 1 we know exist; and a 2-string tangle (B′; s′∪
t′). Denote these tangles by T and T′ respectively, as illustrated schematically
in Figure 3(a). We assume T′ has a decomposition into a 2-string essential
atoroidal tangle (B′1; s

′
1∪t′1) and a 3-string essential atoroidal tangle (B′2; s

′
2∪

t′2), denoted T′1 and T′2 respectively, by a disk D, with ∂D separating in S the
end of s that meets t′ from the other ends of s∪t, as illustrated schematically
in Figure 3(b). Denote the set of equivalence classes, up to ambient isotopy,
of these knots by K.

(a)

B

s

t

B′

s′

t′S

(b)

B′2

s′3
s′2

B′1

s′1

t′1S

D

Figure 3: Schematic representation of the tangles T, T′, T′1 and T′2.

We denote the exterior of the strings of T, T′, T′1 and T′2 in B, B′, B′1 and
B′2 by EB, EB′, EB′1

and EB′2
, respectively. Let PD denote the punctured disk

D ∩ EB′.

Lemma 2. The thrice punctured disk PD is essential in EB′.

Proof : This lemma follows from PD being essential in EB′i
∩ ∂B′i and from

EB′i
∩ ∂B′i being essential in B′i (for T′i being an essential tangle), for i =

1, 2.

Lemma 3. The tangle T′ is essential and atoroidal.

Proof : Suppose, by contradiction, that T′ is inessential. Let E be a disk in
B′ separating the strings s′ ∪ t′. Let us consider the intersection of E with
PD and assume that |E ∩ PD| is minimal among all choices of E. If E ∩ PD

has circle components, let α be an innermost one in E, otherwise let α be an
outermost arc of E∩PD in E, and denote by OE the corresponding outermost
disk. Hence, as PD is essential in EB′, from Lemma 2, the disk OE cannot
be a (boundary) compressing disk for PD. Then, α cuts a disk OD from
PD. By cutting and pasting E replacing OE with OD we reduce |E ∩ PD|,
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contradicting its minimality. Hence T′ is essential.
Suppose now, also by contradiction, that B′−s′∪t′ has an embedded essential
torus P . As T′1 and T′2 are atoroidal, P intersects D. Let us consider the
intersection of P with D and assume that |P∩D| is minimal among all choices
of P . Suppose a component of P ∩ D bounds a disk in P and consider an
innermost disk OP among these in P . As PD is essential in EB′, ∂OP bounds
a disk OD in PD. By cutting and pasting P replacing OP with OD we reduce
|P ∩D|, contradicting its minimality. Hence, all components of P ∩D in P
are parallel essential curves in P and the components of P − P ∩D are all
annuli. As P is a torus and D is separating, there are at least two annuli and
one of these, say A, is in B′2 and has both boundary components in D. As
each string of T′2 has only one end in D, the annulus A′ that ∂A bounds in
D is disjoint from s′ ∪ t′. Let P ′ be the torus A∪A′. In case the component
P ′ bounds in B′2 is not solid torus, as A is incompressible in B′2 − s′2 ∪ t′2,
this implies that P ′ is incompressible in B′2− s′2 ∪ t′2, contradicting T′2 being
atoroidal. Otherwise, the component P ′ bounds in B′2 is a solid torus, and,
therefore, we have that A is boundary compressible, and hence is parallel
to A′. Then, we can isotope P along A through A′ and reduce |P ∩ D|,
contradicting its minimality. That is, T′ is atoroidal.

Lemma 4. The knot K is hyperbolic.

Proof : The knot K has a 2-string atoroidal essential tangle decomposition, as
T is essential and atoroidal, by definition, and T′ is essential and atoroidal,
from Lemma 3. The statement then follows from Theorem 1 in [27] by
Soma.

Lemma 5. The exterior of the knot K has meridional essential surfaces in
B of any positive genus and exactly two boundary components in ∂N(s).

Proof : Let F be a surface in B as in Lemma 1, which can be chosen of any
positive genus and two boundary components in ∂N(s).
As F is essential in EB and ∂B is essential in E(K), it follows that F is
essential in E(K).

Lemma 6. The set K is an infinite collection of hyperbolic knots.

Proof : From Lemma 4, each element of K is an hyperbolic knot.
Consider a 2-string tangle T decomposed by a collection of disjoint disks
{X1, . . . , Xn}, n ∈ N, in B, each intersecting s ∪ t at two points, one point
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from each string, such that the 2-string tangle Ti cut by Xi ∪Xi+1 from T is
essential and atoroidal. For Ti being essential, also such a T is essential. From
Theorem 2 of [27], as Ti, i = 1, . . . , n, is atoroidal, we have that T is atoroidal.
If we consider T1 as in Lemma 1, we have that the surfaces in the exterior
T remain essential in the exterior of T. Hence, the tangle T has meridional
essential surfaces of any positive genus and exactly two boundary components
in the boundary of a regular neighborhood of one string. Therefore, there
are knots in K with (B; s∪ t) as T. Denote by Kn a knot of the collection K

with the tangle T as just defined, for each n ∈ N. Note that Kn has at least
n disjoint non-parallel meridional planar essential surfaces in its exterior.
Therefore, from Kneser-Haken finiteness theorem for essential surfaces with
boundary properly embedded in 3-manifolds, as for instance in Jaco’s book
[9], and from knots being determined by their complements [5], we have that
the set of equivalence classes of knots {Kn : n ∈ N} contains an infinite
subset of non-equivalent knots. As K contains this set, it also has infinite
cardinality.

4.Meridional essential surfaces from a branched surface
In this section we prove the Theorem 1 by showing that each knot K in K

is as in the statement of the theorem.

Lemma 7. Suppose that the exterior of K ∈ K has a meridional essential
surface F in B of genus g and 2n boundary components with exactly two
boundary components in the boundary of N(s). Then the exterior of K has
meridional essential surfaces of genus g and 2b boundary components for
every b ≥ n.

Proof : We define the surfaces in the exterior of K as in the statement of
the lemma, denoted by F0, . . . Fj, . . ., where Fj has 2(n + j) boundary com-
ponents, and afterwards we prove they are essential in E(K). We will use
branched surface theory for this process.
The surface F0 is defined as F in E(K). We isotope the closest boundary
component of F in ∂N(s) to ∂D (which we can isotope to be in ∂N(s)) and
identify it with ∂D. We define F1 as the resulting surface from the union of
F and PD along ∂D.

Proposition 1. The surfaces F0 and F1 are meridional essential surfaces in
E(K).
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Proof : The surface F0 is essential in E(K) from Lemma 5. Suppose, by
contradiction, that F1 is inessential in E(K). Considering a (boundary)
compressing disk for F1 in E(K), and its intersection with S, through an in-
nermost curve\outermost arc argument, we obtain a (boundary) compressing
disk for F in EB or for PD in EB′, which is a contradiction to F being essential
in EB or PD being essential in EB′.

For the remaining surfaces, Fj for j ≥ 2, we will call on branched surfaces.
First, we start by revising the definitions and result relevant to this paper
from Oertel’s work in [22], and also Floyd and Oertel’s work in [3].
A branched surface R with generic branched locus is a compact space locally
modeled on Figure 4(a). Hence, a union of finitely many compact smooth
surfaces in a 3-manifold M , glued together to form a compact subspace of M
respecting the local model, is a branched surface. We denote by N = N(R)
a fibered regular neighborhood of R (embedded) in M , locally modelled on
Figure 4(b). The boundary of N is the union of three compact surfaces
∂hN , ∂vN and ∂M ∩ ∂N , where a fiber of N meets ∂hN transversely at its
endpoints and either is disjoint from ∂vN or meets ∂vN in a closed interval
in its interior. We say that a surface S is carried by R if it can be isotoped
into N so that it is transverse to the fibers. Furthermore, S is carried by R
with positive weights if S intersects every fiber of N . If we associate a weight
wi ≥ 0 to each component on the complement of the branch locus in R we say
that we have an invariant measure provided that the weights satisfy branch
equations as in Figure 4(c). Given an invariant measure on R we can define
a surface carried by R, with respect to the number of intersections between
the fibers and the surface. We also note that if all weights are positive then
the surface carried can be isotoped to be transverse to all fibers of N , and
hence is carried with positive weights by R.

(a) (b) (c)

∂ Nh

∂ Nv
w3 = w2 + w1

w1

w2w3

Figure 4: Local model for a branched surface, in (a), and its regular neigh-
borhood, in (b).

A disc of contact is a disc O embedded in N transverse to fibers and with
∂O ⊂ ∂vN . A half-disc of contact is a disc O embedded in N transverse to
fibers with ∂O being the union of an arc in ∂M ∩ ∂N and an arc in ∂vN .
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A monogon in the closure of M − N is a disc O with O ∩ N = ∂O which
intersects ∂vN in a single fiber. (See Figure 5.) We say a branched surface R
in M contains a Reeb component if R carries a compressible torus or properly
embedded annulus, transverse to the fibers of N , bounding a solid torus in
M . (This is a weaker version of the definition of Reeb component in [22] by
Oertel.)

(a)

monogon

(b)

disk of
contact

Figure 5: Illustration of a monogon and a disk of contact on a branched surface.

A branched surface embedded R in M is said incompressible if it satisfies
the following three properties:

(i) R has no disk of contact or half-disks of contact;
(ii) ∂hN is incompressible and boundary incompressible in the closure

of M − N , where a boundary compressing disk is assumed to have
boundary defined by an arc in ∂M and an arc in ∂hN ;

(iii) There are no monogons in the closure of M −N ;

and without Reeb components if it satisfies the following property:

(iv) B doesn’t carry a Reeb component.

The following theorem proved by Oertel in [22] let us infer if a surface
carried by a branched surface is essential. Note that condition (iv), R not
carrying a torus or an annulus cutting a solid torus from M , implies the
non-existence of Reeb components in the sense of Oertel [22].

Theorem 2 (Oertel, [22]). If R is an incompressible branched surface without
Reeb components (i.e. satisfies (i)-(iv)) and R carries some surface with
positive weights then any surface carried by R is essential.

We now proceed to define the surfaces Fj, j ≥ 2, and prove that they are
essential, through a Branched surface under the conditions of Theorem 2 that
we proceed to construct.
Let s′2 be the string of T′2 connecting an end of s to an end of s′1 in T′1. (See
Figure 3.) Denote by ei, i = 1, 2, the boundary components of F in N(s)
closer to s′i, i = 1, 2, respectively.
Denote by A the annulus component of ∂N(K)− F in the boundary of the
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component of N(K)− S which contains s. The boundary components of A
bound two disjoint annuli in F with ei, i = 1, 2, respectively, and denote by
bi, i = 1, 2, the corresponding boundary components of A. Denote by A′ the
annulus component of ∂N(K)−F ∪D in the boundary of the component of
N(K) − F ∪D which contains s′2. We assume that ∂D is b1, and also that
∂A′∩F is b2, through an isotopy if necessary. Let AD and P ′D be the annulus
and punctured disk component of PD−PD∩A′, respectively. Denote also by
F the surface obtained from F by removing the two disjoint annuli bounded
by bi ∪ ei, for i = 1, 2, in F .
Consider the union of F , the annuli A, A′ and AD, and the punctured disk
P ′D, and denote the resulting space by R. We smooth the space R on the
intersections of the surfaces F , A, A′, AD and P ′D as explained next. The
annuli A′ and AD are smoothed on PD ∩A′ towards P ′D. The punctured disk
P ′D is smoothed along b1 towards F . The annulus A is smoothed along b1

towards P ′D, and is smoothed along b2 towards F . From the construction,
the space R is a branched surface with sections denoted naturally by F , A,
A′, AD and P ′D, as illustrated in Figure 6.

P ′D

A′

F

A

AD

S

K

Figure 6: A schematic representation of the branched surface R.

Proposition 2. The branched surface R is incompressible and without Reeb
components.

Proof : First we observe that R doesn’t carry a Reeb component. In fact,
if R would carry a torus T , this torus couldn’t be transverse to the regular
neighborhood of sections of R with boundary components, or of sections
of R of positive genus. In this case, it could be transverse only to regular
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neighborhoods of sections A and A′, which are connected only through the
branched locus component corresponding to b2. Hence, A ∪ A′ cannot carry
a closed surface. If R would carry a properly embedded annulus O, this
annulus had to be transverse to the regular neighborhood of sections of R
with boundary components, that is F , AD or P ′D. In case O is transverse
to the regular neighborhood of AD or F , as it is properly embedded, it has
to be transverse to P ′D as well, but in this case it wouldn’t be an annulus,
which is a contradiction. If O is transverse to the regular neighborhood of
P ′D, but not to the one of AD or F , then it is also transverse to the one of
A′ and A, each with weight 1 as O has only two boundary components. But
in this case O would be a twice punctured torus, which is a contradiction.
Therefore, R doesn’t carry an annulus and a torus, and, consequently, it has
no Reeb component.

Now we prove that R is incompressible in E(K). First observe that there
are no (half) disks of contact as no circle on the branched locus of R bounds
a disk in ∂hN(R) and there are no properly embedded arcs on the branched
locus of R. The space N(R) decomposes E(K) into three components: a
component cut from E(K) by F and A, denoted X; a component cut from
E(K) by AD, P ′D, A and A′, denoted X1; a component cut from E(K) by F ,
A′ and P ′D, denoted X2.

As b1 corresponds to ∂vN(R) in ∂X, we have that ∂X∩∂hN(R) corresponds
to the component cut by F in EB. Therefore, as F is essential in EB, ∂X ∩
∂hN(R) is incompressible and boundary incompressible in X; and there are
no monogons in X, otherwise, as s is parallel to A, s would be parallel to F ,
contradicting F being essential in EB.

Similarly, b2 corresponds to ∂vN(R) in ∂X2, and we have that ∂X2∩∂hN(R)
corresponds to F in the exterior of X in E(K). As F is essential in E(K),
following as in the argument for X, we have that ∂X2 ∩ ∂hN(R) is incom-
pressible and boundary incompressible in X2, and there are no monogons in
X2.

In the case of X1, ∂A
′ ∩ AD corresponds to ∂vN(R) in ∂X1, and X1 cor-

responds to the exterior of s′1 ∪ t′1 in B′1, with ∂B′1 corresponding to two
disks singularly glued along b1 corresponding to ∂vN(R) in ∂X1. Hence,
there are no monogons in X1, because any disk intersecting b1 in ∂X1 would
have to intersect it at least twice. Also, as T′1 is essential, ∂X1 ∩ ∂hN(R) is
incompressible and boundary incompressible in X1.
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Hence, ∂hN(R) is incompressible and boundary incompressible in E(K),
and there are no monogons of R or disks of contact in R. Therefore, R is an
incompressible branched surface.

Let us define F2 as the surface carried by R with invariant measure WF = 1,
WA = 1, WA′ = 0, WAD

= 2 and WP ′D
= 2. Observe that F2 is a meridional

surface in the exterior of K with 2(n + 2) boundary components: 2n − 2
from F , 2 from AD and 4 from P ′D. Denote by Fj, j ≥ 3, the surface carried
with positive weights by R with invariant measure WF = 1, WA = j − 1,
WA′ = j − 2, WAD

= 2 and WP ′D
= j. Note that Fj, j ≥ 3, is a meridional

surface in the exterior of K with 2(n+j) boundary components: 2n−2 from
F , 2 from AD and 2j from P ′D.

The surfaces F0 and F1 have genus g and the number of boundary compo-
nents is 2n and 2(n+ 1), respectively. The Euler characteristic of Fj, j ≥ 2,
is WF · (2 − 2g − 2n) + WA · 0 + WA′ · 0 + WAD

· 0 + WP ′D
· (−2j). That is,

2− 2g− 2(n+ j). Hence, as Fj has 2(n+ j) boundary components, its genus
is g. We finish the proof of Lemma 7 with the following proposition.

Proposition 3. The surfaces Fj, j ≥ 2, are essential in E(K).

Proof : From Proposition 2 we have that R is an incompressible branched
surface without Reeb components. We also have that the surfaces Fj, j ≥ 3,
are carried with positive weights by R. Hence, we are under the conditions
of Theorem 2. It then follows that all surfaces carried by R are essential.
Therefore, as Fj, j ≥ 2, is carried by R, it is essential in E(K).

Proof of Theorem 1. Let us consider a knot K in K. Applying Lemma 7 with
F the 4-punctured sphere S − N(s ∪ t) we have the statement of Theorem
1(a).
Let F be a surface of any positive genus and two boundary components as in
Lemma 5. As F is separating inB and has exactly two boundary components,
the boundary components have to be on the regular neighborhood of the same
string, which we assume to be s. Hence, applying Lemma 7 with F , we have
the statement of Theorem 1(b). From Lemma 6, we have that K is an infinite
collection of hyperbolic knots.
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