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PROPERTIES OF INCREASING ODDS RATE

DISTRIBUTIONS WITH A STATISTICAL APPLICATION
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Abstract: We study the family of distributions characterised by an increasing
odds rate (IOR), showing that this is a primary condition for being coherent with
the notion of “adverse ageing”. We prove some preservation properties of this class
under several transformations that are often considered in reliability and life testing
problems, including formation of order statistics. Moreover, the IOR assumption
enables the derivation of survival bounds and tolerance limits, extending the scope of
applicability of some known results, which are based, for instance, on the increasing
hazard rate assumption. Finally, we propose a test for the IOR null hypothesis,
establishing its approximate consistency and providing a table of simulated p-values.
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1. Introduction
Ageing properties of life distributions are typically characterised by the

hazard rate (HR), which is also referred in the literature as the failure rate.
Let X be an absolutely continuous random variable with cumulative distribu-
tion function (CDF) F , survival function F = 1−F , and probability density

function (PDF) f . The HR of F , given by hF = f(x)

F (x)
, is related to (and may

be loosely interpreted as) the conditional probability of failure given that
survival up to time x has occurred. The notion of a monotone HR plays a
key role in reliability and survival analysis, as described, for example, in Bar-
low et al. (1963), Marshall and Olkin (2007) or Shaked and Shanthikumar
(2007). In particular, F is said to have an increasing hazard rate (IHR) if
hF is increasing, an assumption widely-used in the literature to derive many
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useful characterisations and properties. However, different applications re-
vealed that the IHR condition is too stringent in many practical situations,
being in contrast with several important models, such as the bathtub and the
heavy tailed distributions. Therefore, it seems natural to search for alterna-
tive models allowing for a broader applicability for describing the hazard of
ageing, encompassing violations of the IHR condition.

We define the odds of failure by time x of the CDF F as

ΛF (x) =
F (x)

F (x)
, (1)

which may be interpreted as the probability of failure over survival up to
time x. In particular,

ΛF (x) ≈ P (X ∈ (x, x+ ∆]|X > x)

P (X ∈ (x−∆, x]|X ≤ x)
, (2)

for sufficiently small ∆ > 0. This function has been considered by Mar-
shall and Olkin (2007), Kirmani and Gupta (2001), Sankaran and Jayaku-
mar (2008), Nair and Sankaran (2015), Kumar M. et al. (2019), Lando and
Bertoli-Barsotti (2019), Lando et al. (2020). As the odds function is always
increasing, its growth rate is of particular interest. For this purpose, we
define the odds rate (OR) associated with F as

λF = Λ′F =
f

F
2 . (3)

We are interested in studying the family of distributions that have an in-
creasing odds rate (IOR), that is, the family

FIOR = {F : λF is increasing}.

The IOR property is a basic condition that every distribution should satisfy
in order to be coherent with the notion of “adverse ageing”. Indeed, the
increasingness of λF means that the ratio between probability of failure (or
death) and probability of surviving by time x is accelerating with respect to
time.

The paper is organized as follows. In Section 2, we present some preserva-
tion properties of the IOR family. In Section 3, we provide bounds for the
survival function and tolerance limits for IOR distributions, and in Section 4,
we propose a test of the IOR null hypothesis.
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Note that the properties we have been defining only depend on the distri-
bution and not on the random variable, so we refer to either one as more
convenient.

2. Properties of the IOR family
The OR and the HR can be seen as special cases of the generalized hazard

rate (Barlow et al., 1971) of an absolutely continuous CDF F with respect
to another absolutely continuous CDF G, given by

hGF (x) =
d

dx
G−1 ◦ F (x) =

f(x)

g ◦G−1 ◦ F (x)
.

It is easily seen that we get hGF = hF for the choice G(x) = 1− e−x, namely,
the CDF of a unit exponential, whereas we get hGF = ΛF when choosing
G(x) = x

1+x , namely, the CDF of a log-logistic with both parameters equal to

one (hereafter, denoted as log-logistic(1,1)). Correspondingly, HG
F = G−1 ◦F

is referred to as the generalized hazard function. ForG(x) = 1−e−x, G−1(p) =
− ln(1 − p) and we obtain HG

F = − lnF which is simply referred to as the
hazard function (Shaked and Shanthikumar, 2007), whereas, for G(x) = x

1+x ,

we obtain G−1(p) = p
1−p and HG

F = ΛF .

2.1. Relations with the IHR family. Since the OR can equivalently be
expressed as λF = hF

F
, taking into account that F is decreasing, the following

result is straightforward.

Proposition 1. If F is IHR, then F is IOR.

It can be easily seen that the converse is not true. Below we present a list of
relevant IOR distributions that are not IHR. Consider a distribution whose
HR starts decreasing, then remains constant and, finally, becomes increas-
ing, which is known in the literature as bathtub distribution (such models
are particularly popular in life testing and reliability, see Rajarshi and Ra-
jarshi (1988) or Nadarajah (2009)). It is obvious that the IHR condition is
inconsistent with the bathtub model, yet, it can be seen that some bath-
tub distributions, such as the Hjorth’s (Hjorth, 1980), the J-shaped (Topp
and Leone, 1955), the Schäbe’s (Schäbe, 1994) and the Haupt and Schäbe’s
(Haupt and Schäbe, 1997) distributions are IOR, at least under some condi-
tions on the parameters. Moreover, several heavy tailed distributions, such
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as the log-logistic, the Pareto, the Fréchet, the Student’s t (with shape pa-
rameter larger than or equal to 1 in each case), the lognormal and the Cauchy
distributions, are IOR.

The IHR and the IOR conditions can also be expressed in terms of the
convex transform order (van Zwet, 1964). We say that G dominates F in the
convex transform order and write F ≤c G if the generalized hazard function
G−1 ◦ F is convex. Then, the IHR family is the set of distributions that are
dominated by the unit exponential, whereas the IOR family is the class of
those that are dominated by the log-logistic(1,1). It can be easily argued,
from Proposition 1 and from the transitivity of the ≤c order relation, that
the unit exponential distribution is dominated by the log-logistic (1,1).

The IOR condition may still be equivalently expressed in terms of the total
time on test (TTT) transform, given by

T−1(p) =

∫ F−1(p)

0

F (y) dy, p ∈ [0, 1],

where F has a non-negative support.
Since T−1 is strictly increasing and continuous, its inverse function T is

always defined. In particular, T = F ◦ I−1
F is an absolutely continuous CDF

with support [0,∞), where IF (x) =
∫ x

0 F (y) dy. It is well known that F is
IHR if and only if T is convex (Barlow et al., 1971). With regard to the IOR
condition, the following result holds.

Proposition 2. Let F be a CDF defined on a non-negative support. F is
IOR iff T is IHR.

Proof : The HR of T is

hT =
T ′

1− T
=

(I−1
F )′(f ◦ I−1

F )

F ◦ I−1
F

=
f ◦ I−1

F

(F ◦ I−1
F )2

= λF ◦ I−1
F . (4)

Therefore, as I−1
F is increasing, F is IOR if and only if T is IHR.

2.2. Closure under residual life distribution. Consider a CDF F such
that F (0) = 0. The residual life distribution Ft of F at time t is defined by

F t(x) =
F (x+ t)

F (t)
, (5)

for every t ≥ 0 such that F (t) > 0 (Marshall and Olkin, 2007). Ft is the
conditional distribution of the remaining life given survival up to time t,
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which is of considerable practical interest in reliability and survival analysis.

Since ΛFt is convex if and only if 1
F t(x)

= F (t)

F (t+x)
is convex, the following result

is immediate.

Proposition 3. Let F be a CDF. If F is IOR then Ft is also IOR.

2.3. Preservation under weighting. Let F be a CDF and w : R → R+

a weight function for which 0 < E(w(X)) < ∞. The weighted distribution
associated with w and F is defined by

Fw(x) =

∫ x
−∞w(t) dF (t)∫
Rw(t) dF (t)

=

∫ x

−∞
w̃(t) dF (t)

where w̃ is a normalized weight function. Distributions of this kind often
occur in reliability and survival analysis. For this reason, the problem of
characterizing ageing properties of the weighted distribution Fw in relation
with the parent distribution F has been considered in Jain et al. (1989),
Bartoszewicz and Skolimowska (2006), Misra et al. (2008) or Gupta and
Arnold (2016), for example. The following result provides a condition for
preservation of the IOR ageing property under weighting.

Theorem 4. Let F be an IOR distribution, w be decreasing and wλF in-
creasing. Then Fw is IOR.

Proof : A change of variable in the integral expression of Fw gives

Fw(x) =

∫ F (x)

0

w̃ ◦ F−1(p) dp = 1−
∫ F (x)

0

w̃ ◦ F−1
(p) dp = 1−Ψ ◦ F (x)

where Ψ(p) =
∫ p

0 w̃ ◦ F
−1

(u) du. Then, the OR of Fw is given by

λFw(x) =
w̃(x)f(x)

(Ψ ◦ F (x))2
= w̃(x)λF (x)

(
F (x)

Ψ ◦ F (x)

)2

.

Taking into account that w is decreasing, it follows that the function Ψ is
convex and subsequently starshaped, that is, x

Ψ(x) is decreasing. Therefore,
F

Ψ◦F is increasing, so the conclusion follows.

It is known that the IHR property is preserved under weighting, if the
weight function is increasing and concave (Jain et al., 1989). Example 5
below shows that the IOR property may not be preserved under this same
condition.
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Example 5. Take F (x) = x
x+1 , the CDF of the log-logistic(1,1) and w(x) =

x
1
2 . Since E(w(X)) = π

2 , we obtain

Fw(x) =
2

π

∫ x

0

t
1
2

(t+ 1)2
dt =

2

π

(
arctan

(
x

1
2

)
− x

1
2

x+ 1

)
,

while λw is given by

λw(x) =
2x

1
2

(x+ 1)2(π − 2
(

arctan
(
x

1
2

)
− x

1
2

x+1

) .
It is easy to check that limx→+∞ λw(x) = 0 and λw(0) = 0, meaning that
λw(x) is not monotone.

Theorem 4 can be used to obtain new distributions within the IOR fam-
ily via the weighting method, or to establish the ageing behaviour of Fw
when the conditions of the theorems of Jain et al. (1989), Bartoszewicz and
Skolimowska (2006), Misra et al. (2008) or Gupta and Arnold (2016) are not
verified, as shown in the following example.

Example 6. Take F to be the unit exponential distribution and w(x) =
1

1+x , x ≥ 0. Since E(w(X)) = −eEi(−1), where Ei(x) =
∫ x
−∞

et

t dt is the

exponential integral function, we obtain Fw(x) = −Ei(−x−1)
Ei(−1) . Suppose that we

need information about the ageing pattern of Fw, yet, w does not satisfy the
assumptions of the aforementioned theorems, so we cannot establish whether
Fw is IHR. In fact, it can be seen that Fw is not IHR. However, w is decreasing
and w(x)λF (x) = ex

x+1 is increasing, so that Theorem 4 implies that Fw is IOR.

2.4. Closure under order statistics. Let X(k) be the k-th order statistic
corresponding to an iid random sample of size n from X, a random variable
with CDF F . We shall denote by F(k) the CDF of X(k) and by λ(k) its OR.
It is well known that F(k) is given by

F(k)(x) = Fβ(F (x); k, n− k + 1),

where Fβ(x; a, b), x ∈ [0, 1], a, b > 0, is the CDF of a beta distribution with
parameters a and b. In this subsection we prove that the order statistics in
the iid case preserve the IOR property, that is, if F is IOR, then F(k) is IOR
for every 1 ≤ k ≤ n. For technical reasons, the cases k = 1 and k = n need
separated treatment.
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Let us denote by S−(u), or S−(u(x), x ∈ A), if one needs to restrict to
some domain A, the number of sign changes of a function u (Shaked and
Shanthikumar, 2007, p. 10). Moreover, for the sake of brevity, when needed,
we denote in brackets the first sign in the sign pattern of u, for instance
S−(u) ≤ 1(+) means that the sign pattern of u is either +- or +. We shall
need the following lemma.

Lemma 7. Let ai, i = 0, . . . , n, be a decreasing sequence of real numbers such
that a0 > 0 and an < 0. Consider the polynomial function P (x) =

∑n
i=0 aix

i

defined on some interval [0, b), where b > 0 or b =∞. Then, S−(P (j)(x), x ∈
[0, b)) ≤ 1(+), for 0 ≤ j ≤ n, where P (j) is the j-th derivative of P and
P (0) = P .

Proof : As the sequence ai, i = 0, . . . , n, is decreasing and a0an < 0, there
exists some k, such that aj > 0, for every j ≤ k and aj ≤ 0, for every
j ≥ k + 1. Consequently, for every j ≥ k + 1, and x ≥ 0, we have that
P (j)(x) ≤ 0, for x > 0. Taking into account that P (k)(0) = ak > 0, it
follows that S−(P (k)(x), x ∈ [0, b)) ≤ 1(+). Moreover, when j ≤ k we have
P (j)(0) = aj > 0, thus S−(P (j)(x), x ∈ [0, b)) ≤ 1(+) also in this case.

Theorem 8. If F is IOR, then X(n) = max(X1, X2, . . . , Xn) is IOR.

Proof : Note that F(n) = F n. We need to prove that λ(n) is increasing. We
may represent

λ(n)(x) =
nf(x)

(1− F (x))2

F n−1(x)

(1 + F (x) + · · ·+ F n−1(x))2

The first ratio on the right-hand side of λ(n) is increasing as F is IOR. To

prove that λ(n) is increasing, it is enough to prove that Fn−1(x)
(1+F (x)+···+Fn−1(x))2

is increasing, which is equivalent to establish that L(x) = xn−1

(1+x+···+xn−1)2 is

increasing in [0, 1]. Differentiating L(x), we obtain

L′(x) =
xn−2

(1 + x+ · · ·+ xn−1)3

n−1∑
j=0

(n− 1− 2j)xj.

It is obvious that S−(L′(x)) = S−(P (x) =
∑n−1

j=0 (n − 1 − 2j)xj) and the

sign patterns coincide. Hence, it follows from Lemma 7 that S−(P ′(x), x ∈
[0, 1]) ≤ 1(+) as the sequence aj = n− 1− 2j is decreasing and a0 = n− 1 >

0, an−1 = −(n − 1) < 0. Moreover, P (1) =
∑n−1

j=0 (n − 1 − 2j) = 0 and
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P (0) = a0 > 0, consequently, P (x) ≥ 0, thus L(x) is increasing in [0, 1], and
the result follows.

Theorem 9. If F is IOR, then X(1) = min(X1, X2, . . . , Xn) is IOR.

Proof : As 1−F(1) = F
n
, it follows that λ(1)(x) is the product of two increasing

functions, hence increasing itself:

λ(1)(x) =
nf(x)

F
2

1

F
n−1

(x)
.

Theorem 10. Let 2 ≤ k ≤ n− 1. If F is IOR then X(k) is IOR.

Proof : We need to prove that λ(k)(x) =
f(k)(x)

F
2

(k)(x)
is increasing in x, where

λ(k)(x) = n

(
n− 1

k − 1

)
f(x)F k−1(x)F

n−k
(x)(∑k−1

j=0

(
n
j

)
F j(x)F

n−j
(x)
)2

= n

(
n− 1

k − 1

)
f(x)

F
2
(x)

F k−1(x)F
n−k+2

(x)(∑k−1
j=0

(
n
j

)
F j(x)F

n−j
(x)
)2 .

Taking into account that f

F
2 and F are increasing, it is enough to prove that

L(x) = xk−1(1−x)n−k+2

(
∑k−1
j=0 (nj)xj(1−x)n−j)

2 is increasing for x ∈ [0, 1]. For simplicity, denote

by N(x) and D(x) the numerator and the denominator of L(x), respectively.
Proving that L is increasing for x ∈ [0, 1] is equivalent to verifying that, for
every c > 0, S−(L(x) − c, x ∈ [0, 1]) ≤ 1(-). For the latter expression, note
that the sign of L(x) − c coincides with the sign of M(x) = N(x) − cD(x),
so we will describe the sign pattern of M(x). Obviously, M ′(x) = N ′(x) −
cD′(x). Now, simple calculations give us

N ′(x) = (−(n+ 1)x+ (k − 1))xk−2(1− x)n−k+1

and

D′(x) = −n
(
n− 1

k − 1

)
xk−1(1− x)n−kD1/2(x)
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thus,

M ′(x) = xk−1(1−x)n−k
(

2cn

(
n− 1

k − 1

)
D1/2(x)− 1− x

x
((n+ 1)x− (k − 1))

)
.

(6)
Let us denote by A(x) and B(x) the first and second terms inside the large
parenthesis in (6), and put C(x) = A(x) − B(x), whose sign coincides with
the sign of M ′(x). Simple differentiation shows that

A′(x) = −n
(
n− 1

k − 1

)
xk−1(1− x)n−k,

A′′(x) = −n
(
n− 1

k − 1

)
(k − 1− (n− 1)x)xk−2(1− x)n−k−1.

Hence, A(x) is decreasing on [0, 1], concave on [0, k−1
n−1 ] and convex on [k−1

n−1 , 1].

On what concerns B(x), we have that B′(x) = k−1−(n+1)x2

x2 and B′′(x) =

−2(k−1)
x3 . Hence, B(x) is concave on [0, 1], increasing on [0, (k−1

n+1)1/2] and

decreasing on [(k−1
n+1)1/2, 1]. It is easy to verify that (k−1

n+1)1/2 > k−1
n−1 if k ≤ n−2

and (k−1
n+1)1/2 < k−1

n−1 if k = n− 1. To determine the sign pattern of C(x), we
distinguish two different cases:

Case k ≤ n− 2: Then C(x) is decreasing in [0, (k−1
n+1)1/2] and convex in

[(k−1
n+1)1/2, 1]. Therefore, taking now into account that limx→0C(x) =

+∞ and limx→1C(x) = 0, it follows that S−(C(x), x ∈ [0, 1]) ≤ 1(+),
meaning that the sign pattern of M ′(x), for x ∈ [0, 1], can be either
+- or +. Consequently, remembering that M(0) = −c, it follows that
S(M(x), x ∈ [0, 1]) ≤ 1(-), hence L(x) is increasing for x ∈ [0, 1] or,
equivalently, λ(k)(x) is increasing.

Case k = n− 1: In this case the function C(x) may have many roots in
[0, 1]. Consequently, the approach used in the previous case does not
allow for a conclusion. However, for this case we may handle directly
the function L(x) to prove that it is increasing in [0, 1]. Remark that

we may represent L(x) = xn−2(1−x)3

(1−(nxn−1+(1−n)xn))
2 . Moreover, some simple

algebraic calculations give

1− (nxn−1 + (1− n)xn) = (1− x)2
n−2∑
j=0

(j + 1)xj.
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Inserting this into the expression of L, we find

L(x) =
xn−2

(1− x)
(∑n−2

j=0 (j + 1)xj
)2 ,

that we use for differentiating. After collecting appropriately terms,
we obtain

L′(x) =
(n− 1)2xn−1 +

∑n−2
j=0 (n− 2− 3j)xj(∑n−2

j=0 (j + 1)xj
)3 . (7)

As we are only interested in x ∈ [0, 1], the sign of L′(x) is the same
as its numerator, which we denote by Pn(x). We aim to prove that
Pn(x) ≥ 0, for every n ≥ 3. First, we prove that Pn(x) is increasing
with respect to n, that is, for every n ≥ 3, and every x ∈ [0, 1], we
have that Pn+1(x) ≥ Pn(x). For this purpose, write

Pn+1(x)− Pn(x)

= n2xn +
n−1∑
j=0

(n− 2− 3j)xj − (n− 1)2xn−1 −
n−2∑
j=0

(n− 2− 3j)xj

= n2xn − (n2 − 1)xn−1 +
n−2∑
j=0

xj

= n2xn − (n2 − 1)xn−1 +
xn−1 − 1

x− 1

=
−n2xn+1 + (2n2 − 1)xn − n2xn−1 + 1

1− x
As before, denote by N(x) the numerator in the last expression above.
It is now immediate that the sign pattern of Pn+1(x) − Pn(x) is the
same as of N(x). We aim to prove that N(x) is positive for x ∈ [0, 1].
The derivative of N may be represented as N ′(x) = nxn−2Dn(x),
where Dn(x) = −n(n+ 1)x2 + (2n2− 1)x− n(n− 1). The polynomial
Dn is easily seen to have two roots, both in [0, 1], x0 = n−1

n and
x1 = n

n+1 . Therefore, the sign pattern of Dn(x) when x ∈ [0, 1] is -+-.
Taking into account that N(0) > 0, N(1) = 0 and x0 < x1, it follows
that N(x) ≥ 0, for every x ∈ [0, 1] if and only if N(x0) ≥ 0. We
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verify that this latter inequality holds. Indeed, after simplifications
we obtain

N(x0) = −
(
n− 1

n

)n−1
2n− 1

n
+ 1 ≥ −2

(
n− 1

n

)n−1

+ 1.

It is easy to prove that
(
n−1
n

)n−1
is decreasing with respect to n, more-

over limn→+∞
(
n−1
n

)n−1
= e−1, therefore N(x0) ≥ −2e−1 + 1 > 0.

Consequently, for n ≥ 3 and every x ∈ [0, 1] we have proved that
Pn+1(x) ≥ Pn(x). Finally, for n = 3, we have P3(x) = 1−2x+4x2 > 0
for every x ∈ [0, 1]. Putting everything together, we have proved that
Pn(x) > 0, for every n ≥ 3 and x ∈ [0, 1], meaning that L(x) is indeed
increasing, so the proof of this case is also concluded.

Note that, in the non iid case, the IOR property is not preserved under the
formation of order statistics, as shown by the following counter-example.

Example 11. Let X and Y be independent log-logistic random variables
with different shape parameters aX and aY and same scale parameter. X
and Y are IOR if aX , aY ≥ 1, but max(X, Y ) is not IOR for appropriately
chosen shape parameters (choose, for instance, aX = 3 and aY = 10).

2.5. Non-closure under convolution. Differently from the IHR family
(Marshall and Olkin, 2007, Chapter 4.B), the following counterexample es-
tablishes that the IOR family is not closed under convolution.

Example 12. If X is a log-logistic(1,1) and Y is a unit exponential, the
CDF of the convolution X + Y is

F ∗(x) =

∫ x

0

e−t

1 + (x− t)−1
dt = 1− e−x−1(Ei(x+ 1)− Ei(1) + e),

where Ei is the exponential integral (see Example 6). The corresponding OR,

λF ∗(x) =
ex+1

(
Ei(x+ 1)− Ei(1)− ex+1

x+1 + e
)

(Ei(x+ 1)− Ei(1) + e)2

is not monotone.



12 T. LANDO, I. ARAB AND P.E. OLIVEIRA

3. Bounds and tolerance limits for IOR distributions
In this section, we use the IOR assumption to derive bounds for the survival

function and lower tolerance limits, obtaining results that extend similar
bounds, available in the literature, to this class of distributions.

3.1. Survival bounds. In reliability and life testing problems, it is often
important to determine convenient bounds for the survival function, or other
related notions, in some interval of interest. The monotonicity properties of
the HR have been used extensively to establish lower bounds for the survival
function (see Barlow and Marshall (1964a), Barlow and Marshall (1964b),
Marshall and Olkin (2007)), while Zimmer et al. (1998) obtained similar
results based on the monotonicity of the log-odds rate w.r.t log-time (see
also Wang et al. (2003, 2005)). In the IOR case, the following theorem
provides comparable bounds, given the knowledge of the survival function at
two distinct points.

Theorem 13. If F is IOR, then for every x1 < x2, there exist a > 0 and
b ∈ R such that

F (x)


> 1

ax+b , x1 < x < x2,

= 1
ax+b , x = x1 or x = x2,

< 1
ax+b , x < x1 or x > x2.

(8)

Proof : It follows from Theorem 20 in Arab and Oliveira (2019, 2018) and
the convexity of 1

F (x)
that for every line `(x) with positive slope, the sign

pattern of 1
F (x)
−`(x) is at most +-+. Now, given any x1 < x2, choose the line

`(x) = ax + b such that `(x1) = 1
F (x1)

and `(x2) = 1
F (x2)

. For this particular

choice, the sign pattern of 1
F (x)
− `(x) is exactly +-+, so (8) follows.

Remark 14. If F is IOR and F (x1) and F (x2) are known, then a and b are
given explicitly as follows

a =
1

x1 − x2

(
1

F (x1)
− 1

F (x1)

)
, b =

1

F (x1)
− ax1.
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Figure 1. F (x) = 1−Φ(ln(x)), where Φ is the standard normal
CDF, is a lognormal survival function (solid curve). The graph
shows the corresponding lower survival bound in the interval [0, 2]
(dashed curve).

Corollary 15. Let F be IOR and supported on [0,+∞), such that F (0) = 0,
and let xp = F−1(p), for some p ∈ (0, 1). Then

F (x)


> 1

ax+b , 0 ≤ x < xp,

= 1
axp+b

, x = xp,

< 1
ax+b , x > xp,

(9)

where b ∈ [1, 1
1−p ] and a = 1

xp

(
1

1−p − b
)

.

Proof : If b ∈ [1, 1
1−p ], then the sign pattern of 1

F (x)
− (ax+b) is either -+ or -.

Since `(xp) = axp + b = 1
1−p = 1

F (xp)
, we have that, indeed, the sign pattern

of 1
F (x)
− (ax+ b) is equal to -+.

Remark 16. On the interval [0, xp], we have a lower bound for F (x), that is
F (x) ≥ Lb(x) = 1

1
xp

( 1
1−p−b)x+b

, for b ∈ [1, 1
1−p ]. As Lb(x)is decreasing in b, then

F (x) ≥ 1
1
xp

( 1
1−p−1)x+1

. A graphical comparison of the survival function and

this bound for the case of the lognormal distribution is shown in Figure 1.

The results of Theorem 13 and Corollary 15 may be used to determine
lower bounds for the survival function in a given interval, if we can assume
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that we know the values of the distribution in at least two points x1 and x2 (it
is often possible to set x1 = 0 and F (0) = 0). It follows, as a consequence of
(9), that if we design a company such that at time xp the failure probability
is equal to p, we immediately have a lower bound for the survival probability
throughout the living time span of the company.

As mentioned above, Marshall and Olkin (2007) (see Chapter 6.B) provide
similar bounds for the IHR family of distributions. In this regard, we note
that the IOR bounds, given in Theorem 13 and Corollary 15, have broader
applicability than the IHR ones, because, according to Proposition 1, the
IOR condition is weaker and can be used when only little information on F
is available. As the IOR condition does not require the existence of a finite
mean (differently from the IHR condition, which requires the existence of all
moments (Marshall and Olkin, 2007, p.109)), the IOR bounds can also be
seen as an alternative to the Markov inequality when E(X) is unknown or
does not exist. It should be mentioned that the bounds proved in Marshall
and Olkin (2007) may be tighter than ours, which is somewhat expectable,
as we rely on less stringent conditions on F .

Similar bounds as the ones we discussed in this subsection have been
proved, under a different set of assumptions, by Zimmer et al. (1998) or
Wang et al. (2003, 2005). These authors assumed that the log-odds rate
is increasing with respect to log-time. On one hand, this implies that only
non-negative random variables may be considered. Moreover, even in such a
case, this assumption excludes some important life distributions that are in
the IOR family (like the lognormal or the Fréchet) or even in the IHR family
(such as the gamma).

3.2. Tolerance limits. Many applications of interest in engineering (see
NIST/SEMATECH (2020)) or in the medical context rely on the tolerance
limits . In such a framework, one is interested in describing an interval
that covers a fixed proportion of the possible values for the random variable.
Recall a formal definition (see Barlow and Proschan (1966b)).

Definition 17. LetX have CDF F and X = (X1, ..., Xn) be a random sample
from X. Take α ∈ (0, 1), defining the confidence coefficient, 1 − q ∈ (0, 1),
setting the population coverage. A tolerance limit is a function L(X) such
that

P (F (L(X)) ≥ 1− q) ≥ 1− α. (10)
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The IOR assumption provides a simple way to find tolerance limits. Indeed,
let F be an IOR distribution such that F (0) = 0 and Y1, . . . , Yn a random
sample form the log-logistic(1,1) with CDF G(x) = x

1+x . Because G−1 ◦ F is
convex, Theorem 4.2 in Barlow and Proschan (1966a) yields

P

(
F

(
n∑
i=1

aiX(i)

)
≤ x

)
≥ P

(
G

(
n∑
i=1

aiY(i)

)
≤ x

)
, (11)

where
∑n

j=i aj ∈ [0, 1] for i = 1, . . . , n. Now, by setting ak = b ∈ [0, 1] for

some 1 ≤ k ≤ n and ai = 0 for i 6= k, and noticing that G(u) ≥ 1− q if and
only if u ≤ G−1(q), (11) implies that

P (F (bX(k)) ≥ 1− q) ≥ P (G(bY(k)) ≥ 1− q) = P

(
bY(k) ≤

q

1− q

)
= 1− α,

(12)
so that a tolerance limit is given by the choice L(X) = bX(k). In particular,
it is readily seen that

1− α = G(k)

(
q

b− bq

)
= Fβ

(
q

b+ q − bq
; k, n− k + 1

)
=

=

(
b− bq

q + b− bq

)n n∑
j=k

(
n

j

)(
q

b− bq

)j
,

where, again, Fβ is the beta CDF.
Zimmer et al. (1998) find the same tolerance limits under the assumption

that F has an increasing log-odds rate with respect to log-time. Note that
this assumption does not imply that F satisfies the IOR condition (as dis-
cussed above). Therefore, the discussion preceding Theorem 4 in Zimmer
et al. (1998) and, subsequently, the theorem itself, are still subject to the
verification of the convexity of G−1 ◦F , which does not follow automatically,
as is the case of the IOR distributions. As a consequence of this observation,
the IOR condition is the proper assumption to determine the tolerance limits
of the form given by (12). Keeping this change of class in mind, more prac-
tical examples of how to use these tolerance limits are described in Zimmer
et al. (1998). After specifying n, α and q, one could determine b for a given
k, that is, at a given time. Conversely, it is also possible to determine, at a
given confidence level, the time at which the survival function exceeds 1− q.
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4. Testing the IOR condition
In the literature, various methods have been proposed to test ageing prop-

erties of distributions. For example, Barlow and Proschan (1969), Bickel and
Doksum (1969), Bickel (1969) and Proschan and Pyke (1967) test exponen-
tiality against the IHR alternative, Tenga and Santner (1984) and Hall and
Van Keilegom (2005) test the IHR null hypothesis against non-IHR alterna-
tives, Sengupta and Paul (2005) test log-concavity against non-log-concave
alternatives, Sahoo and Sengupta (2017) test the hypothesis of increasing
ratio between hazard rates in two samples, Lando (2020) tests the null hy-
pothesis of increasingness of the log-odds rate. In this section, we propose a
test for the null hypothesis

H0 : F is IOR, (13)

against non-IOR alternatives, by checking the convexity of the odds function,
ΛF .

Denote by Fn the empirical CDF of a random sample X = (X1, . . . , Xn)
from F , that is, Fn(t) = 1

n

∑n
i=1 1Xi≤t, where 1A is the indicator of event A.

The plug-in estimator of ΛF is Λ̂ = ΛFn, where, to simplify notations, we set

Λ̂i = Λ̂(Xi:n) =
i

n− i
. (14)

Drawing inspiration from Tenga and Santner (1984), we propose a test based

on the distance between Λ̂ and an estimator of Λ that is, by construction,
convex. Such an estimator is given by the greatest convex minorant (GCM)

Λ̂c, that is, the largest convex function that does not exceed Λ̂, defined by

Λ̂c(x) = sup {u(x) : u is convex and u(y) ≤ Λ̂(y),∀y ∈ [X(1), X(n)]}.

Let us define Λ̂c,i = Λ̂c(Xi:n). Since, by construction, Λ̂i−1 ≥ Λ̂c,i, we
consider the following weighted Kolmogorov-Smirnov test statistic

KSν,n(X1, . . . , Xn) = KSν,n(X) = max
Sn,ν
{wi(Λ̂i−1 − Λ̂c,i)}, (15)

where the wi’s are positive weights, ν ≥ 0 is adequately small, and Sn,ν = {i :
xi ≤ F−1

n (1− ν)}. The test statistic is evaluated over the restricted support

Sn,ν, avoiding the fact that the GCM Λ̂c is only defined until X(n), in order
to establish large sample properties of the test from a theoretical point of
view (see Theorem 18 below). Note also that KSν,n is scale invariant.
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We reject the null hypothesis for “large” values of KSν,n. Using the same
approach as Theorem 3.1 in Tenga and Santner (1984), it can be seen that the
least favorable distribution of KSν,n is obtained by taking KSν,n(Y), where
Y is a random sample from the log-logistic(1,1). Such a distribution enables
the determination of the critical values or the p-values of the test, which
can be computed through simulation. Let x be a realisation of X. The test
proposed rejects H0 when KSν,n(x) ≥ cα,ν,n, where cα,ν,n is the solution of
P (KSν,n(Y) ≥ cα,ν,n) ≥ α and α is the size of the test. Alternatively, we can
compute the p-value of the test, that is, p = P (KSν,n(Y) ≥ KSν,n(x)).

Theorem 18. Let KSν,n be the test statistic (15), ν > 0 and the weights wi,
i = 1, . . . , n, satisfy 0 < w < wi ≤ w < ∞ (for every sample size n). If H0

is false, then

lim
ν→0+

lim
n→∞

P (KSν,n(X) > cα,ν,n) = 1. (16)

Proof : First, we need to prove that, under H0,

lim
ν→0+

lim
n→∞

sup
Sn,ν

|Λ̂c − ΛF | = 0. (17)

The empirical quantile F−1
n (1−ν) is a consistent estimator of ξν = F−1(1−ν).

Moreover, the Glivenko-Cantelli Theorem and the uniform continuity of the
transformation p

1−p in intervals bounded away from 1, implies that, for each

fixed ν, η > 0, supx≤ξν+η |Λ̂(x) − ΛF (x)| → 0 with probability 1. Then, for
any small ν, η, ε > 0,

lim
m→∞

P ( sup
x≤ξν+η

|Λ̂− ΛF | ≤ ε,∀n > m) = 1.

If H0 is true, by definition of the GCM and by convexity of ΛF and ΛF + ε
we obtain, as m→∞,

ΛF (t)− ε ≤ Λ̂c(t) ≤ Λ̂(t) ≤ ΛF (t) + ε, (18)

uniformly, for every t ≤ ξν + η and n > m. Then, for each ν > 0,

lim
m→∞

P ( sup
x≤ξν+η

|ΛF − Λ̂c| ≤ ε,∀n > m) ≥ lim
m→∞

P ( sup
x≤ξν+η

|Λ̂− ΛF | ≤ ε,∀n > m) = 1,

which implies that the iterated limit in (17) is 0.
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We now prove that, under H0, the critical value of the test, cα,ν,n, tends to
0 for every fixed ν > 0. Choose m large enough such that

P ( sup
x≤ξν+η

|Λ̂− ΛF | ≤ ε,∀n > m) =

= P (ΛF (t)− ε ≤ Λ̂(t) ≤ ΛF (t)− ε,∀t ∈ Sν,n,∀n > m) ≥ 1− α

Since, when H0 is true, (18) holds and ΛF (t)+ε−(ΛF (t)−ε) = 2ε, we obtain

P ( sup
x≤ξν+η

|Λ̂− Λ̂c| ≤ 2ε,∀n > m) ≥ 1− α ⇒

P (sup
Sn,ν

wi|Λ̂i−1 − Λ̂c,i| ≤ 2εw,∀n ≥ m) ≥ 1− α

Since ε is arbitrarily small we get cα,ν,n → 0.
If ΛF is not convex, we know that there exist at least 3 values {a, b, c} in

the support of F that violate the convexity condition. However,

lim
ν→0

lim
n→∞

P ({a, b, c} ∈ Sn,ν) = 1,

therefore we assume that it exists some m and some ν0 > 0 such that, for
n > m and for ν < ν0, {a, b, c} ∈ Sν,n. Let n > m and ν < ν0: using the same
argument of Theorem 4.3 in Tenga and Santner (1984), one can show that
in this case cα,ν,n does not tend to 0, which is a necessary condition for the

acceptance of H0 when n → ∞. Then, P (supSn,ν wi|Λ̂i−1 − Λ̂c,i| > cα,ν,n) →
1, for every fixed ν < ν0, and the thesis follows.

Of course, the value of ν should be taken as small as possible (e.g., ν ≤ 0.01
if n ≥ 100). Yet, smaller ν’s correspond to slower convergence. In fact, as
shown in the proof, we will need more observations in order to get cα,ν,n close
enough to 0. For instance, for n = 10, . . . , 100 we would need to take ν = 0.1
(too large) in order to show that the sequence c0.1,n,α decreases in n. In the
limit case ν = 0, the critical values do not go to zero and we cannot establish
consistency of the test. The choice of the weights has also an impact on
the performance of the test. If ΛF is convex, the increments Λ̂i − Λ̂i−1 are
increasing, for 2 ≤ i ≤ n. Therefore, the weights may be tailored to downsize
the effect of larger differences due to larger i’s. Three choices of weights were
considered: (1) wi = 1, (2) wi = δ + k(1 − i

n)k (k ≥ 1, for convenience
we set δ = 10−3, but any δ > 0 ensures the existence of w) and (3) wi =

1

Λ̂i−1
= n

i−1 − 1; we denote the test statistic as KS(s)
ν,n, where the superscript
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s = 1, 2, 3, denotes the weights discussed above. KS(1)
ν,n performs well against

alternatives with decreasing OR, but may provide poor performance against
alternatives with non-monotone OR. Overall, KS(2)

ν,n performs well against
alternatives with both decreasing or non-monotone OR, especially for k > 2.

KS
(3)
0,n was studied by Lando et al. (2020), although it does not satisfy the

large sample property of Theorem 18 (since the weights are unbounded and

ν = 0), KS
(3)
0,n has a good performance, as shown by the simulation study of

Lando et al. (2020). Based on our simulation results and on the consistency

property of Theorem 18, we recommend using the test KS
(2)
0.01,n, where k = 3

(clearly, the parameter ν = 0.01 has an effect just for n ≥ 100). A table of
simulated p-values for this test is provided.

HHH
HHn
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

n = 10 0.095 0.126 0.146 0.164 0.184 0.203 0.223 0.241 0.256 0.269

n = 20 0.131 0.16 0.185 0.211 0.23 0.25 0.271 0.296 0.321 0.335

n = 30 0.144 0.17 0.194 0.217 0.245 0.268 0.292 0.316 0.344 0.362

n = 40 0.135 0.164 0.192 0.214 0.241 0.27 0.298 0.33 0.362 0.381

n = 50 0.137 0.164 0.191 0.218 0.248 0.273 0.301 0.329 0.367 0.385

n = 75 0.125 0.152 0.179 0.211 0.239 0.267 0.298 0.34 0.38 0.401

n = 100 0.11 0.137 0.157 0.177 0.203 0.226 0.25 0.287 0.337 0.372

n = 150 0.105 0.123 0.146 0.173 0.2 0.236 0.27 0.308 0.345 0.365

n = 200 0.093 0.115 0.132 0.149 0.168 0.196 0.22 0.26 0.301 0.326

Table 1. Simulated quantiles of KS
(2)
0.01,n (k = 3). The number

of simulation runs is 3000, for n ≤ 40, and 1000, for n ≥ 50.

4.1. Simulation. We analysed the performance of KS
(2)
0.01,n, k = 3. Table 1

reports the average p-values (over 500 simulation runs) and the rejection rates
(α = 0.1) for sampe sizes n = 10, 30, 50, 100. If the data are drawn from an
IOR distribution (such as the lognormal), the test mostly leads to accep-
tance of H0, thus, the case when H0 is false is particularly interesting. We
considered the following alternatives to the IOR model: 1) log-logistic distri-
bution (shape parameter less than 1) which has a decreasing OR, 2) Weibull
distribution (shape parameter less than 1) which has a U-shaped OR, 3)
Birnbaum-Saunders distribution Birnbaum and Saunders (1969) (shape pa-
rameter ≥ 2), which has an increasing-decreasing-increasing OR. Obviously,
the non-convexity of the odds function is much easier to detect in case 1)
than in cases 2) and, especially, in case 3), thus, the overall performance of
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Distribution CDF θ range n = 10 n = 30 n = 50 n = 100

lognormal Φ(ln(x)− θ) [-2,2] 0.77(0.5%) 0.9(0%) 0.93(0%) 0.96(0%)

log-logistic 1
1+x−θ [0.01, 0.7] 0.07(85%) 0.02(94%) 0.01(99%) 0.008(100%)

Weibull 1− exp (−xθ) [0.01, 0.7] 0.11(69%) 0.07(83%) 0.06(85%) 0.03(91%)

Birnbaum-Saunders Φ
(

1
θ

(√
x− 1√

x

))
[2, 4] 0.33(20%) 0.26(19%) 0.25(21%) 0.16(40%)

Table 2. Simulation. Average p-values (over 500 runs) and re-
jection rates (α = 0.1). Φ denotes the CDF of a standard normal.

the test is good, as it can be seen by the average p-values, rejection rates and
corresponding empirical power. As a rule of thumb, p-values below 0.3 may
provide evidence against the null hypothesis.

4.2. Application. Wang et al. (2005) (p. 13) provide a table containing 30
failure times, based on the pull strength of wires from a substrate. By means
of statistical testing, it can be seen that the underlying distribution is not

IHR. However, by applying KS
(2)
0.01,n, we find KS

(2)
0.01,30 = 0.21 and an approx-

imate p-value within 0.6 and 0.7 (see Table 2), which leads to acceptance of
H0. In order to establish a lower bound on the reliability at a pull strength
of 223 grams, Wang et al. (2005) set F (208.8) = 0.7 and F (387.3) = 0.7 and
obtain F (223) > 0.663. Such a result is obtained using the bounds given
by Zimmer et al. (1998) and assuming that the distribution has an increas-
ing log-odds rate. Using the same crossing points and assuming that the
distribution is IOR (in this case, the assumption is supported by statistical
testing), we apply the bounds of Theorem 13 and we obtain F (223) > 0.639
(a = 0.0095038, b = −0.555822).
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