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DENOISING AND INTERIOR DETECTION PROBLEMS

PAULO EDUARDO OLIVEIRA AND NUNO PICADO

Abstract: LetM be a compact manifold of Rd. The goal of this paper is to decide,
based on a sample of points, whether the interior of M is empty or not. We divide
this work in two main parts. Firstly, under a dependent sample which may or may
not contain some noise within, we characterize asymptotic properties of an interior
detection test based on a suitable control of the dependence. Afterwards, we drop
the dependence and consider a model where the points sampled from the manifold
are mixed with some points sampled from a different measure (noisy observations).
We study the behaviour with respect to the amount of noisy observations, intro-
ducing a methodology to identify true manifold points, characterizing convergence
properties.
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1. Introduction
In recent years we have observed an increasing interest in estimating or

testing about topological properties of an underlying set that is sampled.
Indeed, in many applications, key properties of the behavior of the random
phenomenon generating the observations are expressed through the geomet-
rical or topological complexity. One is often faced with a rather high di-
mensional collection of observations where only a relatively small amount
of the coordinates are actually meaningful, implying that the points are, in
fact, supported by, or at least are close, a lower dimensional set. The re-
construction of manifolds, based on a sample of points, has received a lot of
attention, and has well established methodologies using simplicial structures.
These are quite complex and computationally demanding, especially if one
is interested in higher dimensional problems. However, with the help of ap-
propriate topological tools, it is possible to obtain approximation procedures
that conveniently describe the support of the observed points and some of its
intrinsic complexity (such as the ones described in Medina & Doerge [17])
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The most obvious geometrical features of a set are its size, measured by the
(Lebesgue) measure or some other variations on obtaining information about
size, as in, for example, Pateiro-López & Rodŕıguez-Casal [19], Carlstein &
Krishnamoorthy [5], Báıllo & Cuevas [2], Cuevas & Rodŕıguez-Casal [11] and
Cuevas, Fraiman & Rodŕıguez-Casal [10]. Concerning the reconstruction of,
possibly high dimensional, sets, we mention more elementary approaches as
compared to the topologically inspired ones referred above, as these will be
at the base of the results proved in this paper. A simple set estimator was
introduced by Devroye and Wise [12], and, of course, variants of the same
ideia have appeared elsewhere in the literature (for example, in Cuevas [8]).
More difficult to address, from the statistical point of view, are properties
such orientation or dimensionality of a set. We will contribute for a ver-
sion of the later problem, considering a short procedure to decide whether
a set is of full dimensionality. This will be achieved through approximating
the interior of the support and deciding about is emptiness, extending the
approach introduced in Aaron, Cholaquidis & Cuevas [1], considering de-
pendent samples, introducing and describing a suitable control so that the
asymptotic characterizations introduced in [1] still provide a reliable method
for deciding about the interior.

As often happens in statistical problems, the observations may be subject
to some noise, being interpreted here as some points in the sample possibly
not being in the set of interest. As a second approach, we study a denoising
procedure for selecting true points from the set, so we can afterwards apply
the interior decision methods. We shall characterize how much noise is al-
lowed in that sample so that we may still rely on the approximations for the
testing procedures.

2. Background
Here, we begin by introducing the reader to some geometrical definitions

that will be used later, and also give some relevant results about the relation
between some of them.

We first recall the definition of the estimator introduced by Devroye &
Wise [12], that will at the base of most of our work.
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Definition 2.1. Let Xn = {X1, . . . , Xn} be a random sample of points in Rd.
Given r > 0, the Devroye-Wise estimator is defined by

Ŝn(r) =
n⋃
i=1

B(Xi, r),

where B(x, r) is the closed ball with center at x and radius r.

In [12], Ŝn(r) is proved to be a consistent estimator in the sense that, under

suitable conditions, the measure of M4M̂ will converge to 0.

Definition 2.2. Let S1, S2 ⊆ Rn. The Hausdorff distance between S1 and S2

is defined by

dH(S1, S2) = max{sup
x∈S1

inf
y∈S2

||x− y||, sup
y∈S2

inf
x∈S1

||x− y||}.

In order to be able to prove the main results of this paper, the manifoldM
will have to fulfill some regularity conditions, mainly concerning the bound-
ary, such as the ones that are defined next.

Definition 2.3. Let M be a set in Rd. M is said to fulfill the outside r-
rolling condition if for all s ∈ ∂M there exists x ∈ Mc such that B(x, r) ∩
∂M = {s}. Moreover, M is said to fulfill the inside r-rolling condition if
Mc satisfies the outside r-rolling condition.

Intuitively, this means that by rolling a ball of radius r in the border ofM,
one can touch every point of this border without touching more than one at
the same time. This definition obviously depends on the chosen metric.

Definition 2.4. Let reach(M, x) = inf{||x − y|| : y ∈ Ma(M)}, where
Ma(M), called the medial axis of M, is the set of points in Rd with more
than one orthogonal projection onto M. The reach of M is then defined by
reach(M) = inf{reach(M, x) : x ∈M}.

These two definitions are related by the next theorem, whose proof can be
found in Cuevas, Fraiman & Pateiro [9].

Theorem 2.1. Let M⊂ Rd be a compact set with reach(M) = r > 0. Then
M satisfies the outside r-rolling condition.

This next definition might not be easy to understand in terms of the man-
ifold itself. However, it expresses a regularity whose link to the properties
introduced above is described next.
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Definition 2.5. Let S be a set in Rd. S is said to be standard with constants
δ and λ and with respect to a Borel measure ν at a point x ∈ S if

ν(B(x, ε) ∩ S) ≥ δµd(B(x, ε)), 0 < ε ≤ λ,

where µd is the Lebesgue measure in Rd. Moreover, we will denote by ωd =
µd(B(x, 1)).

A set is said to be standard if this holds for all x ∈ S.

Proposition 2.1. If M satisfies the inside r-rolling condition and PM has
support M and a density f bounded below by f0 > 0, then M is standard
with respect to PM (with constants λ = r and δ ≤ f0

3 ).

Note. In this paper we will use the notation M̊ for the interior of the
manifold M and fX (resp. FX) for the density (resp. distribution) function
of the random vector, or variable, X.

3. Interior Detection
Let M be a compact set. The goal of this section is to extend an interior

identification procedure to handle suitably dependent samples. Naturally,
we need to assume some kind of control on the dependence.

Definition 3.1. Let Xn = {X1, . . . , Xn} be a set of random variables. We
call Xn a αn-almost independent sample, and denote by AI(αn) if

sup
x=(x1,··· ,xn)∈Rd×···×Rd

∣∣∣∣f(X1,...,Xn)(x)− fX1
(x1) . . . fXn

(xn)

fX1
(x1) . . . fXn

(xn)

∣∣∣∣ ≤ αn.

Now, we check that it is possible to create models of samples Xn that
fulfill AI(αn). In order to do this, we will introduce a way of creating joint
distributions based on the marginals, using copula functions (see Nelsen [18]).

Definition 3.2. C : [0, 1]n −→ [0, 1] is called an n-copula if it is a joint
distribution function with uniform marginals.

By Sklar’s Theorem (see [18]) we know that for every vector (X1, . . . , Xn)
there is a unique n-copula C such that

F(X1,...,Xn)(x1, . . . , xn) = C(FX1
(x1), . . . , FXn

(xn)).

Note: In the case of n-copulas, the condition on the dependence ofX1, . . . , Xn

for d = 1 translates to∣∣∣∣f(X1,...,Xn) − fX1
· · · fXn

fX1
· · · fXn

∣∣∣∣ ≤ αn ⇔
∣∣∣∣ ∂nC

∂u1 · · · ∂un
− 1

∣∣∣∣ ≤ αn.
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For d = 2 the condition translates to
2n∑

k=n+1

∑
(i1,...,in)∈Sk

∣∣∣∣ ∂kC

∂ui11 · · · ∂u
in
n

∣∣∣∣ ∏
j:ij=2

∣∣∣∣JF (xj)e1JF (xj)e2

f0

∣∣∣∣+∣∣∣∣ ∂nC

∂u1 · · · ∂un
− 1

∣∣∣∣ ≤ αn,

where Sk = {(i1, . . . , in) ∈ {1, 2}n :
∑n

j=1 ij = k} and JF is the Jacobian
matrix of the function F .

Example 3.1. Let C : [0, 1]n −→ [0, 1] be defined as

C(u1, . . . , un) =
n∏
i=1

ui +
n∏
i=1

fi(ui).

In this case, we have

∂nC

∂u1 · · · ∂un
(u1, . . . , un) = 1 +

n∏
i=1

f ′i(ui).

Hence, ∣∣∣∣ ∂nC

∂u1 · · · ∂un
− 1

∣∣∣∣ ≤ αn ⇔
n∏
i=1

|f ′i(ui)| ≤ αn.

Now that we have some dependence control, we will address the identifi-
cation of the interior of a manifold considering dependent samples, with or
without noise.

3.1. Sampling without noise. First, we will consider a noiseless model,
where the sample comes from a distribution with support on the manifold
M.

In order to decide about the interior, we will use an estimator based on the
one introduced in Definition 2.1.

Definition 3.3. Let Xn = {X1, . . . , Xn} be a random sample of points in Rd.
Given the Devroye-Wise estimator, a ball B(Xi, r) will be called a boundary

ball of Ŝn(r) if there exists y ∈ ∂B(Xi, r) such that y ∈ ∂Ŝn(r). Then, the

“peeling” of Ŝn(r) is defined as the union of all non-boundary balls, and will

be denoted as peel(Ŝn(r)).

Throughout this section, we extend the results in [1], considering now de-
pendent AI(αn) samples.
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Theorem 3.1. LetM⊂ Rd be a compact non-empty set and Xn = {X1, . . . , Xn}
an AI(αn) sample with αn such that

∞∑
n=1

αnε
−d
n n−C(1−εn)d <∞, for some C > 1 and some εn → 0.

Then,

(1) If M̊ = ∅ and M fulfils the outside rolling condition for some r > 0,

then peel(Ŝn(r
′)) = ∅ for any r′ < r.

(2) If M̊ 6= ∅, assume that there is a ball B(x0, r0) ⊂ M̊ standard with re-

spect to PX, with constants δ and λ. Then peel(Ŝn(rn)) 6= ∅ eventually
a.s., with rn a sequence such that(

C

ωdδ

log n

n

)1/d

≤ rn ≤ min{r0/2, λ}.

Proof : (1) Repeat the arguments used for the proof of part (a) of Theo-
rem 1 in [1].

(2) Choose {t1, . . . , tνn} such that B(x0, 2rn) ⊆
⋃νn
i=1B(ti, rnεn). It is eas-

ily seen that νn = τdε
−d
n . Let us define

pn := P (∃y ∈ B(x0, 2rn), B̊(y, rn) ∩ Xn = ∅).

Then,

pn ≤
νn∑
i=1

P (X1 /∈ B(ti, rn(1− εn))︸ ︷︷ ︸
Bn,i

, . . . , Xn /∈ B(ti, rn(1− εn))︸ ︷︷ ︸
Bn,i

)

=

νn∑
i=1

∫
Bc

n,i

· · ·
∫
Bc

n,i

f(X1,...,Xn)dx1 . . . dxn

≤
νn∑
i=1

∫
Bc

n,i

· · ·
∫
Bc

n,i

(1 + αn)fX1
· · · fXn

dx1 . . . dxn

=

νn∑
i=1

(1 + αn)P (X1 /∈ B(ti, rn(1− εn)))n. (1)

Note that because rn ≤ r0/2, it follows that ti ∈ B(x0, r0) for i =
1, . . . , τd, so we can use the standardness of the ball B(x0, r0) to get
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that

P (X1 /∈ B(ti, rn(1− εn)))n = (1− PX(B(ti, rn(1− εn))))n

≤ (1− ωdδrdn(1− εn)d)n

≤
(

1− C log n

n
(1− εn)d

)n
≤ exp(−C(1− εn)d) log n

= n−C(1−εn)n.

Applying this upper bound in (1), we finally conclude that

pn ≤ τdε
−d
n (1 + αn)n

−C(1−εn)n ⇒
+∞∑
n=1

pn <∞.

By the Borel-Cantelli Lemma, it follows that for all y ∈ B(x0, 2rn),

we have B̊(y, rn) ∩ {X1, . . . , Xn} 6= ∅, eventually a.s. Putting y =

x0 means that there exists some Xi ∈ B̊(x0, rn). Moreover, if z ∈
∂B(Xi, rn) there exists Xj such that z ∈ B̊(Xj, rn). This implies that

the ball B(Xi, rn) belongs to peel(Ŝn(rn)), and so peel(Ŝn(rn)) 6= ∅.

The next step is to choose the radii of the balls appropriately. According
to the previous theorem, these must be chosen converging to zero, but at a
suitable rate. The next lemma will help us with this tuning of the decrease
rate.

Lemma 3.1. For n large enough and t < 1
f0

for some fixed f0 > 0, let

{X1, . . . , Xn} be an AI(αn) random sample with αn such that
∞∑
n=1

αn exp
(
−σn

γ

2
n−τ
)
< +∞,

for any 1
2 < τ < 1, 0 < γ <

(
1−

(
1
2

)1/d
)d

and σn ≥ cn
log n.

Then maxi minj 6=i ||Xj −Xi|| >
(
t log n
nωd

)1/d

with probability one.

Proof : Let g0 > f0, v > u > t, ε > 0, be such that g0v < 1 and ε1/d +
t1/d < u1/d. Let B0 be a ball centered in a point x0 ∈ M and radius β0

such that for every x ∈ B(x0, 2β0), f(x) < g0. Finally let N(n) and M(n)
be independent Poisson variables with means n − n3/4 and 2n3/4 resp., and
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W−n = {X1, . . . , XN(n)}, W+
n = {X1, . . . , XN(n)+M(n)}. Then, W−n , resp. W+

n ,

is a Poisson process with intensity function (n−n3/4)f(·), resp. (n+n3/4)f(·)
(see Kingman [16] for more details on Poisson processes).

With

Hn = {W−n ⊂ Xn ⊂ W+
n } = {N(n) < n < N(n) +M(n)},

we get, by Lemma 3.1 in Penrose [20], that there exists c1 > 0 satisfying

P (Hc
n) ≤ 2c1e

−n1/4.

Let σn = σ(B0, ρn(u)), where

σ(U, r) = max{n : ∃x1, . . . , xn ∈ U : B(xi, r) ∩B(xj, r) = ∅}.
By Lemma 2.1 in [20], we have that σn ≥ c2n

log n , for some c2 > 0.

Let {xn1 , . . . , xnσn} ⊂ B0 such that B(xni , ρn(u))∩B(xnj , ρn(u)) = ∅. Given a
point process W , we denote by W [U ] the number of points of W in U , and
let En(x) = {P−n [B(x, ρn(ε))] = 1} ∩ {P+

n [B(x, ρn(u))] = 1}. Using that{
max
i

min
j 6=i
||Xj −Xi|| ≤ ρn(t)

}
⊂ Hc

n ∪

(
σn⋃
i=1

En(x
n
i )

)c

,

we get that

∞∑
n=1

P

({
max
i

min
j 6=i
||Xj −Xi|| ≤ ρn(t)

})

≤
∞∑
n=1

P (Hc
n) +

∞∑
n=1

P

((
σn⋃
i=1

En(x
n
i )

)c)

≤
∞∑
n=1

2c1e
−n1/4 +

∞∑
n=1

(1 + αn) exp

(
−σn

f0ε

2
n−g0v

)
< +∞.

Applying the Borel-Cantelli Lemma the result follows.

Theorem 3.2. Let M be a d′-dimensional compact manifold in Rd and Xn
an AI(αn) sample with αn in the conditions of Theorem 3.1 and Lemma 3.1.
Assume f(x) > f0 for every x ∈M. Let rn = βmaxi minj 6=i ||Xj−Xi||, with
β > 61/d. Then,

(1) If d′ = d and ∂M is a C2 manifold, then peel(Ŝn(rn)) 6= ∅ eventually,
a.s.
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(2) if d′ < d andM is a C2 manifold without boundary, then peel(Ŝn(rn)) =
∅ eventually, a.s.

Proof : (1) Given the conditions (d′ = d), we know that ∂M is a C2 com-
pact manifold of dimension d− 1 (see Conlon [7]). Therefore, by The-
orem 1 in Walther [23], M fulfils the inside and outside rolling ball
conditions for some r > 0. So, by Proposition 1 in [1],M satisfies the
standardness condition. Using Theorem 3.1, it remains to be proved

that rn ≥
(
κ log n

n

)1/d

, for n large enough and κ > (δωd)
−1. Using

Lemma 3.1 with t = 1
2f0

, we get that rn ≥
(
βd log n

ωd2f0n

)1/d

. Moreover

κ :=
βd

2ωdf0
>

3

2ωdf0
= (ωdδ)

−1.

(2) Due to the fact thatM is a C2 compact manifold of Rd, by Proposition
14 in Thäle [21] it has a positive reach, implying that it satisfies the
outside rolling ball condition for some r > 0. Therefore, we may
apply Theorem 3.1. Now, we just need to prove that rn ≤ r for n
large enough. For that, it is enough to prove that

max
i

min
j 6=i
||Xj −Xi||

a.s.−−→ 0,

which may be achieved reproducing the arguments as in the proof of
Theorem 5.1 in [20].

3.2. Sampling with noise. In this subsection, we will be considering the
case where the sample is observed with some general random noise. We
will study the case where the sample is generated from a distribution with
support S = B(M, R) with a density function bounded below by f0 > 0.
We will extend the corresponding results proved in Aaron, Cholaquidis &
Cuevas [1].

Theorem 3.3. LetM be a compact set in Rd such that reach(M) = R0 > 0.
Let Xn be an AI(αn) sample of a distribution with support S = B(M, R1)
with 0 < R1 < R0, with density f bounded below by f0 > 0 and αn such that

+∞∑
n=1

αn
nβ log n

< +∞, for any β > 1.
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Let ρn = c
(

log n
n

)1/d

, with c >
(

6
f0ωd

)1/d

, R̂n = maxi minj∈Ibb ||Xi−Xj|| where

Ibb = {j : B(Yj, ρn) is a boundary ball}.

(1) If M̊ = ∅, then, with probability one,∣∣∣R̂n −R1

∣∣∣ ≤ 2ρn for n large enough,

(2) If M̊ 6= ∅, then there exists C > 0 such that, with probability one∣∣∣R̂n −R1

∣∣∣ > C for n large enough.

The proof will be presented later, after some auxiliary results.

Lemma 3.2. Let Xn be an AI(αn) sample with αn such that

+∞∑
n=1

αn
nβ log n

< +∞, for any β > 1.

Then,

lim sup

(
n

log n

)1/d

dH(Xn, S) ≤
(

2

δωd

)1/d

a.s.

Proof : Given that Xn ⊂ S, by the definition of the Hausdorff distance we
know that dH(Xn, S) = supx∈S mini ||x−Xi||. Covering S with balls of radius
∆ and denoting by S∆ the set of the balls centers, for every x ∈ S and s0 ∈ S∆

we find an upper bound for min ||x−Xi||:

min ||x−Xi|| ≤ ||x−Xj|| ≤ ||x− s0||+ ||s0 −Xj||
≤ ||x− s0||+ max

s
min
j
||s−Xj|| ≤ ∆ + max

s
min
j
||s−Xj||.

Using ∆ = (1− υ)ε, we get

P (dH(Xn, S) > ε) ≤ P (max min ||s−Xi|| > υε).
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Setting Is,i = {Xi ∈ B(s, υε)}, we get

P (max min ||s−Xi|| > υε) = P (∪s ∩ni=1 I
c
s,i) ≤

∑
s

P (∩ni=1I
c
s,i)

≤ (1 + αn)
∑
s

n∏
i=1

P (Ics,i)

≤ (1 + αn)
∑
s

n∏
i=1

(1− P (Is,i)).

Using the standardness of the set, P (Is,i) = PX(B(s, υε)) ≥ δωd(υε)
d.

Then,

P (max min ||s−Xi|| > υε) ≤ (1 + αn)
∑
s

(1− δωd(υε)d)n

≤ A(1 + αn)((1− υ)ε)−de−nδωd(υε)d,

with A a constant not depending on n or d.
Hence,

P (dH(Xn, S) > ε) ≤ A(1 + αn)((1− υ)ε)−de−nδωd(υε)d

and

P

((
n

log n

)1/d

dH(Xn, S) > `

)
≤ A((1− υ)`)−d(1 + αn)

n1−δωdυ
d`d

log n
.

The result now follows from the Borel-Cantelli lemma, using ` = 2
δωd

.

Proof of Theorem 3.3: Since S has a Lebesgue null boundary,

Ŝn(ρn) ⊂ B(S̊, ρn).

Due to the fact that

c >

(
6

f0ωd

)1/d

=

(
6

3δωd

)1/d

=

(
2

δωd

)1/d

,

using Lemma 3.2 we get that

dH(Xn, S) ≤ c

(
log n

n

)1/d

= εn.

Therefore, we conclude that, with probability one,

S ⊂ Ŝn(ρn).
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The rest of the proof follows the same arguments as in the independent
sample case.

This last approach has one really big problem when it comes to using in
real data, being that we need to know beforehand the value of R1. This
means that we need to have some information about the amount of noise in
the sample. In order to overcome this, we will introduce a different type of
noise and introduce a new methodology to denoise the sample so that we can
use the methodology described in subsection 3.1.

4. Denoising
In this section, we will consider an independent sample of points from

a probability measure µ′n which is a mixture of two probability measures:
µ, whose support is the manifold M (with proportion 1 − αn), and µR,
considering this to be a uniform measure in a ball of radius R containing
M (with proportion αn), that is, µ′n = (1 − αn)µ + αnµR. The goal is
to construct a method to eliminate the points that come from the second
measure, therefore keeping only the points belonging to M.

In order to do that, we will need some notions of distance between measures
and distance to a measure. For the first we will use the classical Wasserstein
distance (see Villani [22], for a more complete background).

Definition 4.1. Given two probability measures µ and ν in Rd, a transport
plan is a probability measure π in Rd × Rd s.t. π(A × Rd) = µ(A) and
π(Rd ×B) = ν(B).

The cost of π is defined as

C(π) =

(∫
Rn×Rn

‖x− y‖2dπ(x, y)

) 1
2

.

Moreover, the Wasserstein distance between two probability measures µ and
ν, denoted by W2(µ, ν) is given by the minimum of all the transport plans
costs.

This distance function is a really good way to quantify the distance between
measures with the type of noise we have. In fact, if we consider a measure
µ uniform on the set supp(µ) = {x1, · · · , xn} and a measure ν uniform on
supp(ν) = {y1, · · · , yk, xk+1, · · · , xn}, with points yj such that mini ||xi −
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yj|| ≤ R, for every j ∈ {1, · · · , k}, we have

W2(µ, ν) ≤

(
k∑
i=1

1

n
‖xi − yi‖2

) 1
2

≤

(
k∑
i=1

1

n
(R + diam(supp(µ)))2

) 1
2

=

(
k

n
(R + diam(supp(µ)))2

) 1
2

=

(
k

n

) 1
2

(R + diam(supp(µ)))

If we consider k << n, this distance will be close to zero, as we would want
to happen given we are just inserting some noise in a small number of points
of the sample. As for the notion of distance to a certain measure we will
follow use a function introduced in Chazal, Cohen-Steiner & Mérigot [6].

Definition 4.2. Let µ be a probability measure and 0 ≤ m < 1. We denote
by δµ,m the function

δµ,m : Rn → R+
0

x  inf{r > 0 : µ(B̄(x, r)) > m}

Note that in the case m = 0, this distance coincides with the distance to
the support of µ. However, this function is not robust with regard to small
perturbations on the measure µ. For example, define µε = (1

2−ε)δ0+(1
2 +ε)δ1.

In this case, for ε > 0, we get δµε,1/2(t) = |1 − t|, while for ε < 0 we get
δµε,1/2(t) = |t|. This is a problem for our methodology, as the measure we
consider will change with the sample size and we need to control the distance
function.

To overcome this problem, we shall consider a smoothed version of δµ,m:

Definition 4.3. Let µ be a probability measure in Rd and 0 < m0 ≤ 1. The
distance function to µ is given by the function

dµ,m0
: Rn → R+

0

x  
(

1
m0

∫ m0

0 δµ,m(x)2dm
)1/2
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In general, this function is difficult to compute, but in the case where µ is
an empirical measure it becomes much easier, as shown by this next example.

Example 4.1. Let P be a set consisting of n points and µP = 1
n

∑
p∈P δp.

Assuming m0 = k0
n we have

dµ,m0
(x) =

 1

k0

∑
p∈NNk0

P (x)

‖p− x‖2


1/2

, (2)

where NNk0
P (x) is the set of the k0 nearest neighbours of x in P .

With this new distance function, we achieve the robustness that δµ,m lacked,
as we can see by the following theorem whose proof can be found in Boisson-
nat, Chazal & Yvinec [3].

Theorem 4.1. Let µ and µ′ be probability measures. Then

‖dµ,m0
− dµ′,m0

‖∞ ≤ m
−1/2
0 W2(µ, µ

′).

Theorem 4.2. Let µ, µ1, µ2 be measures and define µ′ = (1 − α)µ1 + αµ2.
Then,

W2(µ, µ
′)2 ≤ (1− α)W2(µ, µ1)

2 + αW2(µ, µ2)
2.

Proof : Let π1 be a transport plan from µ to µ1 and π2 a transport plan from
µ to µ2. Defining

π′ = (1− α)π1 + απ2

we obtain a transport plan from µ to µ′:

π′(A×Rd) = (1−α)π1(A×Rd)+απ2(A×Rd) = (1−α)µ(A)+αµ(A) = µ(A),

π′(Rd ×B) = (1− α)π1(Rd ×B) + απ2(R×B)

= (1− α)µ1(B) + αµ2(B) = µ′(B).
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Now,

W2(µ, µ
′)2 = min

π′

(∫
Rd×Rd

||x− y||2dπ′(x, y)

)
≤ min

π1,π2

(∫
Rd×Rd

||x− y||2d((1− α)π1 + απ2)(x, y)

)
= min

π1

(∫
Rd×Rd

||x− y||2d(1− α)π1(x, y)

)
+ min

π2

(∫
Rd×Rd

||x− y||2dαπ2(x, y)

)
= (1− α)W2(µ, µ1)

2 + αW2(µ, µ2)
2.

Theorem 4.3. Let µ′n = (1 − αn)µ + αnµR and µ̂n
′ the empirical measure

associated with a sample drawn from this measure. Then

||dM − dµ̂n
′
,mn
||∞ ≤ C(µ)1/d′m1/d′

n +

(
αn
mn

)1/2

W2(µ, µR) +m−1/2
n W2(µ

′
n, µ̂n

′),

where C(µ) is a constant depending only on µ.

Proof : Using Theorem 3.5 and Corollary 4.8 in Chazal, Cohen-Steiner &
Mérigot [6], and Theorem 4.2 we obtain the following inequalities:

||dM − dµ̂n
′
,mn
||∞ ≤ C(µ)1/d′m1/d′

n +m−1/2
n W2(µ, µ̂n

′)

≤ C(µ)1/d′m1/d′

n +m−1/2
n W2(µ, µ

′
n) +m−1/2

n W2(µ
′
n, µ̂n

′)

≤ C(µ)1/d′m1/d′

n +m−1/2
n α1/2

n W2(µ, µR) +m−1/2
n W2(µ

′
n, µ̂n

′)

= C(µ)1/d′m1/d′

n +

(
αn
mn

)1/2

W2(µ, µR) +m−1/2
n W2(µ

′
n, µ̂

′
n)

≤ C(µ)1/d′m1/d′

n +

(
αn
mn

)1/2

W2(µ, µR) +m−1/2
n W2(µ

′
n, µ̂n

′).

Theorem 4.4. Under the same conditions as in Theorem 4.3, if d ≥ 4,

mn −→ 0, αnm
−1
n −→ 0, n−1/d∗M (µR)m

−1/2
n −→ 0, then dµ̂′,mn

P−→ dM.
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Proof : Using Theorem 4.3, the only thing left to prove is that

m−1/2
n W2(µ

′
n, µ̂

′
n)

P−→ 0.

For that we use Theorem 1 in Bach & Weed [24], which states that for any
s > d∗p(µ

′
n),

E
[
W2(µ

′
n, µ̂

′
n)
]
≤ n−1/s.

The only problem now is finding an upper bound for d∗p(µ
′
n), which is given

by the fact that d∗p(µ
′
n) ≤ dM(µ′n) = d and can be proved by repeating the

arguments in the proof of Proposition 2 in [24].

Based on Theorem 4.4, we will now introduce the method to de-noise the
sample, which is basically remove all the points where dµ̂′,mn

(Xi) > δn. Using
theorems 4.3 and 4.4 and their proofs, we know that we will remove points
where dM > rn, with

rn = δn + C(µ)1/d′m1/d′

n +

(
αn
mn

)1/2

W2(µ, µR) +m−1/2
n n−1/d.

Theorem 4.5. LetM⊂ Rd be a d′-dimensional manifold and let mn ∼ n−x,
αn ∼ n−y, δn ∼ n−z.

Under the conditions
1− y − x

(
d−d′
d′

)
< 0

1− y + x−y
2 (d− d′) < 0

1− y +
(
x
2 −

1
d

)
(d− d′) < 0

1− y − z(d− d′) < 0,

the probability of eliminating the points not belonging to M will converge to
1.

Proof : As we are eliminating all the points where dM(Xi) > rn, we just need
to worry about points in B(M, rn)\M.

P (Xi /∈ B(M, rn)\M) = 1− P (Xi ∈ B(M, rn)\M)

= 1− µ′n(B(M, rn)\M)

= 1− (1− αn)µ(B(M, rn)\M)− αnµR(B(M, rn)\M)

= 1− αnµR(B(M, rn)/M)

≥ 1− cαnrd−d
′

n .
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Using the independence of the sample, we need to prove that

(1− cαnrd−d
′

n )n −→ 1⇔
log
(
1− cαnrd−d

′

n

)
n−1

−→ 0.

Applying L’Hôpital’s rule, this is the same as proving that

(d− d′)cαnr′nrd−d
′−1

n + cα′nr
d−d′
n

n−2(1− cαnrd−d′n )
−→ 0

⇔ (d− d′)cn2αnr
′
nr

d−d′−1
n + cn2α′nr

d−d′
n −→ 0

⇔ (d− d′)cn2−yr′nr
d−d′−1
n + cn1−yrd−d

′

n −→ 0

⇔ n1−yrd−d
′−1

n (nr′n + rn) −→ 0

⇔ n1−yrd−d
′

n −→ 0.

Now, because

n1−yrd−d
′

n ∼ n1−y−x(d−d′
d′ ) + n1−y+x−y

2 (d−d′) + n1−y+(x
2−

1
d )(d−d′) + n1−y−z(d−d′),

using the conditions imposed in the theorem we get the result.

Example 4.2. If for example, we have d = 4 and d′ = 1, we have to impose
the conditions

0 < x < 1
2

y > x

1− y − 3x < 0

1− 5
2y + 3

2x < 0
1
4 − y + 3

2x < 0

⇔

0 0.25 0.5
0

0.5
1

1.5
2

x

y

along with the condition 1− y − 3z < 0.

We may now describe an algorithm to denoise the sample and consequently
decide whether the interior of the manifold is empty or not. The first step
towards the decision of the emptiness of the interior ofM is the one described
above, the second step being the procedure the follows from Theorem 3.2.
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Algorithm 4.1.

(1) Choose δn and mn in the conditions stated above;
(2) Compute the function dµ̂,mn

in the points Xi using the expression (2);
(3) Remove from the sample the points Xi where dµ̂,mn

(Xi) > δn.
(4) With the remaining points, use the methodology described by Theorem

3.2:
(a) Decide M̊ = ∅ if and only if peel(Ŝn(rn)) = ∅

4.1. Simulation study. As a way to show the results that these methods
provide, we considered the manifold to be the ring with outer and inner
radius of 1 + ε/2 and 1− ε/2 respectively, that is,

M = B(0, 1 + ε/2)\B(0, 1− ε/2),

with ε taking values 0,0.01,0.05 and 0.1. We drew 100 samples of size n =
250, 500, 1000, 2500, 5000 for the case ε = 0 (where M̊ = ∅) and 1000 samples

of size n = 5, 10, 25, 50, 100 for the remaining cases (where M̊ 6= ∅), according
to the model described in the section with the following parameters:

• µ as the uniform distribution on M
• µR as the uniform distribution on [−2, 2]× [−2, 2]
• αn = n−y with y ∈ {0.75, 0.8, 0.9, 0.95}
• mn = n−0.25

• δn = 1000n−0.95

Afterwards, we applied Algorithm 4.1 to each of the samples to estimate
the probability of a correct interior decision by the method. The results are
presented in the next tables:

y\n 250 500 1000 2500 5000

0.75 0.05 0.02 0.03 0.28 0.86
0.8 0.05 0.07 0.05 0.34 0.94
0.9 0.30 0.18 0.24 0.63 0.95
0.95 0.47 0.34 0.36 0.75 0.99

y\n 5 10 25 50 100

0.75 0.046 0.510 0.936 0.983 0.999
0.8 0.040 0.475 0.923 0.961 0.997
0.9 0.029 0.416 0.850 0.922 0.998
0.95 0.034 0.377 0.851 0.899 0.997

Table 1. Empirical probabilities of correct decisions for ε = 0
(left) and ε = 0.01 (right)
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y\n 5 10 25 50 100

0.75 0.047 0.583 0.990 0.999 1
0.8 0.038 0.552 0.977 0.999 1
0.9 0.040 0.509 0.966 0.999 1
0.95 0.036 0.470 0.970 0.997 1

y\n 5 10 25 50 100

0.75 0.049 0.643 0.997 1 1
0.8 0.043 0.624 0.990 1 1
0.9 0.037 0.581 0.988 1 1
0.95 0.036 0.535 0.993 1 1

Table 2. Empirical probabilities of correct decisions for ε = 0.05
(left) and ε = 0.1 (right)
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