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Abstract: The notion of D-sublocale is explored. This is the notion analogue to
that of sublocale in the duality of TD-spaces. A sublocale S of a frame L is a
D-sublocale if and only if the corresponding localic map preserves the property of
being a covered prime. It is shown that for a frame L the system of those sublocales
which are also D-sublocales form a dense sublocale SD(L) of the coframe S(L) of all
its sublocales. It is also shown that the spatialization spD[SD(L)] of SD(L) consists
precisely of those D-sublocales of L which are TD-spatial. Additionally, frames such
that we have SD(L) ∼= P(ptD(L)) — that is, those such that D-sublocales perfectly
represent subspaces — are characterized as those TD-spatial frames such that SD(L)
is the Booleanization of S(L).
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Introduction
For a point-free space (that is, a frame) L the ordered collection of its point-

free subspaces, that is, its sublocales, is always a coframe usually denoted as
S(L). Embedded in S(L) as a coframe we have the coframe Cl(L) of the
closed sublocales of L, point-free versions of the closed subspaces of a space.
We have an anti-isomorphism L → Cl(L). Embedded in S(L) as a frame
we also have Op(L), the ordered collection of all open sublocales of L; these
represent the open subspaces of the space L. It is not surprising, then, that
the frame Op(L) is isomorphic to L. Since the system S(L)op is a frame, it
has its own sublocales, and among these there are certain special ones that
encode information about the frame L. Next to the sublocales of S(L)op that
are particularly interesting are also certain subsets. Recently, some of these
special sublocales and subsets have enjoyed special attention. We have the
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system of all joins of closed sublocales Sc(L) (see [11]), which coincides with
the smallest dense sublocale of S(L) if and only if the frame L satisfies a
weak separation axiom called subfitness. We then have Sb(L), the smallest
dense sublocale of S(L). The properties of this sublocale have been studied
in [1]. We also have sp[S(L)] (see [15]), the sublocale of S(L) consisting of
those sublocales which are spatial — that is, those sublocales which are the
frame of opens of some topological space.

We explore the relation these important subsets of the assembly S(L) of a
frame L; and we identify another which also encodes some special properties
of L, in particular in the context of the TD-duality. We will look at the notion
of D-sublocale of L, a sublocale S ⊆ L such that the corresponding frame
surjection is a D-homomorphism (i.e. it is such that every prime covered
in S is also covered in L). We take D-sublocales as being the analogues of
sublocales in the TD-duality. We show that for a frame L the D-sublocales
form a coframe SD(L) which is always a (D-)subcolocale of S(L).

We then relate the subcolocale SD(L) with the subcolocale sp[S(L)] (i.e.
the ordered collection of all spatial sublocales of L); as well as with the
subcolocale Sb(L) (i.e. the Booleanization subcolocale of S(L)). We also
relate all these structures with the subset Sc(L) ⊆ S(L) of all joins of closed
sublocales. We obtain characterizations of all possible set inclusions between
these structures, as depicted in the table below.

Relations between sublocales of S(L) Properties of L
Sb(L) ⊆ sp[S(L)] Spatial
Sb(L) = sp[S(L)] Strongly TD-spatial
Sb(L) = S(L) Scattered
S(L) = SD(L) Primes are covered
S(L) = sp(S(L)) Totally spatial
Sb(L) = SD(L) D-scattered
SD(L) ⊆ Sb(L) D-scattered

SD(L) ⊆ sp(S(L)) Totally spatial
sp[S(L)] ⊆ SD(L) Primes are covered
Sc(L) ⊆ sp[S(L)] Spatial
sp[S(L)] ⊆ Sc(L) Primes are maximal
SD(L) ⊆ Sc(L) Subfit + D-scattered
SD(L) = Sc(L) Subfit + D-scattered
S(L) = Sc(L) Subfit + scattered
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We then show that we have an adjunction of posets

P(ptD(L)) SD(L)

M

ptD

⊥

Here, ptD(S) is the collection of covered primes of a D-sublocale S. As S is
assumed to be a D-sublocale, there is no ambiguity in this phrase as primes
of S are covered in S if and only if they are covered in L. The adjunct ptD,
then, takes the TD spectrum of a D-sublocale, while the adjunct M closes
the subset under arbitrary meets. The fixpoints of ptD ◦M, then, are the
equivalents of the sober spaces in the TD-duality (those isomorphic to the
spectrum of their frame of opens); while the fixpoints of M ◦ ptD are those
D-sublocales which play the role of spatial frames in the classical duality (i.e.
they are those isomorphic to the frame of opens of their spectrum).

It is shown that the composition ptD ◦ M is the identity. It is shown
that the fixpoints of M◦ptD are the spatial D-sublocales. We finally use this
adjunction to ask ourselves how we can characterize those frames L such that
the D-sublocales of L perfectly represent the subspaces of ptD(L). We reach
the conclusion that there is a fundamental difference in the way subspaces
and sublocales behave in the TD-duality, compared to the classical duality.
In the classical spatial-sober duality, we could ask ourselves three questions.
In the following sob[P(pt(L))] denotes the ordered collection of the sober
subspaces of pt(L).

(1) When is it that for a frame L we have that taking the spectrum induces
an isomorphism sp[S(L)] ∼= P(pt(L))? These are exactly the frames
for which all subspaces of pt(L) are sober.

(2) When is it that for a frame L we have that taking the spectrum induces
an isomorphism S(L) ∼= sob[P(pt(L))]? These are exactly the frames
for which all sublocales of L are spatial (the totally spatial frames,
explored for instance in [8]).

(3) When is it that we have both of the above conditions? In other words,
when is it that taking the spectrum induces an isomorphism S(L) ∼=
P(pt(L))? Adapting a famous result by Simmons (see [14]) we find
that these are the frames such that they are spatial and the space
pt(L) is scattered.
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In the TD-duality, the answer to the analogue of the first question collapses
to “always”, and so the second and the third question collapse to the same.
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Preliminaries
We first recall some background on point-free topology. For more infor-

mation on the categories of frames and locales, we refer the reader to John-
stone [7] or the more recent Picado-Pultr [9]. A locale (or frame) is a complete
lattice L satisfying

a ∧
∨

B =
∨
{ a ∧ b | b ∈ B }

for all a ∈ L and B ⊆ L. A frame homomorphism is a function preserving
arbitrary joins (including the bottom element 0) and finite meets (including
the top element 1). Frames and their homomorphisms form a category Frm.
For each a the map a ∧ (−) preserves arbitrary joins, thus it has a right
(Galois) adjoint a → (−), making L a complete Heyting algebra (i.e. a
cartesian closed category, if one regards L as a thin category). This right
adjoint is called the Heyting operator. In particular, the pseudocomplement
of an a ∈ L is the element a∗ = a → 0 and it can be characterized as the
largest b ∈ L such that a ∧ b = 0.
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The categories Loc and Frm. Given a topological space X, its lattice of
open sets Ω(X) is always a frame, and this construction can be upgraded to
a functor Ω:Top −→ Frmop which sends a continuous map f :X → Y to the
preimage operator f−1[−]: Ω(Y )→ Ω(X). An element p of a frame L is said
to be prime if whenever p = x∧y for some x, y ∈ L, then p = x or p = y. The
collection of all primes of L will be denoted by pt(L) and we shall refer to it
as the spectrum (or the classical spectrum or sober spectrum) of L. For each
a ∈ L, we set Σa = { p ∈ pt(L) | a 6≤ p }. Then the family {Σa | a ∈ L } is
a topology on pt(L). The assignment Σ(L) = (pt(L), {Σa | a ∈ L }) extends
to an spectrum functor Σ: Frmop −→ Top which yields an adjunction

Top Frmop

Ω

Σ

⊥

The category Loc of locales is by definition the opposite category of Frm:

Loc = Frmop,

and Ω restricts to a full embedding of a substantial part of Top (namely
the full subcategory of sober spaces) into Loc. The latter can therefore be
seen as a category of generalized spaces. We shall mostly speak of objects in
Loc as locales (instead of frames) when emphasizing the covariant approach.
Morphisms in Loc can be concretely represented by the right (Galois) adjoints
f∗:M −→ L of the corresponding frame homomorphisms f :L −→ M ; these
will be referred to as localic maps.

A frame is said to be spatial if L ∼= Ω(X) for some space X, or equivalently
if L ∼= Ω(Σ(L)) = {Σa | a ∈ L }. For any frame L, there is a surjective frame
homomorphism (the counit of the adjunction) L � Ω(Σ(L)) sending a to
Σa; this map is usually called the spatialization of L.

A topological space is sober if every prime of Ω(X) is of the form X \ {x}
for a unique x ∈ X. It is well-known that the space pt(L) defined above is
sober for any frame L.

Sublocales. A regular subobject in Loc (that is, an isomorphism class of
regular monomorphisms) of a locale L is a sublocale of L. Sublocales of a
locale L can be represented as the actual subsets S ⊆ L such that

(1) S is closed under arbitrary meets in L, and
(2) a→ s ∈ S for all a ∈ L and s ∈ S.
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A different, but equivalent, representation of sublocales is by means of nu-
clei, i.e. inflationary and idempotent maps ν:L −→ L which preserve binary
meets. The sublocale associated to a nucleus ν is the image ν[L], and con-
versely the nucleus associated to a sublocale S ⊆ L is given by ιS ◦ νS where
ιS denotes the inclusion of S into L and νS is its left adjoint frame homo-
morphism given by

νS(a) =
∧
{ s ∈ S | s ≥ a }.

A locale L is said to be totally spatial if each of its sublocales is spatial.
A sublocale should not be confused with a subframe; the latter is a subob-

ject of a frame in the category Frm. Subframes can be represented as subsets
which are closed under arbitrary joins and finite meets.

Closed and open sublocales. For each a ∈ L, one has an open sublocale and a
closed sublocale

o(a) = { b | b = a→ b } = { a→ b | b ∈ L } and c(a) =↑ a

which in the spatial case L = Ω(X) correspond to the open and closed
subspaces.

If S is a sublocale of L, the closure of S in L, denoted by S, is the smallest
closed sublocale containing S, which can be computed as S = c(

∧
S). A

sublocale S is dense if S = L, or equivalently if 0 ∈ S. A sublocale S is said
to be codense if νS(a) = 1 implies a = 1.

Boolean sublocales. For each a ∈ L, there is a sublocale b(a) = { b → a |
b ∈ L } which turns out to be Boolean. Moreover, every Boolean sublocale
of L is of the form b(a) for some a ∈ L. If p ∈ L is a prime, it is easy to
check that then b(p) = { 1, p }, and these sublocales are usually referred to
as one-point sublocales.

In particular, the sublocale b(0) = {x∗ | x ∈ L } is called the Booleaniza-
tion of L and it can be characterized either as the least dense sublocale of L
or the unique Boolean dense sublocale of L.

The coframe of sublocales. The family

S(L)
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of all sublocales of L partially ordered by inclusion is a coframe (i.e. its dual
poset S(L)op is a frame) and lattice operations in S(L) are given by∧

i∈I

Si =
⋂
i∈I

Si,
∨
i∈I

Si = {
∧

A | A ⊆
⋃
i∈I

Si }.

It is not generally the case that S(L) is Boolean but it still has plenty of
complemented sublocales: the frame S(L)op is always zero-dimensional. More
precisely, every sublocale S of L can be written S =

⋂
i c(ai) ∨ o(bi) for

some {ai}i∈I , {bi}∈L, and closed sublocales c(a) and open sublocales o(a) are
complements of each other. We also have

c(
∨
i

ai) =
⋂
i

c(ai), o(
∨
i

ai) =
∨
i

o(ai),

c(a ∧ b) = c(a) ∨ c(b), o(a ∧ b) = o(a) ∩ o(b).

Further, a sublocale is said to be locally closed if it is of the form o(a)∩ c(b)
for some a, b ∈ L.

Since S(L) is a coframe, there is a co-Heyting operator giving the difference
S r T of two sublocales S, T ∈ S(L); this operator is characterized by the
condition

S r T ⊆ R ⇐⇒ S ⊆ T ∨R.
In particular, the supplement of S ∈ S(L) is S# = L r S, i.e. the smallest
sublocale of L whose join with S is L. We shall freely use some its properties,
e.g. the ones listed below

(1) S \ T ⊆ S;
(2) S \ T = 0 iff S ⊆ T ;
(3) S \ C = S ∩ C#;
(4) S \

⋂
i Si =

∨
i(S \ Si);

(5) (S \ T ) \R = (S \R) \ T ;

for each S, T,R ∈ S(L), {Si}i∈I ⊆ S(L) and complemented sublocale C ⊆ L.
A comprehensive list of its properties may be found in [6].

For several notions related to coframes, we shall use terminology from frame
theory modified just by adding the prefix “co-”. For example, a subset S of
a coframe L will be said to be a subcolocale of L if Sop is a sublocale of the
frame Lop (i.e. iff it is a subset of L closed under arbitrary joins and the co-
Heyting operator). Sometimes we will omit the prefix “co-” in order to avoid
confusion: we will speak of a dense (resp. spatial, TD-spatial) subcolocale
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S of a coframe L for meaning that Sop is a dense (resp. spatial, TD-spatial)
sublocale of Lop.

Images and preimages. Every localic map f :L −→M gives, by pulling back
in Loc, an inverse image map
f−1[−]: S(M) −→ S(L) which turns out to be a coframe homomorphism (i.e.
a function which preserves arbitrary meets and finite joins). Set-theoretic
direct image yields a direct image map f [−]: S(L) −→ S(M) which is addi-
tionally a colocalic map (i.e. a left adjoint of a coframe homomorphism). In
this context, the usual adjunction f [−] a f−1[−] is satisfied.

Joins of closed (resp. complemented) sublocales. Let Sc(L) denote the subset
of S(L) consisting of joins of closed sublocales i.e.

Sc(L) = {
∨
a∈A

c(a) | A ⊆ L },

endowed with the inclusion order inherited from S(L). In the recent paper
[11], Picado, Pultr and Tozzi show (a.o.) that Sc(L) is always a frame which
is embedded as a join-sublattice in the coframe S(L). One of the main results
from [11] is that

if L is subfit, and only in that case, Sc(L) is a Boolean algebra
and coincides precisely with the Booleanization of S(L).

More generally, if L is not necessarily subfit, it is also of interest to consider
the Booleanization of S(L), denoted by Sb(L). The latter is precisely the
system consisting smooth sublocales, that is, those which are joins of com-
plemented sublocales (or equivalently joins of locally closed sublocales). A
study of the properties of Sb(L) may be found in [1].

Subspaces and sublocales. In [15], the relation between sublocales of a frame
L and subspaces of its spectrum pt(L) is explored. Spatial sublocales and
sober subspaces are seen as fixpoints of the following adjunction of posets.

P(pt(L)) S(L)

M

pt

⊥

Here, pt: S(L) → P(pt(L)) maps each sublocale to the collection of primes
contained in it, while M:P(pt(L)) → S(L) takes a collection of primes of
L and it closes it under arbitrary meets. For every frame L, we have that
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its spatialization is a surjection, and so it corresponds to a certain sublocale
that we will denote by sp(L). For a sublocale S ⊆ L, its spatialization
sublocale is M(pt(S)). Hence, the composition M ◦ pt of the two adjoints
above is spatialization. Similarly, the composition pt ◦M is sobrification,
up to homeomorphism. For every frame L we have the following commuting
diagram in the category of coframes. The bottom arrow sends a sublocale S
to its prime spectrum pt(S), which simply consists of the collection pt(L)∩S.

sp[S(L)] sob[P(pt(L))]

S(L) P(pt(L))

pt(∼=)

pt

sp

The coframe sp[S(L)] denotes the ordered collection of spatial sublocales of
L, while sob[P(pt(L))] denotes the ordered collection of sober subspaces of
pt(L). Finally, the vertical arrow maps each sublocale S to its spatialization
M(pt(S)).

The axiom TD. A space X is defined to be TD if every point x ∈ X has
some neighborhood U with U\{x} open. This is an axiom stronger than
T0 and weaker than T1 and it was introduced in [2]. It has been used (for
instance in [12]) in order to answer the question of when a topological space
can be completely recovered from its frame of opens. The Skula space of a
space X, denoted as Sk(X), is the space defined as follows. The set of points
is the same set of points as X, while the topology is the Skula topology, that
is the one generated by the opens of X together with their complements.
The following characterizations of TD-spaces can be found in [9].

Proposition 0.1. The following are equivalent for a T0 space X.

(1) The space is TD.
(2) For no x ∈ X do we have that the dualization of the inclusion X\{x} ⊆ X

is a frame isomorphism.
(3) If Y * Z then Ω′(Y ) * Ω′(Z), for all subspaces Y, Z ⊆ X.
(4) The Skula space Sk(X) is discrete.

One can exhibit the role of the axiom TD in point-free topology by com-
paring it to sobriety. This has been done in detail in [4]. In particular, in the
context of T0 spaces, the two axioms mirror each other in that sober spaces
are maximal in the same sense in which TD-spaces are minimal.
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• A space X is sober if and only if we can never have a nontrivial sub-
space inclusion X ↪→ Y such that its dualization is an isomorphism.
• A space X is TD if and only if we can never have a nontrivial subspace

inclusion Y ↪→ X such that its dualization is an isomorphism.

Comparing the two axioms with respect to their implications for subspaces
and sublocales yields the following. First, define sp[S(Ω(X))] as being the
ordered collection of spatial sublocales of Ω(X). We always have a map
Ω′:P(X)→ sp[S(Ω(X))], which to each subspace of X assigns the sublocale
that it induces on Ω(X). The following is well-known:

• A space X is sober if and only the map Ω′:P(X)→ sp[S(Ω(X))] is a
surjection.
• A space X is TD if and only if the map Ω′:P(X)→ sp[S(Ω(X))] is an

injection.

A frame L is said to be TD-spatial if L ∼= Ω(X) for some TD-topological
space X. A covered prime of L is a p 6= 1 such that whenever p =

∧
i xi

for some {xi}i∈I ⊆ L, then there is an i ∈ I with p = xi. In general,
it is not true that localic maps map covered primes into covered primes.
Following [4] a frame homomorphism f will be said to be a D-homomorphism
if its associated localic map f∗ sends covered primes into covered primes. The
subset ptD(L) will denote the set of covered primes of L, and we will refer
to it as the TD spectrum of L. For each a ∈ L, set Σ′a = { p ∈ ptD(L) | a 6≤
p }. Then, the family {Σ′a | a ∈ L } is a topology on ptD(L), and in fact
(ptD(L), {Σ′a | a ∈ L }) is a TD-space [4].

Let TopD be the full subcategory of Top consisting of TD-spaces and let
FrmD be the non-full subcategory of Frm whose morphisms are the D-homo-
morphisms. In [4], the authors showed that the assignment

Σ′(L) = (ptD(L), {Σ′a | a ∈ L })

yields an adjunction

TopD Frmop
D

Ω

Σ′

⊥

Analogously to the case of the classical spectrum, a frame L is TD-spatial
iff L ∼= Ω(ptD(L)), and there is always a surjective frame homomorphism
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(the counit of the adjunction) L� Ω(ptD(L)) sending a to Σ′a. We will refer
to Ω(ptD(L)) as the TD-spatialization of L.

1. TD-spatiality and strong TD-spatiality
Among the matters that we will tackle in this paper there is that of study-

ing the system of all TD-spatial sublocales of a frame. This is why we begin
with an analysis of TD-spatiality, and of a natural strengthening of this prop-
erty which we will call “strong TD-spatiality”. We recall that a frame L is
TD-spatial if it is isomorphic to the frame of opens of the subspace of its
prime spectrum consisting of the covered primes. A natural strengthening of
this condition is the following. We say that a frame L is strongly TD-spatial
if it is spatial and all its primes are covered. Thus, a strongly TD-spatial is
isomorphic to the frame of opens of its TD spectrum, and furthermore its
TD spectrum coincides with the classical (sober) spectrum. In this section
we will characterize both these conditions on a frame; in particular we will
show that a frame is TD-spatial if and only if the Booleanization of its as-
sembly is spatial, and that a frame is strongly TD-spatial if and only if the
Booleanization of its assembly coincides with its spatialization.

Lemma 1.1 ( [6, Proposition 10.2]). For a frame L and a prime p ∈ pt(L)
we have that b(p) is complemented in S(L) if and only if p is a covered prime.

From the fact that Sb(L) is the collection of joins of sublocales comple-
mented in S(L), we deduce the following corollary.

Corollary 1.2. For a frame L and a prime p ∈ pt(L) we have that b(p) ∈
Sb(L) if and only if b(p) is a covered prime. Then, for a frame L and for
{pi}i∈I a collection of covered primes, we have that all joins of the form∨
i b(pi) are in Sb(L).

We recall that a frame L is spatial if and only if every element is a meet of
primes. We have the following analogous characterization of TD-spatiality.

Lemma 1.3. A frame is TD-spatial if and only if all its elements are meets
of covered primes.

Proof : For the “only if” part, if L = Ω(X) with X a TD-space and U is

an open, then U =
∧
x 6∈U X − {x}, where each X − {x} is covered. Con-

versely, it is clear that if every element is a meet of covered primes, then the
TD-spatialization surjection L � Ω(ptD(L)) defined in the Preliminaries is
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also one-to-one and hence an isomorphism. Since ptD(L) is a TD-space, then
L is TD-spatial.

We are now ready to prove our characterization theorem for TD-spatiality.

Theorem 1.4. For a frame L, the following are equivalent:

(1) L is TD-spatial;
(2) Every element of L is a meet of covered primes;
(3) Sb(L) is spatial;
(4) Sb(L) ∼= P(ptD(L)).

Proof : The equivalence between (1) and (3) appears in [1, Theorem 6.2] and
the equivalence between (1) and (2) follows by Lemma 1.3. Let us now show
that (3) implies (4). If Sb(L) is spatial, as this is a Boolean algebra it must
be isomorphic to the powerset of its primes. By Corollary 1.2, there is a
bijection pt(Sb(L)) ∼= ptD(L). Finally note that (4) implies (3) is trivial.

We now move on to looking at strong TD-spatiality.

Lemma 1.5. A frame L is spatial if and only if the spatialization of S(L)op

is a dense frame surjection.

Proof : A frame L is spatial if and only if L is a fixpoint of the interior
sp: S(L) → S(L), that is, if and only if the bottom element L ∈ S(L)op is a
fixpoint of the spatialization nucleus sp: S(L)op → S(L)op.

Since Sb(L) is the least dense sublocale of S(L) then one has the following:

Corollary 1.6. For a frame L the following are equivalent:

(1) L is spatial;
(2) Sb(L) ⊆ sp[S(L)].

We may now prove the characterization theorem for strong TD-spatiality.

Theorem 1.7. For a frame L, the following are equivalent:

(1) L is strongly TD-spatial;
(2) Every element of L is a meet of covered primes and every prime of L is

covered;
(3) The frame L is spatial and pt(L) is a TD-space;
(4) The frame L is isomorphic to Ω(X) for some sober TD-space X;
(5) The frame L is spatial and we have an isomorphism sp[S(L)] ∼= P(pt(L));
(6) Sb(L) = sp[S(L)].
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Proof : (1) =⇒ (2). This follows from Lemma 1.3.

(2) =⇒ (3). If every element of L is a meet of primes, the frame L is spatial.
Furthermore, if all primes of L are covered we have that pt(L) is a TD-space,
as it coincides with the TD spectrum of L.

(3) =⇒ (4). This is clear as pt(L) is always sober.

(4) =⇒ (5). We recall that if a space X is TD then the map Ω′:P(X) →
sp[S(Ω(X))] is injective, while if it is sober it is surjective (see the subsection
on the TD axiom in the preliminaries). Thus, if L ∼= Ω(X) for some TD and
sober space X we have an isomorphism P(pt(L)) ∼= sp[S(pt(L))].

(5) =⇒ (6). If the frame L is spatial and we have an isomorphism sp[S(L)] ∼=
P(pt(L)), then in particular the subcolocale sp[S(L)] ⊆ S(L) is Boolean. As
L is spatial it is also dense (see Lemma 1.5), and so it must be its Booleaniza-
tion.

(6) =⇒ (1). By Corollary 1.6, L is spatial. Let p be a prime of L. Then
b(p) ∈ sp[S(L)] ⊆ Sb(L), and so by Corollary 1.2 it follows that p is cov-
ered.

2.D-sublocales
We now investigate the notion equivalent to that of sublocale in the TD-du-

ality; the notion of D-sublocale. For a sublocale to count as a D-sublo-
cale, we will require that its corresponding localic inclusion is a morphism
in the category LocD. This constraint amounts to the condition that the
localic map ought to send covered primes to covered primes. In this sec-
tion we will analyze the collection SD(L) ⊆ S(L) of D-sublocales of a frame
L. In particular, we will show that SD(L) ⊆ S(L) is always a dense sub-
colocale. We then will explore the question of how close the assignment
SD(L)(−):Obj(Frm) → Obj(Frm) is to being functorial. It is known that lo-
calic maps do not generally send covered primes into covered primes; those
frame homomorphisms such that their right adjoint localic maps send cov-
ered primes into covered primes were referred to as D-homorphisms in [9].
Now we introduce one of the central notions in this paper: a sublocale S of L
will be said to be a D-sublocale if the corresponding frame surjection L� S
is a D-homomorphism, i.e. iff the equality ptD(S) = ptD(L)∩S (equivalently
the inclusion ptD(S) ⊆ ptD(L)) holds.
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In general, not every sublocale is a D-sublocale, and neither is an intersec-
tion of two D-sublocales, as the following example shows:

Remark 2.1. One of the simplest examples of an intersections of twoD-sublo-
cales which is not a D-sublocale seems to be the following: let L = [0, 1] (the
unit interval with its usual total order). A subset of a totally ordered set is a
sublocale iff it is closed under meets, so the following two subsets are indeed
sublocales:

S = { 0, 1 } ∪
⋃
n∈N

[
1

2n
,

1

2n− 1

)
and T = { 0, 1 } ∪

⋃
n∈N

[
1

2n+ 1
,

1

2n

)
.

Obviously, for every x 6= 1 in S, one has x =
∧
x<t∈S t, and this shows that

ptD(S) = ∅, so S is a D-sublocale of L. Similarly, ptD(T ) = ∅ and so it is
also a D-sublocale of L. Now, observe that S ∩ T = { 0, 1 } and then one
has ptD(S ∩ T ) = pt(S ∩ T ) = {0}. But 0 is not a covered prime in L as
0 =

∧
t>0 t. Hence S ∩ T is not a D-sublocale.

Let SD(L) be the subset of S(L) consisting of D-sublocales of L, equipped
with the inherited order. We observe that we have the following.

SD(L) = {S ∈ S(L) | ptD(S) ⊆ ptD(L) }.
In what follows, we investigate the structure of SD(L):

Proposition 2.2. The system SD(L) is closed under arbitrary joins in S(L).

Proof : Let {Si}i∈I ⊆ SD(L), i.e. ptD(Si) ⊆ ptD(L) for all i ∈ I. We have
to check that

∨
i Si ∈ SD(L), that is, ptD(

∨
i Si) ⊆ ptD(L). Let then p ∈

ptD(
∨
i Si). Since p ∈ ptD(

∨
i Si) ⊆

∨
i Si, there is a family {ai}i∈I ⊆ L such

that ai ∈ Si for each i ∈ I and with p =
∧
i ai. Since for all i ∈ I one

has ai ∈ Si ⊆
∨
i Si and p ∈ ptD(

∨
i Si), then there is an i0 ∈ I such that

p = ai0 ∈ Si0. We claim that p ∈ ptD(Si0). Indeed, let {bj}j∈J ⊆ Si0 a family
such that p =

∧
j bj. Then bj ∈ Si0 ⊆

∨
i Si and since p ∈ ptD(

∨
i Si), there is

a j0 ∈ J with p = bj0. Then p ∈ ptD(Si0) ⊆ ptD(L), as desired.

Proposition 2.3. If S ∈ SD(L) and T ∈ S(L), then S \ T ∈ SD(L).

Proof : Let p ∈ ptD(S \T ). Since S(L)op is zero-dimensional, write T =
⋂
iCi

with Ci complemented. Then S\T = S\
⋂
iCi =

∨
i S\Ci =

∨
i S∩Cc

i . Now,
p ∈ S \ T =

∨
i S ∩ Cc

i and so there is a family {ai}i∈I with ai ∈ S ∩ Cc
i and

p =
∧
i ai. Since ai ∈ S∩Cc

i ⊆ S\T and p ∈ ptD(S\T ), then there is an i0 ∈ I
with p = ai0 ∈ Cc

i0
. Since T =

⋂
iCi, then we conclude p 6∈ T . Now, p 6∈ T
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is equivalent to b(p) 6⊆ T , which is in turn equivalent to b(p) \ T 6= 0. But
b(p)\T ⊆ b(p) = { 1, p }, and so b(p)\T = b(p). I claim that b(p) 6⊆ S \b(p).
By way of contradiction assume otherwise. Then (S \T )\b(p) = (S \b(p))\
T ⊇ b(p) \ T = b(p). Then 0 6= b(p) = b(p) ∩ [(S \ T ) \ b(p)], which is a
contradiction since b(p) is complemented in S \ T . Therefore, we must have
b(p) 6⊆ S \ b(p), which is equivalent to 0 = b(p) ∩ (S \ b(p)). Then b(p) is
complemented in S, i.e. p ∈ ptD(S) ⊆ ptD(L), as we wanted.

Corollary 2.4. SD(L) is a dense D-subcolocale of S(L). In particular it is
a coframe.

Proof : The fact that it is a subcolocale follows from the two previous propo-
sitions. Moreover, density follows from the obvious fact that L (i.e. the
bottom element of S(L)op) belongs to SD(L). Finally, since S(L)op is a zero-
dimensional frame, it is in particular regular; and it is well-known that primes
in any regular frame are maximal (so in particular they are covered). Thus,
every sublocale of S(L)op is a D-sublocale.

Density of SD(L) has an important consequence: it implies that Sb(L) ⊆
SD(L). Hence, all open sublocales and closed sublocales are D-sublocales,
and so are locally closed sublocales or more generally smooth sublocales.

The system SD(L) contains several different families of sublocales, for ex-
ample:

(1) All smooth sublocales, as we have just pointed out;
(2) All pointless sublocales of L (as ptD(S) ⊆ pt(S) = ∅);
(3) Any join of pointless sublocales (joins of pointless sublocales may con-

tain points, but their join will still be a D-sublocale because of Propo-
sition 2.2);

(4) All codense sublocales of L in which primes are maximal (these include
codense naturally Hausdorff sublocales, codense fit sublocales,. . . ).
This only of interest if L not subfit, cf. [5]. In order to show this
assertion, one easily checks that if p is a maximal element in a codense
sublocale S, then it is maximal in L, and in particular it belongs to
ptD(L).

2.1. Functoriality. As we will see below, the assignment L 7→ SD(L)op

cannot be made functorial in the whole of the category of frames in such a
way that there is a natural transformation c: 1Frm → SD(−)op. Therefore, one
has to deal with lifts of individual frame homomorphisms. Let f :L→M be
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a frame homomorphism and suppose there is a further frame homomorphism
SD(f): SD(L)op → SD(M)op together with a commutative square

SD(L)op SD(M)op

L M

SD(f)

f

cL cM

If S is any sublocale of L, then one can write S =
⋂
S⊆o(a)∨c(b) o(a) ∨ c(b).

Each of the sublocales o(a) ∨ c(b) belongs to SD(L) (as open sublocales and
closed sublocales are D-sublocales and SD(L) is closed under joins). Now, if
S happens to be a D-sublocale, then the intersection

⋂
S⊆o(a)∨c(b) o(a) ∨ c(b)

coincides with the meet
∧
S⊆o(a)∨c(b) o(a) ∨ c(b) taken in SD(L) (incidentally,

this, together with the fact that o(a)∨c(b) are complemented in SD(L), shows
that SD(L)op is a zero-dimensional frame). Hence, each S ∈ SD(L) can be
written as S =

∨
o(a)∧c(b)≤S o(a) ∧ c(b) (here we are using the reverse order),

where
∨

is nothing but the join in S(L)op. Now, applying the frame ho-
momorphism SD(f) and using the fact that frame homomorphisms commute
with complements, we obtain SD(f)(S) =

∨
o(a)∧c(b)≤S c(f(a))∧o(f(a)), where∨

denotes join in SD(M)op. Denote g = f∗. Then, one has that SD(f)(S)
can be computed as the largest D-sublocale of M contained in g−1[S].

Proposition 2.5. Let L a frame and f :L� S a surjection onto a sublocale
S. Then f lifts if and only if it is a D-homomorphism (i.e. iff S is a
D-sublocale of L).

Proof : For the “if” implication, assume that S is a D-sublocale of L and
define a map h: SD(L)→ SD(S) given by h(T ) = T ∧ S (where ∧ stands for
meet in SD(L)). We note that h is well-defined because since T ∧ S ∈ SD(L)
in particular we have T ∧ S ∈ SD(S). Also, since S is a D-sublocale of L, it
is easy to check that h preserves arbitrary meets (and obviously finite joins
as well). Hence it is a (surjective) coframe homomorphism. For showing that
the relevant naturality square commutes it suffices to check that S∩ c(a) is a
D-sublocale of L. Let p ∈ ptD(S∩c(a)). If p =

∧
i xi for a family {xi}i∈I ⊆ S,

then since p ∈ c(a), one has a ≤ p ≤ xi for each i ∈ I and so xi ∈ S∩ c(a) for
each i ∈ I. Hence there is an i0 ∈ I with p = xi0. Thus p ∈ ptD(S) ⊆ ptD(L).

Let us now show the converse, so assume that there is a frame homomor-
phism
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h: SD(L)op → SD(S)op making the square

SD(L)op SD(S)op

L S

h

f

cL cS

commutative. We claim that h is a surjection too. Indeed, we noted in the
discussion preceding the statement that SD(S)op is generated by { cS(a), oS(b) |
a, b ∈ S }, and thus it suffices to observe that h(cL(a)) = cS(a) and h(oL(a)) =
oS(a) for each a, b ∈ S. Hence h is a surjection. Let us finally check that S
is a D-sublocale of L. Let p ∈ ptD(S). Then by the converse implication,
the surjection S � b(p) lifts, and so we obtain a commutative diagram as
follows:

SD(L)op SD(S)op SD(b(p))op

L S b(p)

h

f

cL cS ∼=

where the top composite is also a surjection. Hence there is a surjection
SD(L)op � b(p) which displays b(p) as a point of SD(L)op, but Lemma 3.9
below asserts than then p must be a covered prime of L.

Remark 2.6. Characterizing monomorphisms which lift seems to be a more
difficult task. An analogous situation happens when studying the functori-
ality of the assignment L 7→ Sb(L) (cf. [1, Proposition 5.10]).

3. The relation between D-sublocales and subspaces
In [15] the matter of the relation between subspaces and sublocales is ex-

plored. Recall that there it is proven that we have an adjunction

P(pt(L)) S(L)

M

pt

⊥

in which the fixpoints are precisely the spatial sublocales of S(L) on one side,
and the sober subspaces of pt(L) on the other. It is also shown that for
every frame L we have a commuting diagram, as follows, in the category of
coframes.
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sp[S(L)] sob[P(pt(L))]

S(L) P(pt(L))

pt(∼=)

pt

sp

The top horizontal arrow is always an isomorphism. It is them meaningful
to ask three questions.

(1) Firstly we can ask ourselves when is it that the left vertical arrow is an
isomorphism. The frames for which this holds are the totally spatial
frames, i.e. those such that all their sublocales are spatial. These
are precisely the frames L such that S(L)op is spatial, and they have
also been characterized in several other ways in [8]. By looking at the
diagram, we see that the totally spatial frames are exactly those such
that there is a perfect correspondence between the sublocales of L and
the sober subspaces of pt(L).

(2) We may also ask when it is that the right vertical arrow is an isomor-
phism. The frames for which this holds are exactly those such that
pt(L) is a TD-space, as shown in [15]. By looking at the diagram,
we see that these are exactly the frames for which there is a perfect
correspondence between the spatial sublocales of L and the subspaces
of pt(L).

(3) We may ask ourselves when it is that both vertical arrows are iso-
morphisms. These frames are the spatial frames such that pt(L) is
a scattered space (see [14]). These are the frames such that there is
a perfect correspondence between sublocales of L and subspaces of
pt(L).

We want to tackle the analogues of these three questions in the setting of
the TD-duality. Let us start from the main adjunction.

Proposition 3.1. There is an adjunction

P(ptD(L)) SD(L)

M

ptD

⊥

The fixpoints of M ◦ ptD are the TD-spatial D-sublocales, and ptD ◦M is the
identity.
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Proof : The map ptD is well-defined because if S ∈ SD(L) then ptD(S) ⊆
ptD(L). Moreover, clearly both ptD and M are monotone. For the adjunction,
we have to check that M(Y ) ⊆ S if and only if Y ⊆ ptD(S) for each S ∈
SD(L) and Y ⊆ ptD(L). The “only if” implication is trivial because Y ⊆
M(Y ), and the converse clearly follows from the fact that sublocales are
closed under meets. Now, By Lemma 1.3, the fixpoints of M ◦ ptD are
precisely those D-sublocales which are TD-spatial. The only task remaining
is to show that ptD◦M is the identity, so let Y ⊆ ptD(L) and p ∈ ptD(M(Y )).
Since p ∈ ptD(M(Y )) ⊆M(Y ), there is a family {yi}i∈I ⊆ Y with p =

∧
yi0.

But p is a covered prime in Y so there is an i0 ∈ I with p = yi0 ∈ Y . The
other inclusion follows by adjunction.

Lemma 3.2. For a frame L, the sublocale of L associated with its TD-spa-
tialization is M(ptD(L)).

Proof : By the universal property of the TD-spatialization, this is the largest
D-sublocale of L such that it is TD-spatial. Suppose that S ⊆ L is a TD-spa-
tial D-sublocale. Because S is a D-sublocale, we have ptD(S) ⊆ ptD(L), and
because M is monotone we also have M(ptD(S)) ⊆ M(ptD(L)). Thus, by
TD-spatiality of S, we have proven that S ⊆M(ptD(L)).

3.1. Local and global TD-spatialization. It follows from Lemma 3.2 that
the map M◦ptD: SD(L)→ SD(L) assigns to each D-sublocale its TD-spatial-
ization. From now on, we will call this map spD: SD(L)→ SD(L). Let us see
what more we can learn about this operator.

Lemma 3.3. If L is a complete lattice and ι:L→ L is an interior operators,
then ι[L] is a complete lattice where the joins in are computed as in L, and
the meets are computed as

∧ι ι(xi) = ι(
∧
i ι(xi)).

Proof : Suppose that L is a complete lattice and that ι:L→ L is an interior
operator. Suppose that xi ∈ L. We claim that

∨
i ι(xi) is the join of { ι(xi) |

i ∈ I } in ι[L]. first, we show that ι(
∨
i ι(xi)) =

∨
i ι(xi). One inequality

holds since ι is deflationary. For the other, we notice that ι(xi) ≤
∨
i ι(xi).

By monotonicity and idempotence of ι, it follows that ι(xi) ≤ ι(
∨
i ι(xi)).

The desired result follows. Let us show that
∨ι
i ι(xi) = ι(

∨
i ι(xi)). On the

one hand we showed before that ι(xi) ≤ ι(
∨
i ι(xi)). On the other hand, if

we have ι(xi) ≤ ι(y) for some y ∈ L we also have that ι(
∨
i ι(xi)) ≤ ι(y),

by monotonicity and idempotence of ι. Then, indeed
∨ι
i ι(xi) = ι(

∨
i ι(xi)).
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Now let us show that
∧ι
i ι(xi) = ι(

∧
i ι(xi)). On the one hand we have∧

i ι(xi) ≤ ι(xi) and so ι(
∧
i ι(xi)) ≤ ι(xi) by monotonicity and idempotence.

On the other hand if ι(y) ≤ ι(xi) then we also have ι(y) ≤
∧
i ι(xi) and so

ι(y) ≤ ι(
∧
i ι(xi)) by monotonicity and idempotence.

Lemma 3.4. If L is a complete lattice and ι:L→ L an interior operator on
it, the surjection ι:L� ι[L] preserves arbitrary meets. If ι:L→ L preserves
finite joins, this surjection preserves finite joins, too.

Proof : Suppose that ι:L → L is an interior operator. Suppose that xi ∈ L.
We first claim that ι(

∧
i xi) = ι(

∧
i ι(xi)). We have that ι(xi) ≤ xi since ι is

deflationary, and thus
∧
i ι(xi) ≤

∧
i xi, from which we deduce ι(

∧
i ι(xi)) ≤

ι(
∧
i xi) by monotonicity of ι. For the reverse inequality, we start from the

inequality
∧
i xi ≤ xi. By monotonicity of ι we deduce ι(

∧
i xi) ≤

∧
i ι(xi).

Finally, by monotonicity and idempotence, we deduce ι(
∧
i xi) ≤ ι(

∧
i ι(xi)).

We have shown that ι(
∧
i xi) = ι(

∧
i ι(xi)) =

∧ι ι(xi), where the last equality
holds by Lemma 3.3. Suppose now that ι:L → L preserves finite joins. For
x, y ∈ L we have that ι(x ∨ y) = ι(x) ∨ ι(y) = ι(x) ∨ι ι(y), where the last
equality holds by Lemma 3.3.

Proposition 3.5. For a frame L, the map spD: SD(L)→ SD(L) is an interior
operator which preserves finite joins.

Proof : The map is monotone since it is the composition of the monotone
maps ptD: SD(L) → P(ptD(L)) and M:P(ptD(L)) → SD(L). The map is
clearly deflationary. Idempotence follows from the adjunction identity M ◦
ptD ◦M = M. For preservation of finite joins, suppose that we have a finite
collection Sm ∈ SD(L). Since these are D-sublocales and by primality of the
elements in ptD(L), we have that ptD(S1∨ ...∨Sn) = ptD(L)∩(S1∨ ...∨Sn) =
ptD(L) ∩ (S1 ∪ ... ∪ Sn) = (ptD(L) ∩ S1) ∪ ... ∪ (ptD(L) ∩ Sn) = ptD(S1) ∪
... ∪ ptD(Sn). We have shown that ptD: SD(L) → P(ptD(L)) preserves finite
joins. As M is a left adjoint, it preserves all joins, in particular finite ones.
Thus the composition M ◦ ptD: SD(L)→ SD(L) preserves finite joins.

Corollary 3.6. Suppose that L is a frame.cThe map spD: SD(L) � spD[SD(L)]
is a coframe surjection whose codomain is the ordered collection of the TD-spa-
tial D-sublocales of L.

Proof : The fact that we have a coframe surjection follows from Lemma 3.4
and from Proposition 3.5. The fact that the codomain is the ordered collec-
tion of the TD-spatial D-sublocales follows from Corollary 3.1.
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Remark 3.7. The operator spD: SD(L)→ SD(L) actually preserves arbitrary
joins, too. In the proof of Lemma 3.5, we have shown that for a finite
collection Sm of sublocales we have that ptD(S1 ∨ ... ∨ Sn) = ptD(S1) ∪ ... ∪
pptD(Sn). Using coveredness of primes, this argument can be strengthened to
show that ptD(

∨
i Si) =

⋃
i ptD(Si) for an arbitrary collection Si of sublocales.

This tells us that in the frame SD(L)op the congruence associated with the
sublocale spD[SD(L)] is a complete congruence (see [5]).

We then have a local TD-spatialization surjection spD: SD(L) � spD[SD(L)].
As SD(L)op is a frame, it has its own TD-spatialization sublocale; its global
TD-spatialization subcolocale, so to speak. We want to know how the local
TD-spatialization subcolocale sp[SD(L)] ⊆ SD(L) relates to the global one.

Lemma 3.8. For a frame L, a D-sublocale S ⊆ L is TD-spatial if and only
if S =

∨
{ b(p) | p ∈ ptD(S) }.

Proof : By Corollary 3.1, a D-sublocale S ⊆ L is TD-spatial if and only if
M(ptD(S)) = S. But M(ptD(S)) =

∨
{ b(p) | p ∈ ptD(S) } and so we are

done.

Lemma 3.9. The covered prime elements of SD(L)op are exactly the sublo-
cales of the form b(p) with p ∈ ptD(L).

Proof : Suppose that p ∈ ptD(L). We claim that b(p) ∈ SD(L)op is a covered
prime. Indeed, we observe that if we have b(p) =

∨
i Si we clearly must have

Sj = { 1, p } for some j ∈ I.
For the converse, suppose that S ∈ SD(L) and that S 6= b(p) for each

p ∈ ptD(L). Since for each prime p ∈ pt(L) we have that b(p) ∈ SD(L) if and
only if p is covered, we must have that S cannot be a two-element sublocale,
and so it contains at least three elements. Suppose, then, that {x, y, 1 } are
pairwise distinct and that {x, y } ⊆ S. Suppose, in particular, that x � y.
First, recall that all open and all closed sublocales of L are elements of SD(L).
We claim that S ⊆ o(x) ∨ c(x) is a nontrivial decomposition of S. We have
that x → x = 1 6= x, and so x /∈ o(x), hence S * o(x). On the other hand,
we have that y /∈ c(x) and so S * c(x). But since c(x) ∨ o(x) = 1 we have
S ⊆ o(x) ∨ c(x).

Observation 3.10. In the proof above, starting from the assumption that a
sublocale S ∈ SD(L) is not of the form b(p) for a covered prime p ∈ L we
have shown that S is not a prime. This means that in SD(L) if an element
is not a covered prime it is not a prime.
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We have then proved the following.

Proposition 3.11. In the frame SD(L)op all primes are covered. So, the
frame SD(L)op is TD-spatial if and only if it is spatial.

Proof : This follows from Proposition 3.9 and from Observation 3.10.

We are ready to show that the local and the global spatialization of SD(L)
coincide.

Proposition 3.12. For any frame L we have that M(ptD(SD(L))) = spD[SD(L)].
In other words, global and local TD-spatialization of SD(L) coincide.

Proof : By Lemma 3.9, we have that ptD(SD(L)) = { b(p) | p ∈ ptD(L) }.
Hence the elements of M(ptD(SD(L))) are exactly the joins of elements of
the form b(p) for p ∈ ptD(L). By Lemma 3.8, these are exactly the TD-spatial
D-sublocales of L.

Corollary 3.13. For a frame L, we have that all its D-sublocales are TD-spa-
tial if and only if SD(L) is TD-spatial, and this holds if and only if SD(L) is
spatial.

Proof : This follows from Propositions 3.12 and 3.11.

Remark 3.14. It should be noted that spD[SD(L)] is not only spatial, but
it is also Boolean for any frame L. Indeed, it follows by virtue of the ad-
junction in Proposition 3.1 and the fact that ptD ◦M is the identity that it
is actually isomorphic to P(ptD(L)). More precisely, it corresponds to the
Boolean sublocale of S(L)op determined by the element spD(L), i.e. we have
spD[SD(L)] = b(spD(L)) (to see this, observe that a Boolean sublocale S of a
frame L always equals b(

∧
S), hence spD[SD(L)] is determined by the largest

D-sublocale which is TD-spatial, i.e. the TD-spatialization of L).

We wish to stress that the behaviour of the operator ptD◦M:P(ptD(L))→
P(ptD(L)) exhibits a difference between the spatial-sober duality and the
TD-duality. In the classical duality (see [15]) we have an adjunction

P(pt(L)) S(L)

M

pt

⊥

in which the fixpoints of M ◦ pt are precisely the spatial sublocales, and
the fixpoints of pt ◦M are the sober subspaces of pt(L). None of the two
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compositions is the identity. In particular, since not all subspaces of pt(L)
are sober, this means that the map pt: S(L)→ P(pt(L)) will not in general be
a surjection: some subspaces of pt(L) do not arise as spectra of sublocales of
L. This accounts for part of the mismatch between subspaces and sublocales.
In the TD-duality, this does not happen. Since the operator ptD ◦M is the
identity, it means that all subspaces of ptD(L) arise as spectra of D-sublocales
of L. We shall see that this means that in the TD-duality the mismatch
between subspaces and sublocales is only given by the map ptD: SD(L) →
P(ptD(L)) not being injective: in the TD-duality we have more sublocales
than subspaces.

Let us now look at the TD analogue of the square in the beginning of this
section.

(M ◦ ptD)[SD(L)] (ptD ◦M)[P(ptD(L))]

SD(L) P(ptD(L))

ptD(∼=)

=

ptD

M◦ptD

We know that the diagram commutes in the category of coframes as the
composition ptD ◦M is the identity and so indeed ptD ◦M ◦ ptD = ptD. We
observe that the right vertical arrow is always the identity, by Corollary 3.1.
Thus, in the TD-duality, we are left with only one of the three questions. We
shall then characterize those frames L such that all the D-sublocales of L are
TD-spatial, and these coincide with the frames L such that there is a perfect
correspondence between D-sublocales of L and subspaces of ptD(L).

3.2. When do the D-sublocales perfectly represent the subspaces?
For a frame L and a meet

∧
M , we say that m ∈M is an essential element of

the meet
∧
M if we have

∧
M\{m} 6=

∧
M . If L is a frame and a ∈ L is the

meet of the primes above it, we say that p ∈ pt(↑a) is an essential prime of a if
and only if

∧
pt(↑a)\↑p 6= a. We say that p ∈ pt(↑a) is an absolutely essential

prime of a if
∧
pt(↑a)\{p} 6= a. It is clear that absolute essentiality is a

condition stronger than essentiality. The terminology “absolutely” essential
is justified by the following result.
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Lemma 3.15. For a frame L and for a ∈ L with a =
∧

pt(↑a) and for
p ∈ pt(↑a), the following are equivalent.

(1) The prime p is an absolutely essential prime of a;
(2) Whenever a =

∧
P for P ⊆ pt(L) we must have p ∈ P ;

(3) The prime p is weakly covered and it is an essential prime of a.

Proof : Let L be a frame, and let a ∈ L be an element such that it is the
meet of the primes above it. Let p ∈ pt(↑a).

(1) =⇒ (2). Suppose that p is an absolutely essential prime of a, and that
P ⊆ pt(L) is such that a =

∧
P . We must have that P ⊆ pt(↑a) and so

P\{p} ⊆ pt(↑a)\{p}, from which we deduce that
∧

pt(↑a)\{p} ≤
∧
P\{p}.

From this fact, and by absolute essentiality of p, we deduce that
∧
P\{p} �

a. As
∧
P ≤ a, we must have p ∈ P .

(2) =⇒ (3). Suppose that p ∈ P whenever
∧
P = a for P ⊆ pt(L).

In particular, we have that
∧
pt(↑a)\↑p � a as p /∈ pt(↑a)\↑p. Now sup-

pose towards contradiction that p is not weakly covered, and so that p =∧
pt(↑p)\{p}. We then have that

∧
{ q ∈ pt(↑a) | p 6= q } =

∧
{ q ∈ pt(↑a) |

p < q } ∧
∧
{ q ∈ pt(↑a) | p � q } = p ∧

∧
pt(↑a)\↑p ≤ a. We have then

contradicted (2).
(3) =⇒ (1). Suppose that p is an essential prime of a and that it is weakly

covered. if we had
∧
pt(↑a)\↑p ≤ p then we would have that

∧
pt(↑a)\↑p ≤ q

whenever q ∈ pt(↑a), contradicting essentiality of p. Then, we must have∧
pt(↑a)\↑p � p. We also have

∧
{ q ∈ pt(↑a) | p < q } � p by weak

coveredness of p. By primality of p, this means that
∧

pt(↑a)\↑p ∧
∧
{ q ∈

pt(↑a) | p < q } =
∧
pt(↑a)\{p} � p, and so

∧
pt(↑a)\{p} � a. Thus, p is an

absolutely essential prime of a.

Thus, we have called this condition “absolute” essentiality as opposed to
relative essentiality: an essential prime of a is only essential relative to the
particular meet of primes

∧
pt(↑a)\{ q ∈ pt(↑a) | p < q }; whereas an ab-

solutely essential prime is essential with respect to any meet of primes
∧
P

with
∧
P = a. It is crucial that for covered primes these two conditions

collapse together.

Lemma 3.16. If p is a covered prime and p is an essential prime of a ∈ L,
then p is also an absolutely essential prime of a.

Proof : If p is an essential prime of a and it is covered, in particular it is
weakly covered and so it is absolutely essential, by Lemma 3.15.
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In [15], the following is shown. This is a choice-free adaptation of a famous
result of [8].

Proposition 3.17. For a frame L, we have that L is totally spatial if and
only if every element of L is the meet of its essential primes.

Let us prove some general facts about essential and absolutely essential
primes.

Lemma 3.18. For a frame L and an element a which is the meet of the
primes above it, we have that p ∈ pt(↑a) is an essential prime of a if and
only if it is a prime of b(a).

Proof : Suppose that L is a frame and that a ∈ L is the meet of the primes
above it. Suppose first that p is an essential prime of a. We claim that
p ∈ b(a) because we have

p =
∧

pt(↑a)\↑p→ a =
∧
{
∧

pt(↑a)\↑p→ q | q ∈ pt(↑a) }.

The right hand side is a conjunction, in which every conjunct is either 1 or
a prime above a. Then, this is equal to∧

{ q ∈ pt(↑a) |
∧

pt(↑a)↑p � q }

As p is an essential prime, it is certainly in the set { q ∈ pt(↑a) |
∧

pt(↑a)\↑p �
q }. It must be the minimal element of this set, as for an element q to be in
this set we need to have p ≤ q. Then, indeed, p =

∧
pt(↑a)\↑p → a and so

p ∈ b(a). For the converse, suppose that we have p ∈ b(a). Then, we have
that (p→ a)→ a = p. This means that

p =
∧
{ (p→ a)→ q | q ∈ pt(↑a) }

The right hand side is again a conjunct of primes, and in particular it is∧
{ q ∈ pt(↑a) | p→ a � q }

Now, let us observe that p → a is exactly
∧
{ q ∈ pt(↑a) | p � q } =∧

pt(↑a)\↑p. Then, the expression above equals∧
{ q ∈ pt(↑a) |

∧
pt(↑a)\↑p � q }.

Since this expression equals p, if we had
∧

pt(↑a) ≤ p, we would also have∧
pt(↑a) ≤ q for every element q of the set { q ∈ pt(↑a) |

∧
pt(↑a)\↑p � q },
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as p is a lower bound for this set. This is a contradiction, by the membership
condition of this set. The prime p must then be essential.

Lemma 3.19. For a frame L and for x, y ∈ L we have that b(x → y) =
o(x) ∩ b(y).

Proof : Suppose that z ∈ b(x → y). Then, we have that z = z′ → (x → y)
for some z′ ∈ L. Then, z = (z′ ∧ x) → y and so z ∈ b(y). Additionally, we
have x → z = x → (z′ → (x → y)) = (x ∧ z′) → (x → y) = (x ∧ z′) →
y = z′ → (x → y) = z. Then, z ∈ o(x). For the converse, suppose that
z ∈ o(x) ∩ b(y). Then, we have x → z = z and also that z = z′ → y for
some z′ ∈ L. Then, z = x→ (z′ → y) = x ∧ z′ → y = z′ → (x→ y), and so
z ∈ b(x→ y).

Lemma 3.20. For a frame L, we have that it is spatial and every element
other than 1 has an absolutely essential prime above it if and only if every
element is the meet of the essential primes above it.

Proof : If L is a frame in which every element is the meet of the essential
primes above it, in particular every element a ∈ L with a 6= 1 must have at
least an essential prime above it. The frame is also spatial. For the other
implication, suppose that L is spatial and that every element other than 1
has an absolutely essential prime above it. Let a ∈ L and let AbsEss(a) be the
collection of absolutely essential primes of a. Suppose towards contradiction
that

∧
AbsEss(a) � a. Then,

∧
AbsEss(a) → a 6= 1 and so there is an

absolutely essential prime q of
∧

AbsEss(a) → a. This means that we have
q ∈ o(

∧
AbsEss(a)) ∩ b(a) (see Lemma 3.18 and 3.19) and that q is weakly

covered. Since q ∈ o(
∧
AbsEss(a)) we have q /∈ c(

∧
AbsEss(a)), and so∧

AbsEss(a) � q. Since q ∈ b(a) and so it is an absolutely essential prime of
a. This contradicts that

∧
AbsEss(a) � q.

We are ready to prove the main theorems of this section.

Theorem 3.21. For a frame L, the following are equivalent.

(1) All sublocales of L are TD-spatial;
(2) All D-sublocales of L are TD-spatial;
(3) M ◦ ptD is the identity on SD(L);
(4) There is an isomorphism SD(L) ∼= P(ptD(L));
(5) SD(L) is spatial;
(6) SD(L) is spatial and Boolean (i.e. a complete and atomic Boolean alge-

bra);
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(7) SD(L) = Sb(L) and L is TD-spatial.
(8) Every nonzero sublocale of L contains a covered prime in itself.

Proof : (1) obviously implies (2).

(2) is equivalent to (3). This holds by Lemma 3.2

(3) =⇒ (4). The isomorphism is obtained by composing M ◦ ptD and the
isomorphism (M ◦ ptD)[SD(L)]→ (ptD ◦M)[P(ptD(L))].

(4) =⇒ (5). This is clear.

(5) =⇒ (6). This implication follows from Corollary 3.13 and Remark 3.14.

(6) =⇒ (7). Suppose that SD(L) is spatial and Boolean. If SD(L) is Boolean,
since it is also dense, it must coincide with the unique Boolean dense sublocale
of S(L), namely Sb(L). Now, if SD(L) = Sb(L) is also spatial, by Theorem 1.4
we conclude that L is TD-spatial.

(7) =⇒ (8). Notice that every non-smooth sublocale has a covered prime in
itself (otherwise, we would have a non-smooth sublocale S with ptD(S) = ∅,
then S is obviously a D-sublocale so by assumption it has to be smooth,
contradiction). But L being TD-spatial, say L = Ω(X) with X a TD-space,
every (nonzero) smooth sublocale of it is induced by a subspace A ⊆ X and
hence it contains a covered prime of L, in particular a covered prime in itself.
Hence every nonzero sublocale contains a covered prime in itself.

(8) =⇒ (1). Clearly, the condition (8) is hereditary with respect to any
sublocale. Hence, it suffices to show that L is TD-spatial. If for all com-
plemented sublocale C ⊆ L such that spD(L) ⊆ C one has C = L, then
by zero-dimensionality of S(L)op, it follows that L = spD(L) is TD-spatial.
Hence assume by way of contradiction that there is a complemented sublocale
C ⊆ L such that C 6= L and spD(L) ⊆ C. Since C 6= L, then Cc 6= 0, so by
assumption there is a p ∈ ptD(Cc) with b(p) ⊆ Cc. But Cc is complemented;
in particular it is a D-sublocale, hence p ∈ ptD(Cc) ⊆ ptD(L). But then
b(p) ⊆ spD(L) ⊆ C, whence b(p) ⊆ C ∩ Cc = 0, contradiction.

We now move on to looking at the condition of a frame having all its sublo-
cales strongly TD-spatial. This condition is indeed strictly stronger than those
occurring in Theorem 3.21; as the following example based on [3, Example
7.8] shows.

Consider the totally ordered set of the natural numbers with the Alexan-
droff topology (i.e. the topology consisting of upsets), that is, Ω(N) = {∅}∪
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{↑ n | n ∈ N}. Observe that for any n > 1 the element ↑ n = N − {n− 1}
is a covered prime in Ω(N) and ∅ is a prime which is not covered. Hence
condition (1) in Theorem 3.22 is not satisfied. Moreover, it was pointed out
in [3] that Ω(N) is totally spatial. In fact, one has that every sublocale is
TD-spatial. In order to see this, let S be a nonzero sublocale. If S = {N,∅},
obviously S contains a covered prime in itself (namely, ∅). Otherwise, S
contains an element of the form ↑ n with n > 1, but all such elements are
covered in Ω(N), and in particular they are covered in S. Thus condition (8)
in Theorem 3.21 holds.

The fact that TD-spatiality of D-sublocales implies TD-spatiality of all
sublocales may seem somewhat surprising, specially because the conditions
of Theorem 3.21 do not imply that every sublocale is a D-sublocale (indeed,
by Theorem 4.1 below, that would imply the conditions of Theorem 3.22,
which we have just seen to be a strictly stronger condition).

Theorem 3.22. For a frame L, the following are equivalent.

(1) The frame L is totally spatial and all its primes are covered;
(2) The frame L is totally spatial and strongly TD-spatial;
(3) All sublocales of L are strongly TD-spatial;
(4) There is an isomorphism S(L) ∼= P(ptD(L));
(5) The coframe S(L) is spatial and Boolean;
(6) Every element of L is the meet of the covered essential primes above it;
(7) Every element of L is the meet of the covered absolutely essential primes

above it;
(8) The frame L is spatial and every element other than 1 has a covered

absolutely essential prime above it;
(9) Every nonzero sublocale of L contains a covered prime of L.

Proof : (1) =⇒ (2). If L is totally spatial, then in particular it is spatial; if
additionally all its primes are covered the frame is also strongly TD-spatial.

(2) =⇒ (3). If L is totally spatial, then every sublocale is spatial, so every
element of S is a meet of primes for each S ∈ S(L). But every p ∈ pt(S) is
a covered prime in L, and in particular in S, so every element of S is a meet
of covered primes in S. Now use Lemma 1.3.

(3) =⇒ (4). If all sublocales of L are strongly TD-spatial, in particular all of
the primes of L are covered and so we have SD(L) = S(L). Furthermore, all of
the sublocales being strongly TD-spatial means, by commutativity of the main
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square of this section, that we have an isomorphism SD(L) ∼= P(ptD(L)).

(4) =⇒ (5). This is clear.

(5) =⇒ (6). If S(L) is spatial, the frame L is totally spatial, and so every
element is the meet of its essential primes by Lemma 3.17. Furthermore, if
S(L) is Boolean, in particular all two-element sublocales are complemented,
and so every prime is covered.

(6) =⇒ (7). This follows from Lemma 3.15 (if a prime is essential for one
element and it is covered, it is also absolutely essential).

(7) =⇒ (8). If all elements are the meets of the absolutely essential primes
above it, then in particular this must be true for elements other than 1, and so
their corresponding meet of absolutely essential primes must be nonempty.

(8) and (9) are equivalent. If (8) holds, then by Lemma 3.18 all nonzero
Boolean sublocales have at least a point and since all sublocales are unions
of Boolean sublocales this also implies that all nonzero sublocales have at
least a point. For the converse, suppose that every nonzero sublocale of L
has a covered prime. In particular, every Boolean sublocale b(a) with a 6= 1
has a prime p ∈ b(a), and this by Lemma 3.18 means that a has an essential
prime which is covered. But since p is covered, by Lemma 3.16 this implies
that it is also an absolutely essential prime of a.

(8) =⇒ (1). Suppose that L is spatial, and that every element other than
1 has a covered absolutely essential prime above it. By Lemma 3.20, we
know that the frame is totally spatial, as every element is the meet of the
absolutely essential primes above it and so, a fortiori, it is the meet of the
essential primes above it. Let us show that all primes of L are covered.
Every prime p has an absolutely essential prime and so, in particular, the
meet

∧
{p} has an essential prime, which must be p itself. Furthermore,

our assumption also tells us that the absolutely essential prime p must be
covered.

4. The relation between SD(L) and sp[S(L)]
We begin this section with a non-spatial version of Theorem 1.7, that is,

we explore locales in which every prime is covered. Note that this is the
TD analogue of the point-free notion of T1 locale introduced by Rosický and
Šmarda [13].

Theorem 4.1. For a frame L, the following are equivalent.
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(1) All primes of L are covered;
(2) sp[S(L)] ⊆ Sb(L);
(3) SD(L) = S(L);
(4) SD(L) is closed under arbitrary intersections in S(L);
(5) sp[S(L)] ⊆ SD(L).

Proof : Suppose that (1) holds. Then, (2) holds by Corollary 1.2. Suppose
that (2) holds and let S an arbitrary sublocale. If p ∈ ptD(S), then in
particular p ∈ pt(S) and so b(p) ∈ sp[S(L)] ⊆ Sb(L). By Lemma 1.1, one has
that p is covered in L, and so S ∈ SD(L). That (3) implies (4) is obvious and
(4) implies (3) because every sublocale is an intersection of complemented
sublocales (and hence of D-sublocales). Assume now that (3) holds and let
p be a prime. Then b(p) ∈ sp[S(L)] ⊆ SD(L) and so p ∈ ptD(b(p)) ⊆ ptD(L).
Hence (1) follows.

We can use SD(L) for characterizing a number of well-known properties for
a frame L. For example we have the following (but see also Theorem 3.21 or
Theorem 4.1).

Proposition 4.2. For a frame L, the following are equivalent:

(1) L is totally spatial ;
(2) SD(L) ⊆ sp[S(L)].

Proof : (1) =⇒ (2). This is trivial since if L is totally spatial then sp[S(L)] =
S(L).

(2) =⇒ (1). By the observation preceding the proposition, every pointless
sublocale of L is in SD(L), and so by assumption, every pointless sublocale
is spatial. Thus L has no nontrivial pointless sublocales, i.e. every nontrivial
sublocale of L has a point. By [8, p. 269], it follows that L is totally spatial.

Next we explore the inclusion SD(L) ⊆ Sb(L) (note that the inclusion is
actually equivalent to the equality SD(L) = Sb(L), since every frame has a
unique Boolean and dense sublocale). We first give a necessary condition for
it:

Proposition 4.3. If SD(L) ⊆ Sb(L) then sp(L) is totally spatial.

Proof : Let S be a pointless sublocale contained in sp(L). Then S ∈ SD(L) ⊆
Sb(L). It is easy to show that one always has Sb(sp(L)) ⊇↓Sb(L) sp(L). It
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follows that S ∈ Sb(sp(L)). But sp(L) is spatial and so S ∈ Sb(sp(L)) ⊆
sp[S(sp(L))], but a spatial pointless sublocale must be trivial. Hence sp(L)
does not contain any nontrivial pointless sublocales, which by [8, p. 269]
implies that sp(L) is totally spatial.

We now characterize frames for which the inclusion SD(L) ⊆ Sb(L) holds.
Despite the fact that we have not been able to find a clear geometric condition
as those occurring in other results of the paper (spatiality, total spatiality,
scatteredness, TD-spatiality,. . . ), condition (2) below indeed tells us some-
thing: the assumption in (1) (i.e. that a given sublocale S is a D-sublocale)
is relative to L, whereas the assumption in (2) is absolute, in the sense that
it does not depend on the ambient frame L:

Proposition 4.4. For a frame L, the following are equivalent:

(1) SD(L) ⊆ Sb(L) (i.e. every D-sublocale is smooth);
(2) Sublocales of L without covered primes in themselves are smooth in L.

Proof : (1) =⇒ (2). Let S be a sublocale such that ptD(S) = ∅. Then
S ∈ SD(L) ⊆ Sb(L) so it is smooth.

(2) =⇒ (1). Let S ∈ SD(L), and consider the decomposition S = spD(S) ∨
(S \ spD(S)). Observe that by Proposition 2.3, S \ spD(S) is a D-sublocale
as well, i.e. ptD(S \ spD(S)) ⊆ ptD(L). Assume that there exists some
p ∈ ptD(S\spD(S)). Then p ∈ ptD(L)∩S ⊆ ptD(S) and hence b(p) ⊆ spD(S).
Therefore, b(p) ⊆ S \ spD(S) ⊆ S \ b(p) ⊆ L \ b(p) = b(p)c, which yields
a contradiction. Hence ptD(S \ spD(S)) = ∅ and so S \ spD(S) is smooth
in L. Moreover, spD(S) =

∨
p∈ptD(S) b(p) is also a smooth sublocale because

ptD(S) ⊆ ptD(L) and Lemma 1.1. Hence S = spD(S)∨(S\spD(S)) is smooth,
as it is a join of smooth sublocales.

By analogy with the classical spectrum, frames L for which SD(L) ⊆ Sb(L)
holds are going to be called D-scattered.

5. Adding Sc(L) to the picture
First, let us connect the frame of joins of closed sublocales with the spa-

tialization sublocale of S(L).

Lemma 5.1. A frame L is spatial if and only if Sc(L) ⊆ sp[S(L)].

Proof : Suppose that L is spatial. For a closed sublocale ↑a ⊆ L, suppose
that we have b ∈ ↑a. By spatiality, b =

∧
pt(↑b), but since all primes above
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b are also above a, this is the same as
∧

(pt(↑a) ∩ ↑a) =
∧
{ p ∈ ↑a | b ≤

p }. Then, ↑a ⊆ M(pt(↑a)), and this means that ↑a is spatial. Conversely,
if Sc(L) ⊆ sp[S(L)] we have that every closed sublocale is spatial, and in
particular L itself is.

Lemma 5.2. A frame L is such that all its primes are maximal if and only
if sp[S(L)] ⊆ Sc(L).

Proof : Suppose that for a frame L all its primes are maximal. This means
that for every prime p ∈ pt(L) we have that b(p) is closed, and since the
elements of sp[S(L)] are all joins of elements of the form b(p), we have
sp[S(L)] ⊆ Sc(L). Conversely, if we have a prime p ∈ L which is not maximal,
say p < x < 1, we have that b(p) 6= c(p), and since b(p) does not equal its
closure it is not closed. Then, sp[S(L)] * Sc(L).

Secondly, we look at the relation between Sc(L) and SD(L). First, we ob-
serve that we always have Sc(L) ⊆ SD(L) (we know that all closed sublocales
are D-sublocales, and the collection of D-sublocales is closed under joins).

Proposition 5.3. For a frame L, we have that SD(L) ⊆ Sc(L) if and only if
L is subfit and D-scattered.

Proof : Suppose that for a frame L we have SD(L) ⊆ Sc(L). We have that
all closed sublocales are complemented, and so Sc(L) ⊆ Sb(L). We then have
that SD(L) ⊆ Sb(L), which means that L is D-scattered. Furthermore, as
this implies also that SD(L) = Sb(L), we also have that Sc(L) = Sb(L), which
means that L is subfit (see [10]). Conversely, suppose that L is D-scattered
and subfit. Since L is subfit, we have that Sc(L) = Sb(L) (see [10]), and since
L is D-scattered, we have that SD(L) = Sb(L). Hence, SD(L) = Sc(L).
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