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Abstract: The fact that equalizers in the context of strongly Hausdorff locales
(similarly like those in classical spaces) are closed is a special case of a standard
categorical fact connecting diagonals with general equalizers. In this paper we ana-
lyze this and related phenomena in the category of locales. Here the mechanism of
pullbacks connecting equalizers is based on natural preimages that preserve a num-
ber of properties (closedness, openness, fittedness, complementedness, etc.). Also,
we have a new simple and transparent formula for equalizers in this category pro-
viding very easy proofs for some facts (including the general behavior of diagonals).
In particular we discuss some aspects of the closed case (strong Hausdorff property),
and the open and clopen one.
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Introduction

The diagonal morphism is an equalizer of the projections, and pullbacks pull
back equalizers, as in the following diagram

P

g

��

Equ(f1,f2)
// A

〈f1,f2〉
��

fi

%%
B

δB

// B ×B pi
// B

This simple categorical fact covers a number of facts connecting the be-
haviour of diagonals in categories with the general behaviour of equalizers (a

Received August 20, 2020.
The authors gratefully acknowledge financial support from the Centre for Mathematics of

the University of Coimbra (UIDB/00324/2020, funded by the Portuguese Government through
FCT/MCTES) and from the Department of Applied Mathematics (KAM) of Charles University
(Prague).

1



2 J. PICADO AND A. PULTR

very special example being the closed equalizers in Hausdorff spaces related
to the fact that the Hausdorff property of X is characterized by the closed
diagonal in X ×X, for more see [2]). In this paper we concentrate on some
aspects of this phenomenon in the category of locales. In this category we
can exploit some expedient concrete facts: subobjects, the so called sublo-
cales, are very transparent entities, easy to work with, pulling back is being
done by preimages, again transparent and closely reminiscent to the classical
preimages both in the form and capability (preserving closedness and open-
ness and other useful properties, some of them more relevant in the point-free
context then classically), and a new very simple formula for equalizer.

In Preliminaries we recall the standard notation and facts, and add, for
convenience of the reader, a brief description of binary coproducts of frames
in the form it will be used. Then, we interpret the mentioned categorical
fact and one of its straightforward extensions in the category of locales, and
using the properties of preimages in this context list a number of properties
of equalizers inherited from properties of the diagonal. In particular we turn
to the closedness, concerning the famous Isbell’s (strong) Hausdorff property,
briefly mention the closed equalizer theorem, and discuss a certain criterion
of this property. In the following section we then introduce a simple formula
for equalizers in the category of locales and use it for (three-line) proofs
of basic properties of the diagonal in general. Next, adding the closedness
yields, again in a very simple way, basic characteristics of strongly Hausdorff
frames, the TU property and the Dowker-Strauss characteristic. In the last
section we briefly discuss the cases of open and clopen diagonals.

1. Preliminaries

1.1. We will use the standard notation for posets; in particular we will write
for subsets A ⊆ (X,≤)

↓A = {x | ∃a ∈ A, x ≤ a}, ↓a = ↓{a},

↑A = {x | ∃a ∈ A, x ≥ a}, ↑a = ↑{a},
and speak of the A with ↓A = A resp. ↑A = A as of down-sets resp. up-
sets. Our posets will be typically complete lattices; the suprema (joins) of
subsets will be denoted by

∨
A,
∨
i∈J ai, a ∨ b etc., and infima (meets) by∧

A,
∧
i∈J ai, a ∧ b etc.
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1.2. Adjoint maps. Monotone maps f : X → Y , g : Y → X are said to
be adjoint, f to the left, g to the right (we write f a g, g = f ∗, f = g∗),
whenever

f(x) ≤ y iff x ≤ g(y).

This is characterized by fg(y) ≤ y and x ≤ gf(x), and if f a g then f (resp.
g) preserves all the existing suprema (resp. infima). On the other hand,

1.2.1. if X, Y are complete lattices then an f : X → Y preserving all
suprema (a g : Y → X preserving all infima) has a right (left) adjoint.

1.3. Heyting algebras. A bounded lattice (poset with finite suprema and
infima) L is called a Heyting algebra if there is a binary operation x→ y (the
Heyting operation) such that for all a, b, c in L,

a ∧ b ≤ c iff a ≤ b→ c. (Hey)

(Hey) says precisely that

(H1) for every b the mapping b → (−) : L → L is a right adjoint to (−) ∧
b : L→ L

and hence the operation → , if it exists, is uniquely determined. From 1.2 it
immediately follows that

(H2) in a Heyting algebra one has (
∨
A)∧ b =

∨
a∈A(a∧ b) for any A ⊆ L,

b→ (
∧
A) =

∧
a∈A(b→ a), and (

∨
B)→ a =

∧
b∈B(b→ a).

1.3.1. A few Heyting rules. We will often use computation with the op-
eration → . Here are some immediate consequences of (Hey):

(1) a ≤ b→ a, (2) 1→ a = a, (3) a→ b = 1 iff a ≤ b,
(4) a ∧ (a → b) ≤ b and consequently (using (1)) a ∧ (a → b) = a ∧ b, (5)
a ≤ b→ c iff b ≤ a→ c.
And also the three further useful rules are very simple.
(6) a→ (b→ c) = (a ∧ b)→ c = b→ (a→ c)
(we have x ≤ a→ (b→ c) iff x∧a ≤ b→ c iff x∧a∧b→ c iff x ≤ (a∧b)→ c).
(7) a→ b = a→ c iff a ∧ b = a ∧ c
(⇒ by (4), ⇐: By (3) and(H2), a→ b = (a→ a) ∧ (a→ b) = a→ (a ∧ b) =
a→ (a ∧ c) = a→ c).
(8) x = (x ∨ a) ∧ (a→ x)
(By (H1), (4) and (1), (x ∨ a) ∧ (a→ x) = (a ∧ (a→ x) ∨ (x ∧ (a→ x) ≤ x,
by (1), x ≤ (x ∨ a) ∧ (a→ x)).
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1.4. Frames and coframes. A frame, resp. coframe, is a complete lattice
L satisfying the distributivity law

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A}, (frm)

resp. (
∧
A) ∨ b =

∧
{a ∨ b | a ∈ A}, (cofrm)

for all A ⊆ L and b ∈ L; a frame (resp. coframe) homomorphism preserves
all joins and all finite meets (resp. all meets and all finite joins). The lat-
tice Ω(X) of all open subsets of a topological space X is an example of a
frame, and if f : X → Y is continuous we obtain a frame homomorphism
Ω(f) : Ω(Y ) → Ω(X) by setting Ω(f)(U) = f−1[U ]. Thus we have a con-
travariant functor

Ω: Top→ Frm

from the category of topological spaces into that of frames.
Note that (frm) makes by 1.2.1 every frame to a Heyting algebra.

1.5. The concrete category of locales. The functor Ω is on a very sub-
stantial subcategory of Top (that of sober spaces1) a full embedding. Thus,
but for the contravariance, we can view frames as a generalization of space,
and the contravariance is mended by considering the category of locales
Loc = Frmop.

It is of advantage to represent it as a concrete category as follows. Since
frame homomorphisms h : M → L preserve all joins they have uniquely de-
fined right adjoints f = h∗ : L→ M . We will represent Loc as the category
with frames for objects (in this context we often speak of frames as of locales)
and meet preserving maps f : L→M such that f ∗ are frame homomorphisms
(the localic maps) for morphisms.

1.5.1. Here is a useful characterization (the so called Frobenius equality):

a meet preserving f : L→M is a localic map iff f(a) = 1 only
for a = 1 and f(f ∗(a)→ b) = a→ f(b).

1.6. Binary coproduct in Frm. In the sequel we will use an explicit de-
scription of the binary coproduct. For this we will need the following facts.

1A space is sober if every completely prime filter F in Ω(X) (that is, an F such that
⋃

i∈J Ui ∈ F
only if Uj ∈ F for some j ∈ J) is {U | x ∈ U} for some x ∈ X – in other words, if every system
of open sets that looks like a neighborhood system is really a neighborhood system of a point. For
instance every Hausdorff space is sober.
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• In the category of bounded semilattices the cartesian product with
the injections and projections as in

Li
ι′i // L1 × L2

((a1,a2)7→aj)
// Lj ,

with ι′1 = (a 7→ (a, 1)) and ι′2 = (a 7→ (1, a)), constitutes a biproduct
(easy to check).
• A quotient of a frame L by a (congruence induced by a) relation R

can be obtained as L/R = {s ∈ L | s is R-saturated} where s is R-
saturated if for all a, b, c, aRb ⇒ (a ∧ c ≤ s iff b ∧ c ≤ s), and that
a homomorphism h : L→ M such that aRb⇒ h(a) = h(b) factorizes
to h : L/R→M by taking the restriction (see e.g. [12, III.11]).

1.6.1. The down-set frame. For a bounded semilattice L (poset with finite
meets and minimal element) consider

D(L) = ({U | ∅ 6= U = ↓U, U ⊆ L},⊆)

and define λ = λL : L→ D(L) by setting λ(a) = ↓a. Obviously,

D(L) is a frame, and λ is a semilattice homomorphism.

The pair (D, λ) establishes a reflection of the category of bounded semilat-
tices into Frm.

Proposition. Let M be a frame and let h : L → M be a semilattice homo-
morphism. Then there is precisely one frame homomorphism h̃ : D(L)→M

such that h̃ · λ = h. It is given by the formula h̃(U) =
∨
{h(a) | a ∈ U}.

1.6.2. Now a coproduct L1 ⊕ L2 of frames Li can be obtained as D(L1 ×
L2)/R with injections

ιi = Li
ι′i // L1 × L2

λ // D(L1 × L2) // D(L1 × L2)/R = L1 ⊕ L2

where the relation R is

R =
{

(
⋃
i∈J
↓(ai, b), ↓(

∨
i∈J

ai, b)) | ai ∈ L1, b ∈ L2

}
∪

∪
{

(
⋃
i∈J
↓(a, bi), ↓(a,

∨
i∈J

bi)) | a ∈ L1, bi ∈ L2

}
and (hence) the R-saturated U ∈ D(L1×L2) are precisely the down-sets such
that for any (ai, b), i ∈ J , in U we have also (

∨
i ai, b) ∈ U , and similarly
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for any (a, bi), i ∈ J , in U also (a,
∨
i bi) ∈ U . Such U will be referred to as

cp-ideals.
In particular there are the cp-ideals

a⊕ b = ↓(a, b) ∪ {(x, y) | x = 0 or y = 0}.
In this notation obviously ι1(a) = a⊕1, ι2(b) = 1⊕b, U =

∨
{a⊕b | a⊕b ⊆ U}

for all U ∈ L1⊕L2, and if a, b 6= 0 and a⊕ b ⊆ a′⊕ b′ then a ≤ a′ and b ≤ b′.

1.6.3. Diagonal. Thus, the codiagonal frame homomorphism δ∗ : L⊕L→ L
(defined by δ∗ιi = id) is given by

δ∗(a⊕ b) = δ∗(a⊕ 1) ∧ δ∗(1⊕ b) = a ∧ b
resulting in

δ∗(U) =
∨
{a ∧ b | a⊕ b ⊆ U} =

∨
{a ∧ b | (a, b) ∈ U}.

It is adjoint to the localic diagonal map δ : L→ L⊕ L given by

δ(a) = {(u, v) | u ∧ v ≤ a}.
1.6.4. Discrete coproducts. The functor Ω from 1.4 does not generally
send products to coproducts. For locally compact spaces, however, it does,
under the axiom of choice ([7], see also [10, 12]). We will need only the
special case of the Boolean frames P(X) (the “discrete case”) and there it is
constructive. We will present a proof; it is a short easy exercise of working
with cp-ideals.

Denote by pi : X1×X2 → Xi the projections, by ιi : P(Xi)→ P(X1)⊕P(X2)
the coproduct injections, and by µ : P(X1) ⊕ P(X2) → P(X1 × X2) the
homomorphism defined by µ ιi = Ω(pi).

Proposition. µ is an isomorphism.

Proof : We easily see that

µ(U) =
⋃
{M ×N | M ⊕N ⊆ U} =

⋃
{M ×N | (M,N) ∈ U}.

µ is obviously onto, and since all the frames in question are regular2, to
see that it is an isomorphism it suffices to prove that µ(U) = X1 × X2

only if U = P(X1) × P(X2). Thus, let U = {(Mi, Ni) | i ∈ J} be a cp-
ideal and let µ(U) =

⋃
i∈JMi × Ni = X1 × X2. For a y ∈ X2 set J(y) =

{i | y ∈ Ni}. Then obviously: for every i ∈ J(y), (Mi, {y}) ∈ U (since U

2If L is regular then a homomorphism h : M → L is one-to-one whenever h(a) = 1 implies that
a = 1 – see e.g. [12, V.5.6].
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is a down-set), (X1, {y}) = (
⋃
i∈J(y)Mi, {y}) ∈ U (since U is a cp-ideal),

and (X1, X2) = (X1,
⋃
{y | y ∈ X2}) ∈ U (since U is a cp-ideal). Thus,

U = ↓(X1, X2) = P(X1)×P(X2).

1.7. Sublocales. The sublocales, subobjects of L in Loc, are, naturally, the
subsets such that the embedding map is an extremal monomorphism. It
turns out that they are precisely the S ⊆ L such that

(S1) for every M ⊆ S,
∧
M ∈ S, and

(S2) for every x ∈ L and every s ∈ S, x→ s ∈ S.

Any intersection of sublocales is a sublocale so that we have a complete
lattice S(L) of sublocales of L with the join given by the formula

∨
i∈J Si =

{
∧
M | M ⊆

⋃
i∈J Si}. One has that

S(L) is a coframe.

Each element a ∈ L is associated with a closed sublocale c(a) and an open
sublocale o(a),

c(a) = ↑a and o(a) = {a→ x | x ∈ L} = {x ∈ L | a→ x = x}
(the equivalence of the two expressions for o(a) immediately follows from
1.3.1(6)). These special sublocales extend the concepts of open and closed
subspaces, and behave as they should: in Ω(X) they precisely correspond
to the homonymous subspaces, they are complements of each other, all joins
and finite meets of open sublocales are open, and similarly with finite joins
and arbitrary meets of closed sublocales.

1.7.1. It is easy to check that the homomorphisms associated with the
(localic) embeddings c(a) ⊆ L resp. o(a) ⊆ L are given by

x 7→ a ∨ x resp. x 7→ a→ x.

1.8. Images and preimages. If f : L→M is a localic map and if S ⊆ L is
a sublocale then the standard set-theoretical image f [S] is also a sublocale.
The set preimage f−1[T ] of a sublocale T ⊆M is generally not one, but it is
a subset closed under meets and hence (recall the formula for

∨
i Si in S(L)

above) we have the sublocale

f−1[T ] =
∨
{S | S ∈ S(L), S ⊆ f−1[T ]},

the localic preimage of T under f . One has the adjunction

f [S] ⊆ T iff S ⊆ f−1[T ],

and f−1[−] : S(M)→ S(L) is a coframe homomorphism.
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(Localic) preimages of open resp. closed sublocales are open resp. closed
and one has

f−1[o(a)] = o(f ∗(a)) and f−1[c(a)] = f−1[c(a)] = c(f ∗(a)).

For more about frames and locales see, e.g., [10, 12].

2. Standard facts, and what they say in Loc

2.1. P-separation. Let P be a property of monomorphisms in a category C
with pullbacks and binary products. Recall that we speak of P being pullback
stable if in every pullback

P

m′

��

f ′
// C

m

��

A
f

// B

with m a P-monomorphism, m′ is a P-monomorphism.
If the diagonal ∆B : B → B × B has the property P we say that B is
P-separated ([4]).

Convention. In categories in which we have subobjects S of A represented
by specific monomorphisms m : S → A we speak of S as having the property
P if m has it. Indeed in the concrete categories we speak in this article,
the property in question comes first as a property of concrete subobject (the
diagonal subspace in X × X in Top, the diagonal sublocale in Loc) which
is then viewed also as a property of the embedding morphism.

2.2. The following two facts from [4, Theorem and Corollary 4.3] (originally
presented in [3, Propositions 10.1, 10.7] in terms of a closure operator C in
the category) play a fundamental role.

2.2.1. Theorem. Let P be pullback stable. Then B is P-separated iff for
any pair of morphisms f1, f2 : A→ B, the equalizer Equ(f1, f2) ⊆ A has the
property P.

2.2.2. Theorem. Let P be pullback stable and let B be P-separated. Then
every A such that there is a monomorphism m : A→ B is P-separated.
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2.3. Recall 1.8. In any category with a factorization system (E ,M) and
pullbacks, the right adjoint to the direct image is given by pullback. Hence,
we have

Proposition. Let f : L→M be a localic map and let S ⊆M be a sublocale.
Then

f−1[S]

g

��

⊆
// L

f

��

S
⊆

// M

is a pullback.

Note. It might be instructive to see this directly from the concrete form of
the preimage in 1.8. If fα = jβ in the diagram

X α

))

β

  

f−1[S]

g

��

k=⊆
// L

f

��

S
j=⊆

// M

then α(x) ∈ f−1[S], but since α[X] is a sublocale, α(x) ∈ f−1[S] and we can
define γ : X → f−1[S] by γ(x) = α(x). Then kγ = α and jgγ = fkγ = fα =
jβ, and hence gγ = β. Since k is one-to-one, γ is uniquely defined.

2.4. Preimages in the category Loc are very close to set-theoretic preim-
ages (recall 1.8), and behave very nicely with respect to the geometry of
sublocales. Preimages of open resp. closed sublocales are open resp. closed
(and joins and meets of such sublocales are preserved precisely as unions and
intersections of such subsets in the classical topological spaces are). Further-
more (again similarly like the classical preimage), for every localic map f ,
f−1[−] : S(M) → S(L) is a lattice (indeed coframe) homomorphism. Hence
we have a number of pullback stable properties for which the Theorem 2.2.1
can be applied. This concerns, for instance,

(a) closedness,
(b) openness,
(c) clopenness,
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(d) being a meet of open sublocales (fittedness [8, 5]), or a meet of at
most κ many open sublocales,

(e) complementedness,
(f) being a finite combination of open and closed sublocales (a strong

form of complementedness).

Just to give an example of a concrete fact: for the P from (d), if M is fit,
then so is M ⊕M , and in particular the diagonal sublocale is fitted, that is,
M is P-separated. Hence, we obtain

Proposition. Let M be fit and let L be arbitrary. Then for any pair of localic
maps f1, f2 : L→M the equalizer Equ(f1, f2) is fitted.

2.5. Property (sH), strongly Hausdorff frames. The P from (a) above
concerns the well known strong Hausdorff property suggested by Isbell in [8],
abbreviated by (sH). Here we immediately obtain the fundamental property
of this separation axiom

2.5.1. Corollary. M is strongly Hausdorff iff for any pair of localic maps
f1, f2 : L→M the equalizer Equ(f1, f2) is closed.

2.5.2. Note. The closedness of the equalizer Equ(f1, f2) was proved first by
Banaschewski for regular M ([2]). The fact that it holds more generally for
(sH) frames was later observed in Clementino’s PhD Thesis ([3, Proposition
10.1, Example 10.6.4]), as a particular example of the general categorical
stability fact (with the property P replaced by a closure operator C). The
novelty in the present paper is the technique of preimages taken as concrete
sublocales.

In the following two sections we will analyze the closedness case in view of
a new very transparent formula for the equalizer in Loc.

2.5.3. Openness. The case (b), openness has also already attracted at-
tention ([9],[12]). In [9] it was shown that it characterizes discrete locales
(atomic Boolean algebras). It will be analyzed (with a new proof of the
characterization) in the last section.

2.6. Extending by monomorphisms. Recall 2.2.2. This may be not very
conspicuous, but in a category with a non-trivial system of monomorphisms
it is in fact a very strong criterion. In particular in the category of locales
the structure of monomorphisms is fairly wild (the category Loc is not well-
powered [10, II.2.10]): there are monomorphisms m : A → B such that the
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size of A arbitrarily exceeds the size of B (in the language of frames, epimor-
phisms e : B → A with huge A’s).

Also, it presents us with a handy criterion of the strong Hausdorff property
of spaces. A Hausdorff space is not necessarily strongly Hausdorff as a locale
and it is not necessarily easy to distinguish the two properties without a
laborious analysis of a localic square of the space. But a regular space is
automatically strongly Hausdorff, and we can prove the strong Hausdorff
property by showing that the topology in question is an epimorphic target
in frames. See the following example (note that the one-to-one embedding
onto the larger topology is an epimorphism in Frm).

2.6.1. Example. In a topological space (X, T ) choose a closed set F and
an open one, O, and define a new topology TOF on X,

TOF = {U ∪ ((O ∪ F ) ∩ V ) | U, V ∈ T }.

The T is a subframe of TOF and the embedding is an epimorphism in Frm
by the following proposition (since (XrF ) ∈ T satisfies (O∪F )∪(XrF ) =
X ∈ T and (O ∪ F ) ∩ (X r F ) = O ∩ (X r F ) ∈ T ).

Proposition. Let L be a subframe of M and let M be generated by a subset
S such that for each s ∈ S there is a ts ∈ L such that both s ∨ ts and s ∧ ts
are in L. Then the embedding j : L ⊆M is an epimorphism.

Proof : Let f, g : M → N be frame homomorphisms such that fj = gj.
Consider an arbitrary s ∈ S and the ts from the assumption. Set a =
f(ts) = g(fs). Then f(s)∨ a = g(s)∨ a and f(s)∧ a = g(s)∧ a, and since N
is a distributive lattice we have f(s) = g(s). Since S generates M , f = g.

Thus, if T is strongly Hausdorff (in particular, regular), then by 2.2.2 TOF
is strongly Hausdorff.

In particular consider the usual Euclidean topology T of the closed unit
interval. Take

O =
∞⋃
n=1

( 1

n+ 1
,

1

n

)
and F = {0}.

Then the unit interval equipped with TOF is strongly Hausdorff. It is not
regular, though: indeed, G = { 1

n | n = 1, 2, . . .} is now closed but we easily
see that it cannot be separated from 0.
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2.6.2. Mono-regular frames. Let us call a locale M mono-regular if there
is a regular L and a monomorphism m : M → L. We have seen that a mono-
regular locale is not necessarily regular, while by 2.2.2 it is always strongly
Hausdorff. We have more.

Proposition. Mono-regular locales constitute a reflective (in fact an epire-
flective) subcategory of Loc.

Proof : Obviously, mono-regular locales are closed under limits (they are
closed under products and equalizers). While Loc is not well-powered, it
is co-well-powered, and we can use Theorem 16.8 from [1] to conclude the
reflectivity. Indeed, let E be the class of epimorphisms and M the class of
extremal monomorphisms in Loc. Then Loc is an (E ,M)-category that is
E-co-well-powered, and by the aforementioned theorem a (full, isomorphism-
closed) subcategory of Loc is E-reflective iff it is closed under products and
M-subobjects.

2.7. Problems. (1) We have a reflective subcategory between that of regular
locales and that of strongly Hausdorff ones. The question naturally arises:

Are there strongly Hausdorff locales that are not mono-regular?

(2) The fact that the category of regular locales is also reflective in Loc has
a useful consequence: a locale L is mono-regular iff the regular reflection
ρL : L → R(L) (see [12, p. 93] for an explicit description) is monic. The
question above reduces then to:

Is there a strongly Hausdorff locale L with ρL not monic?

(3) For the property P in 2.4(d), we have seen that any fit locale is P-
separated. What about the converse? Is fitness equivalent to P-separatedness?
In case the answer is negative, a study of mono-fit locales (that is, locales
M for which there is a fit L and a monomorphism m : M → L) would be of
interest.

3. Equalizers and diagonals in Loc: general
formulas

3.1. Theorem. Let f1, f2 : L→M be localic maps. Then

E = Equ(f1, f2) = {s | ∀x, f1(x→ s) = f2(x→ s)}.
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Proof : Using the standard Heyting formulas we immediately learn that E is
a sublocale. Now let g : K → L be a localic map such that f1g = f2g. By
1.5.1 we obtain

f1(x→ g(y)) = f1(g(g∗(x)→ y)) = f2(g(g∗(x)→ y)) = f2(x→ g(y)).

3.1.1. Corollary. Let f1, f2 : L→M be localic maps. Let B be a
∨

-basis of
L. Then

E = Equ(f1, f2) = {s | ∀x ∈ B, f1(x→ s) = f2(x→ s)}.

(Use (H2) in 1.3: (
∨
i xi)→ s =

∧
i(xi → s).)

Technically it is often expedient to use the formula translated in the adjoint
homomorphisms. We have

3.2. Corollary. Let f1, f2 : L → M be localic maps and let h1, h2 : M → L
be the adjoint frame homomorphisms. Let B be a

∨
-basis of L. Then

E = {s | ∀x ∈ B ∀y ∈M, h1(y) ∧ x ≤ s iff h2(y) ∧ x ≤ s}.

(We have f1(x→ s) = f2(x→ s) iff ∀y, (y ≤ f1(x→ s)) ≡ (y ≤ f2(x→ s)),
and y ≤ fi(x→ s) iff hi(y) ∧ x ≤ s.)

3.3. The diagonal in Loc. It is the equalizer D = Equ(p1, p2) with pi the
right adjoints to the frame coproduct injections

ι1 = (y 7→ y ⊕ 1) : L→ L⊕ L, ι2 = (y 7→ 1⊕ y) : L→ L⊕ L.
Thus we obtain from 3.2 for the cp-ideals U , elements of L ⊕ L as in 1.6.2,
the following result:

3.3.1. Theorem. Any of the following two formulas characterize the cp-
ideals that are elements of the diagonal D ⊆ L⊕ L:

∀a, b, c, (a ∧ b)⊕ c ⊆ U iff a⊕ (b ∧ c) ⊆ U (∗)
resp. ∀a, b a⊕ b ⊆ U iff (a ∧ b)⊕ (a ∧ b) ⊆ U. (∗∗)

Proof : Consider the join-basis {a⊕c | a, c ∈ L} of L⊕L. We have ι1(b)∩(a⊕
c) = (b⊕ 1)∩ (a⊕ c) = (b∧ a)⊕ c = (a∧ b)⊕ c and similarly ι2(b)∩ (a⊕ b) =
a⊕ (b ∧ c), translating 3.3 into (∗).

Now if (∗) holds we have (a∧b)⊕(a∧b) ⊆ U iff a⊕(a∧b∧b) = a⊕(b∧a) ⊆ U
iff (a∧a)⊕b ⊆ U , and if we have (∗∗) both (a∧b)⊕c ⊆ U and a⊕(b∧c) ⊆ U
are equivalent with (a ∧ b ∧ c)⊕ (a ∧ b ∧ c) ⊆ U .
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3.3.2. Notes. 1. The formulas (∗) resp. (∗∗) say, of course, the same as
that (a ∧ b, c) ∈ U iff (a, b ∧ c) ∈ U resp. (a, b) ∈ U iff (a ∧ b, a ∧ b) ∈ U .

2. The formulas appear in the literature usually for the closed diagonals
in connection with the strong Hausdorff axiom (see 4.1 below). Note that
they have nothing to do with any special property. Also note how immediate
consequences of the extremely easy formula for the equalizer above they are.

3.4. Proposition. The smallest cp-ideal in D ⊆ L⊕ L is

dL = {(a, b) | a ∧ b = 0}.

Proof : If (a ∧ y) ∧ b = 0 then a ∧ (b ∧ y) = 0, hence dL ∈ D. On the other
hand, if U ∈ D and a ∧ b = 0 then U 3 (a, a ∧ b) and by rule (∗) we obtain
U 3 (a, b) = (a ∧ a, b); hence dL ⊆ U .

3.5. The codiagonal map M ⊕M →M given by δ∗(U) =
∨
{u∧v | (u, v) ∈

U} yields the adjoint diagonal map δ(a) = {(u, v) | u ∧ v ≤ a} and the
diagonal in the sublocale form as

D = DM = {δ(a) | a ∈M}
with minimum d = dM = δ(0) = {(u, v) | u ∧ v = 0}. Thus, the closure
D is equal to ↑dM and we have, in the notation above and with c(h1, h2) =∨
{h1(x) ∧ h2(y) | x ∧ y = 0},

Equ(f1, f2) = f−1[DM ] ⊆ f−1[DM ] = f−1[↑dM ] = ↑h(dM) = ↑c(h1, h2).

Hence for every s ∈ Equ(f1, f2) we have s ≥ c(h1, h2), more explicitly

∀x ∈ L, f1(x→ s) = f2(x→ s) ⇒
⇒ ∀u, v such that u ∧ v = 0, s ≥ h1(u) ∧ h2(v).

(∗)

3.5.1. The implication can be written as

min Equ(f1, f2) ≥ c(h1, h2). (∗∗)
If M is strongly Hausdorff we have the equality (but of course much more
than that).

Here is a simple example showing that (∗∗) need not be an equality. Let L
be the chain {0, 1, . . . , n} and define f : L→ L by

f(x) =

{
x+ 1 for x ≤ n− 2

x otherwise
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(the adjoint frame homomorphism h : L→ L sends 0 to 0, the x with 1 ≤ x ≤
n− 1 to x− 1, and n to n). Then Equ(id, f) = {n− 1, n} while c(id, f) = 0
because x ∧ y = 0 only if x or y is 0.

3.5.2. Question. Under what condition on M (or perhaps on M and L)
one has the equality in (∗∗)? Does it hold for a class of frames M larger than
the strongly Hausdorff ones?

4. More concretely in the strongly Hausdorff
locales

As an immediate corollary of 3.3.1 we obtain

4.1. Theorem. The following statements are equivalent.

(1) DL is closed, that is, L is strongly Hausdorff.
(2) For every cp-ideal U such that U ⊇ dL,

(a ∧ b)⊕ c ⊆ U iff a⊕ (b ∧ c) ⊆ U.

(3) For every cp-ideal U such that U ⊇ dL,

a⊕ b ⊆ U iff (a ∧ b)⊕ (a ∧ b) ⊆ U.

4.1.1. Note. The characterizations of strongly Hausdorff L from (2) and (3)
are usually replaced by the equivalent

(2’) ((a ∧ b)⊕ c) ∨ dL = (a⊕ (b ∧ c)) ∨ dL, resp.
(3’) (a⊕ b) ∨ dL = ((a ∧ b)⊕ (a ∧ b)) ∨ dL.

4.2. The following is, in essence, the Banaschewski coequalizer theorem ([2,
Lemma 1]) extended from regular frames to the strongly Hausdorff ones.

Proposition. Let M be strongly Hausdorff. For frame homomorphisms
h1, h2 : M → L recall the

c(h1, h2) =
∨
{h1(x) ∧ h2(y) | x ∧ y = 0}.

from 3.5. Then the equalizer of f1, f2 : L→M can be written as

↑
∨
{h1(x) ∧ h2(y) | x ∧ y = 0} ⊆ L

where hi are the left adjoint homomorphisms to fi.
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Proof : The homomorphism h : M ⊕M → L defined by hιi = hi is the right
adjoint to the f defined by pif = fi. It is standard (and an immediate
consequence of the fact that U =

∨
{x ⊕ y | (x, y) ∈ U}) that we have

generally h(U) =
∨
{h1(x) ∧ h2(y) | (x, y) ∈ U} and hence in particular

h(dM) =
∨
{h1(x) ∧ h2(y) | x ∧ y = 0}. By 2.3 and 1.5 we obtain the

equalizer as f−1[c(dM)] = c(h(dM)).

4.3. The axiom TU . A frame L is said to be TU
3 if for any two frame

homomorphisms h1, h2 : L→M , h1 ≤ h2 implies h1 = h2 (equivalently, if for
any two localic maps f1, f2 : M → L, f1 ≤ f2 implies f1 = f2). This is an
interesting condition: the formula applied for spaces and continuous maps is
just the very weak axiom of symmetry (that is, x ∈ {y} iff x ∈ {y}), but
already if we consider general M and frame homomorphisms hi : Ω(X)→M
it is much stronger: for instance it is not implied by the (plain) Hausdorff
axiom.

4.3.1. Proposition. (sH ) implies TU .

Proof : Let f1, f2 : L→M be such that f1 ≤ f2. Then h2 ≤ h1 and hence∨
{h1(x) ∧ h2(y) | x ∧ y = 0} ≤

∨
{h1(x) ∧ h1(y) | x ∧ y = 0} =

=
∨
{h1(x ∧ y) | x ∧ y = 0} = 0

and thus the equalizer of f1, f2 is the whole of L, and f1 = f2.

4.4. Dowker-Strauss characterization. In [6], the following condition
was shown to be equivalent with (sH) for L:

For frame homomorphisms h1, h2 : L → M we have the impli-
cation x ∧ y = 0 ⇒ h1(x) ∧ h2(y) = 0 only if h1 = h2.

Using the c from 4.2 we can reformulate this condition as the implication

c(h1, h2) = 0 ⇒ h1 = h2. (DS)

Now we can prove the characterization very easily (new is the implication
⇒, the ⇐ is standard in the literature).

4.4.1. Theorem. A frame M is strongly Hausdorff iff it satisfies (DS) for
any h1, h2 : M → L.

Proof : Let M be strongly Hausdorff. As in 4.2 we have the equalizer of f1, f2

in the form of ↑c(h1, h2). If c(h1, h2) = 0, the equalizer is the whole of L.

3This axiom was introduced in [9]; there Isbell speaks of unordered frames (see also [10, III.1.5]).
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The other implication is as in the literature. One proves that the adjoint
to the equalizer embedding, the coequalizer of h1, h2 is

γ = (x 7→ c ∨ x) : M → ↑x,
hence closed. If x ∧ y = 0 then

γh1(a) ∧ γh2(b) = (c ∨ h1(a)) ∧ (c ∨ h2(b)) = c ∨ (h1(a) ∧ h2(b)) = c = 0↑c
and hence, by (DS), γh1 = γh2. If for a g : M → K we have gh1 = gh2 then

g(c) =
∨
{gh1(x) ∧ gh2(y) | x ∧ y = 0} = 0

and hence we can define g′ : ↑c→ K to obtain g′γ = g.

5. Open and clopen diagonals

In this section we will discuss the openness of the diagonal. This case (co-
inciding with the clopen one) has already attracted attention ([11, 14]); it
was shown that it characterizes atomic Boolean algebras. We will present a
simple proof of this fact.

5.1. Recall the formulas for the diagonal and codiagonal morphisms

δ : L→ L⊕ L and δ∗ : L⊕ L→ L

from 1.6.3. The diagonal sublocale D = δ[L] will be now an open sublocale
o(W ) for a fixed cp-ideal W ∈ L⊕L, and for the inclusion map j : D ⊆ L⊕L
we have the adjunction

j∗(U) ⊆ V iff U ⊆ j(V ) = V

with j∗(U) = W → U (recall 1.7.1). We have an isomorphism

α = (a 7→ δ(a)) : L ∼= D

such that δ = j · α and δ∗ = α−1 · j∗.
5.1.1. Furthermore, if we set δ!(a) = α(a) ∩W we obtain

δ!(a) ⊆ U iff α(a) ⊆ W → U = j∗(U) iff a ≤ α−1j∗(U) = δ∗(U),

hence an adjunction δ! a δ∗. Note that δ!(x) ⊆ x ⊕ x (since δ∗(x ⊕ x) = x),
hence

a⊕ a ⊆ δ!(x) ⇒ a ≤ x

by 1.6.2.
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5.2. Observations. 1. We have (by 1.3.1 (3) and the adjunction in 5.1.1)

W =
⋂
{U | W → U = 1} =

⋂
{U | j∗(U) = 1} =

=
⋂
{U | δ∗(U) = 1} = δ!(1).

2. The minimal d =
∧
D from 3.5 is equal to the pseudocomplement W ∗

(since
∧

o(W ) = W → 0).

5.3. Atoms. The set of all atoms of a lattice L, that is, of the 0 6= a ∈ L
such that 0 6= x ≤ a only if x = a, will be denoted by At(L). We will use the
standard fact that

for any a ∈ At(L), a ≤
∨
i∈J

xi only if a ≤ xi for some i.

Atoms in a locale L are characterized by the following property:

5.3.1. Proposition. An element 0 6= a ∈ L is an atom iff o(a⊕ a) ⊆ DL.

Proof : The condition o(a ⊕ a) ⊆ DL is equivalent to (a ⊕ a) → U ∈ DL for
every cp-ideal U . By 3.3.1, this is equivalent to x ⊕ y ⊆ (a ⊕ a) → U iff
(x ∧ y)⊕ (x ∧ y) ⊆ (a⊕ a)→ U for every x, y ∈ L, that is,

(a ∧ x)⊕ (a ∧ y) ⊆ U iff (a ∧ x ∧ y)⊕ (a ∧ x ∧ y) ⊆ U (∗)
for every x, y ∈ L.

Let a be an atom. If (a∧ x∧ y)⊕ (a∧ x∧ y) ⊆ U , a∧ x 6= 0 and a∧ y 6= 0
then a ≤ x ∧ y and thus a ⊕ a ⊆ U , that is, (a ∧ x) ⊕ (a ∧ y) ⊆ U and we
have (∗).

Conversely, let 0 6= x ≤ a and let (∗) hold. Setting in particular U = x⊕ x
and y = 1 in (∗) we obtain (a ∧ x)⊕ a ⊆ x⊕ x iff (a ∧ x)⊕ (a ∧ x) ⊆ x⊕ x;
thus x = a.

Hence, in the particular case that the diagonal is an open sublocale o(W ),
we have that

5.3.2. Corollary. An element 0 6= a ∈ L is an atom iff a⊕ a ⊆ W .

5.4. P(X) is the Boolean algebra of all subsets of X, and

φ : L→ P(At(L)

is the monotone mapping defined by φ(x) = {a ∈ At(L) | a ≤ x}. For
M ⊆ At(L) obviously

∨
M ≤ x iff M ⊆ φ(x) and hence φ is a right adjoint

to
υ : P(At(L))→ L
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defined by υ(M) =
∨
M .

5.4.1. Theorem. Let the diagonal D ⊆ L⊕L be open. Then L is an atomic
Boolean algebra.

Proof : We will prove that the maps φ and υ are mutually inverse and hence
provide an isomorphism between L and P(At(L)).

By the adjunction above, φυ ≥ id and υφ ≤ id. By the atomicity, for every
a ∈ M ∈ P(At(L)), a ≤

∨
M yields a ∈ M and hence φυ = id. Thus, it

suffices to prove that for all x ∈ L, x ≤
∨
φ(x). By the adjunction δ! a δ∗

we have

x ≤ δ∗δ!(x) = δ∗(
∨
{a⊕ b | a⊕ b ⊆ δ!(x)}) =

∨
{a ∧ b | a⊕ b ⊆ δ!(x)},

and since a∧b can be obtained also from (a∧b)⊕(a∧b), and (a∧b)⊕(a∧b) ⊆
a⊕ b we can proceed, using 5.1.1 and 5.3.2,

· · · =
∨
{a | a⊕ a ⊆ δ!(x)} ≤

∨
{a | a⊕ a ⊆ δ!(1) = W,a ≤ x} =

∨
φ(x).

5.4.2. Corollary. The following statements about a frame L are equivalent.

(1) The diagonal δ : L→ L⊕ L is open.
(2) The diagonal δ : L→ L⊕ L is clopen.
(3) L is an atomic Boolean algebra.

(If L is Boolean then it is regular, and the diagonal is (also) closed. (3)
implies the other two by 1.6.4.)

5.4.3. Notes. 1. Thus, if D is open (if the frame is atomic Boolean), we
have by 5.2 that W and D are complements of each other, that is, that

{(u, v) | u ∧ v = 0} is the complement of⋂
{U |

∨
{u ∧ v | (u, v) ∈ U} = 1}.

2. Just an observation to the property “being complemented”: A very simple
example shows that an L with a complemented D ⊆ L⊕L does not have to
be Boolean. Consider L = Ω(X) with X consisting of a convergent sequence
and its limit, say {

1,
1

2
,
1

3
,
1

4
, . . . , 0

}
.

Then X×X is scattered (and hence S(Ω(X×X)) is Boolean – see e.g. [13])
and locally compact (and hence L⊕L ∼= Ω(X×X) – see e.g. [7, 10] or [12]).
Thus, all the sublocales of L⊕ L are complemented and L is, of course, not
Boolean.
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