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Abstract: In this paper we study further when tangles embed into the unknot,
the unlink or a split link. In particular, we study obstructions to these properties
through geometric characterizations, tangle sums and colorings. As an application
we determine when each prime 2-string tangle with up to seven crossings embeds
into the unknot, the unlink or a split link.

Keywords: Embeddings of tangles; unknot; unlink; split link; colorings.
AMS Subject Classification (2010): 57M25, 57N10.

1. Introduction
A tangle T is a pair (B, σ) formed by a ball B and a collection of properly

embedded disjoint arcs σ in B. If σ has n components we say that T is a
n-string tangle. Two tangles T , T ′ are equivalent, denoted by T ≈ T ′, if
there is an isotopy of B sending T to T ′, and strongly equivalent, denoted by
T = T ′, if this isotopy fixes ∂B.

Let K be a link in S3, and B a ball in S3 with exterior B′. If T = (B,B∩K)
and T ′ = (B′, B′ ∩K) are tangles, then we say that T ∪ T ′ is a tangle de-
composition of K and that K is a closure of T (and of T ′). In case there is
a tangle decomposition of K with T one of the tangle components, we also
say that T embeds into the pair (S3, K), or, for abbreviation, that it embeds
into K. Similarly, let T1 = (B1, σ1) and T2 = (B2, σ2) be tangles such that
B1 ∩ B2 is a disk and T = (B1 ∪ B2, σ1 ∪ σ2) is a tangle. Then we say that
T1 ∪ T2 is a tangle decomposition of T .

A fundamental question in knot theory is determining whether a knot or
link is actually the unknot (resp., an unlink or a split link). In this paper,
we continue the study of when a tangle embeds or not into the unknot, the
unlink or a split link. If a tangle T embeds into the unknot, the unlink, or
a split link, we say that T is unknottable, unlinkable or splittable. We refer
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to a tangle U such that T ∪ U is a tangle decomposition of the unknot, the
unlink or of a split link, respectively, as an unknotting, unlinking or splitting
closure tangle of T .

A projection of a tangle T is the image p(T ) of the tangle by an orthogonal
projection p to a plane such that the preimage of each point of p(T ) has at
most two points, and there are a finite number of double points, which are
called the crossings of the projection. (See Figure 2 a) for an example of a
tangle diagram.) A projection always exists in the piecewise linear category.
If these crossings are decorated with broken lines to show the overcrosses
and undercrosses, then we get a diagram of T . A tangle diagram D is called
unknottable, unlinkable or splittable if there is a diagram of the unknot, the
unlink or a split link, respectively, that contains D.

The study of embeddings of tangles into the unknot, the unlink or split links
has been considered before in several papers. In [10], Krebes shows that the
greatest common divisor of the determinant of the numerator and denomi-
nator closure of a 2-string tangle divides the determinant of any closure link
of the tangle, and is able to show several tangles not to be unknottable.
This work uses a combinatorial interpretation of the determinant in terms
of link diagrams and Kauffman brackets. In [18], Silver and Williams gave
a new shorter proof of this result. In [11], this approach is generalised to
n-string tangles with certain bracket-derived invariants of link diagrams. In
[17], Silver and Williams extend Krebes’ result using Fox colorings. More
recently, Kauffman and Lopes [9] use colorings of knot diagrams with invo-
lutory quandles to study how to obtain tangles that are not unknottable. In
[15], Ruberman extends the work of Krebes following a homological inter-
pretation of the determinant of a link as the order of the first homology of
the 2-fold branched cover of S3 over the link; and also introduces an obstruc-
tion for a 2-string tangle to be unlinkable, through an application of work
of Cochran and Ruberman [3] on tangle invariants from higher order linking
numbers. In [14], Przytycki, Silver and Williams extend the work of Krebes
and of Ruberman to n-string tangles and use the Jones polynomial instead
of just the determinant. With this work, they are able to show an example
of a 2-string tangle from [10] that is not unknottable and unlinkable and
which is not possible to prove using the determinant result of [10]. In the
present paper, we are also able to show that this tangle is not unknottable



EMBEDDINGS OF 2-STRING TANGLES 3

and unlinkable with a different approach.

For 2-string tangles in particular, more can be said from the literature. As
observed in section 4, a 2-string tangle is unknottable (resp., unlinkable) if
and only if the unknotting (resp., unlinking) closure tangle is a rational tan-
gle, and it is splittable if and only if it has a rational tangle as a splitting clo-
sure tangle. Under these circumstances, with respect to strong equivalence,
the unknotting closure tangle of an unknottable 2-string essential tangle is
unique [1, 2], and the unlinking (resp. rational splitting) closure tangle of an
unlinkable (resp., splittable) 2-string tangle is unique [5]. Furthermore, in
case the 2-string tangle is essential, it cannot be unknottable and splittable
(or unlinkable) simultaneously [16]. New proofs of these results were also
obtained by Taylor in [19]. For the case of a rational tangle it is possible to
determine exactly which rational tangles are its unknotting closure tangles,
as seen in the work of Ernst and Sumners [4] and of Kauffman and Lam-
bropoulou in [8].

This paper is organized as follows. In Section 2, we observe some funda-
mental basic properties on embeddings of tangles into the unknot, the unlink
and a split link. We also observe that Conjecture 3.1 of [9] by Kauffman and
Lopes is false. In Section 3, we give a geometric characterization for a 2-
string tangle to be unknottable, unlinkable or splittable. In Section 4, we
study the behavior of unknottability, unlinkability and unsplittability under
the sum of tangles. In particular, we determine when a Montesinos tangle is
unknottable, unlinkable or splittable. In Section 5, we study further when
the coloring invariants are an obstruction for a tangle being unknottable.
We also apply these invariants on the study of unlinkable tangles for the
first time. In particular, we determine the unlinking closure tangle candi-
date for any 2-string tangle. In Section 6, we determine which tangles of
the table classifying all 2-string tangles up to 7 crossings (table 1 in [6]) are
unknottable, unlinkable or unsplittable. We refer to this table throughout
the paper.

2. Basic properties
In this section, we observe basic properties of unknottable, unlinkable and

splittable tangles.

Theorem 2.1. Let T be a tangle. The following are equivalent:
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(a) for every tangle T ′ (strongly) equivalent to T , every diagram D′ of T ′
is unknottable;

(b) there is a tangle T ′ (strongly) equivalent to T that has a unknottable
diagram;

(c) T is unknottable.

A similar result holds for unlinkable/splittable tangles.

Proof : The implication (a)⇒(b) is immediate, by considering any diagram
of T .

To prove (b)⇒(c), consider an unknottable diagram D′ of T ′. Then there
is a diagram D of the unknot K that contains D′. Consider an isotopy λ of
B sending T ′ to T . Extend λ to S3 by defining it on the exterior B′ of B
as the conjugate of λ by a symmetry interchanging B and B′. Then λ(K) is
the unknot with a decomposition T ∪ U . Therefore, T is unknottable.

Finally, to prove (c)⇒(a), suppose that T is unknottable. Then there is a
tangle U such that T ∪ U is a tangle decomposition of the unknot. Consider
an isotopy λ of B sending T to T ′ (and its extension to S3) and a diagram
D′ of T ′. Then λ(T ) ∪ λ(U) is a tangle decomposition of the unknot that
has a diagram containing D′. Therefore D′ is unknottable.

We say that the tangle T = T1∪T2 is the union of the tangles T1 = (B1, σ1)
and T2 = (B2, σ2) if B1 ∩ B2 is a disk disjoint from σ1 ∪ σ2. If a tangle
T1 = (B1, σ1) is embedded in a tangle T = (B, σ), we say that T1 is a
subtangle of T .

Theorem 2.2. Let T1 be a subtangle of T .

(a) If T is unknottable, then T1 is unknottable.
(b) If T is unlinkable, then T1 is unlinkable if it intersects more than one

string of T ; otherwise T1 is unknottable.
(c) If T is splittable and T1 intersects two strings of T separated by the

splitting decomposition, then T1 is splittable.

Proof : If T ∪T ′ is a tangle decomposition of a linkK, then T1∪
(
T ′ ∪ (T − T1)

)
is also a tangle decomposition of K.

If K is an unknot, then T1 is unknottable; if K is an unlink, then T1 is
unlinkable if it intersects more than one string of T and unknottable other-
wise; if K is a split link, then T1 is splittable if it intersects two strings of T
separated by the splitting decomposition.
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As an immediate consequence of this theorem, we have the following corol-
lary.

Corollary 2.2.1. Let T1 ∪ T2 be a tangle decomposition of T .

(a) If T is unknottable, then T1 and T2 are unknottable.
(b) If T is unlinkable, then T1 and T2 are unlinkable or unknottable. If the

tangle decomposition is not an union, then at least one of T1 or T2 is
unlinkable.

(c) If T is splittable and the tangle decomposition is not an union, then
at least one of T1 or T2 is splittable.

For instance, since 716 ≈ T ∗ [−2], where T ≈ 62, and the tangle 62 is not
unknottable nor unlinkable (see Section 6), then 716 is also not unknottable
nor unlinkable (as both strings are unknotted, from Proposition 4.1, it is also
not splittable).

The reciprocal of this corollary is not true. For instance, 62 is not unknot-
table, unlinkable or splittable, as verified in Section 6, but it has a decom-
position into two trivial 2-string tangles. However, in the case where the
decomposition of tangles is an union, the reciprocal is also true, as stated in
the following theorem.

Theorem 2.3. Let T be the union of the tangles T1 and T2. Then

(a) T is unknottable if and only if T1 and T2 are unknottable.
(b) T is unlinkable if and only if T1 and T2 are unlinkable or unknottable.
(c) T is splittable.

Proof : (a) Suppose that T is unknottable. By Corollary 2.2.1a), T1 and T2

are unknottable. Now suppose that T1 and T2 are unknottable. Then there
exist tangles T ′1 , T ′2 such that T1 ∪ T ′1 and T2 ∪ T ′2 are tangle decompositions
of the unknot. By adding a single crossing between T ′1 and T ′2 , as in Figure
1, we obtain an unknot K containing T . Therefore T is unknottable.

(b) Suppose that T is unlinkable. By Corollary 2.2.1 (b), T1 and T2 are
unlinkable or unknottable. Now suppose that T1 and T2 are unlinkable or
unknottable. Then there exist tangles T ′1 , T ′2 such that T1 ∪ T ′1 and T2 ∪ T ′2
are tangle decompositions of the unknot or an unlink. Hence, the union of
the tangles T ′1 , T ′2 and T is an unlink. Therefore T is unlinkable.
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Figure 1. The union of unknottable tangles is unknottable.

(c) From the decomposition of T defined by T1 and T2 we obtain a split
link by closing T appropriately on each side of the decomposition.

Corollary 2.3.1. Any n-string tangle equivalent to the trivial n-string tangle
is unknottable and unlinkable.

By this Corollary, any rational tangle is unknottable. (See also [4, 8].) For
2-string tangles the reciprocal of this corollary is true, as a 2-string tangle
that is unknottable and splittable is trivial [5].

But in general, the reciprocal of this corollary is not true. In fact, consider
the 3-string tangle T defined by adding a parallel string to one of the strings
of the 2-string tangle 63. Then T is unlinkable (it embeds into the three
components unlink) and unknottable, but it is not equivalent to a trivial
tangle.

We also observe that Conjecture 3.1 of [9] is false. In fact, the tangle T of
Figure 2a) is essential [13], but it is unknottable, as can be seen in Figure 2b),
which shows a diagram of a trivial knot containing a diagram of T . Moreover,
T is irreducible in the sense of [9], because T has minimum crossing number
[13] and Figure 2c) shows that its numerator closure is the nontrivial knot
51.

3. Geometric characterization for 2-string tangles
In this section we characterize geometrically unknottable, unlinkable and

splittable 2-string tangles.

Definition 1. Let T = (B, s1 ∪ s2) be a 2-string tangle.
We say that s1 and s2 are quasi-parallel if there is a (punctured) disk P
embedded in B such that s1 and s2 are in the same component of ∂P and
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Figure 2. The tangle T is irreducible and unknottable.

∂P − (s1 ∪ s2) ⊂ ∂B.
We say that s1 and s2 are quasi-trivial if there are two disjoint (punctured)
disks P1 and P2 embedded in B co-bounded, respectively, by s1 and s2.
We say that T is quasi-inessential if there is a (punctured) disk D properly
embedded in B, disjoint from s1 and s2, such that each boundary component
of D separates the ends of s1 from the ends of s2. (See Figure 3.)

Figure 3. Quasi-parallel, quasi-trivial and quasi-inessential strings.

Lemma 3.1. Let T = (B, s1 ∪ s2) be a 2-string tangle, with s1 and s2 quasi-
parallel. If T is inessential, then it is trivial.

Proof : Since s1 and s2 quasi-parallel, there exists a (punctured) disk P em-
bedded in B such that s1 and s2 are in the same component b of ∂P and
∂P − (s1 ∪ s2) ⊂ ∂B. Assume that P has the minimal possible number of
punctures.

Since T is inessential, there exists a disk D properly embedded in B sep-
arating the strings s1 and s2. Assume that the number of components of
D ∩ P , denoted by |D ∩ P |, is minimal, among all possible disks D. Let a
and a′ be the arcs defined by b− (s1∪s2) and α be an outermost arc of D∩P
in D.

Suppose that α is non-separating in P . Then, by compressing P along
α and the corresponding outermost disk in D, we reduce the number of
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punctures of P , contradicting its minimality. Otherwise, suppose that α is
separating in P . If the ends of α are in the same component of ∂P −(s1∪s2),
by compressing P along α and the corresponding outermost disk in D, we
reduce the number of punctures of P or reduce |D ∩ P |, contradicting their
minimality. Hence, α is separating and has ends in distinct components of
∂P −(s1∪s2). As α is separating, it has to have ends in the same component
of ∂P . Hence, α has ends in b, more precisely, one end in a and the other
end in a′. Then, α cuts P into two disjoint embedded possibly punctured
disks, one co-bounded by s1 and the other by s2. Therefore, s1 and s2 are
unknotted, which, for being inessential, implies that T is trivial.

Theorem 3.2. A 2-string tangle is unknottable if and only if its strings are
quasi-parallel.

Proof : Let T be a 2-string tangle. Suppose that T is inessential. Then
T is the union of two 1-string tangles T1 and T2. By Theorem 2.3, T is
unknottable if and only if the tangles T1 and T2 are unknottable, that is,
both strings are unknotted. By Lemma 3.1, this is equivalent to the strings
being quasi-parallel.

Now consider the case when T = (B, s1 ∪ s2) is essential. Suppose first
that T is unknottable and let U = (B′, u1 ∪ u2) be its unknotting closure
tangle, with T ∪ U a tangle decomposition of the unknot K. Denote the
sphere B ∩ B′ by S. Since K is trivial, it bounds an embedded disk D in
S3. Consider D such that the number of components of D ∩ S, denoted by
|D ∩ S|, is minimal.

Let α be one of those components. If α is a closed curve, then it is essential
in S− (s1∪ s2), otherwise α bounds a disk in S− (s1∪ s2) and we can reduce
|D ∩ S|, contradicting its minimality. As T is essential, the disk that α
bounds in D is in B′. Therefore, by removing all these disks from D, we
obtain a (punctured) disk D′ embedded in B.

Now let α be an arc component of D ∩ S. Since the only intersections of
∂D and S are the endpoints of s1 and s2, the arc α connects these endpoints
and there are only two such arcs α1 and α2.

Suppose first that αi connects the endpoints of si, for i = 1, 2. Let D1, D2

be disjoint disks cut from D by α1, α2. If Di∩S contains a closed curve α, as
in Figure 4, then, as observed before, α doesn’t bound a disk in S− (s1∪s2),
it bounds a disk in B′. As D1 is disjoint from D2, the curve α separates
∂s1 from ∂s2 in S, and the disk α bounds in B′ separates u1 and u2. Then,
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without loss of generality, ∂ui is attached to ∂si, but this contradicts K
being a knot. Therefore, Di is disjoint from S, hence si is trivial in T , which
contradicts T being essential.

Figure 4. If αi connects the ends of si.

Suppose now that α1 and α2 both connect an endpoint of s1 and an end-
point of s2. Let P be the (punctured) disk cut from D′ by α1 and α2, as in
Figure 5. Then P is a disk embedded in B such that s1 and s2 are in the
same component of ∂P and ∂P − (s1 ∪ s2) ⊂ ∂B. Therefore, s1 and s2 are
quasi-parallel.

Figure 5. If αi connects one end of s1 to an end of s2.

Reciprocally, suppose that s1 and s2 are quasi-parallel and P is a corre-
sponding punctured disk. Let K be the component of ∂P containing s1 ∪ s2

and u1 and u2 be the two arcs of K − (s1 ∪ s2). Isotope the interior of u1

and u2 into the exterior B′ of B so that T ′ = (B′, u1 ∪ u2) is a tangle. Then
T ∪ T ′ is a tangle decomposition of K. Since each component of ∂P − K
bounds a disk in B′ − (u1 ∪ u2), then K bounds a disk in S3, hence it is
trivial. Therefore T is unknottable.

Theorem 3.3. A 2-string tangle is unlinkable if and only if its strings are
quasi-trivial.
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Proof : Let T = (B, s1 ∪ s2) be a 2-string tangle.
Suppose the strings of T are quasi-trivial and let P1, P2 be the corresponding
disjoint punctured disks each co-bounds. Let bi be the boundary component
of Pi that contains si, for i = 1, 2. Assuming B in S3, let B′ be the comple-
ment of B and let s′i be the arc obtained by pushing the interior of bi − si
into the interior of B′, so that T ′ = (B′, s′1 ∪ s′2) is a 2-string tangle. Let L
be the link in S3 defined by b1∪ b2. Then T ∪T ′ is a tangle decomposition of
L. Since each component of ∂Pi− bi bounds a disk in B′− (s′1 ∪ s′2), we have
that b1 and b2 bound disjoint disks. That is, L is a trivial two component
link and, therefore, T is unlinkable.
Reciprocally, suppose that T is unlinkable with unlinking closure tangle U .
Let b1 and b2 be the components of L and O1, O2 the corresponding disjoint
disks they bound. We have that bi ∩ B is si. Hence, Oi ∩ ∂B is a collection
of simple closed curves and an arc αi sharing the ends of si. Let Di be the
(punctured) disk cut by αi from Oi that is co-bounded by si. Then, s1 and
s2 are quasi-trivial strings.

Theorem 3.4. A 2-string tangle is splittable if and only if it is quasi-inessential.

Proof : Suppose that T is quasi-inessential and let D be the punctured disk
as in the definition. Let s′i be an arc in ∂B connecting ∂si, disjoint from ∂D.
Then the circle s1 ∪ s′1 together with the circle s2 ∪ s′2 define a 2-component
link L. Let B′ be the exterior of B in S3 and T ′ the 2-string tangle defined
by (B′, s′1 ∪ s′2) after pushing the interior of s′i into the interior of B′. Each
boundary component of ∂D bounds a disk in B′ − (s′1 ∪ s′2) resulting on
a sphere S that separates the components of L. Then, T ∪ T ′ is a tangle
decomposition of a split link, that is, T is splittable.
Reciprocally, suppose that T is splittable with splitting closure tangle U .
In case there is a disk in B separating s1 and s2, then this disk makes T
quasi-inessential, by definition. Hence, we can assume that T is essential.
Let S be the split sphere of L and consider the intersection of S with B.
Suppose that |S ∩ ∂B| is minimal among all such spheres S. Note that it is
necessarily non-empty as B intersects both sides of S. As T is essential, the
innermost curves of S ∩ ∂B in ∂B have the corresponding innermost disks
in B′. Suppose that some curve of S ∩ ∂B is not innermost in S. Let c
be innermost among these curves. Hence, c cuts from S a disk intersecting
∂B only in innermost curves. Let E be the corresponding punctured disk
in B. The boundary components of E are parallel in ∂B − ∂(s1 ∪ s2) and



EMBEDDINGS OF 2-STRING TANGLES 11

Figure 6. The ends of a tangle

bound disks in B′ − (s′1 ∪ s′2). By capping off the boundary components of
E with those disks, either the resulting sphere splits the link L, and in this
case we have a contradiction with |S ∩ ∂B| being minimal, or it bounds a
ball in the exterior of L, and by cutting S along c and pasting a disk it
bounds in B′− (s′1 ∪ s′2) we obtain a split sphere of L that reduces |S ∩ ∂B|,
contradicting its minimality. Hence, all curves of S ∩ ∂B are innermost in S
with corresponding innermost disks in B′ separating s′1 from s′2. That is, S
intersects B at a single punctured disk D that separates s1 from s2 in B and
whose boundary components separate ∂s1 from ∂s2 in ∂B.

4. Algebraic properties for 2-string tangles
In this section we consider 2-string tangles (B, σ) with the ends of σ being

four fixed points in the boundary circle b of the diagram disk as in the
intercardinal directions NW , SW , NE and SE, illustrated in Figure 6. We
say that a disk in ∂B is a west disk (resp., east disk) if the disk intersects b
in a single arc containing NW and SW (resp., NE and SE) but not any of
the points NE and SE (resp., NW and SW ). Similarly we define a north
disk and a south disk in ∂B.

Definition 2. We define the sum of two 2-string tangles T and T ′ by iden-
tifying the west disk in ∂B to an east disk in ∂B′. The resulting tangle sum
is denoted T + T ′.
We define the product of T and T ′ by identifying a south disk of T to a north
disk in T ′. The resulting tangle product is denoted T ∗ T ′.

Throughout this section we study unknottability unlinkability and splitta-
bility of 2-string tangles up to strong equivalence and the behavior of these
properties under tangle sum and product.
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Definition 3. Let T be a 2-string tangle. The numerator closure of T is
the link N(T ) obtained by the sum of T and the [0] tangle; the denominator
closure of T is the link D(T ) obtained by the sum of T and the [∞] tangle.

Definition 4. Let T be a 2-string tangle.

(a) The tangle obtained from T by a 180◦ rotation around an horizontal
axis on the plane is denoted by T̄ .

(b) The tangle obtained from T by a 90◦ rotation is denoted by T ⊥.

Note that a unknotting (resp. unlinking or splitting) closure tangle of a 2-
string tangle T can be considered as a 2-string tangle U such that N(T +U)
is the unknot (resp., the unlink or a split link). We have that N(T + U) is
equivalent to D(T ∗ Ū) and for U a rational tangle, U = Ū . Then, with U
a rational tangle, D(T ∗ U) is also the unknot (resp., the unlink or a split
link). From the next proposition, the unknotting or unlinking closure tangle
of a 2-string tangle is a rational tangle, and we can assume that the splitting
closure tangle of a 2-string tangle is a rational tangle.

Proposition 4.1. Let T be an essential 2-string tangle. If T is unknottable
(resp., unlinkable), then any unknotting (resp., unlinking) closure tangle is
rational. If T is splittable, then it has a rational splitting closure tangle.

Proof : Suppose that T is unknottable or unlinkable with corresponding clo-
sure tangle U , that is, N(T + U) is the unknot or the unlink, respectively.
Therefore, U cannot have local knots and, as T is essential, it cannot be
essential. Hence, U is trivial, that is, it is a rational tangle.
Suppose now that T = (B, σ) is splittable with splitting closure tangle U ,
that is, N(T + U) is a split link. Let S be a split sphere for N(T + U).
Consider an innermost curve c of S ∩ ∂B. As S is a sphere, c bounds a disk
D in S, disjoint from the other components of S ∩ ∂B. As T is essential,
D cannot be in B. Hence D is in the exterior of B. That is, U is inessen-
tial. Therefore, D separates the two strings of U . Hence, in case both are
unknotted, the tangle is trivial, and in case at least one is knotted, it can be
replaced in the same ball separated by D in B′ by an unknotted string. The
resulting tangle V is a rational tangle. As the strings of V are disjoint from
S, and the end points of the strings of U and V are the same, we have that
N(T + V) is a split link. That is, V is a rational splitting closure tangle of
T .
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From Property P and double branched covers of unknottable 2-string tan-
gles being knot exteriors in S3 we have the following theorem, which is a
consequence of work by Bleiler and Scharlemann in [1] and [2].

Theorem 4.2 (Bleiler and Scharlemann [1], [2]). If an unknottable 2-string
tangle is essential, then it has a unique unknotting closure tangle.

Remark 1. If a 2-string tangle has two different unknotting closure tangles,
then it is rational.

A similar result was obtained by Eudave-Muñoz in [5] for splittability, and
hence unlinkability, of 2-string tangles.

Theorem 4.3 (Eudave-Muñoz [5]). If a 2-string tangle is unlinkable (resp.,
splittable) then it has a unique unlinking (resp., rational splitting) closure
tangle.

From work of Scharlemann [16] we have that an essential 2-string tangle
cannot be splittable and unknottable simultaneously.

Theorem 4.4 (Scharlemann [16]). If a 2-string tangle is unknottable and
splittable, then it is a rational tangle.

In the next theorem, we determine when a Montesinos tangle is unknot-
table/unlinkable. This result extends, for instance, Theorem 5 of [8], which
gives all rational unknotting closures tangles for a rational tangle. From The-
orem 2.2 of [4] we also obtain, in particular, the rational unknotting/unlinking
closure tangles of a rational tangle.

Theorem 4.5. Let T =
[
p1
q1

]
+
[
p2
q2

]
+ · · · +

[
pn
qn

]
, with n ≥ 2 and qi > 1.

Then,

(a) T is unknottable if and only if n = 2 and p1q2 +p2q1 ≡ ±1 (mod q1q2).
(b) T is unlinkable if and only if n = 2, q1 = q2 and p1 + p2 ≡ 0 (mod q1).
(c) T is splittable if and only if it is unlinkable.

Moreover, if T is unknottable (resp. unlinkable, splittable), then its unknot-
ting (resp. unlinking, rational splitting) closure tangle U is integral and, if

−1 <
p1

q1
,
p2

q2
< 1, then U is either [0], [1] or [−1].

Proof : Since T is not rational, then, by Proposition 4.1, it has a rational

unknotting/unlinking/splitting closure tangle U =
[
p
q

]
. The double cover of
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S3 branched over the Montesinos knot N(T +U) is a Seifert fibred manifold
M [12], with invariant

(0; p1/q1, . . . , pn/qn, p/q).

By the classification of Seifert fibred spaces, if there are at least 3 excep-
tional fibers, then M is irreducible and not S3. Therefore, if T is unknot-
table/unlinkable/splittable, then n = 2 and q = 1.

(a) T is unknottable if and only if M is S3, which is equivalent to

p1

q1
+
p2

q2
+ p = ± 1

q1q2
,

or, similarly, p1q2 + p2q1 + pq1q2 = ±1. Moreover, if −1 <
p1

q1
,
p2

q2
< 1,

then clearly −2 < p < 2.
(b) T is unlinkable if and only if M is S2 × S1, which is equivalent to

p1

q1
+
p2

q2
+ p = 0,

or, similarly, q1 = q2 and p1 +p2 +pq1 = 0. Moreover, if −1 <
p1

q1
,
p2

q2
<

1, then clearly −2 < p < 2.
(c) T is splittable if and only if M is reducible, which happens exactly

when M is S2×S1, since M is orientable and the fibration base is S2.

The following theorem describes the effect of adding a rational tangle to
an unknottable/unlinkable/splittable 2-string tangle.

Theorem 4.6. Let T be a 2-string tangle with unknotting closure tangle
[
r
s

]
.

Then,

(a) T +
[
p
q

]
is unknottable if and only if q = 1 or q = s ∧ p ≡ r (mod q).

(b) T ∗
[
p
q

]
is unknottable if and only if p = 1 or p = r ∧ q ≡ s (mod p).

A similar result holds for unlinkable/splittable tangles.

Proof : Since the tangle T has unknotting closure tangle
[
r
s

]
, thenN

(
T +

[
r
s

])
=

D
(
T ∗

[
r
s

])
= unknot.

(a) Suppose that T +
[
p
q

]
is unknottable, with unknotting closure tangle

U .
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Then N
(
T +

[
p
q

]
+ U

)
= unknot, hence

[
p
q

]
+U =

[
r
s

]
, by Theorem

4.2. Therefore, U = [n] and
[
p
q

]
=
[
r
s

]
+ [−n] =

[
r−ns
s

]
. Since (p, q) =

(r, s) = 1, we conclude that q = s and p ≡ r (mod q).
(b) Since D

(
T ∗

[
r
s

])
= unknot, then N

(
T ⊥ +

[−s
r

])
= unknot.

The tangle T ∗
[
p
q

]
is unknottable if and only if T ⊥ +

[
−q
p

]
is un-

knottable.
This is equivalent, by (a), to p = r and q ≡ s (mod p).

The following corollary characterizes unknottable, unlinkable and splittable
tangles among algebraic tangles with three rational components.

Corollary 4.6.1. The tangle
([

p1
q1

]
+
[
p2
q2

])
∗
[
p3
q3

]
, with q1, q2, p3 6= 1, is

unknottable if and only if
[
p1
q1

]
+
[
p2
q2

]
is unknottable, with unknotting closure

tangle [p3], and q3 ≡ 1 (mod p3).
A similar result holds for unlinkable/splittable tangles.

Proof : Suppose that
([

p1
q1

]
+
[
p2
q2

])
∗
[
p3
q3

]
is unknottable. By Theorem 2.2

Corollary 2.2.1,
[
p1
q1

]
+
[
p2
q2

]
is also unknottable, and, by Theorem 4.5, its

unknotting closure tangle is an integral tangle [n]. Then, by Theorem 4.6(b),([
p1
q1

]
+
[
p2
q2

])
∗
[
p3
q3

]
is unknottable if and only if n = p3 and q3 ≡ 1 (mod p3).

Theorem 4.7. Let T = (B, σ) be an essential 2-string tangle and D a disk
intersecting σ and separating the ends of σ in two sets of two points. Suppose
that the tangles separated from T by D are essential. Then T is unknottable
if and only if it has an unknotting closure which is a rational tangle with the
same slope as ∂D.

A similar result holds for unlinkable/splittable tangles.

Proof : If T has any unknotting closure tangle, then T is unknottable, by
definition.
Suppose now that T is unknottable, with unknotting closure tangle U . Let
Ti = (Bi, σi) denote the tangles separated by D from T , for i = 1, 2. Consider
the tangle T2 +U . As T1 is essential we have that T2 +U is inessential. Let E
be a disk separating the strings of T2 + U . Note that ∂E is in ∂B1. As T2 is
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essential, in case E intersects ∂B2 we can reduce the number of components
of E ∩ ∂B2 with an innermost curve/outermost arc argument, until E is
disjoint of ∂B2. Then, ∂E is in ∂B1 −D and separates the points of D ∩ σ1

from the other two end points of σ1. Hence, the tangle U , with respect to
the fixed end points of T , has the same slope as a rational tangle as ∂D in
∂B.

For a 2-string tangle (B, σ), we say that a disk D properly embedded in
B is a meridian (resp., longitude) disk if ∂D separates ∂B into a west and
east disk (resp., into a north and south disk). In case D is a meridian or
longitude disk of B with fixed boundary, we have the following corollary.

Corollary 4.7.1. Let T = (B, σ) be an essential 2-string tangle and D
a meridian (resp., longitude) disk of B. Suppose that the tangles separated
from T by D are essential. Then T is unknottable if and only if D(T ) (resp.,
N(T )) is the unknot.

A similar result holds for unlinkable/splittable tangles.

In particular, in the previous corollary, when D intersects σ at two points,
we have the following corollary.

Corollary 4.7.2. Let T1 and T2 be essential 2-string tangles. Then

(a) T1 + T2 is unknottable if and only if D(T1 + T2) = unknot.
(b) T1 ∗ T2 is unknottable if and only if N(T1 ∗ T2) = unknot.

A similar result holds for unlinkable/splittable tangles.

Proof : The sum of the two 2-string tangles corresponds to a decomposition
through a meridian disk in the resulting tangle. Hence, (a) is an immediate
consequence of the theorem. The statement (b) is equivalent to (a) by a 90◦

rotation of the tangles.

5. Colorings
In this section we make further remarks on the coloring invariants of knots

being an obstruction for a tangle to be unknottable. This observations follow
in line with a remark by Silver in Krebes paper [10] on Fox colorings being
able to detect when a 2-string tangle is not unknottable, and with the work
of Kauffman and Lopes in [9] on involutory quandle colorings, which include
Fox colorings, being able to detect when a 2-string tangle is not unknottable.
Here we make observations that these statements cannot be extended to
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oriented quandles. We also determine a necessary condition from coloring
invariants for unlinkability and splittability of 2-string tangles.

Definition 5. A quandle is a set X with an operation . such that

• ∀x ∈ X, x . x = x;
• ∀y, z ∈ X, ∃!x ∈ X : z = x . y;
• ∀x, y, z ∈ X, (x . y) . z = (x . z) . (y . z).

Definition 6. A coloring of an oriented knot or tangle by the quandle (X, .)
is a labeling of its arcs by elements of X is such a way that at a crossing
where the right underarc has label x, the overarc has label y, and the left
underarc has label z, then z = x . y, as in Figure 7.

Figure 7. The consistency of the quandle operation and the
labeling at each crossing.

We say that a quandle coloring of an oriented knot or tangle is nontrivial
if it uses more than one color; we say that it is trivial otherwise. A tangle
coloring such that all boundary arcs have the same color is called a c-coloring,
and otherwise is called a d-coloring. We say also that an oriented knot is
polychromatic if it has a nontrivial coloring and that an oriented tangle is
polychromatic if it has a nontrivial c-coloring. Otherwise, the knot is said
monochromatic and the tangle is said monochromatic if every c-coloring of
the tangle is trivial. Since Reidemeister moves preserve the existence of a
nontrivial coloring, then an oriented knot or tangle is polychromatic if and
only if any equivalent oriented knot or tangle is polychromatic.

If (X, .) is a quandle, then (X, /), where z /y is the unique x such that z =
x . y, is also a quandle and a coloring of an oriented knot or tangle by (X, .)
determines a coloring of the knot or tangle with the opposite orientation by
(X, /). However, if we change the orientation of some strings of a tangle
while keeping the orientation of the remaining strings, it may happen that
the original oriented tangle is polychromatic and the new oriented tangle is
monochromatic. If the operations / and . coincide, the quandle is called
involutory or unoriented. An oriented tangle has a nontrivial coloring by an
involutory quandle (X, �) if and only if it has a nontrivial coloring by (X, �),
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for any orientation of its strings. The dihedral quandle Rn is the involutory
quandle (Z/nZ, �), where x � y ≡ 2y − x (mod n) and n is a non-negative
integer (for the sake of knot or tangle nontrivial colorings, we may consider
only the case where n is zero or prime.)

Theorem 5.1. If a tangle T is unknottable, then T is monochromatic for
some orientation.

Proof : Let U be a unknotting closure tangle of T . Suppose that T is poly-
chromatic for the orientation induced by the unknot K = N(T + U). Then,
by assigning the boundary color of T to all arcs of U , we get a nontrivial
coloring of K. Since the trivial diagram of the unknot is monochromatic, we
obtain a contradiction.

The following corollary is also a remark by Silver in Krebes paper [10] on
Fox colorings being able to detect when a 2-string tangle is not unknottable,
and it also appears in the work of Kauffman and Lopes in [9] on involutory
quandle colorings being able to detect when a 2-string tangle is not unknot-
table.

Corollary 5.1.1. If a tangle T is unknottable, then every c-coloring of T by
an involutory quandle is trivial.

Proof : Suppose that T has a nontrivial c-coloring by an involutory quandle.
Then T is polychromatic for all orientations, hence, by Theorem 5.1, T is
not unknottable.

By Corollary 5.1.1, if one can find a polychromatic coloring of a tangle
by an involutory quandle, then this tangle is not unknottable. For instance,
since the 2-string tangles 62, 63, 713, 715, 716, 717 and 718 have polychromatic
colorings by dihedral quandles (see Figure 8 for one such coloring), they are
not unknottable.

Figure 8. Polychromatic colorings of 62, 63, 713, 715, 716, 717

and 718, respectively.
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The reciprocal of Theorem 5.1 is not true. For instance, the tangle 64 is not
unknottable (see Section 6), but it is monochromatic. To see this, suppose
that there is a coloring of 64 by some quandle, with the four ends having the
same color 0. Let the other arcs have colors 1, 2, 3, 4 as in Figure 9. Since
the arc with the color 1 is in two crossings with a color 0 overarc on the same
side, then the colors 2 and 3 coincide. It then follows that the coloring is
trivial.

Figure 9. Any c-coloring of the tangle 64 is trivial.

Also, the conclusion of Theorem 5.1 cannot be extended to all orienta-
tions. For instance, the tangle 77 is unknottable (see Section 6), but it is
polychromatic for one of the orientations. To see this, consider the quandle
Z2[t]/(t

2 + t+ 1) whose multiplication table is

. 0 1 t t+ 1
0 0 t+ 1 1 t
1 t 1 t+ 1 0
t t+ 1 0 t 1

t+ 1 1 t 0 t+ 1

There is a polychromatic coloring of one orientation of 77 by this quan-
dle (see Figure 10). The existence of this coloring implies that there is no
unknotting closure tangle of 77 that connects the NW and the SE ends.

Figure 10. A coloring of the tangle 77.

Theorem 5.2. The 2-string tangle T has a polychromatic coloring by Rn if
and only if T +[±2] has one such coloring. A similar result holds for T ∗[±2].
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Proof : Any polychromatic coloring of T can be extended trivially to T +[±2].
Reciprocally, consider a c-coloring of T + [±2]. Then the four arcs of [±2]
must have the same color, hence the four boundary arcs of T also have that
color. If the coloring of T + [±2] is nontrivial then the coloring of T is also
nontrivial.

This theorem shows, for instance, that 716 has a polychromatic R3-coloring,
since 716 ≈ T ∗ [−2], where T ≈ 62, and the tangle 62 has a polychromatic
R3-coloring.

To prove that a tangle is not unknottable we can use polychromatic Rn-
colorings of the tangle as this implies that any closure of the tangle would
have more than n distinct colorings, being this an obstruction for the closure
to be the unknot. However, this is not sufficient to prove that a tangle is
not unlinkable, as an unlink with t components has nt distinct Rn-colorings.
Hence, we could consider the possibility of proving that T is not unlinkable
by showing that it has no non-trivial Rn-coloring for some n. The next
theorem shows that this is also not a strategy to obstruct unlinkability.

The following theorems establish general results on Rn-colorings of tangles.

Theorem 5.3. Every tangle T with more than one string has a nontrivial
Rn-coloring, for every n.

Proof : Let T be a tangle with k crossings and s strings. An Rn-coloring of
T is determined by a system of k linear equations (one for each crossing),
with k + s variables (one for each arc). The matrix defined by this system
has rank at most k, thus has nullity at least s. Since s > 1, there exists a
nontrivial Rn-coloring of T .

We say that a Rn-coloring of a tangle verifies the alternating sum rule if,
ordering the ends of the tangle clockwise, the sum of the colors of the odd
ends is the same as the sum of the colors of the even ends. Note that a
Rn-coloring of a 2-string tangle verifies the alternating sum rule if and only
if the sum of colors of the NW and SE boundary arcs equals the sum of
colors of the NE and SW boundary arcs. We say that a tangle T verifies the
alternating sum rule if every Rn-coloring of T verifies the alternating sum
rule.

Lemma 5.4. Any tangle T verifies the alternating sum rule.
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Proof : The tangles [0], [1], [−1] and [∞] clearly verify the alternating sum
rule.

Let T1 and T2 be tangles that verify the alternating sum rule. Consider
the tangle T = T1 ∪ T2 obtained by identifying some ends of T1 and T2. By
ordering the ends of T2 in such a way that the common ends of T1 and T2

have opposite parities, we conclude that the difference of sum of the colors
of the odd and even ends of T equals the sum of differences coming from T1

and T2, which is zero. Therefore, the sum of the colors of the odd ends of T
is the same as the sum of the colors of the even ends.

Definition 7. Let a, b, c, d be the NW, NE, SW, SE boundary colors of a R0

d-coloring of a tangle T . The coloring fraction of this coloring is defined by
b− a
b− d

.

In the definition of coloring fraction, note that as the R0 coloring is a d-
coloring, from Lemma 5.4, b−a and b−d cannot be simultaneously 0. Hence,

the coloring fraction
b− a
b− d

is well defined in Q ∪ {±∞}.
The following theorem states that the coloring fraction of a rational tangle

is the same as its arithmetical fraction.

Theorem 5.5 (Kauffman and Lambropoulou [7]). The coloring fraction of

a R0 d-coloring of the rational tangle
[
p
q

]
is
p

q
.

Proof : For
[
p
q

]
= [0] and

[
p
q

]
= [∞], the result is immediate.

Let T =
[
p
q

]
be a tangle such that

b− a
b− d

=
p

q
. Then the boundary colors of

T + [1] are a, 2b − d, c, b. Since
2b− d− a
2b− d− b

=
b− a
b− d

+ 1 =
p

q
+ 1, the result

holds for the tangle T + [1].
A similar reasoning (using the previous Lemma) shows that the result also
holds for the tangles T +[−1], T ∗ [1] and T ∗ [−1]. By successive applications
of this property, the result holds for all rational tangles.

Theorem 5.6. Consider a R0-coloring of the tangle T +U and its restrictions
to T and U . If these coloring are all d-colorings and the coloring fractions
of T and U are r1 and r2, then the coloring fraction of T + U is r1 + r2.
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Proof : Let a, b, c, d be the boundary colors of T and b, e, d, f be the boundary
colors of U . Then, since a+ d = b+ c and b+ f = d+ e, we have

e− a
e− f

−
(
b− a
b− d

+
e− b
e− f

)
= 0.

Theorem 5.7. Let L = N(T + U) be a link with a nontrivial R0-coloring.
If, for R0-colorings, T and U are monochromatic, then the coloring fractions
of T and U are symmetric.

Proof : If the coloring induced by L on T and U was a c-coloring, then it
would be trivial. Therefore, the induced colorings are d-colorings. If the
induced coloring of T + U is a d-coloring, then, by the previous theorem,
the coloring fraction of T + U , which is 0 for the NW and NE colors being
the same, is the sum of the coloring fractions of T and U . If the induced
coloring of T + U is a c-coloring, then the coloring fraction of T is ±∞ and
the coloring fraction of U is ∓∞.

Corollary 5.7.1. Let T be a R0-monochromatic tangle with unlinking (or

rational splitting) closure tangle
[
p
q

]
. Then T has coloring fraction

−p
q

.

Proof : Every split link N
(
T +

[
p
q

])
has a nontrivial R0-coloring and

[
p
q

]
is

R0-monochromatic.

This corollary shows that a tangle with coloring invariant p/q can possibly

only have
[
−p
q

]
as its rational splitting closure tangle. However, even if the

resulting link is not split, it has nevertheless zero determinant, as stated in
the following theorem.

Theorem 5.8. Let T be a tangle with coloring invariant p/q. Then N
(
T +

[
−p
q

])
is a link with determinant 0.

Proof : Since there is a d-coloring of T +
[
−p
q

]
such that its north ends

of have the same color, then N
(
T +

[
−p
q

])
has a nontrivial R0-coloring.

Therefore, for every prime number n larger than the colors of T +
[
−p
q

]
,
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N
(
T +

[
−p
q

])
has a nontrivial Rn-coloring. Hence, n divides the determi-

nant of N
(
T +

[
−p
q

])
, therefore this determinant must be zero.

6. Unknottability of essential 2-string tangles with cross-
ing number at most 7

In this section, we classify unknottable unlinkable and splittable tangles
with at most 7 crossings, with the notation of table 1 in [6].

Theorem 6.1. An essential 2-string tangle with crossing number at most 7
is unknottable if and only if it is equivalent to 51, 61, 72, 75, 77 or 714.

Proof : It can be easily checked (see Figure 11) thatN(51+[−1]), N(61+[−1]),
N(72 + [−1]), N(75 + [0]), N(77 + [0]) and N(714 + [−1]) are unknotted.

Figure 11. The unknotting closure tangles of 51, 61, 72, 75, 77

and 714.

Reciprocally, the 2-string tangles 62, 63, 713, 715, 716, 717 and 718 have non-
trivial colorings by dihedral quandles (see Section 5), therefore they are not
unknottable. The remaining 2-string tangles with crossing number at most 7
are algebraic, with the expression given by Table 1, and a direct application
of Theorems 4.5 and 4.6.1 shows that these tangles are not unknottable.

Theorem 6.2. An essential 2-string tangle with crossing number at most 7
is unlinkable or splittable if and only if it is equivalent to 63.

Proof : It can be easily checked (see Figure 12) that N(63 + [0]) is the unlink.

Figure 12. The unlinking closure tangle of 63.

By Theorem 4.4, the tangles 51, 61, 72, 75, 77 or 714 are not unlinkable,
since they are unknottable.
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Tangle Algebraic expression Tangle Algebraic expression

64

([
1
3

]
+
[−1

2

])
∗
[−2

1

]
78

([−1
2

]
+
[−1

3

])
∗
[−2

1

]
71

[
1
2

]
+
[

1
5

]
79

([−1
2

]
+
[−2

3

])
∗
[−2

1

]
73

[
1
2

]
+
[

2
7

]
710

([−1
2

]
+
[

1
3

])
∗
[

3
1

]
74

[
1
3

]
+
[

1
4

]
711

([−2
3

]
+
[

1
2

])
∗
[−3

1

]
76

[
1
3

]
+
[

2
5

]
712

([
2
3

]
+
[−1

2

])
∗
[−2

1

]
Table 1. Algebraic expressions of 64, 71, 73, 74, 76, 78, 79, 710,
711 and 712.

The tangles 62, 64, 71, 73, 74, 76, 78, 79, 710, 711 and 712 are algebraic, with
the expression given by Tables 1 and 2, and a direct application of Theorems
4.5 and 4.6.1 shows that these tangles are not unlinkable nor splittable.

Tangle Algebraic expression Tangle Algebraic expression

62

[
1
3

]
+
[

1
3

]
716

([
1
3

]
+
[

1
3

])
∗
[−2

1

]
Table 2. Algebraic expressions of 62 and 716.

The tangles 713, 715, 717 and 718 are R0-monochromatic and have the color-
ing invariants of Table 3. Hence, from Corollary 5.7.1, it remains to show that
the corresponding rational tangles are not the unlinking or rational splitting
closure tangles.

The link N(713 +
[−3

4

]
), as in Figure 13, is not split since its Jones poly-

nomial, −t−3 + t−1 − t − t5 − t7 + t9 − t11 + t13, is different from the Jones
polynomial of a split link defined by the right-handed trefoil and the unknot,
t2 + t6 − t8. The link N(715 +

[−2
3

]
), as in Figure 13, is not split since its

Jones polynomial, t−11 − t−9 − t−5 − t + t3 − t5, is different from the Jones
polynomial of the two component unlink, −t− t−1. The links N(717 +

[−8
7

]
)
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Tangle Coloring invariant Tangle Coloring invariant

713
3

4
717

8

7

715
2

3
718 2

Table 3. Coloring invariants of 713, 715, 717 and 718.

and N(718 + [−2]), as in Figure 13, are not split since their linking number
is not zero. Therefore, from Corollary 5.7.1, the tangles 713, 715, 717 and 718

are not splittable, and hence also not unlinkable (we can also conclude that
the tangle 713 is not unlinkable since one of its strings is knotted).

Figure 13. The links N(713 +
[−3

4

]
), N(715 +

[−2
3

]
), N(717 +[−8

7

]
), N(718 + [−2]).
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