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EULERIAN IDEALS

J. NEVES

Abstract: Let G be a simple graph and I(XG) = ϕ−1(x2i − x2j : i, j ∈ VG), where

ϕ : K[EG]→ K[VG] is the homomorphism that sends an edge to the product of its
vertices. The ideal I(XG) is Cohen–Macaulay, one-dimensional and binomial. If G
is bipartite, it is known that the Castelnuovo–Mumford regularity of I(XG) is equal
to the maximum cardinality of a set of edges having no more than half of the edges
of any Eulerian subgraph of G. Here, with respect to the grevlex order associated
to an ordering of the edge set of G, we describe a Gröbner basis for I(XG), and
we characterize the standard monomials of the ideal (I(XG), te) in terms of even
sets of vertices marked with a parity. Using these results, we classify the case of
I(XG) Gorenstein; we give a combinatorial interpretation of the degree of I(XG),
via the set of even sets of vertices of G; and we show that the Castelnuovo–Mumford
regularity of I(XG), for any graph, is the maximum cardinality of a set of edges
having no more than half of the edges of any even Eulerian subgraph of G or,
equivalently, the maximum cardinality of a minimum fixed parity T -join.
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1. Introduction
The Eulerian ideal of a graph was introduced by the author, Vaz Pinto

and Villarreal in [13]. The term Eulerian ideal, which we are introducing
here, is owed to the relation between a generating set and the set of Eulerian
subgraphs with an even cardinality edge set (even Eulerian subgraphs).

LetG be a simple graph without isolated vertices. Denote the set of vertices
by VG and the set of edges by EG. Throughout, we will assume that EG is
a non-empty subset of the set of subsets of VG of cardinality two. Let K be
any field and let

K[VG] = K[xi : i ∈ VG], K[EG] = K[th : h ∈ EG]

be the rings of polynomials with coefficients in K whose variables are indexed
by the vertices and edges of G, respectively. Let ϕ : K[EG]→ K[VG] be given
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by
ϕ(th) = xixj, ∀h = {i, j} ∈ EG. (1)

Definition 1.1. The Eulerian ideal of G is I(XG) = ϕ−1(x2
i −x2

j : i, j ∈ VG).

The motivation for this definition comes from the notion of vanishing ideal
over a graph, for a finite field, introduced by Renteŕıa, Simis and Villarreal
in [14]. Note that, in the present case, no assumption is made for the field.

Let us briefly describe the main features of the Eulerian ideal. It is clear
from the definition that I(XG) is a homogeneous ideal. Also, t2h−t2` ∈ I(XG),
for every h, ` ∈ EG and, moreover, one can show that any monomial is regular
on K[EG]/I(XG). From this we deduce that I(XG) has height |EG| − 1,
and that the quotient is a one-dimensional Cohen–Macaulay graded ring.
Additionally, we know that the ideal is generated by binomials and these may
be associated to even Eulerian subgraphs of the graph (see Definition 2.3 and
Proposition 2.1, below).

These properties were studied in [13] including, also, the Castelnuovo–
Mumford regularity of I(XG) in the bipartite case. It was shown that this
invariant is equal to the maximum cardinality of a join, i.e., to the maximum
cardinality of a set of edges that has no more than half of the edges of any
Eulerian subgraph of the graph. This number was termed the maximum
vertex join number by Solé and Zaslavsky and by Frank (cf. [17] and [5]).
The starting point of this work was the extension of this result to the non-
bipartite case. To achieve this, we define the notion of parity join; a set of
edges that has no more than half of the edges of any even cardinality Eulerian
subgraph of G. In Theorem 4.13 we show that the Castelnuovo–Mumford
regularity of I(XG) is the maximum cardinality of a parity join.

To achieve this result, we start by showing that a set of homogeneous
binomials obtained from the even Eulerian subgraphs, together with the set
of binomials of the form t2h − t2` , for every h, ` ∈ EG, form a Gröbner basis
for I(XG) with respect to the graded reverse lexicographic order induced by
a total order of the edges (cf. Theorem 3.3). The characterization of the
outcome of the division of a monomial by this Gröbner basis has lead us
to the notion of fixed parity T -joins (cf. Definition 4.4). More precisely, by
associating a T -join to any monomial (cf. Definitions 2.2 and 4.2), we show
that the remainder in a standard expression of the monomial, with respect
to the aforementioned Gröbner basis, yields a T -join which has minimum
cardinality among all T -joins of same parity cardinality (cf. Theorem 4.3).
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We then describe a bijection between the set of standard monomials of the
ideal (I(XG), te), with respect to a monomial order as above, and a set of
T -sets marked with an element of Z/2 (cf. Theorem 4.9). As the notion of
minimum fixed parity T -joins and the notion of parity joins are just different
ways of describing the same set of edges of a graph (cf. Lemma 4.12), the
proof of Theorem 4.13, i.e., the computation of the Castelnuovo–Mumford
regularity of I(XG), is then carried out using fixed parity T -joins and the
characterization of standard monomials of (I(XG), te) obtained.

Two additional independent results have arisen from this study. On the
one hand, the explicit Gröbner basis has enabled a complete classification
of Gorenstein Eulerian ideals; namely K[EG]/I(XG) is a Gorenstein graded
ring if and only if G does not contain any even Eulerian subgraphs (cf. The-
orem 3.5). On the other hand, the characterization of standard monomials
of (I(XG), te) has given us a reinterpretation of the degree of I(XG), com-
puted in [13, Proposition 2.11], in terms even subsets of vertices of the graph
(cf. Proposition 4.10).

The ideal I(XG) contains the toric ideal of the graph, P (G), which is de-
fined as the kernel of the map given by (1). These ideals have a longer history
and a more intricate nature. Their systematic study started with the work of
Simis, Vasconcelos and Villarreal [16]. We know that P (G) is also a binomial
ideal and that it is generated by the binomials associated to the even closed
walks on the graph (cf. [18, Proposition 3.1]). In our case, a set of generators
of I(XG) includes not only these binomials but also any binomial obtained
from any even Eulerian subgraph of G, not necessarily connected, and a par-
tition of its edge set into two equal cardinality parts (cf. Definitions 2.3 and
3.1). A contrasting feature to the Eulerian ideal is that, while the former
always is, P (G) may rarely be Cohen-Macaulay. By way of example, in the
recent article [4], the authors show that for every pair of integers d and r
satisfying d ≥ r ≥ 4, there exists a graph yielding a quotient K[EG]/P (G)
with Castelnuovo–Mumford regularity r and h-polynomial of degree d. In
recent years, several authors have studied the Castelnuovo–Mumford regu-
larity of the quotient K[EG]/P (G). We know that, under mild assumptions,
the matching number gives an upper bound for this invariant (cf. [11]) and
that lower bounds can be produced from distinguished families of induced
subgraphs of the graph (cf. [1, 9]).
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The paper is structured as follows. In the next section we recall the main
properties of I(XG). In Section 3 we describe a Gröbner basis for the Eulerian
ideal and we give a characterization of the Gorenstein Eulerian ideals. In
Section 4 we study the combinatorial properties of the division of monomials
by a Gröbner basis and, as a result, we give a bijection between the set
of standard monomials of the ideal (I(XG), te), with respect to the graded
reverse lexicographic order, in terms of even sets of vertices marked with a
parity. Finally, we apply these results to the computation of the degree and
the Castelnuovo–Mumford regularity.

Acknowledgments. The author thanks Jens Vygen and András Sebő for a
helpful discussion on the subject of T -joins. The relation between the notions
of parity joins and of fixed parity T -joins in Lemma 4.12 was pointed out by
András Sebő.

2. Preliminaries
Throughout, we will use the multi-index notation to denote monomials in

K[EG]. More precisely, for each α : EG → N, the monomial tα is the product

of t
α(h)
h when h varies in EG. We will employ interchangeably the terms edge

and variable. In examples, VG will be a subset of N and we will abbreviate
t{i,j} to tij. For future reference, let us gather in the next proposition the
main known properties of the Eulerian ideal of G.

Proposition 2.1. Let I(XG) be as in Definition 1.1 and let tα, tβ ∈ K[EG]
be relatively prime monomials of the same degree.

(i) I(XG) is generated by homogeneous binomials.
(ii) Any monomial is regular on K[EG]/I(XG).
(iii) K[EG]/I(XG) is a Cohen–Macaulay, one-dimensional graded ring.
(iv) tα−tβ belongs to I(XG) if and only if the edge-induced subgraph given

by the set of edges raised to odd powers in tα−tβ has vertices of even
degree.

The proof of (i) uses a standard implicitization argument. One shows that
I(XG) is the intersection with K[EG] of the ideal generated by

(th − xixjz : h = {i, j} ∈ EG) ∪ (x2
i − x2

j : i, j ∈ VG)

in the ring K[EG, VG, z]. The proof of (ii) and (iii) are straightforward if the
characteristic of the field is not 2, in which case, I(XG) is the vanishing ideal
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of a set of points in projective space with nonzero coordinates (a projective
toric subset). For the proof of (i) and (ii) in the general case, the proof of
(iv) and details we refer the reader to [13, Propositions 2.1, 2.2, 2.5 and 2.8].

Definition 2.2. Given tα ∈ K[EG], let J (tα) = {h : α(h) is odd} ⊂ EG.

Using (ii) and (iv) of Proposition 2.1, we deduce that if tα−tβ is a homoge-
neous binomial then tα−tβ ∈ I(XG) if and only if the edge-induced subgraph
of G given by symmetric difference J (tα)4J (tβ) has vertices of even degree,
i.e., is an Eulerian subgraph. Since J (tα)4J (tβ) ≡2 deg(tα) + deg(tβ), the
Eulerian subgraphs arising from homogeneous binomials of I(XG) have an
edge set of even cardinality. Let us fix the terminology.

Definition 2.3. A subgraph of G is called even Eulerian if its vertices have
even degrees and its edge set has even cardinality.

1

2

3
4

5

6

7
8

Figure 1. An even Eulerian subgraph of G

The subgraph in Figure 1 represented in bold is an even Eulerian sub-
graph. We emphasize that an even Eulerian subgraph is not assumed to be
a connected graph, or a spanning subgraph.

Let M be a nonzero finitely generated graded module over a polynomial
ring S, and let Fi = ⊕j∈ZS(−j)βij be the free graded modules in a minimal
graded free resolution of M , 0 → Fc → · · · → F1 → F0 → M . Then the
Castelnuovo–Mumford regularity of M , referred to in the remainder of the
text simply by regularity, is defined by regM = maxi,j {j − i : βij 6= 0}. If
M = 0, we adopt the convention regM = 1, so that, in particular, when
I(XG) = 0, reg I(XG) = 1; such is the case when G consists of a single edge.
If M is Cohen–Macaulay and f ⊂ S is a regular sequence on M of maximum
length, consisting of elements of degree one, then by [2, Proposition 4.14] the
regularity of M is the largest degree of a nonzero homogeneous element of
M/(f)M . In our case, given that reg I(XG) = regK[EG]/I(XG)+1, we have
the following result.
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Proposition 2.4. Let e ∈ EG and let N = K[EG]/(I(XG), te). Then

reg I(XG) = max {d : Nd 6= 0}+ 1.

In [13, Proposition 3.2], the regularity of I(XG) for some special families
of graphs is given. We list them in Table 1.

G reg I(XG)

Forest |EG|
Even cycle |EG|/2
Complete bipartite Ka,b max {a, b}
Non-bipartite, uni-cyclic |EG|
Complete graph, Kn, n ≥ 4 bn2c+ 1

Table 1. reg I(XG) for special families of graphs.

3. A Gröbner basis
Let G be as in Figure 1 and, associated to the even Eulerian subgraph in

bold, consider the monomials tα = t12t23t13t48 and tβ = t45t56t67t78. Let ϕ be
the map given by (1). Then, using Definition 1.1,

ϕ(tα − tβ) = (x2
1x

2
2x

2
3 − x2

5x
2
6x

2
7)x4x8 =⇒ tα − tβ ∈ I(XG).

By (iv) of Proposition 2.1, the conclusion is the same if we take any other
even Eulerian subgraph of G and any other partition of its edge set in two
parts of equal cardinality. This motivates the following definition.

Definition 3.1. A binomial tα−tβ is called Eulerian if tα and tβ are distinct,
relatively prime, square-free monomials of same degree and the edge-induced
subgraph given by J (tα)∪J (tβ) is an even Eulerian subgraph of G. Denoting
the set of Eulerian binomials by E and T =

{
t2h − t2` : h, ` ∈ EG

}
, define

G = T ∪ E .

Of course, not all homogeneous binomials in I(XG) are Eulerian; it suffices
that one of tα or tβ is not square-free. Clearly, G is a finite set. We will
show that it is a Gröbner basis of I(XG) for any graded reverse lexicographic
order on K[EG], in the following sense.
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Definition 3.2. By a grevlex order onK[EG] we will mean the graded reverse
lexicographic order on K[EG] induced by tε(1) � tε(2) � · · · � tε(s), where ε
is a bijection ε : {1, . . . , s} → EG. If e = εs is the last edge, then such a
monomial order will be referred to as a grevlex order on K[EG] with te last.

Recall that if tα and tβ are two monomials of the same degree and h is
the last edge in the support of β − α, then tα � tβ in the grevlex order if
and only if β(h) > α(h). In particular, if tα and tβ are also square-free, then
in≺(tα−tβ) = tα if and only if J (tβ) contains the last edge of J (tα)4J (tβ).

Theorem 3.3. Assume |EG| > 1 and fix ≺ a grevlex order on K[EG]. Then
G is a Gröbner basis of I(XG) with respect to ≺.

Proof : Let us begin by showing that I(XG) = (G ). In view of Proposition 2.1,
the inclusion (G ) ⊂ I(XG) is clear. Since I(XG) is generated by binomials,
to prove the opposite inclusion it suffices to show that any homogeneous
binomial tα− tβ in I(XG) belongs to (G ). By (ii) of Proposition 2.1 we may
assume gcd(tα, tβ) = 1. We will use induction on the degree of the binomial.
By (iv) of Proposition 2.1, there are no homogeneous binomials in I(XG) of
degree one, so the base case when degree is equal to two. In this case, either
both tα and tβ are squares of variables, or neither of them is, in which case
tα − tβ is an Eulerian binomial. Either way, we get tα − tβ ∈ (G ). Suppose
now that tα − tβ ∈ I(XG) has degree larger than or equal to three. If tα

and tβ are also square-free then tα − tβ ∈ E . Suppose that this is not the
case, suppose that, say, tα is divisible by t2h, for some h ∈ EG. Then, choose
` ∈ EG such that t` divides tβ and write tα = t2ht

γ and tβ = t`t
µ. From

tα − tβ = t`(t`t
γ − tµ) + (t2h − t2`)tγ,

and the fact that (t2h − t2`)tγ ∈ (G ) ⊂ I(XG), we deduce that

t`(t`t
γ − tµ) ∈ I(XG) =⇒ t`t

γ − tµ ∈ I(XG).

By induction, we get t`t
γ − tµ ∈ (G ) and thus tα− tβ ∈ (G ). This concludes

the proof that I(XG) = J = (G ).

To prove that G is a Gröbner basis of I(XG) with respect to ≺, let us show
that S(f, g) reduces to zero with respect to G , for every f, g ∈ G . We only
need to consider f and g for which gcd(in≺(f), in≺(g)) 6= 1. There are three
cases.
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If f, g ∈ T and gcd(in≺(f), in≺(g)) 6= 1, then, without loss of generality,
we may assume f and g are of the form f = t2h − t2` and g = t2h − t2e with
in≺(f) = in≺(g) = t2h. Then S(f, g) = f − g = t2e − t2` ∈ T .

If f ∈ T , g ∈ E and gcd(in≺(f), in≺(g)) 6= 1, then, without loss of generality,
we may assume that f = t2h − t2e and g = tht

γ − t`t
µ with in≺(f) = t2h,

in≺(g) = tht
γ and ` the last variable of J (tht

γ) ∪ J (t`t
µ). Then, since

tht
µ − t`tγ ∈ E , and in≺(tht

µ − t`tγ) = tht
µ,

S(f, g) = t`tht
µ − t2

et
γ E−→ (t2` − t2e)tγ

T−→ 0.

Finally, suppose that f, g ∈ E and gcd(in≺(f), in≺(g)) 6= 1. Let f = tδ+γ−tε

and g = tδ+µ − tν, with in≺(f) = tδ+γ, in≺(g) = tδ+µ and gcd(tγ, tµ) = 1.
Then

S(f, g) = tγ+ν − tµ+ε. (2)

Since f, g ∈ E , each of the two sets J (tδtγ)∪J (tε) and J (tδtµ)∪J (tν) de-
fines an even Eulerian subgraph of G. It follows that the symmetric difference
of the two sets also defines an even Eulerian subgraph of G. As

(J (tδtγ) ∪ J (tε))4(J (tδtµ) ∪ J (tν)) = J (tγ+ν)4J (tµ+ε),

this means that J (tγ+ν)4J (tµ+ε) defines an even Eulerian subgraph of G.
If tγ+ν and tµ+ε are relatively prime and square-free we get S(f, g) ∈ E
which, trivially, reduces to zero with respect to G . Suppose this is not
the case. Consider the monomials tζ = gcd(tγ+ν, tε+µ), tφ = gcd(tγ, tν)
and tψ = gcd(tµ, tε). As, by assumption, gcd(tγ, tε) = gcd(tµ, tν) = 1, we
deduce that gcd(tζ , tφ) = gcd(tζ , tψ) = 1. Hence, there exist tα, tβ ∈ K[EG],
relatively prime, square-free monomials, such that

tγ+ν−ζ = tα(tφ)2 and tε+µ−ζ = tβ(tψ)2. (3)

From the fact that J (tγ+ν)4J (tµ+ε) defines an even Eulerian subgraph
we deduce that J (tα)4J (tβ) also defines an even Eulerian subgraph. Let
a = deg(tφ) and b = deg(tψ). Then, letting e denote the last variable of EG,

deg(tα) + 2a = degS(f, g)− deg(tζ) = deg(tβ) + 2b,

S(f, g) = tζ(tα(tφ)2 − tβ(tψ)2)
T−→ tζ(tαt2ae − tβt2be ).

(4)

If a = b then deg(tα) = deg(tβ) and thus tα − tβ ∈ E . From (4) we de-
duce that S(f, g) reduces to zero with respect to E . Consider now the case
a 6= b, and assume, without loss of generality, that a < b and therefore
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deg(tα) > deg(tβ). By Lemma 3.4 (proved below) there exists tξ ∈ K[EG]
such that tα−ξ − tβ+ξ ∈ E and in≺(tα−ξ − tβ+ξ) = tα−ξ. It follows that

2 deg(tξ) = deg(tα)− deg(tβ) = 2b− 2a.

Continuing from (4),

S(f, g)
G−→ tζtβ((tξ)2t2ae − t2be )

T−→ 0.

This finishes the proof of the theorem.

Lemma 3.4. Let ≺ be a grevlex order on K[EG]. Suppose that tα, tβ ∈ K[EG]
are relatively prime, square-free monomials, with deg(tα) > deg(tβ) and such
that J (tα) ∪ J (tβ) defines an even Eulerian subgraph. Then there exists
tξ ∈ K[EG] dividing tα such that tα−ξ−tβ+ξ ∈ E and in≺(tα−ξ−tβ+ξ) = tα−ξ.
In particular, tα is divisible by a leading term of an element of E .

Proof : Set 2d = deg(tα) − deg(tβ) and let tξ be the product of the d last
variables in J (tα). Then tα−ξ and tβ+ξ are relatively prime, square-free
monomials of equal degree such that J (tα−ξ) ∪ J (tβ+ξ) = J (tα) ∪ J (tβ)
defines an even Eulerian subgraph. We deduce that tα−ξ − tβ+ξ ∈ E . As the
last edge in J (tα−ξ)∪J (tβ+ξ) is in J (tβ+ξ) we get in≺(tα−ξ−tβ+ξ) = tα−ξ.

Gorenstein Eulerian ideals. Since K[EG]/I(XG) is Cohen–Macaulay, for
any graph, it is natural to inquire about the Gorenstein property of this
graded ring. The Gröbner basis obtained in Theorem 3.3 enables a complete
classification.

Theorem 3.5. The following are equivalent:

(i) K[EG]/I(XG) is Gorenstein;
(ii) G does not have any even Eulerian subgraphs;
(iii) I(XG) is a complete intersection.

Proof : We may assume |EG| > 1. Choose e ∈ EG and fix ≺ a grevlex
order on K[EG] with te last. Let G be the Gröbner basis of I(XG) given in
Definition 3.1. Let us prove that (i) implies (ii). Assume that K[EG]/I(XG)
is a Gorenstein graded ring. Then, as te is regular, the quotient

K[EG]/(I(XG), te)

is a Gorenstein graded ring of dimension zero. By [10, Corollary 3.3.5] the
quotient K[EG]/ in≺(I(XG), te) is also Gorenstein graded ring of dimension
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zero and hence, by [10, Proposition A.6.5], the ideal in≺(I(XG), te) is gen-
erated by pure powers of variables. As no leading term of an element of
G is divisible by the variable te, G ∪ {te} is a Gröbner basis of (I(XG), te)
and hence in≺(I(XG), te) is generated by {te} ∪ in≺ G , where in≺ G denotes
the set of leading terms of the elements of G . Now, if there is an even
Eulerian subgraph of G, then E is non-empty and therefore there exists a
square-free monomial tα ∈ in≺ G , which, necessarily is not divisible by te. As
no other variable, other than te, belongs to {te} ∪ in≺ G , this implies that
in≺(I(XG), te) is not generated by pure powers of variables. We conclude
that G does not have any even Eulerian subgraphs.

The assertion that (ii) implies (iii) follows from the fact that if E is empty
then I(XG) is generated by

{
t2h − t2e : h ∈ EG \{e}

}
, which implies that I(XG)

is a complete intersection. By a well-known general result, (iii) implies (i).

4. Standard Monomials
Let T ⊂ VG be a (possibly empty) set of vertices. A T -join is a subset of

edges J ⊂ EG such that T is precisely the set of odd degree vertices of the
subgraph of G edge-induced by J . Since the number of odd degree vertices
of a graph is even, the existence of a T -join implies that the intersection of
T with the vertex set of every connected component of the graph has even
cardinality.

Definition 4.1. A subset T ⊂ VG is called an even subset of vertices if
|T ∩ VH | is even, for every connected component H ⊂ G. We denote the set
of all even subsets of vertices of a graph G by E(VG).
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Figure 2. T -joins.

When T consists of two vertices in the same connected component, a T -join
is an edge-disjoint union of a path between the two vertices together with
cycles. A minimal cardinality T -join is then a shortest path between the two
vertices. In the graph of Figure 2, the path in bold on the left is a {3, 5}-join,
but not a minimal cardinality one. For a non-empty T ∈ E(VG), a T -join
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may constructed by choosing paths between pairs of vertices of T in a same
connected component and taking their symmetric difference. If T = ∅, then
the empty set (of edges) is a T -join. Any non-empty T -join, in this case, is
a subset of edges defining a subgraph of G with vertices of even degree or,
according to Definition 2.3, an Eulerian subgraph of G. We see that a T -join
always exists. Whether, for a given T ∈ E(VG), a T -join with cardinality of
a given parity exists is a different matter, which we will explore. We refer
the reader to [12, Chapter 12] and [15, Chapter 29] for further properties of
T -joins.

Definition 4.2. Given tα ∈ K[EG], recalling from Definition 2.2, that J (tα)
is the subset of edges {h ∈ EG : α(h) is odd}, define θ(tα) ∈ E(VG) to be the
set of odd degree vertices of the subgraph edge-induced by J (tα).

Note that J (tα) is a θ(tα)-join. Additionally, if tα, tβ ∈ K[EG], as

J (tαtβ) = J (tα)4J (tβ),

we deduce that J (tαtβ) is (θ(tα)4θ(tβ))-join. This follows from an ele-
mentary property of T -joins (cf. [12, Proposition 12.6]). This implies that
θ(tαtβ) = θ(tα)4θ(tβ). In particular, J (tα)4J (tβ) is an Eulerian subgraph
if and only if

θ(tα)4θ(tβ) = ∅ ⇐⇒ θ(tα) = θ(tβ).

We will use this property in the sequel.

As we shall see, T -joins play an important role in the characterization of
monomials. We start by showing that they can be used to characterize the
process of division of monomials by the Gröbner basis that was introduced
in Definition 3.1.

Theorem 4.3. Assume |EG| > 1, fix a grevlex order on K[EG] and let G be
the associated Gröbner basis of I(XG). Let tδ, tγ ∈ K[EG].

(i) If the monomial tδ is the remainder of the division of tγ by an element
of G then θ(tδ) = θ(tγ) and |J (tδ)| ≡2 |J (tγ)|.

(ii) The remainder in a standard expression of tγ with respect to G is a
monomial, tδ, with

|J (tδ)| = min {|J | : J is a θ(tγ)-join and |J | ≡2 |J (tγ)|} .

Proof : Let e ∈ EG be the last edge. As G = T ∪ E , there are two cases in
the proof of (i). If tγ is divisible by t2h, for some h 6= e, the division of tγ by
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the element t2h− t2` yields remainder tδ = tγt−2
h t2` . In this case, J (tδ) = J (tγ)

and (i) follows trivially. Suppose now that tγ is divisible by tα where tα− tβ

is an Eulerian binomial. Let tγ = tρtα, for some tρ ∈ K[EG]. Then, division
yields remainder tδ = tρtβ. Let T1 = θ(tα), T2 = θ(tβ) and T3 = θ(tρ). Since
tα − tβ is Eulerian, T1 = T2. From

J (tγ) = J (tρ)4J (tα) ≡2 |J (tρ)|+ |J (tα)|
θ(tγ) = θ(tρ)4θ(tα) = T34T1 = T34T2,

we deduce that J (tδ) = J (tρ)4J (tβ) is a θ(tγ)-join and, moreover,

|J (tδ)| = |J (tρ)|+ |J (tβ)| − 2|J (tρ) ∩ J (tβ)|
≡2 |J (tρ)|+ |J (tα)| ≡2 |J (tγ)|.

To prove (ii) we start by remarking that, since G consists of binomials, the
remainder term in a standard expression of a monomial with respect to G is
also a monomial. Let us denote

Γ = {J : J is a θ(tγ)-join and |J | ≡2 |J (tγ)|} .
Since Γ is non-empty (J (tγ) belongs to it) we may consider tρ, the product
of the edges of a minimum cardinality element of Γ. Let tν be the remainder
in a standard expression of tρ with respect to G . By (i), J(tν) ∈ Γ. Since

|J (tν)| ≤ deg(tν) = deg(tρ),

by the minimality, we deduce that tν is square-free. On the other hand, let
tµ be a square-free monomial such that tδ = tµt2ke , for some k ≥ 0. Then
J (tδ) = J (tµ). Using (i),

θ(tγ) = θ(tδ) = θ(tµ).

It suffices to prove that tµ = tν. Arguing by contradiction, assume that
tµ 6= tν and let tα = tµ gcd(tµ, tν)−1 and tβ = tν gcd(tµ, tν)−1. Then, tα 6= tβ

are relatively prime, square-free monomials, satisfying θ(tα) = θ(tβ). If they
have equal degree then tα − tβ is Eulerian and hence one of tµ or tν is
divisible by a leading term of G , which is absurd. If deg(tα) 6= deg(tβ) then,
Lemma 3.4 yields the same conclusion.

Minimum T -joins, i.e., T -joins with minimum cardinality are of special
interest in questions of Combinatorial Optimization. Here, Theorem 4.3
is leading us to a refinement of this notion, namely, minimum cardinality
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T -joins among T -joins of a fixed parity cardinality. As we show below, if
G is bipartite the parity of the cardinality of T -joins (for a fixed T -join)
does not change. However if G is non-bipartite, the sets of T -joins of even
cardinality and and of odd cardinality are both non-empty.

Definition 4.4. Let T ∈ E(VG), J a T -join and set i = |J |+ 2Z ∈ Z/2. We
will say that J is a T -join of parity i. Let us denote by Ji(G, T ) the set of
all T -joins of parity i and let τi(G, T ) denote the minimum cardinality of an
element of Ji(G, T ).

To ease notation, we will denote the elements of Z/2 by 0 and 1. Naturally,
parity zero and even will be used as synonyms, and the same applies to
parity one and odd. Note that τi(G, T ) is defined only if Ji(G, T ) is non-
empty. We will refer to the minimum cardinality elements of Ji(G, T ) as
minimum fixed parity T -joins. Minimum fixed parity T -joins also appear in
Combinatorial Optimization; they are solutions of the a so-called Parity Join
Problem (cf. [6]).

Example 4.5. Let G be the graph in Figure 2. The path depicted in bold, on
the left, is an even {3, 5}-join. It is not a minimum even {3, 5}-join as 3 and 5
are joined by a path of length two. We deduce that τ0(G, {3, 5}) = 2. Other
examples are: τ1(G, {3, 5}) = 3, τ0(G, {4, 7}) = 4 (take the edge between 4
and 7 and any triangle), τ1(G, {4, 7}) = 1, τ0(G, {8, 10, 11, 12}) = 2 and
τ1(G, {8, 10, 11, 12}) = 3.

For a fixed T ∈ E(VG), the minimum cardinality of T -joins (without the
parity constraint) is denoted in the literature by τ(G, T ). If G admits T -joins
of both parities then, of course, τ(G, T ) = min {τ0(G, T ), τ1(G, T )}.

Lemma 4.6. Let T ∈ E(VG). Then, G is non-bipartite if and only if J0(G, T )
and J1(G, T ) are both non-empty.

Proof : If there exist T -joins, J1 and J2, such that |J1| 6≡2 |J2|, then J14J2 is
non-empty and defines an Eulerian subgraph C ⊂ G with

|EC | = |J14J2| ≡2 |J1|+ |J2| ≡2 1.

As C decomposes into an edge-disjoint union of cycles, one of these cycles
must be odd and thus G is non-bipartite. Conversely if G is non-bipartite
and C ⊂ G is an odd cycle then, for a T -join, J ⊂ EG, the subset J4EC is
a T -join with |J4EC | 6≡2 |J |.
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Example 4.7. Let G = Kn be a complete graph on n ≥ 3 vertices. Table 2
contains a list of minimum cardinality elements of J0(G, T ) and J1(G, T ),
for T of varying cardinality. In this table the vertices in T are represented

|T | parity 0 parity 1

0 ∅
2

4

6

8

Table 2. Minimum even and odd T -joins in Kn

in black, while for other vertices (in the cases of |T | = 0 and 1) we use gray.
Since a T -join has at least |T |/2 edges it is easy to check that the T -joins
listed in the two columns of Table 2 are minimum cardinality elements of
J0(G, T ) and J1(G, T ), respectively.

Definition 4.8. Let I be an ideal in a polynomial ring and ≺ a monomial
order. A monomial which does not belong to in≺(I) is called a standard
monomial of I with respect to ≺. We denote the set of standard monomials
by B≺(I).

The set of standard monomials of I with respect to a monomial order
is a basis for the quotient of the polynomial ring by the ideal, as a vector
space over the field (cf. Macaulay’s Theorem, [3, §2.2.2]). Let e ∈ EG be a
choice of an edge and ≺ a grevlex order with te last. In the final part of this
work we will use the standard basis of the zero dimensional ideal (I(XG), te)
to compute the degree and the regularity of I(XG). Because (I(XG), te)
zero dimensional, B≺(I(XG), te) is a finite set and, as we show next, can be
described in a combinatorial way, using T -joins of fixed parity.

For the sake of clarity of notation, recall that EG is regarded as set of (un-
ordered) pairs of vertices and therefore if e = {a, b} is an edge and T ∈ E(VG)
is an even subset of vertices, we may refer to T4e = T4{a, b} ∈ E(VG).
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Theorem 4.9. Let e ∈ EG and ≺ a grevlex order on K[EG] with te last. Let
ϑ : B≺(I(XG), te) → E(VG) × (Z/2) be given by tα 7→ (θ(tα), deg(tα) + 2Z).
Then ϑ is injective and

Imϑ = {(T, i) : Ji(G, T ) 6= ∅ and τi+1(G, T4e) = τi(G, T ) + 1} . (5)

Proof : Consider the Gröbner basis of (I(XG), te) given by G ∪ {te}, where
G is the Gröbner basis of I(XG) given in Definition 3.1. Let tα and tβ,
belonging to B≺(I(XG), te), be such that ϑ(tα) = ϑ(tβ). Denote

T = θ(tα) = θ(tβ),

i = deg(tα) + 2Z = deg(tβ) + 2Z.

Since tα and tβ are standard elements of I(XG) with respect to ≺ that,
additionally, are not divisible by te, both tα and tβ are square-free. Moreover
by (ii) of Theorem 4.3, J (tα) and J (tβ) are minimum cardinality elements
of Ji(G, T ). We conclude that

deg(tα) = |J (tα)| = |J (tβ)| = deg(tβ)

Assume, arguing by contradiction, that tα 6= tβ. Then, as θ(tα) = θ(tβ) and
deg(tα) = deg(tβ), the binomial tα − tβ is Eulerian and thus one of tα or tβ

is a leading term of G ∪ {te}, which is a contradiction.

Let us now prove (5). Suppose (T, i) = ϑ(tα), for some tα ∈ B≺(I(XG), te).
As tα and tαte are square-free standard monomials of I(XG) and

θ(tαte) = T4e,
by (ii) of Theorem 4.3,

τi(G, T ) = deg(tα) = deg(tαte)− 1 = τi+1(G, T4e)− 1.

Conversely, suppose Ji(G, T ) is non-empty and

τi+1(G, T4e) = τi(G, T ) + 1.

Let J be a minimum cardinality element of Ji(G, T ) and let tα be the re-
mainder in a standard expression with respect to G of the monomial given by
the product of all edges in J . By (i) of Theorem 4.3, J (tα) ∈ Ji(G, T ) and
by (ii) of the same proposition, |J (tα)| = τi(G, T ) = |J |. This proves that
tα is square-free, so that if te divides tα, |J (tαt−1

e )| = |J (tα)| − 1. However,
as J (tαt−1

e ) is a (T4e)-join, this would imply that

τi+1(G, T4e) ≤ τi(G, T )− 1
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which is not true. We deduce that tα is not divisible by te and therefore
belongs to B≺(I(XG), te). By what was said, it is clear that ϑ(tα) = (T, i).

Degree. The next result was first proved in [13, Proposition 2.11] by re-
ducing to K = Z/3 and to the vanishing ideal of the projective set para-
meterized by G. We can now give an alternative proof, drawing closely on
the properties of the graph. Below, b0(G) denotes the number of connected
components of G.

Proposition 4.10. The degree of K[EG]/I(XG) is{
2|VG|−b0(G), if G is non-bipartite,
2|VG|−b0(G)−1, if G is bipartite.

Proof : Fix e ∈ EG and ≺ a grevlex order on K[EG] with te last. As te is
regular on K[EG]/I(XG) and its degree is one, the degree of K[EG]/I(XG) is
equal to the dimension of K[EG]/(I(XG), te) as a vector space over K, which
is then given by the number of elements of B≺(I(XG), te). Let ϑ be the map
of Theorem 4.9. Given T ∈ E(VG), consider the subset of E(VG) × (Z/2)
given by

FT = {(T, 0), (T, 1), (T4e, 0), (T4e, 1)} .
We claim that | Imϑ ∩ FT | = 1, if G is bipartite, and | Imϑ ∩ FT | = 2, if G
is non-bipartite. From this claim we deduce that the degree of

K[EG]/(I(XG), te)

is equal to | E(VG)|
2 if G is bipartite or | E(VG)|, otherwise. To ease notation,

let r = b0(G) and denote by n1, . . . , nr the cardinalities of the sets of vertices
of the connected components. Then | E(VG)| = 2n1−1 · · · 2nr−1 = 2|VG|−r and
thus the result follows.

Let us now prove the claim. For a fixed T , at least one of the sets
J0(G, T ), J1(G, T ) is non-empty. Fix i ∈ Z/2 such that Ji(G, T ) 6= ∅ and
J ∈ Ji(G, T ) of minimum cardinality. Then, as J4{e} ∈ Ji+1(G, T4e), the
set Ji+1(G, T4e) is also non-empty. Moreover, since |J4{e} | ≤ |J |+ 1,

τi+1(G, T4e) ≤ τi(G, T ) + 1.

Repeating this argument with T4e and i + 1 ∈ Z/2 and combining the
results,

τi+1(G, T4e)− 1 ≤ τi(G, T ) ≤ τi+1(G, T4e) + 1.
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As τi(G, T ) and τi+1(G, T4e) have opposite parities, either

τi(G, T ) = τi+1(G, T4e)− 1 or

τi(G, T ) = τi+1(G, T4e) + 1.

In either case, using Theorem 4.9, we deduce that

| {(T, i), (T4e, i+ 1)} ∩ Imϑ| = 1.

If G is bipartite then, by Lemma 4.6, only one of J0(G, T ) or J1(G, T ) is
non-empty and thus | Imϑ∩FT | = 1. If G is non-bipartite then both of these
sets are non-empty and hence | Imϑ ∩ FT | = 2. The claim is proved.

Regularity. Theorem 4.9 will be used to express reg I(XG) in a combina-
torial way. Before we do this, and to explain the connection with the initial
results in this direction contained in [13], we need the following notion.

Definition 4.11. J ⊂ EG is called a parity join if and only if |J∩EC | ≤ |EC |
2 ,

for every even Eulerian subgraph of G.

This definition is related to the notion of join (cf. [5]); a subset J ⊂ EG

is called a join if and only if |J ∩ EC | ≤ |EC |
2 , for every Eulerian subgraph

C ⊂ G. A join is always a parity join but not the way around. The relation
between joins and T -joins is established in Guan’s Theorem (cf. [8]); if J is
a minimum cardinality T -join then J is a join and, vice-versa, if J is a join
then it is a minimum cardinality T -join, for T equal to the set of odd degree
vertices of the induced subgraph. A similar result holds for parity joins.

Lemma 4.12. If T is an even subset of vertices and i ∈ Z/2, then any
element of Ji(G, T ) of minimum cardinality is a parity join. Conversely,
any parity join, J , is a minimum cardinality element of Ji(G, T ), where T is
the set of odd degree vertices of the subgraph induced by J and i = |J |+ 2Z.

Proof : Let J be a minimum cardinality element of Ji(G, T ) and let C be an
even Eulerian subgraph of G. Then J4EC is a T -join with |J4EC | ≡2 |J |
hence

|J | ≤ |J4EC | ⇐⇒ |J ∩ EC | ≤ |EC |
2 ,

i.e., J is a parity join. Conversely, let J ⊂ EG be a parity join and T ⊂ VG
be the set of odd degree vertices of the subgraph of G induced by J . Then
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J is a T -join. Set i = |J |+ 2Z and let J ′ ∈ Ji(G, T ). Then J4J ′ defines an
even Eulerian subgraph and therefore,

|J ∩ (J4J ′)| ≤ |J4J ′|
2 ⇐⇒

|J | − |J ∩ J ′| ≤ |J |+|J ′|
2 − |J ∩ J ′| ⇐⇒ |J | ≤ |J ′|.

We deduce that J is a minimum cardinality element of Ji(G, T ).

Theorem 4.13. The regularity of I(XG) is the maximum cardinality of min-
imum fixed parity T -joins or, equivalently, the maximum cardinality of parity
joins.

Proof : Let e ∈ EG and fix ≺ a grevlex order on K[EG] with te last. By
Proposition 2.4, we get reg I(XG) = max {d : Nd 6= 0}+ 1, where

N = K[EG]/(I(XG), te).

Another way of expressing this, using B≺(I(XG), te), is

reg I(XG) = max {deg(tα) : tα ∈ B≺(I(XG), te)}+ 1.

Let tα ∈ B≺(I(XG), te) be of maximum degree and let ϑ be as in Theorem 4.9.
Denote (T, i) = ϑ(tα). Then, by (ii) of Theorem 4.3 and Theorem 4.9,

deg(tα) + 1 = τi(G, T ) + 1 = τi+1(G, T4e)
and so reg I(XG) = τi+1(G, T4e). We conclude that

reg I(XG) ≤ max {τi(G, T ) : T ∈ E (VG), i ∈ Z/2, Ji(G, T ) 6= ∅} .
To prove the opposite inequality, let T0 ∈ E(VG), k ∈ Z/2 be such that
τk(G, T0) is the maximum of the set above. Fix J ∈ Jk(G, T0) with

|J | = τk(G, T0)

and let tα be the remainder in a standard expression with respect to G of
the monomial given by the product of all edges in J . Then, arguing as in the
proof of Theorem 4.9, we deduce that tα is square-free, J (tα) ∈ Jk(G, T0)
and deg(tα) = τk(G, T0). By the maximality of τk(G, T0) we get

τk+1(G, T04e) ≤ τk(G, T0)

which, by Theorem 4.9, means that (T0, k) 6∈ Imϑ. This implies that tα is
not a standard element of (I(XG), te); hence te divides tα and

tαt−1
e ∈ B≺(I(XG), te).

Accordingly, reg I(XG) ≥ deg(tαt−1
e ) + 1 = deg(tα) = τk(G, T0).
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In [13, Theorem 4.5] it was shown that for a bipartite graph the regularity
of I(XG) is equal to the maximum cardinality of a join. Theorem 4.13 is
therefore a generalization of this result.

Example 4.14. By Theorem 4.13, the value of reg I(XG), for G = Kn, can
now be obtained by an analysis of the minimum fixed parity T -joins. (This
was done in [13] by reducing to K = Z/3 and using the results of [7].) From
Table 2, if n = 3, reg I(XG) = 3; obtained by taking a minimum cardinality
element of J1(G, ∅). (Note that G = K3 is listed in Table 1 in the family
of non-bipartite uni-cyclic graphs.) If n ≥ 4, the maximum cardinality of
a fixed parity T -join is r = bn/2c + 1. Denoting i = r + 2Z, we see that
r = τi(G, VG), if n is even, and, if n is odd, r = τi(G, T ) with T = VG \ {v},
for any choice of v ∈ VG.
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[3] V. Ene and J. Herzog, Gröbner bases in commutative algebra, Graduate Studies in Mathemat-

ics, 130. American Mathematical Society, Providence, RI, 2012.
[4] G. Favacchio, G. Keiper and A. Van Tuyl, Regularity and h-polynomials of toric ideals of

graphs, Proc. Amer. Math. Soc. 148 (2020), no. 11, 4665–4677.
[5] A. Frank, Conservative weightings and ear-decompositions of graphs, Combinatorica 13 (1993),

no. 1, 65–81.
[6] J. Geelen and R. Kapadia, Computing girth and cogirth in perturbed graphic matroids, Com-

binatorica 38 (2018), no. 1, 167–191.
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