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Abstract: A unified framework for studying extremal curves on real Stiefel man-
ifolds is presented. We start with a smooth one-parameter family of pseudo-
Riemannian metrics on a product of orthogonal groups acting transitively on Stiefel
manifolds. In the next step Euler-Langrange equations for a whole class of extremal
curves on Stiefel manifolds are derived. This includes not only geodesics with respect
to different Riemannian metrics, but so-called quasi-geodesics and smooth curves
of constant geodesic curvature, as well. It is shown that they all can be written in
closed form. Our results are put into perspective to recent related work where a
Hamiltonian rather than a Lagrangian approach was used. For some specific values
of the parameter we recover certain well-known results.
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1. Introduction
The main objective of this paper is to present a unified framework for

studying extremal curves on the important class of real Stiefel manifolds,
using a direct variational approach.

This is also a tribute to Anthony M. Bloch on the occasion of his 65th
anniversary. His work in the area of geometric mechanics and optimal control
has been inspirational to us. Without being exhaustive, we name [4, 6, 7, 5,
16], for some of his important contributions in those areas.

In general, the problem of finding extremal curves, e.g., curves that min-
imize or maximize some functional is an old problem which goes back to
the origins of variational calculus. The present paper deals with geometric
extremal curves, i.e., those curves that minimize the length functional or in
other words find the geodesics on a specific manifold. The manifold we con-
sider here is the set of all orthonormal k-frames on Euclidean n-dimensional
space, nowadays known under the name Stiefel manifold, cf. [26]. This prob-
lem has been considered by several authors, see for instance [5, 9, 11, 18]. The
difference in these approaches, is the realization of the Stiefel manifold: it
was considered as a homogeneous space under the action of different groups,

Received October 6, 2020.

1
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or as an embedded submanifold of the space of all (n × k)-matrices. The
length functional also varied.

In the present paper we propose to consider a one-parameter family of
non-degenerate not necessarily positive definite metrics, that includes most
of the previously considered Riemannian metrics. Such an all-embracing
approach becomes possible due to the realization of the Stiefel manifold as
a homogeneous space under the transitive action of the product group of
orthogonal matrices On×Ok, see Sections 3 and 4. The considered metrics
lead to the length functionals. By making use of variational calculus, as a
consequence, we obtain a one-parameter family of nonlinear, second order,
matrix-valued, ordinary differential equations (ODEs), that surprisingly can
be reduced to a one-parameter family of linear, autonomous, second order,
matrix ODEs. The solutions of the corresponding one-parameter family of
initial value problems, i.e., geodesics, are calculated in closed form for all
parameters defining the family of metrics. Besides new formulas and insights,
we recover several of the beforementioned previous results. We note that the
obtained formulas are written for an arbitrary choice of the isotropy point
for the action of On×Ok, see Section 5. We mention another important
feature of our approach. All the closed formulas for extremal curves we
derive here share a remarkable property. They all include matrix exponentials
exclusively of skew symmetric matrices, predestinated for numerically stable
implementations. The skew symmetric matrices to be exponentiated are
either of size k × k or n× n, sometimes of both.

As a further byproduct of our approach we describe a huge family of curves
that have constant geodesic curvature with respect to metrics within the
one-parameter family. In this part we use a sub-Riemannian approach, that
allows to relate the geodesic curves on the Stiefel manifold to special curves on
the group On×Ok being tangent to distinguished distributions on On×Ok,
associated to a certain Cartan decomposition of the Lie algebra son× sok,
see Section 6.

2. Setting
The orthogonal group On in its standard representation is denoted by

On := {Q ∈ Rn×n | Q>Q = In}, (1)



EXTREMAL CURVES ON STIEFEL MANIFOLDS 3

where In denotes the (n × n)-identity matrix with n ∈ N. Accordingly, we
have the special orthogonal group defined by

SOn := {R ∈ On | det(R) = 1} ∼= On /O1 . (2)

The Lie algebra of On and SOn, i.e., the set of real skew symmetric (n× n)-
matrices, is denoted by

son := {X ∈ Rn×n | X = −X>}. (3)

The tangent space of On, analogously for SOn, at Q is then

TQ On
∼= sonQ ∼= Q son . (4)

In the sequel we will mainly use the first isomorphism in (4). The real
compact Stiefel manifold (from now on just Stiefel manifold) can be defined
as the set of orthonormal k-frames in Rn, i.e.,

Stn,k := {X ∈ Rn×k | X>X = Ik}, 1 ≤ k ≤ n. (5)

The tangent space TX Stn,k is characterized by

TX Stn,k = son ·X = {Z ∈ Rn×k | X>Z ∈ sok} = im(πtan
X ), (6)

with projection operator

πtan
X : Rn×k → TX Stn,k, Z 7→

(
In − XX>

2

)
Z − XZ>X

2 . (7)

Besides (5), in a more abstract way, the Stiefel manifold can be considered
in several diffeomorphic ways. By applying the regular value theorem to the
function f : Rn×k → Symk defined by X 7→ X>X − Ik, where

Symk := {X ∈ Rk×k|X = X>} (8)

denotes the vector space of symmetric (k × k)-matrices, we see that Stn,k =
f−1(0) is a smooth Riemannian submanifold of dimension dim Stn,k = nk −
k(k+1)/2. Here Rn×k is seen as the Riemannian manifold endowed with Eu-
clidean metric, i.e., with the usual Frobenius inner product on each tangent
space TXRn×k ∼= Rn×k

〈·, ·〉 : Rn×k × Rn×k → R, 〈A,B〉 := tr(A>B). (9)

Two possible further points of view are as follows. Firstly, the group On acts
transitively on Stn,k via left matrix multiplication

σ : On× Stn,k → Stn,k, (Q,X) 7→ QX, (10)
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with associated map

σX : On → Stn,k, Q 7→ σX(Q) := σ(Q,X) = QX. (11)

Secondly, the product group On×Ok acts also transitively on Stn,k via

τ : On×Ok× Stn,k → Stn,k,
(
(U, V ), X

)
7→ UXV >, (12)

and associated map

τX : On×Ok → Stn,k, Q 7→ τX(U, V ) := τ
(
(U, V ), X

)
= UXV >. (13)

The smooth maps σX and τX give rise to two quotient models, namely

Stn,k ∼=On
On /On−k, Stn,k ∼=On×Ok

(On×Ok)/(On−k×Ok). (14)

For the arbitrary chosen X ∈ Stn,k the associated isotropy subgroup fixing
X is isomorphic to On−k, respectively to On−k×Ok.

Instead of the On, respectively On×Ok, action, we could consider SOn,
respectively SOn× SOk, actions. However, the situation in this case is a bit
more subtle, as e.g., SOn does not act transitively on Stn,n ∼=On

On. We
mention the special cases, e.g., Stn,1 ∼= Sn−1, Stn,n−1

∼= SOn and Stn,k ∼=SOn

SOn / SOn−k for 1 ≤ k ≤ n− 1, cf. [23].

3. Metrics on Stiefel manifolds
By the transitivity of σ, resp. τ , it follows that σX , resp. τX , are submer-

sions for all X ∈ Stn,k and in particular the derivatives (tangent maps)

DσX(In) : son → TX Stn,k,

Ω 7→ ΩX,
(15)

D τX(In, Ik) : son× sok → TX Stn,k,

(Ω,Ψ) 7→ ΩX +XΨ> = ΩX −XΨ
(16)

are both surjective linear maps for all X ∈ Stn,k. These facts can be exploited
to define metrics on Stn,k. The corresponding constructions have several
names in the literature, (i) submersion metrics (for obvious reasons) or (ii)
normal metrics (becomes clear below). Note however, that in case of σX the
resulting metric was called ‘canonical’, cf. [9].

Recall that the Killing form on the Lie algebra son, cf. [10], is the symmetric
bilinear form defined as

B : son× son → R, B(X, Y ) := (n− 2) tr(XY ). (17)
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For n > 2 the Killing form is nondegenerate as son in this case has trivial
center. Moreover, it is negative definite as the semisimple group On is com-
pact. Consequently, one can take the negative of the Killing form in order
to define a left invariant Riemannian metric on On as follows

〈·, ·〉On
: TQ On×TQ On → R,

(Ω1Q,Ω2Q) 7→ −B(Ω1,Ω2)
n−2 = tr(Ω>1 Ω2) = tr

(
(Ω1Q)>(Ω2Q)

)
.

(18)

Clearly, this Riemannian metric can equally be considered as the one which is
induced by the Euclidean (Frobenius) metric of the embedding space Rn×n ⊃
On. We will now focus on the group action τ defined by (12). As the linear
map D τX(In, Ik) is surjective for all X ∈ Stn,k it induces an isometry between

ker⊥D τX(In, Ik) and TX Stn,k under an additional assumption on the value
of α, see below. We proceed as follows.

Definition 3.1. Define the following one-parameter family of indefinite inner
products on son× sok

〈·, ·〉(α)
son×sok: (son×sok)×(son×sok)→ R,(

(Ω1,Ψ1),(Ω2,Ψ2)
)
7→ − tr

(
Ω1Ω2)− 1

α tr(Ψ1Ψ2), α ∈ R\{0}.
(19)

Remark 1. The inner product defined in (19) is ad-invariant, that is, for all
A,B,C ∈ son× sok

−
〈
A, adCB

〉(α)

son×sok
=
〈
A,[B,C]

〉(α)

son×sok
=
〈
B,[C,A]

〉(α)

son×sok
=
〈
B, adC A

〉(α)

son×sok
.

(20)

By making use of left translations the inner product (19) extends to a
bi-invariant (pseudo-)Riemannian metric on On×Ok

〈·, ·〉(α)
On×Ok

:T(U,V )(On×Ok)×T(U,V )(On×Ok)→R,(
(Ω1U,Ψ1V ), (Ω2U,Ψ2V )

)
7→
〈
(Ω1,Ψ1), (Ω2,Ψ2)

〉(α)

son×sok

= − tr
(
Ω1Ω2)− tr(Ψ1Ψ2)

α .
(21)

For α > 0 this defines a Riemannian metric on the product group, whereas
for α < 0 the metric becomes indefinite, i.e. pseudo-Riemannian.

At this stage we recall some terminology and facts from indefinite linear
algebra, cf. [12]. Let

(
V, 〈·, ·〉indef

)
be an indefinite inner product space. A
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subspace S ⊂ V is called nondegenerate with respect to 〈·, ·〉indef if s ∈ S and
〈s, s′〉indef = 0 for all s′ ∈ S imply that s = 0. The orthogonal companion of
a subset S ⊂ V is defined by

S⊥ :=
{
v ∈ V

∣∣〈v, s〉indef = 0 for all s ∈ S
}
. (22)

Clearly, S⊥ is a subspace of V . The following proposition is proved e.g. in
[12].

Proposition 1. S⊥ is a direct (orthogonal) complement to S in V iff S is
nondegenerate.

By means of D τX(In, Ik) we will now define a one-parameter family of
metrics on Stn,k. Denote by KX the kernel of D τX(In, Ik)

KX := ker D τX(In, Ik) =
{

(Ω,Ψ) ∈ son× sok
∣∣ ΩX −XΨ = 0

}
. (23)

Proposition 2. For any given X ∈ Stn,k the subspace KX is nondegenerate
iff α 6= −1.

Proof : Note that (Ω,Ψ), (Γ,Ξ) ∈ KX imply X>ΩX = Ψ and X>ΓX = Ξ
as X ∈ Stn,k. By the orthogonal invariance of the trace function we might

assume X =
[
Ik
0

]
. We partition Ω =

[
Ω11 Ω12

−Ω>12 Ω22

]
and Γ =

[
Γ11 Γ12

−Γ>12 Γ22

]
with

Ω11,Γ11 ∈ sok. By exploiting properties of the trace function and the fact
that XX> =

[
Ik 0
0 0

]
is an orthogonal projection matrix we get〈

(Ω,Ψ), (Γ,Ξ)
〉(α)

son×sok
= − tr(ΩΓ)− 1

α tr(ΨΞ)

= − tr(ΩΓ)− 1
α tr

(
ΩXX>ΓXX>

)
= −

(
tr
(
α+1
α Ω11Γ11

)
− 2 tr(Ω12Γ

>
12) + tr(Ω22Γ22)

)
.

(24)

Hence, a given (Ω,Ψ) ∈ KX with
〈
(Ω,Ψ), (Γ,Ξ)

〉(α)

son×sok
= 0 for all (Γ,Ξ) ∈

KX implies (Ω,Ψ) = (0, 0) iff α 6= −1. The result follows.

For α 6= −1 we denote by K⊥X the orthogonal complement of KX with
respect to the metric (19)

K⊥X :=
{

(Ω,Ψ) ∈ son× sok
∣∣〈(Ω,Ψ), KX

〉(α)

son× sok
= 0
}
. (25)
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Consequently, for every (Ω,Ψ) ∈ son× sok with α 6= −1 there is a unique
additive decomposition

(Ω,Ψ) =
(

ΩKX + ΩK⊥X ,ΨKX + ΨK⊥X

)
, (26)

where
(
ΩKX ,ΨKX

)
∈ KX and

(
ΩK⊥X ,ΨK⊥X

)
∈ K⊥X .

Lemma 3.2. For α 6= −1 and arbitrary X ∈ Stn,k, the unique orthogonal
projection operator

πX : son× sok → KX , (Ω,Ψ) 7→
(
ΩKX ,ΨKX

)
(27)

is given by

ΩKX =
(
In −XX>

)
Ω
(
In −XX>

)
+ α

α+1XX
>ΩXX> + 1

α+1XΨX>

= Ω−
(

ΩXX> +XX>Ω− 2α+1
α+1 XX

>ΩXX> − 1
α+1XΨX>

)
,

ΨKX = α
α+1X

>ΩX + 1
α+1Ψ

= Ψ− α
α+1

(
Ψ−X>ΩX

)
.

(28)

The complementary orthogonal projection operator is as

π⊥X := id−πX : son× sok → K⊥X ,

(Ω,Ψ) 7→
(
ΩK⊥X ,ΨK⊥X

)
=
(
Ω− ΩKX ,Ψ−ΨKX

)
,

(29)

given by

ΩK⊥X = XX>Ω + ΩXX> − 2α+1
α+1 XX

>ΩXX> − 1
α+1XΨX>,

ΨK⊥X = α
α+1

(
Ψ−X>ΩX

)
.

(30)

Proof : In fact, a direct computation shows that π2
X = πX exploiting the

fact that In−XX> and XX> denote complementary orthogonal projection
operators Rn×k → Rn×k. Moreover, by using (28) and several times X>X =
Ik, we compute

ΩKXX −XΨKX = α
α+1XX

>ΩX + 1
α+1XΨ−X

(
α
α+1X

>ΩX + 1
α+1Ψ

)
= 0,

(31)

as required.

Remark 2. Note that KX does not depend on the choice of the α-metric
as it is defined by the α-independent linear map D τX(In, Ik), only. The
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projection operator πX , however, depends on the α-metric, therefore we have
the presence of the parameter α in the components of

(
ΩKX ,ΨKX

)
∈ KX .

The special case when X =
[
Ik
0

]
might be of interest.

Corollary 1. Let X =
[
Ik
0

]
and partition an arbitrary pair (Ω,Ψ) accord-

ingly, i.e.,

(Ω,Ψ) =
([

A −B>
B C

]
,Ψ
)
∈ son× sok, A ∈ sok, B ∈ Rk×(n−k), C ∈ son−k .

(32)
Then, for this case, the explicit form of the decomposition (26) is as

(Ω,Ψ) =
([

Ψ+αA
α+1 0

0 C

]
, Ψ+αA
α+1

)
︸ ︷︷ ︸

=:(ΩKX ,ΨKX )∈KX

+
([

A−Ψ
α+1 −B

>

B 0

]
, α(Ψ−A)

α+1

)
︸ ︷︷ ︸

=:(ΩK⊥
X ,ΨK⊥

X )∈K⊥X

. (33)

Proof : Indeed,〈(
Ω
K⊥X
1 ,Ψ

K⊥X
1

)
,
(

ΩKX
2 ,ΨKX

2

)〉
=

〈([
A1−Ψ1

α+1 −B>1
B1 0

]
,α(Ψ1−A1)

α+1

)
,

([
Ψ2+αA2

α+1 0

0 C2

]
,Ψ2+αA2

α+1

)〉
= − tr (A1−Ψ1)(Ψ2+αA2)

(α+1)2 − 1
α tr α(Ψ1−A1)(Ψ2+αA2)

(α+1)2

= 0.

The claim follows by counting parameters in A1, A2, B1, C2,Ψ1,Ψ2.

Fix an arbitrary X ∈ Stn,k and denote

g := son× sok, k := KX , p := K⊥X . (34)

Then one has the following relations

g = p⊕ k, [k, k] ⊂ k, [p, k] ⊂ p, [p, p] ⊃ k. (35)

The direct sum in the first relation is orthogonal. The second relation reflects
the fact that k = KX is the Lie algebra of the isotropy group isomorphic to
On−k×Ok that fixes the point X ∈ Stn,k. The third relation follows by〈

[p, k], k
〉(α)

son×sok
=
〈
p, [k, k]

〉(α)

son×sok
= 0, (36)

due to ad-invariance of the inner product and the first two properties in (35).
For the last property it is sufficient to show it at the point X =

[
Ik
0

]
. In this

case we denote D := Ψ+αA
α+1 in (33). Then(

[D 0
0 C ] , D

)
∈ KX = k,

( [
A−D B
−B> 0

]
, α(D − A)

)
∈ K⊥X = p. (37)
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In the sequel, Ei,j denotes the (n × n)-matrix with entry (i, j) equal to 1,
entry (j, i) equal to −1 and all other entries equal to 0. The matrices Ei,j

satisfy the following commutator properties:

[Ei,j, Ef,l] = −δilEj,f − δjfEi,l + δifEj,l + δjlEi,f ,

where δij denotes the Kronecker delta. Taking into consideration the struc-
ture of the matrices in k and p, we see that

{Ei,j, 1 ≤ i < j ≤ k} ∪ {Ek+i,k+j, 1 ≤ i < j ≤ n− k} (38)

forms a basis for k, while

{Ei,j, 1 ≤ i < j ≤ k} ∪ {Ei,k+j, 1 ≤ i ≤ k, 1 ≤ j ≤ n− k} (39)

forms a basis for p. Moreover, for any Ek+i,k+j ∈ k with 1 ≤ i < j ≤ n − k
there are El,k+i, El,k+j ∈ p with 1 ≤ l ≤ k such that

Ek+i,k+j = [El,k+i, El,k+j] . (40)

Analogously, for any Ei,j ∈ k, 1 ≤ i < j ≤ k, there are Ei,k+l, Ej,k+l ∈ p with
1 ≤ l ≤ n− k, such that

Ei,j = [Ei,k+l, Ej,k+l] .

Thus for any chosen X ∈ Stn,k we have decomposed the Lie algebra son× sok
into a direct sum, orthogonal with respect to the α-inner product, satisfy-
ing (36).

Definition 3.3. Let X ∈ Stn,k be arbitrary. Consider ξ1, ξ2 ∈ TX Stn,k with
ξi := ΩiX − XΨi, Ωi ∈ son, Ψi ∈ sok and i ∈ {1, 2}. We define a smooth
family of normal or submersion (pseudo-)Riemannian metrics on the Stiefel
manifold Stn,k via

〈·, ·〉(α)
St : TX Stn,k×TX Stn,k → R,

(ξ1, ξ2) 7→− tr
(
Ω
K⊥X
1 Ω

K⊥X
2

)
− 1

α tr
(
Ψ
K⊥X
1 Ψ

K⊥X
2

)
.

(41)

For computational purposes it is certainly desirable to have an explicit
formula for ΩK⊥X and ΨK⊥X purely in terms of ξ ∈ TX Stn,k and X ∈ Stn,k.

Proposition 3. Let X ∈ Stn,k and ξ ∈ TX Stn,k, with ξ := ΩX−XΨ. Then,

ΩK⊥X = ξX> −Xξ> + 2α+1
α+1 Xξ

>XX>,

ΨK⊥X = − α
α+1X

>ξ.
(42)
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Proof : Plug ξ = ΩX − XΨ into (42) and compare with (30), giving the
result.

Corollary 2. The normal or submersion (pseudo-)Riemannian metric on
the Stiefel manifold Stn,k induced by the group action of On×Ok defined by
(13) with On×Ok endowed with the pseudo-Riemannian metric defined by
(21) expressed exclusively by X ∈ Stn,k and ξ ∈ TX Stn,k now boils down to〈

ξ1, ξ2

〉(α)

St
= tr

(
2ξ1ξ

>
2

)
− 2α+1

α+1 tr
(
ξ1ξ
>
2 XX

>). (43)

Hereafter we refer to the members of the α-parameter family of metrics as
α-metrics.

4. Special cases of α-metrics
For certain values of α we now put our results into perspective with more

or less recently published works.

4.1. Case 1: The limit α→ 0 and the normal or submersion metric
induced by σ. By taking the limit α → 0 in (43), the right hand side is
remarkably still a Riemannian one. Actually this metric coincides with the
normal or submersion metric induced by the transitive group action of On

on Stn,k by left multiplication. Namely in this case we have

lim
α→0

〈
ξ1, ξ2

〉(α)

St
= tr

(
2ξ1ξ

>
2

)
− tr

(
ξ1ξ
>
2 XX

>). (44)

For convenience one might compare the above formula choosing X =
[
Ik
0

]
,

ξi =
[
Ai
Bi

]
∈ TX Stn,k where Ai ∈ sok and Bi ∈ Rn−k×k with formula (2.22) in

[9] (up to a factor 1/2), i.e. in the notation of Corollary 1

〈ξ1, ξ2〉(0)
St = tr(2A1A

>
2 + 2B1B

>
2 )− tr(A1A

>
2 ) = tr(A1A

>
2 + 2B1B

>
2 ). (45)

Let us look on the situation a little bit more carefully. Formula (30) implies
that 1

αΨK⊥ = 1
1+α(Ψ−XTΩX)→ Ψ−XTΩX as α→ 0. Therefore

1
α tr

(
ΨK⊥

1 ΨK⊥
2

)
= α tr

(
1
αΨK⊥

1
1
αΨK⊥

2

)
→ 0 as α→ 0. (46)

It implies that the limit in (41) exists as α → 0 and by (45) it is equal to
− tr

(
ΩK⊥

1 ΩK⊥
2

)
= tr(A1A

>
2 + 2B1B

>
2 ). Now consider the case X =

[
Ik
0

]
.
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Then according to (33) we have

son× sok 3 (Ω,Ψ) = ([ Ψ 0
0 C ] ,Ψ)︸ ︷︷ ︸
∈KX

+
( [

A−Ψ −B>
B 0

]
, 0
)

︸ ︷︷ ︸
∈K⊥X

, (47)

where KX needs to be orthogonal to K⊥X with respect to the inner prod-
uct (19) as α→ 0, i.e., if we denote

(Ω1,Ψ1) = ([ Ψ 0
0 C ] ,Ψ) , (Ω2,Ψ2) =

([
A−Ψ −B>
B 0

]
, 0
)
, (48)

then 〈
(Ω1,Ψ1), (Ω2,Ψ2)

〉(α)

son× sok
= tr

(
(A−Ψ)Ψ

)
− 1

α tr(Ψ · 0) = 0. (49)

Since we know that the limit of the metric exists, it will correspond to the
metric space where Ψ = 0. In this case we obtain

son× sok 3 (Ω, 0) =
(

[ 0 0
0 C ] , 0

)
︸ ︷︷ ︸
∈KX=k

+
([

A −B>
B 0

]
, 0
)︸ ︷︷ ︸

∈K⊥X=p

∈ son×{0} ∼= son . (50)

It indeed corresponds to the action of O(n) on the Stiefel manifold with
son = p⊕ k, see [18, Formulas (17) and (18)].

4.2. Case 2: α = −1
2 and the Euclidean metric induced by Stn,k ⊂

Rn×k. For α = −1
2 we start with a pseudo-Riemannian metric on On×Ok as

α is negative. It turns out, its restriction to the horizonal space K⊥X becomes
Riemannian. Actually, this metric is exactly the one you get by considering
Stn,k ⊂ Rn×k as a Riemannian submanifold of the Euclidean space Rn×k

endowed with Frobenius inner product. Explicitly, we get

〈ξ1, ξ2〉(−1/2)
Stn,k

= tr(2ξ1ξ
>
2 ), (51)

i.e., twice the usual Euclidean inner product on Rn×k. This result is not too
surprising. Indeed, consider the group action

β : On×Ok×Rn×k → Rn×k,
(
(U, V ), X

)
7→ UXV >, (52)

with

βX : On×Ok → Rn×k, (U, V ) 7→ UXV >. (53)

The orbits of β are precisely those matrix sets which have fixed singular val-
ues. Certainly, on each of these orbits the product group acts transitively.
Therefore the restriction βX(I, I)|X−orbit is a submersion for any X. The
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Stiefel manifold is equal to one of these orbits, the result follows by Propo-
sition 3.

4.3. Case 3: The limit α→∞. This approach gives rise to quasi-geodesic
curves on Stn,k. For convenience, we only look at X =

[
Ik
0

]
. Indeed, if we

take a limit as α→∞ in (33) we come to the decomposition

son× sok 3 (Ω,Ψ) =
(

[ A 0
0 C ] , A

)
︸ ︷︷ ︸
∈KX=k

+
([

0 −B>
B 0

]
,Ψ− A

)︸ ︷︷ ︸
∈K⊥X=p

. (54)

This corresponds to the quasi-geodesic horizontal distribution in [18, formu-
las (20) and (21)] generated by the p-subspace within the Cartan decompo-
sition (35). The inner product that makes the direct sum in (35) orthogonal
was not presented in [18] and this case was treated differently. See also [19]
for a slightly different perspective.

Remark 3. Note that in the literature quasi-geodesics appear with different
meanings, not necessarily related in an obvious way.

In numerics, e.g., in [22], those curves are denoted by quasi-geodesics, which
are smooth curves approximating geodesics in some sense. Furthermore, in
[1] and [20] the connection of this type of quasi-geodesics to a retraction
approximating the Riemannian exponential map is made. See, e.g., [2] for
the concept of retractions applied to numerics.

The notion of quasi-geodesics in the sense of M. Gromov, however, is
derived from the general theory of metric spaces and the notion of quasi-
isometries between those spaces. This gives a precise mathematical meaning
to coarse spaces and coarse structures as part of geometry, i.e., studying
metric spaces from a large scale point of view, see e.g., [24], [25].

In our paper, the term quasi-geodesic refers to the former concept, i.e.,
quasi-geodesics are considered to be smooth curves close to geodesics in some
sense, although nowhere we comment explicitly on corresponding retractions.
More important, however, the curves we consider here, all have constant
geodesic curvature.

4.4. Case 4: α = 1. This case is classical and corresponds to the submersion,
where the standard trace inner product on son× sok is considered, see, for
instance, [11] and [18].
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4.5. Case 5: α < −1. In this case we always get a pseudo-Riemannian
metric on Stn,k which is not Riemannian. We are currently not aware of any
applications.

Remark 4. We now briefly discuss two extreme cases, namely Stn,1 = Sn−1

and Stn,n = On.
For the sphere Sn−1 the α-metric becomes independent of α. Indeed, (43)

reduces to the scaled Euclidean inner product on TXS
n−1 ⊂ Rn as for i ∈

{1, 2} we have TXS
n−1 3 ξi ⊥ X. Explicitly,〈

ξ1, ξ2

〉(α)

Stn,1
= tr

(
2ξ1ξ

>
2

)
− 2α+1

α+1 tr
(
ξ1 ξ

>
2 X︸︷︷︸
=0

X>
)

= 2ξ>2 ξ1.

For the orthogonal group On the α-metric (43) simplifies to〈
ξ1, ξ2

〉(α)

Stn,n
= tr

(
2ξ1ξ

>
2

)
− 2α+1

α+1 tr
(
ξ1ξ
>
2 XX

>︸ ︷︷ ︸
=In

)
= 1

α+1 tr
(
ξ1ξ
>
2

)
.

In particular, it becomes independent of X. Moreover, for any α ∈ R \ {−1}
the metric is either positive definite or negative definite. In other words, it
is always a nonzero multiple of the Killing form. In the limit α → ∞ the
metric becomes identical to zero.

5. Geodesics on Stn,k with respect to different values of
the parameter α

The purpose of this section is to derive a one-parameter family of Euler-
Lagrange equations describing the critical points of the energy functional on
Stn,k with respect to the metric (43). It is a remarkable fact that one is
able to show, independent of the value of α, that this family of nonlinear,
second order matrix ODEs is equivalent to a family of linear, time-invariant,
second order matrix ODEs. To write down a closed form solution for the
corresponding initial value problem is then straightforward.

Rather than solving a variational problem directly on Stn,k where we would
need an α-dependent formula of the covariant derivative we proceed with a
Lagrange multiplier approach in the space of smooth curves in Rn×k.

Extend the metric (43) to a function TXRn×k×TXRn×k → R in a straight-
forward way, saying〈

ξ1, ξ2

〉(α)

Rn×k := tr
(
2ξ1ξ

>
2

)
− 2α+1

α+1 tr
(
ξ1ξ
>
2 XX

>) (55)
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for any X ∈ Rn×k and any ξ1, ξ2 ∈ TXRn×k. We now study the following
problem from variational calculus. Find the critical points of

F : C∞(R,Rn×k × Symk)→ R,

(X,S) 7→ 1
2

∫ 1

0

(〈
Ẋ, Ẋ

〉(α)

Rn×k+tr
(
S(X>X − Ik)

))
dt.

(56)

Here S : R→ Symk serves as a matrix-valued Lagrange multiplier. Following
the usual approach, cf. [28], consider an admissible variational family of the
curves X and S fulfilling boundary conditions

Xε(t) := X(t) + εY (t) ∈ Rn×k,

Sε(t) := S(t) + εT (t) ∈ Symk,

Y (0) = Y (1) = 0,

T (0) = T (1) = 0.
(57)

A critical point of (56) has to satisfy f ′(ε)|ε=0 = 0 where

f : (−δ, δ)→ R, f(ε) := F (Xε, Sε). (58)

We can therefore state f ′(0) = 0, iff for all admissible variations Y, T we have∫ 1

0

(〈
Ẋ, Ẏ

〉(α)

Rn×k + 1
2 tr
(
T (X>X − Ik)

)
+ tr(SX>Y )

)
dt = 0. (59)

By partial integration, respecting the boundary conditions, equation (59) is
equivalent to the system

d
dt

(
(2In − 2α+1

α+1 XX
>)Ẋ

)
+ 2α+1

α+1 ẊẊ
>X −XS = 0,

X>X = Ik.
(60)

Exploiting the symmetry of S we get rid of S in (60). A byproduct of these
calculations is the relation

X>Ẍ = Ẍ>X. (61)

Moreover, using also

X>X = Ik =⇒ Ẋ>X+X>Ẋ = 0 =⇒ Ẍ>X+X>Ẍ+2Ẋ>Ẋ = 0, (62)

we find an explicit form for the Lagrange multiplier

S = −2
(
Ẋ>Ẋ + 2α+1

α+1 (X>Ẋ)2
)
. (63)
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We can now write down an α-family of Euler-Lagrange equations to the
variational problem (56), it is the set

Ẍ + 2α+1
α+1 (ẊẊ>X) +X

(
2α+1
α+1 (X>Ẋ)2 + Ẋ>Ẋ

)
= 0,

X>X = Ik.
(64)

Equations (64) discribe an explicit, time-variant, second order, highly non-
linear matrix ODE on Rn×k with solutions lying on the Stiefel manifold. We
want to look for solutions of the associated α-family of initial value problems
(IVP).

Ẍ = −2α+1
α+1 (ẊẊ>X)−X

(
2α+1
α+1 (X>Ẋ)2 + Ẋ>Ẋ

)
,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(65)

Theorem 5.1. For all α 6= −1 the IVP (65) is equivalent to a second order
linear time-invariant IVP.

Proof : We streamline notation a bit and introduce for convenience

v := 2α+1
α+1 . (66)

We rewrite the right hand side of the first equation in (65) and identify
certain invariants. Indeed,

− v
(
Ẋ · Ẋ>X︸ ︷︷ ︸
∈sok by (62)

)
−X

(
v(X>Ẋ)2 + Ẋ>Ẋ

)
= −v(ẊẊ>X)−X

(
v(X>Ẋ)2 + Ẋ>Ẋ

)
+ (ẊX>Ẋ − ẊX>Ẋ)︸ ︷︷ ︸

=0

= −Ẋ (1− v)(X>Ẋ)︸ ︷︷ ︸
= ΨK⊥

X (t) by (42)

−
(
vXX>ẊX> +XẊ> − ẊX>

)︸ ︷︷ ︸
= ΩK⊥

X (t) by (42)

Ẋ

= ΩK⊥X(t) · Ẋ − Ẋ ·ΨK⊥X(t),

(67)

setting ξ = Ẋ(t) for X(t) being the solution of (64).

Claim 5.2. For a fixed solution X(t) to (65), both linear operators

ΨK⊥X(t) : R→ sok, and ΩK⊥X(t) : R→ son

are constant.
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Proof : (Of Claim 5.2) Firstly,

Ψ̇K⊥X(t) = (1− v) d
dt(X

>Ẋ) = (1− v)(Ẋ>Ẋ +X>Ẍ) = 0, (68)

by combining (61) and (62). Secondly,

Ω̇K⊥X(t) = −v
(
Ẋ X>Ẋ︸ ︷︷ ︸

∈sok

X> +X d
dt(X

>Ẋ)︸ ︷︷ ︸
=Ψ̇K⊥

X (t)=0

X> +XX>ẊẊ>
)

− (ẊẊ> +XẌ> − ẌX> − ẊẊ>)

= −v
[
XX>, ẊẊ>

]
−XẌ> + ẌX> = 0.

(69)

The last equality in (69) follows by inserting twice the Euler-Lagrange equa-
tion (64).

Consequently, ΨK⊥X(t) = ΨK⊥X(0) =: Ψ
K⊥X
0 and ΩK⊥X(t) = ΩK⊥X(0) =: Ω

K⊥X
0 .

Now we combine both constant operators to one single constant linear oper-
ator

∆0 : Rn×k → Rn×k, X 7→ ∆0 ◦X := Ω
K⊥X
0 X −XΨ

K⊥X
0 . (70)

The Euler-Lagrange equation can now be rewritten as

Ẍ = ∆0 ◦ Ẋ. (71)

Furthermore,

∆0 ◦X = Ω
K⊥X
0 X −XΨ

K⊥X
0

= −
(
vXX>ẊX> +XẊ> − ẊX>

)
·X −X · (1− v)X>Ẋ

= Ẋ.

(72)

Consequently, the Euler-Lagrange equations for our variational calculus prob-
lem get the simple form

Ẍ = ∆0 ◦∆0 ◦X, X>X = Ik, (73)

a second order, explicit, time-independent, linear ODE on the Stiefel mani-
fold.

Remark 5. Notice that, for convenience, throughout our paper the notation
eX ≡ exp(X) means exclusively the matrix exponential for the square matrix
X.
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Corollary 3. The unique solution of the initial value problem

Ẍ = ∆0 ◦∆0 ◦X, X(0) = X0 ∈ Stn,k, Ẋ(0) = Ẋ0 ∈ TX0
Stn,k (74)

for finding extremal curves with respect to the α-metric defined by (43) on
the Stiefel manifold Stn,k is

X(t) =etΩ
K⊥X
0 X0 e−tΨ

K⊥X
0

=et(−vX0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) ·X0 · e−t(1−v)X>0 Ẋ0

=et(−vX0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) · e−t(1−v)X0X

>
0 Ẋ0X

>
0 ·X0

=exp
(
t
(
−2α+1

α+1 X0X
>
0 Ẋ0X

>
0−X0Ẋ

>
0 +Ẋ0X

>
0

))
·X0 ·exp

(
t α
α+1X

>
0 Ẋ0

)
=exp

(
t
(
−2α+1

α+1 X0X
>
0 Ẋ0X

>
0−X0Ẋ

>
0 +Ẋ0X

>
0

))
exp
(
t α
α+1X0X

>
0 Ẋ0X

>
0

)
X0.

(75)

Proof : The proof is by direct verification. Alternatively, see subsection 11 of
chapter 1 in [8] for handling this type of linear time-invariant matrix-valued
ODE.

We are now in the position to study the special cases for choosing certain
values for α from Section 4 again, this time in terms of closed formulas for
extremal curves.

5.1. Case 1: The limit α → 0 and the normal or submersion met-
ric induced by σ. The corresponding Euler-Lagrange equation appeared
already in [9], but it was presented without proof. However, the closed form
solution of the IVP

Ẍ = −ẊẊ>X −X
(

(X>Ẋ)2 + Ẋ>Ẋ
)
,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(76)

in terms of arbitrary initial values seems to be new,

X(t) =et(−X0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) ·X0. (77)

Consider again the special isotropy point

X0 =
[
Ik
0

]
, (Ω,Ψ) =

([
A −B>
B C

]
,Ψ
)
∈ son× sok, Ẋ0 = ΩX0 −X0Ψ = [ AB ] .

(78)
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With this choice of initial values, the solution of IVP (76), i.e. (77), becomes

X(t) = e
t
[
A −B>
B 0

] [
Ik
0

]
, (79)

in accordance with [11] and [18].

5.2. Case 2: α = −1
2 and the Euclidean metric induced by Stn,k ⊂

Rn×k. Here the corresponding (surprisingly simple) Euler-Lagrange equation
is well-known. The closed form solution of the corresponding IVP appeared
for the first time in [15], [27], see also [13] for a low dimensional example.

Ẍ = −XẊ>Ẋ,
X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(80)

The solution for (80) in terms of arbitrary initial values is as

X(t) =et(−X0Ẋ
>
0 +Ẋ0X

>
0 ) ·X0 · e−tX

>
0 Ẋ0

=et(−X0Ẋ
>
0 +Ẋ0X

>
0 ) · e−tX0X

>
0 Ẋ0X

>
0 ·X0.

(81)

Choose again (78) as initial values. Now (81) becomes

X(t) = e
t
[

2A −B>
B 0

] [
Ik
0

]
e−tA = e

t
[

2A −B>
B 0

]
e−t[

A 0
0 0 ] [ Ik

0

]
, (82)

again in accordance with [11] and [18].
One might compare the two alternatives in (81) with the cumbersome for-

mula appearing in subsection 2.2.2 of [9].

Remark 6. The IVP (80) appears also in a more general context in [5],
where the authors study variational problems on Stiefel manifolds with a
very different family of left invariant Riemannian metrics compared to ours’.
Their family of Riemannian metrics depends on an (n×n)-diagonal positive
definite matrix Λ. However, for Λ = In, (80) is equivalent to (21) and (22)
in [5]. But note, our n corresponds to an N in [5].

5.3. Case 3: The limit α → ∞. The associated Euler-Lagrange equation
was to the best knowledge of the authors never published before:

Ẍ = −2(ẊẊ>X)−X
(

2(X>Ẋ)2 + Ẋ>Ẋ
)
,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(83)
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The solution for IVP (83) in terms of arbitrary initial values is as

X(t) =et(−2X0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) ·X0 · etX

>
0 Ẋ0

=et(−2X0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) · etX0X

>
0 Ẋ0X

>
0 ·X0.

(84)

Choose once again (78) as initial values. Then (84) becomes

X(t) = e
t
[

0 −B>
B 0

] [
Ik
0

]
etA = e

t
[

0 −B>
B 0

]
et[

A 0
0 0 ] [ Ik

0

]
, (85)

again in accordance with [18] and [19].

Remark 7. The curves (84) and (85) showed up recently in a different con-
text, cf. [18], [19] and [20]. In [20] the authors used these curves to solve
a boundary value problem, whereas in [18, 19] they were analyzed from a
purely geometric point of view.

5.4. Case 4: α = 1. The associated Euler-Lagrange equation is as

Ẍ = −3
2(ẊẊ>X)−X

(
3
2(X>Ẋ)2 + Ẋ>Ẋ

)
,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(86)

The solution for IVP (86) in terms of arbitrary initial values is as

X(t) =et(−
3
2X0X

>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) ·X0 · e

t
2X
>
0 Ẋ0

=et(−
3
2X0X

>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) · e

t
2X0X

>
0 Ẋ0X

>
0 ·X0.

(87)

Choose (78) as initial values. Then (87) becomes

X(t) = exp
(
t
[
A/2 −B>
B 0

] ) [
Ik
0

]
etA/2

= exp
(
t
[
A/2 −B>
B 0

] )
exp

(
t
[
A/2 0

0 0

] ) [
Ik
0

]
,

(88)

again in accordance with [11] and [18]. However, (86) seems to be new.

5.5. Case 5: α < −1. In this case we always get a true pseudo-Riemannian
metric on Stn,k, i.e., one which is not Riemannian. We are currently not
aware of any application.

Remark 8. Again we comment on the two extreme cases Stn,1 = Sn−1 and
Stn,n = On.
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For the sphere Sn−1 the geodesic curves (75) simplify to curves describing
great circles, independent of α. Indeed,

X(t) =exp
(
t
(
−2α+1

α+1 X0X
>
0 Ẋ0︸ ︷︷ ︸
=0

X>0−X0Ẋ
>
0 +Ẋ0X

>
0

))
exp
(
t α
α+1X0X

>
0 Ẋ0︸ ︷︷ ︸
=0

X>0
)
·X0

= exp
(
t(Ẋ0X

>
0 −X0Ẋ

>
0 )
)
·X0 = X0 cos

(
t‖Ẋ0‖

)
+ Ẋ0

sin(t‖Ẋ0‖)∥∥Ẋ0

∥∥ .

Note that the last equality even makes sense for ‖Ẋ0‖ → 0 as the limit of
the quotient in the last summand nevertheless exists. Moreover, to see that
these circles are actually great circles, one might insert t = π

‖Ẋ0‖
to realize

that X0 and −X0 as well, i.e. antipodes, lie on the curve X(t).
For the orthogonal group On the geodesic curves (75) reduce to curves

specified by one-parameter subgroups acting on X0, independent of α. In
fact, exploiting Ẋ0X

>
0 = −X>0 Ẋ0 ∈ son we get

X(t) =exp
(
t
(
−2α+1

α+1 X0X
>
0︸ ︷︷ ︸

=In

Ẋ0X
>
0−X0Ẋ

>
0 +Ẋ0X

>
0

))
exp
(
t α
α+1 X0X

>
0︸ ︷︷ ︸

=In

Ẋ0X
>
0

)
·X0

= exp
(
t(Ẋ0X

>
0 )
)
·X0.

These results are certainly fully in accordance with well-known facts.

6. Curves of constant geodesic curvature with respect to
α-metrics

The relationship to a sub-Riemannian problem will be explained in this
section. First we present and adapt a result from [18] that was obtained
earlier, cf. [17], [21]. Consider On×Ok endowed with the α-metric defined
in (21). Let p ⊕ k be the corresponding Cartan decomposition of son× sok
as it is written in (34) and (35). By making use of the translation we define
an α-family of left invariant horizontal distributions H on On×Ok that are
orthogonal to the vertical distribution V with respect to the bi-invariant α-
metric (21). The vertical distribution V is equal to k = KX at the identity
whereas the horizontal distribution H is equal to p = K⊥X at the identity.
Thus T (On×Ok) = H ⊕ V , where H is the bracket generating distribu-
tion according to the fourth condition in (35). We say that a smooth curve
c : [0, 1]→ On×Ok is horizontal if ċ(t) ∈ Hc(t). From now on we assume that

〈· , ·〉(α) is positive definite when it is restricted to p. The sub-Riemannian
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distance function dsubR(g1, g2) on the group On×Ok is defined as the infi-
mum of the lengths among all horizontal curves connecting the points g1 and
g2 on On×Ok. The reader can find more about sub-Riemannian geometry
in [3, 21].

Definition 6.1. A sub-Riemannian geodesic g : [0, 1]→ On×Ok is a smooth
horizontal curve that locally realizes the sub-Riemannian distance function
dsubR.

Proposition 4. A sub-Riemannian geodesic on On×Ok tangent to H is
given by

g(t) = g0 Exp
(
t(Pp + Pk)

)
Exp(−tPk), g0 ∈ On×Ok, Pp ∈ p, Pk ∈ k,

(89)
with initial velocity Pp + Pk and initial point g0 ∈ On×Ok, cf. [17, 21]. The
Riemannian geodesics on Stn,k = (On×Ok)/(Ok×On−k) are projections of
sub-Riemannian geodesics (89) for which Pk = 0, cf. [17].

Remark 9. Here, Exp denotes the exponential map for the product group
On×Ok, at this stage not to be confused with the ordinary matrix exponen-
tial eX ≡ exp(X).

Proof : Translated into our terminology, the sub-Riemannian geodesics (89)
on the product group On×Ok (only at the identity for convenience) are of
the form

R→ On×Ok,

t 7→
(

exp
(
t(Ω

K⊥X
0 +ΩKX

0 )
)
,exp

(
− t(ΨK⊥X

0 +ΨKX
0 )
))
◦
(
exp
(
− tΩKX

0

)
, exp

(
tΨKX

0 )
)

=
(
exp
(
t(Ω

K⊥X
0 +ΩKX

0 )
)
exp
(
− tΩKX

0

)
, exp

(
−t(ΨK⊥X

0 +ΨKX
0 )
)
exp
(
tΨKX

0 )
)
,

which, for Pk = 0, i.e.,
(
ΩKX

0 ,ΨKX
0

)
= (0, 0), project to Riemannian geodesics

on Stn,k, which start at X and emanate in direction Ω
K⊥X
0 X −XΨ

K⊥X
0 , as

R→ Stn,k, t 7→ etΩ
K⊥X
0 X e−tΨ

K⊥X
0 . (90)

This is in accordance with Corollary 3, namely the first line of (75), as
required.

We rephrase here a result from proposition 5 in [18], adapted to our nota-
tions but there under more general assumptions.
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Proposition 5. The projection of the sub-Riemannian geodesic (89) onto
the Stiefel manifold Stn,k = (On×Ok)/(Ok×On−k) is a curve of constant
geodesic curvature relative to the Riemannian α-metric defined in (41). The
geodesic curvature of the projection is equal to ‖[Pp, Pk]‖, where the norm is
understood in terms of the α-metric.

As a consequence of Proposition 5 we immediately obtain

Corollary 4. For any X ∈ Stn,k and any (Ω,Ψ) ∈ son× sok all smooth
curves of type

R→ Stn,k, t 7→ etΩX e−tΨ (91)

are curves of constant geodesic curvature relative to the Riemannian α-metric
defined in (41).

6.1. Alternative approach to obtain formula (89). Equation (89) for
a sub-Riemannian geodesic tangent to the left invariant distribution ob-
tained from p can be also obtained by variational methods, incorporating
Lagrange multipliers for both, holonomic and nonholonomic constraints, [14].
To give an outline of that approach, we first embed On×Ok into the space
R(n+k)×(n+k) of square (n, k)-block diagonal matrices with square (n×n) and
(k × k)-blocks on the main diagonal. By making use of left translations we
identify the tangent space TX(Rn×n ⊕ Rk×k) ∼= Rn×n ⊕ Rk×k with the Lie
algebra g := gln ⊕ glk of (n, k)-block diagonal matrices. We decompose

g = Symn⊕ Symk⊕son ⊕ sok = Symn⊕ Symk⊕p⊕ k, (92)

where p⊕ k is the Cartan decomposition of son × sok. The direct sums (92)
are orthogonal with respect to the inner product

〈A,B〉(α) = tr(A>1 B1) + 1
α tr(A>2 B2). (93)

Here A = (A1, A2), B = (B1, B2) ∈ g, meaning that A1, B1 ∈ gln and
A2, B2 ∈ glk. The product 〈· , ·〉(α) is ad-invariant, indefinite, and non-
degenerate for α 6= −1. We define the bi-invariant indefinite metric on
T (Rn×n⊕Rk×k) by taking left translations of the product 〈· , ·〉(α). Define the
functional

X(t) 7→ 1
2

∫ 1

0

(〈
Ẋ, Ẋ

〉(α)
+
〈
S,XTX − In+k

〉(α)
+
〈
Pk, X

T Ẋ
〉(α)
)

dt. (94)

Here 1
2

∫ 1

0 〈Ẋ, Ẋ〉
(α)dt is the energy functional that is equal to the square of

the α-norm of a curve X(t) ∈ Rn×n ⊕ Rk×k. The summand 1
2

∫ 1

0 〈S,X
TX −
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In+k〉(α)dt is a requirement that X(t) ∈ On×Ok and S is an (n, k)-block di-
agonal symmetric matrix in Rn×n⊕Rk×k, that serves as a Lagrange multiplier
to enforce the holonomic constraint. It implies that XT Ẋ ∈ son× sok. The
last term 1

2

∫ 1

0 〈Pk, X
T Ẋ〉(α)dt incorporates the Lagrange multiplier Pk ∈ k to

enforce the nonholonomic constraint. It will ensure that XT Ẋ ∈ p.
By making calculations similar to those in section 4 of [14] and looking for

the critical point of (94), we obtain the geodesic equation

Ẍ(t) = X(t) Exp(tPk)
(
P 2
p + [Pk, Pp]

)
Exp(−tPk), (95)

on On×Ok for a sub-Riemannian geodesic. Here Pk ∈ k, and Pp ∈ p, can
be considered as data for specifying an initial velocity vector. It is a result
of the corresponding calculations showing that the Lagrange multiplier Pk is
actually constant. By the substitution

Y (t) := X(t) Exp(tPk) (96)

the equation (95) is reduced to the linear second order differential equation
with constant coefficients

Ÿ (t)− 2Ẏ (t)Pk + Y (t)
(
P 2
k − P 2

p − [Pk, Pp]
)

= 0, (97)

having the unique solution

Y (t) = Y (0) Exp
(
t(Pp + Pk)

)
, (98)

with Y (0) = X(0). Combining (96) and (98) we obtain (89). Note that,
eventually, in this subsection as X ∈ On×Ok was realized as a matrix X =[
X1 0
0 X2

]
with X1 ∈ On and X2 ∈ Ok, we got Exp(X) = exp

( [
X1 0
0 X2

] )
=[

eX1 0
0 eX2

]
.

Acknowledgements:
The first author has been supported by German BMBF-Projekt 05M20WWA:
Verbundprojekt 05M2020 - DyCA. The second author was partially sup-
ported by the project Pure Mathematics in Norway, funded by the Trond
Mohn Foundation. The third author acknowledges Fundação para a Ciência
e a Tecnologia (FCT) and COMPETE 2020 program for the financial support
to the project UIDB/00048/2020.
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Institute of Mathematics, Julius-Maximilians-Universität Würzburg,
Emil-Fischer-Straße 40, 97074 Würzburg, Germany

E-mail address: hueper@mathematik.uni-wuerzburg.de

Irina Markina
Department of Mathematics, University of Bergen,
P.O. Box 7803, Bergen N-5020, Norway

E-mail address: irina.markina@uib.no

Fátima Silva Leite
Institute of Systems and Robotics, University of Coimbra,
Pinhal de Marrocos, 3030-290 Coimbra, Portugal,
and
Department of Mathematics, University of Coimbra,
Largo D. Dinis, 3001-454 Coimbra, Portugal

E-mail address: fleite@mat.uc.pt


