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Abstract: We present a formula for the distance between a point and a sphere
that is the intersection of two spheres in linear varieties in the Euclidean space.
We also obtain formulae for the projection of a point onto the intersection of two
spheres in linear varieties as well as for the centre and radius of the intersection.
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1. Introduction
We are concerned with projections and distances. Projections of a point

onto a subset, onto a subspace and onto a linear variety. Distances between a
point and a subset, a subspace and a linear variety. Projections and distances
are thoroughly studied in [4, 10].

The distance between a point and a sphere that is the intersection of two
spheres being contained in two intersecting linear varieties is studied. We
establish a formula that generalises one giving the distance between a point
and the unit sphere in a linear subspace [2]. The distance between a point and
the unit sphere has applications in perturbation theory through the concept
of the gap (or aperture) between subspaces [[7], pp. 224-227], which is used
in the study of convergence of linear operators [[8], pp. 197-200]. In [[2], pp.
1428-1429] a list of references is given in order to motivate consideration of
the spherical gap between subspaces.

The space Rn is equipped with the usual inner product • and the associated
Euclidean norm

‖a‖ =
√
a • a.
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Definition 1.1. Let S be a nonempty subset of Rn and let p ∈ Rn. An
element PS(p) ∈ S in called a projection of p onto S if PS(p) is a best
approximation to p from S. PS(p) is called a best approximation to p from S
if

‖p− PS(p)‖ = d (p, S) ,

where

d (p, S) = inf ‖p− x‖ , x ∈ S,
is the distance between p and S.

We need some notations for linear varieties and for spheres.

Definition 1.2.

(1) For linear varieties.

L = l0 + L0,

where l0 is a position vector and L0 is the director space of L .
(2) For spheres.

(a) Sphere in Rn with centre c ∈ Rn and radius r, r > 0,

S (c, r) = {x ∈ Rn : ‖x− c‖ = r} .

(b) Sphere in Rn with centre c in the linear variety L and radius r,
r > 0,

ScL (r) = {x ∈ Rn : ‖x− c‖ = r} , c ∈ L .

(c) Sphere in the linear variety L , with centre c ∈ L and radius r,
r > 0,

SL (c, r) = {x ∈ L : ‖x− c‖ = r, c ∈ L } .

The projection onto the intersection of linear varieties is useful when study-
ing the projection onto the intersection of spheres by using a generalisation
of the Reduction Principle. So, useful properties of the projection of a point
onto a linear variety are recalled.

Proposition 1.3.

(1) PL (p) is the orthogonal projection of p onto the linear variety L =
l0 + L0 if and only if p− PL (p) is orthogonal to L0.
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(2) Let M0 be a vector subspace of Rn and let M⊥
0 be its orthogonal com-

plement. Let B be a matrix whose columns are a basis for M0. Then
the orthogonal projectors PM0

and PM⊥
0

are

PM0
= B

(
BTB

)−1
BT and I − PM0

= PM⊥
0
.

(3) Let L = l0 +L0 be a linear variety in Rn, where l0 is a position vector
and L0 is the director space, and let p ∈ Rn. Then

PL (p) = PL0
(p− l0) + l0.

Proof : For: (1) see [[4], p. 215] and [[9], p. 45]; (2) see [[10], Chapter 5]; and
(3) see [3].

This paper is organized as follows. 1. Introduction 2. Intersection of
spheres in linear varieties 3. Projection onto the intersection of spheres 4.
Distances between a point and the intersection of spheres 5. Conclusions.

2. Intersection of Spheres in Linear Varieties
In this section we deal with the centre and radius of the intersection of

spheres. Intersecting linear varieties come into play. For details and condi-
tions on the intersection of linear varieties, see [3] and the references therein.

We first consider a sphere in Rn intersected by two linear varieties.

Proposition 2.1. Let L and M be two intersecting linear varieties in Rn

given by

L = l0 + L0

and

M = m0 + M0.

Suppose

ScL (r) = {x ∈ Rn : ‖x− c‖ = r} , c ∈ L ,

is a sphere in Rn with centre c in L and such that d(c,L ∩M ) < r and

SL (c, r) = ScL ∩L

is a sphere in L . Then the intersection

S = SL (c, r) ∩M = ScL (r) ∩L ∩M

is a sphere in L ∩M ,

S = SL∩M (c̄, r̄),
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with centre c̄ given by

c̄ = PL∩M (c) (2.1)

and radius r satisfying

r2 = r2 − d2 (c,L ∩M ) . (2.2)

Proof : Let x ∈ ScL (r) ∩ L ∩M . Since c = PL∩M (c) the element x − c
belongs to L0 ∩M0 and is orthogonal to c− c, whence

‖x− c‖2 = ‖x− c‖2 − ‖c− c‖2 = r2 − d2(c,L ∩M ) = r2.

Conversely, if x ∈ SL∩M (c, r) then x− c is in L0 ∩M0 and is orthogonal to
c− c. Therefore we get

‖x− c‖2 = ‖x− c‖2 + ‖c− c‖ = r2,

and the result follows.

The intersection of two spheres is a sphere. The radical hyperplane plays
an important rôle when studying the intersections of spheres.

The radical hyperplane is a generalisation of the concept of the radical
plane in solid geometry as considered in [[5], pp. 461-462], [[11], pp. 103-104]
and in [[1], p. 57]. The concepts of the power of a point with respect to a
sphere and of the radical hyperplane of two spheres are related.

Definition 2.2. For each sphere S = S(c, r) and for each point x ∈ Rn, the
number

‖x− c‖2 − r2

is called the power of x with respect to S(c, r). Let S1 = S(c1, r1) and S2 =
S(c2, r2) be two spheres in Rn. The radical hyperplane of S1 and S2 is the
set of points with the same power with respect to the two spheres,

H (S1, S2) =
{
x ∈ Rn : ‖x− c1‖2 − r2

1 = ‖x− c2‖2 − r2
2

}
.

Let the spheres SL (c1, r1) and SM (c2, r2) be subsets of the linear varieties
L and M of Rn. We will consider the radical hyperplane of these spheres
as the radical hyperplane of the spheres S1 = S(c1, r1) and S2 = S(c2, r2) in
Rn,

H (SL , SM ) := H (S1, S2) .

The notation H stands either for H (S1, S2) or for H (SL , SM ), depending
on the context.
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In the next proposition we recall some useful classical properties of the
radical hyperplane of two spheres.

Proposition 2.3. Let S(c1, r1) and S(c2, r2) be two spheres in Rn with dis-
tinct centres and H be their radical hyperplane. Then:

(1) H is orthogonal to the line c1c2.
(2) If the spheres have non-empty intersection, then the radical hyperplane

H contains the intersection of the two spheres.

In the present paper, we deal always with intersecting spheres.

Definition 2.4. Two spheres S1 = S(c1, r1) and S2 = S(c2, r2) in Rn are
said to have non-trivial intersection if

|r1 − r2| < ‖c1 − c2‖ < r1 + r2.

Now, we are in a position to present formulae for the centre and the radius
of the non-trivial intersection of two spheres.

Proposition 2.5. Let S1 = S(c1, r1) and S2 = S(c2, r2) be spheres with non-
trivial intersection in Rn. Then the intersection S∗ = S1 ∩ S2 is a sphere
contained in the radical hyperplane H and given by

S∗ = S∗H (c∗, r∗) = {x ∈H : ‖x− c∗‖ = r∗} ,
with centre

c∗ =
r2

2 − r2
1 + d2

2d2
c1 +

r2
1 − r2

2 + d2

2d2
c2 (2.3)

and radius

r∗ =
1

2d

√
4d2r2

1 − (d2 + r2
1 − r2

2)
2
, (2.4)

where d = ‖c1 − c2‖.

Proof : Let c∗ be the intersection of the radical hyperplane H with the line
c1c2. Since c∗ ∈ c1c2, we may write c∗ = c1 +λ(c2− c1) = c2 +(λ−1)(c2− c1).
On the other hand, c∗ ∈H , meaning that ‖c∗ − c1‖2− r2

1 = ‖c∗ − c2‖2− r2
2.

Hence we have

λ =
r2

1 − r2
2 + d2

2d2

and

c∗ = c1 +
r2

1 − r2
2 + d2

2d2
(c2 − c1) =

r2
2 − r2

1 + d2

2d2
c1 +

r2
1 − r2

2 + d2

2d2
c2. (2.5)
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Now, if x ∈ S1 ∩ S2 then x ∈ H and x − c∗ is perpendicular to c1c2. By
Pythagoras’ theorem,

‖x− c∗‖2 = r2
1 − ‖c∗ − c1‖2 .

By using relation (2.5), we obtain

‖x− c∗‖ =
1

2d

√
4d2r2

1 − (d2 + r2
1 − r2

2)2.

Conversely, let x ∈ S∗(c∗, r∗)∩H , with c∗ and r∗ given by (2.3) and (2.4),
respectively. Since x− c∗ is orthogonal to c1c

∗, this leads to

‖x− c1‖2 = ‖c∗ − c1‖2 + ‖x− c∗‖2

=

(
r2

1 − r2
2 + d2

2d2

)2

‖c2 − c1‖2 + r∗2

=

(
r2

1 − r2
2 + d2

)2

4d2
+

1

4d2

(
4d2r2

1 −
(
d2 + r2

1 − r2
2

)2
)

= r2
1.

Analogously we can prove that ‖x− c2‖ = r2 and we conclude that x ∈
S1 ∩ S2. Therefore S∗(c∗, r∗) ∩H = S1 ∩ S2.

Next we present formulae for the centre and for the radius of the intersec-
tion of spheres in linear varieties.

Proposition 2.6. Consider two spheres with non-trivial intersection,

SL (c1, r1) = {x ∈ L : ‖x− c1‖ = r1, c1 ∈ L }
and

SM (c2, r2) = {x ∈M : ‖x− c2‖ = r2, c2 ∈M } ,
where L and M are intersecting linear varieties.

Then the intersection Ŝ = SL ∩SM of the spheres SL and SM is a sphere
in H ∩L ∩M ,

Ŝ = {x ∈H ∩L ∩M : ‖x− ĉ‖ = r̂} ,
with centre ĉ ∈H ∩L ∩M given by

ĉ = PH ∩L∩M (c∗) (2.6)

and radius r̂ satisfying

r̂2 =
1

4d2

(
4d2r2

1 −
(
d2 + r2

1 − r2
2

)2
)
−
∥∥∥∥ĉ− r2

2 − r2
1 + d2

2d2
c1 −

r2
1 − r2

2 + d2

2d2
c2

∥∥∥∥2

,

(2.7)
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where d = ‖c2 − c1‖ and c∗ is

c∗ =
r2

2 − r2
1 + d2

2d2
c1 +

r2
1 − r2

2 + d2

2d2
c2.

Proof : Notice that

SL ∩ SM = S(c1, r1) ∩ S(c2, r2) ∩L ∩M = S(c∗, r∗) ∩H ∩L ∩M ,

where the centre c∗ and the radius r∗ are given by Proposition 2.5. Then use
Proposition 2.1.

3. Projection onto the Intersection of Spheres
In this section, we study the projection of a point p ∈ Rn onto a sphere

which is either the intersection of two spheres in Rn or the intersection of
two spheres in intersecting linear varieties.

We use the Reduction Principle as a fundamental tool. In [[4], pp. 80-81, p.
86; [9], p. 46], the following result has been stated in the context of convex
sets. We here extend it to non-convex sets. One should notice, however,
that for a non-convex set S, PS is seen as a “set-valued” mapping since the
projection may not be uniquely defined.

Proposition 3.1. Let S be a (possibly non-convex) subset of Rn and let M0

be a subspace of Rn that contains S.
Then, for every p ∈ Rn:

(1) PS (PM0
(p)) = PS (p) = PM0

(PS (p)).
(2) d2 (p, S) = d2 (p,M0) + d2 (PM0

(p) , S).

Proof : (1) Since S ⊂M0, it follows immediately that PM0
PS(p) = PS(p).

Now let s ∈ S. Then for any x ∈ PM0
(p) we have x − p ∈ M0

⊥ and
x− s ∈M0. So

‖p− s‖2 = ‖p− x‖2 + ‖x− s‖2 .

Hence s ∈ S minimizes ‖p− s‖ if and only if it minimizes ‖x− s‖.
This means that s ∈ PS(p) if and only if s ∈ PS (PM0

(p)), and therefore
we obtain PS = PS (PM0

) .
(2) This is an immediate consequence of (1).

Since translations are isometries, we have the following generalisation to
linear varieties.
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Corollary 3.2. Let S be a (possibly non-convex) subset of Rn and let M be
a linear variety of Rn that contains S. Then, for every p ∈ Rn,

PS (PM (p)) = PS (p) = PM (PS (p)) .

Proposition 3.3. Let S1 = S(c1, r1) and S2 = S(c2, r2) be two non-trivially
intersecting spheres in Rn and p ∈ Rn. Then:

(1) If p ∈ c1c2 then PS1∩S2
(p) = S1 ∩ S2;

(2) If p /∈ c1c2 then

PS1∩S2
(p) = c∗ +

1

2d

√
4d2r2

1 − (d2 + r2
1 − r2

2)2
PH0

(p− c∗)
‖PH0

(p− c∗)‖
,

where H0 is the director subspace of the radical hyperplane H and
c∗ is the centre of the sphere S1 ∩ S2 in H0 defined by (2.3), with
d = ‖c2 − c1‖.

Proof : (1) First notice that PS1∩S2
(c∗) = S1 ∩ S2 because c∗ is the centre

of S1 ∩ S2. Also, if p ∈ c1c2 then p − c∗ is orthogonal to H and
PH (p) = c∗. Now, since S1 ∩ S2 is contained in H , Corollary 3.2
guarantees

PS1∩S2
(p) = PS1∩S2

PH (p) = PS1∩S2
(c∗) = S1 ∩ S2.

(2) Let p /∈ c1c2. Proposition 2.5 gives S1∩S2 = S(c∗, r∗), so S1∩S2−c∗ =
S(0, r∗) ⊂H0. Therefore

PS1∩S2
(p) = PS1∩S2−c∗(p− c∗) + c∗

= c∗ + PS(0,r∗)PH0
(p− c∗) = c∗ + r∗

PH0(p−c∗)∥∥PH0(p−c∗)
∥∥

and the result follows.

We finally consider the projection of a point onto the intersection of two
spheres belonging to intersecting linear varieties. By using Proposition 1.3
and Proposition 3.1, we get the following.

Proposition 3.4. Let SL = SL (c1, r1) and SM = SM (c2, r2) be two non-
trivially intersecting spheres in the intersecting linear varieties L and M .
Let p ∈ Rn be such that PH ∩L∩M (p) 6= ĉ. Then

PSL∩SM
(p) = ĉ+

r̂

‖PH0∩L0∩M0
(p− ĉ)‖

PH0∩L0∩M0
(p− ĉ),
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where H0, L0 and M0 are, respectively, the director subspaces of the linear
varieties H , L and M and with ĉ and r̂ given by (2.6) and (2.7).

4. Distances between a Point and the Intersection of
Spheres

The distance between a point and the intersection of two spheres is consi-
dered. The following result generalises a formula, in [[2], p. 1428], giving the
distance between a point and the unit sphere in a subspace of Rn.

Proposition 4.1. Let SL = SL (c1, r1) and SM = SM (c2, r2) be non-trivially
intersecting spheres in the intersecting linear varieties L and M , respec-
tively. Let Ŝ (ĉ, r̂) = ŜH ∩L∩M (ĉ, r̂) = SL ∩SM and let H0∩L0∩M0 be the
director subspace of H ∩L ∩M . Then:

(1) If PH ∩L∩M (p) = ĉ, then

d
(
p, Ŝ (ĉ, r̂)

)
=

√
‖p− ĉ‖2 + r̂2.

(2) If p ∈ Rn is such that PH ∩L∩M (p) 6= ĉ, then the distance d (p, SL ∩ SM )

between the point p ∈ Rn and the sphere Ŝ (ĉ, r̂) satisfies

d2 (p, SL ∩ SM ) = ‖p− ĉ‖2 + r̂2 − 2r̂ ‖PH0∩L0∩M0
(p− ĉ)‖ ,

where ĉ and r̂ are given in (2.6) and in (2.7).

Proof : (1) Notice that if PH ∩L∩M (p) = ĉ, then p − ĉ is orthogonal to
F0 = (H ∩L ∩M )0 = H0 ∩ L0 ∩M0 and PF0

(p − ĉ) = o. By

Pythagoras’ theorem, for every x ∈ Ŝ(ĉ, r̂),

‖p− x‖2 = ‖p− ĉ‖2 + ‖ĉ− x‖2 = ‖p− ĉ‖2 + r̂2,

hence

d
(
p, Ŝ (ĉ, r̂)

)
=

√
‖p− ĉ‖2 + r̂2.

(2) If PH ∩L∩M (p) := PF (p) 6= ĉ, then

d2
(
p, Ŝ (ĉ, r̂)

)
=
∥∥∥p− PŜ(ĉ,r̂) (p)

∥∥∥2

= ‖p‖2 +
∥∥∥PŜ(ĉ,r̂) (p)

∥∥∥2

− 2p • PŜ(ĉ,r̂) (p) ,
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with∥∥∥PŜ(ĉ,r̂) (p)
∥∥∥2

=

∥∥∥∥ĉ+ r̂
PF0

(p− ĉ)
‖PF0

(p− ĉ)‖

∥∥∥∥2

= ‖ĉ‖2 + r̂2 + 2
r̂

‖PF0
(p− ĉ)‖

ĉ • PF0
(p− ĉ)

and

−2p • PŜ(ĉ,r̂) (p) = −2p • ĉ− 2r̂

‖PF0
(p− ĉ)‖

p • PF0
(p− ĉ) .

Thus, by taking into account the idempotency and the self-adjointness
of the projector [[4], p. 79], we obtain

d2
(
p, Ŝ (ĉ, r̂)

)
= ‖p‖2 + ‖ĉ‖2 + r̂2 − 2p • ĉ− 2r̂

‖PF0
(p− ĉ)‖

(p− ĉ) • PF0
(p− ĉ)

= ‖p‖2 + ‖ĉ‖2 + r̂2 − 2p • ĉ− 2r̂ ‖PF0
(p− ĉ)‖

= ‖p− ĉ‖2 + r̂2 − 2r̂ ‖PF0
(p− ĉ)‖ .

For two spheres in Rn, from Proposition 3.3, we have the following.

Proposition 4.2. Let S1 = S(c1, r1) and S2 = S(c2, r2) be two spheres in Rn

with non-trivial intersection and let p ∈ Rn, p /∈ c1c2. Then

d2 (p, S1 ∩ S2) = ‖p‖2 +
1

4d2

[
4d2r2

1 −
(
d2 + r2

1 − r2
2

)2
]

−
1
d

√
4d2r2

1 − (d2 + r2
1 − r2

2)
2

‖PH0
(p− c∗)‖

(p • PH0
(p− c∗)) ,

where H0 is the director subspace of the radical hyperplane H and c∗ is the
centre of the sphere S1 ∩ S2 in H0 defined by

c∗ =
r2

2 − r2
1 + d2

2d2
c1 +

r2
1 − r2

2 + d2

2d2
c2.

5. Conclusions
The distance between a point and the unit sphere in a subspace is useful

when dealing with the gap between two subspaces. See [2] and the references
therein. We established a formula for the distance between a point and the
intersection of two spheres in linear varieties [Proposition 4.1].
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The projection of a point onto a sphere is essentially the projection of a
point onto a ball. We derived a generalisation for non-convex sets [Proposi-
tion 3.1] of the Reduction Principle [[4], pp. 80-81, p. 86; [9], p. 46], usually
stated for convex sets.

In general, finding the projection of a point onto a convex set might not be
computationally easy [[6], p. 198]. We obtained an explicit formula for the
projection of a point onto a sphere that is the intersection of two spheres in
linear varieties [Propositions 3.3 and 3.4].
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