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Abstract: In this paper we introduce the dynamical Schrödinger problem on ab-
stract metric spaces, defined for a wide class of entropy and Fisher information
functionals. Under very mild assumptions we prove a generic Gamma-convergence
result towards the geodesic problem as the noise parameter ε ↓ 0. We also investi-
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are discussed.

Keywords: Benamou-Brenier formulation, Schrödinger bridge, Fisher information,
Gamma-convergence, geodesic convexity, gradient flows, optimal transport.
Math. Subject Classification (2010): 49J45, 49Q20, 58B20.

1. Introduction
Gaspard Monge and Erwin Schrödinger came up with two a priori unrelated

problems that are concerned with finding a preeminent way of deforming a pre-
scribed probability distribution into another one. While Monge was interested
in optimizing the cost of transportation of goods [62, 63, 58], Schrödinger’s
original thought experiment [59, 60] aimed for finding the most likely evolution
between two subsequent observations of a cloud of independent particles. So,
even if in both cases we are facing an interpolation and optimization problem,
the former is deterministic in nature whereas the latter is strongly related to
large deviations theory, and is, at the first glance, purely stochastic. We refer
to a recent survey [22] for various formulations and aspects of the Schrödinger
problem, and to [64, 65] for a discussion of its role in Euclidean Quantum
Mechanics.
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Anyway, several analogies and connections exist between the two problems.
They can be appreciated by looking carefully at the interpolation aspects of
both problems, namely at their dynamical formulations and the underlying
equations governing the respective evolutions. In the case of a quadratic trans-
portation cost over a Riemannian manifold M , the Monge-Kantorovich op-
timal transport problem is solved (at least in a weak sense) by interpolat-
ing between the source and the target distributions with a constant-speed,
length-minimizing geodesic in the Otto-Wasserstein space of probability mea-
sures P2(M). This gives a curve (µt)t∈[0,1] ⊂ P2(M) which formally satisfies
(in the sense of the celebrated Otto calculus [55, 62, 63])

∇µ̇tµ̇t = 0, (1.1)

where ∇µ̇t is the covariant derivative along the curve t 7→ µt. The Schrödinger
problem with parameter ε (from a physical viewpoint, ε can be seen as a tem-
perature or level of noise) can also be translated into such a geometric language.
By analogy, when looking at the covariant derivative along the optimal evolu-
tion (µεt)t∈[0,1], usually called Schrödinger bridge or entropic interpolation, the
resulting equation is surprising and can be viewed [23] as Newton’s second law

∇µ̇εt µ̇
ε
t =

ε2

8
∇I(µεt), (1.2)

where in the right-hand side ∇ denotes the gradient in the Otto-Wasserstein
pseudo-Riemannian sense and I is the Fisher information

I(µ) = 4

∫
M

|∇√ρ|2 dvol =

∫
M

|∇ log ρ|2ρ dvol

provided µ = ρ · vol. A related observation is that the (scaled) heat flow,
coinciding with the (scaled) gradient flow of the Boltzmann-Shannon entropy
[40, 63]

H(µ) =

∫
M

ρ log ρ dvol

for µ = ρ · vol, is also a solution to (1.2): a simple differentiation in time of
µ̇t = −ε

2∇H(µt) and the fact that I = |∇H|2 in the Otto-Wasserstein sense
automatically yield

∇µ̇tµ̇t =
ε

2
∇2H(µt) ·

ε

2
∇H(µt) =

ε2

8
∇|∇H(µt)|2 =

ε2

8
∇I(µt).

This shows that the Schrödinger problem lies between optimal transport and
diffusion and is naturally intertwined with both deterministic behaviour and
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Brownian motion. It shares the same Newton’s law as the gradient flow of the
entropy, but unlike the heat flow it has a prescribed final configuration to match:
it is up to the parameter ε to tip the balance in favour of deterministic transport
or diffusion. With this heuristics in mind, we see that as ε → 0 the applied
force ε2∇I(µεt) in (1.2) vanishes, so that the Schrödinger problem may be
interpreted as a noisy (entropic) counterpart of the Monge-Kantorovich optimal
transport, corresponding to the unforced geodesic evolution (1.1) discussed
above. This informal relationship has a rigorous counterpart, which dates back
to the pioneering works on the asymptotic behavior of the Schrödinger problem
as ε→ 0 of T. Mikami, M. Thieullen [50, 51], and C. Léonard [44, 45]. This was
subsequently developed in [19, 8, 38]. Very recently [47, 30], similar small-noise
results were obtained for static Monge-Kantorovich problems regularized with
more general entropies.
This first connection can be investigated further and by doing so one can

remark that (1.2) is exactly the Euler-Lagrange optimality equation for the
dynamical Benamou-Brenier formulation of the Schrödinger problem [18, 22,
45, 39], which consists in minimizing the Lagrangian kinetic action perturbed
by the Fisher information: In more precise terms,

inf

{
1

2

∫ 1

0

∫
M

|vt|2 dµtdt+
ε2

8

∫ 1

0

I(µt) dt

}
, (1.3)

where the infimum runs over all solutions of the continuity equation

∂µt + div(vtµt) = 0

with prescribed initial and final densities. Also from this variational standpoint
the reader can see that as ε→ 0 the Schrödinger problem formally reduces to

inf
1

2

∫ 1

0

∫
M

|vt|2 dµtdt, (1.4)

namely to the dynamical Benamou-Brenier formulation of the (quadratic) op-
timal transport problem [9]. This variational representation depicts in a way
clearer than (1.2) the double nature of the Schrödinger problem, the compe-
tition between the determinism encoded in the kinetic energy and the unpre-
dictability coming from the Fisher information, and the role played by ε in
balancing these two opposite behaviours.

The double bond of the Schrödinger problem with optimal transport on the
one hand and heat flow on the other hand results in fruitful and wide-ranging
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applications of both theoretical and applied interest. Indeed, from the connec-
tion with the heat flow the solutions to the Schrödinger problem gain regu-
larity properties which are not available in optimal transport, and thanks to
the asymptotic behaviour of the Schrödinger problem as ε → 0 entropic in-
terpolations represent an efficient way to approximate Wasserstein geodesics
with second-order accuracy [38, 25]. This approach has already turned out
to be successful in conjunction with functional inequalities [24, 34] and dif-
ferential calculus along Wasserstein geodesics [38]. But the nice behaviour of
Schrödinger bridges is important also for computational purposes. The impact
of Schrödinger problem and Sinkhorn algorithms (deeply related to the static
formulation of the former) on the numerical methods used in optimal trans-
portation theory has been impressive, as witnessed by several recent works (see
[57] and references therein as well as [26, 10, 12, 13, 11, 29]).

As a matter of fact neither the particular structure of the Wasserstein space
nor the specific choice of the Boltzmann-Shannon functional are required to
define the two problems in question (cf. a related discussion in the heuristic
paper [43]): one can of course define length-minimizing geodesics in any metric
space (X, d), and the Schrödinger problem (or at least its Benamou-Brenier
formulation described above) merely involves an entropy functional and a cor-
responding Fisher information. Given such a reasonable entropy functional E
on X that generates a gradient flow in a suitable sense, the corresponding Fisher
information is expected to be nothing but the dissipation rate of E (along solu-
tions of its own gradient flow), just as I coincides with the rate of dissipation
of the entropy H along the heat flow. This observation is the starting point of
the present paper, where we intend to study the abstract Schrödinger bridge
problem or, in other words, the entropic approximation of geodesics in metric
spaces.
Under very mild assumptions on X and E, we will prove the solvability of the

abstract ε-Schrödinger problem and the Γ-convergence to the corresponding
geodesic problem as ε → 0. We will also rigorously justify, in the metric
setting, that any trajectory of a gradient flow solves an associated Schrödinger
problem. Leveraging a quantitative AC2 estimate based on a straightforward
chain-rule in the smooth Riemannian setting, the cornerstone of our analysis
will be the systematic construction of an ε-regularized entropic copy (γεt )t∈[0,1]

of any arbitrary curve (γt)t∈[0,1]. These perturbed curves will provide recovery
sequences for the Γ-convergence. Our construction is completely Eulerian and
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essentially consists in running the E-gradient flow for a short time hε(t) starting
at γt for all t, for well-chosen functions hε ≥ 0. The challenge here will be to
reproduce the (formal, differential) Riemannian chain-rule in metric spaces.
Notably, an analogous pseudo-Riemannian idea has recently been used by A.
Baradat and some of the authors [8, 53] in order to prove the Γ-convergence
for the classical dynamical Schrödinger problem on the Otto-Wasserstein space
and for its counterpart on the non-commutative Fisher-Rao space, respectively.
However, in those papers the computations were ad hoc and heavily exploited
the underlying structures of the particular spaces as well as the properties of
the particular flows (namely, of the classical heat flow and of its restriction to
multivariate Gaussians), whereas here we derive everything from the existence
of an abstract gradient flow on X driven by E.
Another notion of paramount importance herein will be convexity. In the

smooth Riemannian setting, and given λ ∈ R, elementary calculus shows that
the λ-convexity of E along geodesics is of course equivalent to a uniform lower
bound HessE(x) ≥ λ Id as quadratic forms in the tangent space, but also more
importantly to the λ-contractivity of the E-gradient flow. In the metric setting
no second order calculus is available in general, and the very notion of gra-
dient flow as well as its connection with geodesic convexity and contractivity
become much more subtle. The key notion of gradient flow that we shall use
throughout is that of Evolution Variational Inequality, or EVIλ flow [2]. Under
reasonable assumptions it is well known that (a suitable variant of) convex-
ity of E generally provides existence of an EVIλ-flow starting at any x ∈ X,
see [2]. A natural question to ask is whether the converse also holds true, i.e.
whether well-posedness of a reasonable gradient flow implies some convexity.
This was proved in [15] for the specific case of the Euclidean Wasserstein space
X = W2(Ω), Ω ⊂ Rd, and at least for the so-called internal energies, and it
is shown therein that 0-contractivity of the gradient flow (or equivalently, of
the associated nonlinear diffusion equation) implies 0-displacement convexity
in the sense of McCann [49]. In the same spirit, and building up on Otto and
Westdickenberg [56], Daneri and Savaré proved in a very general metric setting
that the generation of an EVIλ-flow indeed implies λ-geodesic convexity [27,
Theorem 3.2]. A byproduct of our analysis for the Γ-convergence will give a
new independent proof of this latter fact by a completely different approach, es-
sentially by constructing an ε-entropic regularization of geodesics and carefully
examining the defect of optimality at order one in ε→ 0.
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As a main application of the Γ-convergence of the Schrödinger problem to the
geodesic problem as ε→ 0 (and more generally of the ε′-Schrödinger problem
to the ε-one as ε′ → ε) we investigate the behaviour of the optimal value of the
dynamical Schrödinger problem, henceforth called entropic cost, as a function
of the temperature parameter ε, with particular emphasis on the regularity
and the small-noise regime. For the classical dynamical Schrödinger problem
(1.3), it has recently been proved by the second author with G. Conforti [25]
that the entropic cost is of class C1((0,∞)) ∩ C([0,∞)) (actually C1([0,∞))
under suitable assumptions) and twice a.e. differentiable; once this regularity
information is available, the formula for the first derivative is rather easy to
guess, as by the envelope theorem it coincides with the partial derivative w.r.t. ε
of the functional in (1.3) evaluated at any critical point. Denoting by Cε(µ, ν)
the value in (1.3) with marginal constraints µ and ν and by (µεt)t∈[0,1] the
associated Schrödinger bridge, this statement reads as

d

dε
Cε(µ, ν) =

ε

4

∫ 1

0

I(µεt) dt, ∀ε > 0

and in [25] this identity played an important role in the study of both the large-
and small-noise behaviour of the Schrödinger problem, obtaining in particular a
Taylor expansion around ε = 0 with o(ε2)-accuracy. Since the central object in
the present paper is an abstract and general formulation of (1.3), an analogous
result is expected to hold. However, from a technical viewpoint the proof
is much more subtle and challenging, because unlike (1.3) our metric version
of the dynamical Schrödinger problem may have multiple solutions. For this
reason the discussion about the regularity of the entropic cost in this paper is
less concise than in [25]. Nonetheless, we are still able to deduce the same kind
of Taylor expansion with the same accuracy. Given the previous interpretation
of the Schrödinger problem as a noisy Monge-Kantorovich problem and the
importance of quantitative estimates in approximating optimal transport by
means of the Schrödinger problem, it is reasonable to expect that such a Taylor
expansion (valid in a general framework for a wide choice of functionals E) will
fit to a countless variety of examples, some of which will be discussed here.

The paper is organized as follows: In Section 2 we give a short and formal
proof of our fundamental AC2 estimate in the smooth Riemannian setting, and
show how it can be exploited to establish Γ-convergence and convexity. Sec-
tion 3 fixes the metric framework in which we work for the rest of the paper,
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and extends the previous estimate to this metric setting. In Section 4 we prove
the Γ-convergence as ε ↓ 0 and establish the geodesic convexity. Section 5 stud-
ies the dependence of the optimal entropic cost on the temperature parameter
ε > 0, and provides a second order expansion. Finally, we list in Section 6
several examples and applications covered by our abstract results.

2. Heuristics
Here we remain formal and the computations are carried in a Riemannian

setting, where classical calculus and chain-rules are available. (Significant work
will be required later on to adapt the computations in metric spaces.) All the
objects and functions in this section are therefore considered to be smooth, and
we deliberately ignore any regularity issue.
LetM be a Riemannian manifold with scalar product 〈., .〉q at a point q ∈M

and induced Riemannian distance d, and let V : M → R be a given potential.
For simplicity we assume here that V is globally bounded from below on M ,
and up to replacing V by V − minV we can assume that V (q) ≥ 0. (In
section 3 we will relax this assumption and allow V to be only locally bounded.)
Given a small temperature parameter ε > 0, and following [43], the (dynamic)
geometric Schrödinger problem consists in solving the optimization problem

1

2

∫ 1

0

∣∣∣∣dqtdt

∣∣∣∣2 dt+
ε2

2

∫ 1

0

|∇V |2(qt) dt −→ min;

s.t. q ∈ C([0, 1],M) with endpoints q0, q1. (2.1)

For s ≥ 0 we denote by Φ(s, q0) the semi-flow corresponding to the autonomous
V -gradient flow started from q0 ∈M ,{

d

ds
Φ(s, q0) = −∇V (Φ(s, q0)),

Φ(0, q0) = q0.

The goal of this section is to give a straightforward proof of the following two
facts, assuming that the potential V is well behaved:

(i) the ε-Schrödinger problem converges to the geodesic problem as ε→ 0;
(ii) λ-contractivity of the generated flow Φ can be turned into λ-convexity

along geodesics.
With this goal in mind, fix any two endpoints q0, q1 ∈M and take an arbitrary
curve joining them

q ∈ C([0, 1],M), q|t=0 = q0 and q|t=1 = q1.
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For any function h(t) ≥ 0 with h(0) = h(1) = 0, we perturb q by defining

q̃t := Φ(h(t), qt), t ∈ [0, 1]

i.e. q̃t is the solution of the V -gradient flow at time s = h(t) ≥ 0 starting from
qt at time s = 0. We shall refer to t ∈ [0, 1] as a “horizontal time” and to
s ∈ [0, h(t)] as a “vertical time”, see Figure 1. Later on we will think of the
curve q̃ as a “regularized” version of q.

q0 q1

Φ(s, qt)

t

s

q̃t

qt

Figure 1. The perturbed curve

Note that the endpoints remain invariant, q̃0 = q0 and q̃1 = q1. Since by
definition of the flow ∂sΦ(s, qt) = −∇V (Φ(s, qt)), the speed of the perturbed
curve can be computed as

dq̃t
dt

=
d

dt

(
Φ(h(t), qt)

)
= ∂sΦ(h(t), qt)h

′(t) + ∂qΦ(h(t), qt)
dqt
dt

= −h′(t)∇V (q̃t) + ∂qΦ(h(t), qt)
dqt
dt
.

Bringing the h′(t) term to the left-hand side and taking the half squared norm
(in the tangent space Tq̃tM) gives

1

2

∣∣∣∣dq̃tdt

∣∣∣∣2 +
1

2
|h′(t)|2|∇V (q̃t)|2 + h′(t) 〈∇V (q̃t),

dq̃t
dt
〉q̃t︸ ︷︷ ︸

= d
dtV (q̃t)

=
1

2

∣∣∣∣∂qΦ(h(t), qt)
dqt
dt

∣∣∣∣2 .
(2.2)
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Assume now that, for whatever reason, the gradient flow satisfies the following
quantified contractivity estimate w.r.t. the Riemannian distance d

d(Φ(s, p0),Φ(s, p′0)) ≤ e−λsd(p0, p
′
0), ∀s ≥ 0, p0, p

′
0 ∈M (2.3)

for some fixed λ ∈ R. Then it is easy to check that the linear map v 7→
∂qΦ(s, p) · v (from TpM to TΦ(s,p)M) has norm less than e−λs, and therefore
(2.2) gives

1

2

∣∣∣∣dq̃tdt

∣∣∣∣2 +
1

2
|h′(t)|2|∇V (q̃t)|2 + h′(t)

d

dt
V (q̃t) ≤

1

2
e−2λh(t)

∣∣∣∣dqtdt

∣∣∣∣2 . (2.4)

Integration by parts yields next

1

2

∫ 1

0

∣∣∣∣dq̃tdt

∣∣∣∣2 dt+
1

2

∫ 1

0

|h′(t)|2|∇V (q̃t)|2 dt−
∫ 1

0

h′′(t)V (q̃t) dt

≤ 1

2

∫ 1

0

e−2λh(t)

∣∣∣∣dqtdt

∣∣∣∣2 dt+
(
h′(0)V (q0)− h′(1)V (q1)

)
,

(2.5)

where the invariance q̃0 = q0, q̃1 = q1 was used in the last boundary terms. This
fundamental estimate gives a quantified bound on the kinetic energy (namely
the L2 speed) of q̃ in terms of that of the original curve q, and will be the
cornerstone of the whole analysis.
Both the convexity and the convergence of the Schrödinger problem will

actually follow by setting h(t) = εH(t) for suitable choices of H(t) ≥ 0, and
then letting ε ↓ 0. Note that in this case we have h(t) = εH(t) ↓ 0 uniformly,
hence the perturbed curve

qεt := Φ(εH(t), qt) (2.6)

will converge uniformly to q as ε ↓ 0 too.

2.1. Convergence of the Schrödinger problem. A first use of (2.5) will
be crucial in proving the Γ-convergence of the Schrödinger functional

Aε(q) :=
1

2

∫ 1

0

∣∣∣∣dqtdt

∣∣∣∣2 dt+
ε2

2

∫ 1

0

|∇V (qt)|2 dt

towards the kinetic action

A(q) :=
1

2

∫ 1

0

∣∣∣∣dqtdt

∣∣∣∣2 dt

as ε ↓ 0.
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Theorem 2.1 (formal Γ-limit). For any q0, q1 ∈M it holds

A = Γ− lim
ε→0
Aε

for the uniform convergence on the space of curves with fixed endpoints q0, q1.

Proof : We check separately the Γ− lim inf and the Γ− lim sup properties. As
for the former, given any curve q joining q0, q1 and any qε → q uniformly, since
the kinetic energy functional q 7→ A(q) is always lower semicontinuous for the
uniform convergence we get first

A(q) ≤ lim inf
ε↓0

A(qε) ≤ lim inf
ε↓0

Aε(qε).

For the Γ− lim sup, let H(t) = min{t, 1− t} be the hat function centered at
t = 1/2 with height 1/2 and vanishing at the boundaries, set h(t) = εH(t),
and let qε be the regularized curve constructed in (2.6). In this simple smooth
setting it is not difficult to check that qε → q uniformly. Moreover, our choice of
h(t) results in |h′(t)|2 = ε2 with h′(0) = ε, h′(1) = −ε, and h′′(t) = −2εδ1/2(t)
in the distributional sense. Therefore (2.5) gives immediately

Aε(qε) + 2εV (qε1/2) =
1

2

∫ 1

0

∣∣∣∣dqεtdt

∣∣∣∣2 dt+
ε2

2

∫ 1

0

|∇V (qεt )|2 dt+ 2εV (qε1/2)

≤ 1

2

∫ 1

0

e−2ελH(t)

∣∣∣∣dqtdt

∣∣∣∣2 dt+ ε
(
V (q0) + V (q1)

)
.

The singularity of h′′ at t = 1/2 can be easily and rigorously worked around,
simply integrating by parts (2.2) separately on each interval t ∈ [0, 1/2] and
t ∈ [1/2, 1] and keeping track of the boundary terms resulting ultimately in
the above 2εV (qε1/2) ≥ 0. Discarding this latter non-negative term finally gives

lim sup
ε↓0

Aε(qε)

≤ lim sup
ε↓0

{
1

2

∫ 1

0

e−2ελH(t)

∣∣∣∣dqtdt

∣∣∣∣2 dt+ ε
(
V (q0) + V (q1)

)}
= A(q)

and concludes the proof.

2.2. Quantifying the convexity. The second consequence of our fundamen-
tal estimate (2.5) is the quantification of the convexity of the potential V in
terms of the quantified contractivity (2.3). The point here is that the result
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can be obtained directly from (2.2), which can be established in a purely metric
setting without relying on differential calculus (see the next section for details).

Theorem 2.2. Assume that V satisfies 2.3. Then V is λ-geodesically convex,
i.e.

V (qθ) ≤ (1− θ)V (q0) + θV (q1)−
λ

2
θ(1− θ)d2(q0, q1), θ ∈ (0, 1)

for any geodesic (qθ)θ∈[0,1] in M .

Proof : Let (qt)t∈[0,1] be an arbitrary geodesic with endpoints q0, q1. For fixed
θ ∈ (0, 1) let

Hθ(t) :=


1

θ
t if t ∈ [0, θ],

− 1

1− θ
(t− 1) if t ∈ [θ, 1],

be the hat function centered at t = θ with height 1 and vanishing at t = 0, 1,
and for any ε > 0 let qε be the regularized curve constructed in (2.6) with
h(t) = εHθ(t). Note moreover that

h′(0) =
ε

θ
, h′(1) = − ε

1− θ
, h′′(t) = −ε

(
1

θ
+

1

1− θ

)
δθ(t)

in the distributional sense. Discarding the non-negative term |h′(t)|2|∇V (q̃t)|2
in (2.5), the optimality of the geodesic q from q0 to q1 gives

0 ≤ 1

2

∫ 1

0

∣∣∣∣dqεtdt

∣∣∣∣2 dt− 1

2

∫ 1

0

∣∣∣∣dqtdt

∣∣∣∣2 dt

(2.5)
≤
∫ 1

0

h′′(t)V (qεt ) dt+
1

2

∫ 1

0

(
e−2λh(t) − 1

) ∣∣∣∣dqtdt

∣∣∣∣2 dt

+
(
h′(0)V (q0)− h′(1)V (q1)

)
= −ε

(
1

θ
+

1

1− θ

)
V (qεθ) +

d2(q0, q1)

2

∫ 1

0

(
e−2λεHθ(t) − 1

)
dt

+ ε

(
1

θ
V (q0) +

1

1− θ
V (q1)

)
,

where the last equality follows from the constant speed property |dqtdt |
2 =

d2(q0, q1) of the geodesic (qt)t∈[0,1] connecting q0, q1 as well as from the ex-
plicit properties of h(t) = εHθ(t) listed above. Multiplying by θ(1−θ)

ε > 0 and
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rearranging gives

V (qεθ) ≤ (1− θ)V (q0) + θV (q1) + θ(1− θ)d
2(q0, q1)

2

∫ 1

0

e−2λεHθ(t) − 1

ε
dt︸ ︷︷ ︸

:=Iε

.

Since
∫ 1

0 Hθ(t)dt = 1
2 for all θ we see that Iε → −2λ

∫ 1

0 Hθ(t) dt = −λ as ε ↓ 0,
and the result immediately follows since V (qεθ)→ V (qθ) as well in the left-hand
side.

3. In metric spaces
Before trying to adapt the previous computations to the metric context we

need to fix once and for all the framework to be used in the sequel.

3.1. Preliminaries and setting.
• By C([0, 1], (X, d)), or simply C([0, 1],X), we denote the space of con-
tinuous curves with values in the metric space (X, d). The collection of
absolutely continuous curves on [0, 1] is denoted by AC([0, 1], (X, d)), or
simply by AC([0, 1],X). For any curve (γt) ∈ AC([0, 1],X), its length
is well defined as

`(γ) :=

∫ 1

0

|γ̇t| dt,

where |γ̇t| denotes the metric speed of γ. If |γ̇t| ∈ L2(0, 1), then we
shall say that (γt) ∈ AC2([0, 1],X). For these notions of absolutely
continuous curves and metric speed in a metric space, see for instance
[2, Section 1.1].
• A curve γ : [0, 1] → X is called geodesic provided d(γt, γs) = |t −
s|d(γ0, γ1) for all t, s ∈ [0, 1].
• The slope |∂E| of a functional E : X → R ∪ {+∞} at a point x ∈ X is
set as +∞ if x /∈ D(E), 0 if x is isolated, and defined as

|∂E|(x) := lim sup
y→x

[E(x)− E(y)]+

d(x, y)

if x ∈ D(E).
• A curve (γt)t>0 ⊂ X is said to be a gradient flow of E in the EVIλ sense
(with λ ∈ R) provided (γt) ∈ ACloc((0,∞),X) and

1

2

d

dt
d2(γt, y) +

λ

2
d2(γt, y) + E(γt) ≤ E(y), ∀y ∈ X, a.e. t > 0. (EVIλ)
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If γt → x as t ↓ 0 with x ∈ D(E), then we say that the gradient flow
(γt) starts at x.

After this premise, let us fix the framework we shall work within.

Setting 3.1. On the space (X, d) and on the functional E : X → R ∪ {+∞}
we make the following assumptions:
(A1) (X, d) is a complete and separable metric space;
(A2) E is lower semicontinuous with dense domain, i.e. D(E) = X, and

locally bounded from below in the following sense: for any d-bounded set
B ⊂ X there exists cB ∈ R such that E(x) ≥ cB for all x ∈ B;

(A3) there exists λ ∈ R such that for any x ∈ X there exists an EVIλ-
gradient flow of E starting from x. In view of (3.3), the corresponding
1-parameter semigroup shall be denoted St.

Sometimes, and always explicitly indicated, we will also use the following
extra hypothesis.

Assumption 3.2. There exists a Hausdorff topology σ on X such that d-
bounded sets are sequentially σ-compact. Moreover, the distance d and the
slope |∂E| are σ-sequentially lower semicontinuous.

Remark 3.3. Assumption 3.2 is in particular valid provided (X, d) is a lo-
cally compact space. Indeed, in this case the metric topology of (X, d) is an
admissible candidate for σ, since bounded sets are relatively compact (by [17,
Proposition 2.5.22]) and the lower semicontinuity of the slope |∂E| w.r.t. the
metric topology is a consequence of the forthcoming identity (3.1). �

Remark 3.4. Assumption 3.2 implies that d-converging sequences are also σ-
converging. Indeed, given (xn) ⊂ X with d(x, xn) → 0 as n → ∞ for some
limit x ∈ X, by Assumption 3.2 and by the boundedness of (xn)n there exist a
subsequence (xnk)k and y ∈ X such that

xnk
σ→ y as k →∞.

Since d is σ-sequentially lower semicontinuous (again by Assumption 3.2) we
deduce that

d(x, y) ≤ lim inf
k→∞

d(x, xnk) = lim
n→∞

d(x, xn) = 0,

whence x = y. This classically implies that the whole sequence converges,
xn

σ→ x. �
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We list now some useful properties of EVI-gradient flows, which hold true
in Setting 3.1 and that we shall use extensively in the sequel. First of all,
whenever x ∈ X is the starting point of an EVIλ flow, the slope there (a local
object, a priori) admits the global representation

|∂E|(x) = sup
y 6=x

(E(x)− E(y)

d(x, y)
+
λ

2
d(x, y)

)+

, (3.1)

see [54, Proposition 3.6]. Since we assume that any x ∈ X is the starting point
of an EVIλ-gradient flow, this means in particular that |∂E| : X → [0,∞] is
lower semicontinuous, since so is the right-hand side above (as a supremum of
lower semicontinuous functions). This also implies by [2, Theorem 1.2.5] that
|∂E| is a strong upper gradient for E in the sense of [2, Definition 1.2.1], namely:
for every (γt) ∈ AC([0, 1],X), the map t 7→ E(γt) is Borel and

|E(γt1)− E(γt0)| ≤
∫ t1

t0

|∂E|(γt)|γ̇t| dt, ∀0 ≤ t0 ≤ t1 ≤ 1, (3.2)

the right-hand side being possibly infinite. In addition, if (γt) is an EVIλ-
gradient flow of E then the following hold [54, Theorem 3.5]:

(i) If (γt) starts from x ∈ D(E) and (γ̃t) is a second EVIλ-gradient flow of
E starting from y ∈ D(E) respectively, then

d2(γt, γ̃t) ≤ e−2λtd2(x, y), ∀t ≥ 0. (3.3)

This means that EVI-gradient flows are unique (provided they exist)
and thus if there exists an EVI-gradient flow (γt) starting from x, then
a 1-parameter semigroup (St)t>0 is unambiguously associated to it via
St(x) = γt.

(ii) The maps t 7→ γt and t 7→ E(γt) are locally Lipschitz in (0,∞) with val-
ues in X and R, respectively, and satisfy the Energy Dissipation Equality

− d

dt
E(γt) =

1

2
|γ̇t|2 +

1

2
|∂E|2(γt) = |γ̇t|2 = |∂E|2(γt), for a.e. t > 0. (3.4)

(iii) The map
t 7→ eλt|∂E|(γt) is non-increasing. (3.5)

(iv) If (γt) starts from x and y ∈ D(|∂E|), then

|∂E|2(γt) ≤
1

2eλt − 1
|∂E|2(y) +

1

Iλ(t)2
d2(x, y), provided − λt < log 2,

(3.6)
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where Iλ(t) :=
∫ t

0 e
λs ds.

We emphasize that these properties directly follow from the very definition
(EVIλ) of gradient flows, and a priori do not require E to be geodesically λ-
convex. Although analogous statements can be found in [2] and [1] under
convexity assumptions on E, the latter are essentially needed to grant existence
of EVI-gradient flows. It is important to stress this fact because in Setting 3.1
we assume that for any x ∈ X there exists an EVIλ-gradient flow of E starting
there, which from [27] is known to imply that E is geodesically convex. In
Section 3 we also provide an alternative proof of this latter fact, whence the
necessity for us to avoid all properties of EVI-gradient flows which are actually
a consequence of geodesic convexity.
We conclude this preliminary part with a general integrability result about

EVIλ-gradient flows, which we could not find explicitly written in the literature
and will be used later on in the proof of Lemma 3.6.

Lemma 3.5. With the same assumptions and notations as in Setting 3.1, let
x ∈ X. Then

t 7→ E(Stx) is integrable in [0, T ], for all T > 0,
regardless of whether E(x) is finite or not.

On intervals [ε, T ] this computation is easily justified by the fact that t 7→
E(Stx) is locally Lipschitz in (0,∞), hence locally integrable therein. But this
computation is legitimate even if ε = 0, as we are going to see.

Proof : Let x ∈ X and T > 0 be as in our statement. Since E is bounded from
below on d-bounded sets by (A2), and because (Stx)t∈[0,T ] is bounded, there
exists c ∈ R such that E(Stx) ≥ c for all t ∈ [0, T ]. Combining with (EVIλ)
this gives

c ≤ E(Stx) ≤ E(y)− 1

2

d

dt
d2(Stx, y)− λ

2
d2(Stx, y)

for any y ∈ D(E) and t ∈ (0, T ]. Integrating from t = η > 0 to t = T gives

c(T − η) ≤
∫ T

η

E(Stx) dt ≤ (T − η)E(y)− 1

2

(
d2(STx, y)− d2(Sηx, y)

)
− λ

2

∫ T

η

d2(Stx, y) dt.

As t 7→ E(Stx) is bounded from below on [0, T ] and the right-hand side has
a finite limit as η ↓ 0 (thanks to the fact that t 7→ Stx is d-continuous on
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[0,∞) by the very definition of EVIλ-gradient flow), we deduce the desired
integrability.

3.2. A pseudo-Riemannian computation. In this section the formal Rie-
mannian computations carried out at the beginning of Section 2, and more
precisely (2.4), will be reproduced rigorously in the abstract Setting 3.1. To
this aim, a key role will be played by the following purely metric estimate:

Lemma 3.6. With the same assumptions and notations as in Setting 3.1, let
(γt) ∈ AC([0, 1],X) with E(γ0),E(γ1) < ∞. For any fixed absolutely continu-
ous function h : [0, 1]→ R with h(t) > 0 for all t ∈ (0, 1) let

γ̃t := Sh(t)γt, t ∈ [0, 1],

and for any 0 ≤ t0 < t1 ≤ 1 write

t+ :=

{
t1 if h(t1) ≥ h(t0)
t0 otherwise and t− :=

{
t0 if h(t1) ≥ h(t0)
t1 otherwise .

(3.7)
Then we have the exact estimate

1

2

∣∣∣∣d(γ̃t1, γ̃t0)

t1 − t0

∣∣∣∣2 +
1

2λ2
|∂E|2(γ̃t+)

eλ(h(t1)−h(t0)) + eλ(h(t0)−h(t1)) − 2

(t1 − t0)2

+
1− e−λ(h(t+)−h(t−))

λ(t+ − t−)
· E(γ̃t1)− E(γ̃t0)

t1 − t0

≤ 1

2
e−λ(h(t1)+h(t0))

∣∣∣∣d(γt1, γt0)

t1 − t0

∣∣∣∣2 .
(3.8)

Here we use the convention that (+∞) × 0 = 0 whenever |∂E|(γ̃t+) = +∞
and h(t0) = h(t1) in the second term on the left-hand side of (3.8). Since
we assume that h(t) > 0 for t ∈ (0, 1), and because any EVIλ-gradient flow
immediately falls within D(|∂E|) by standard regularizing effects, this latter
case is in fact only possible if t0 = 0, t1 = 1, and h(t0) = h(t1) = 0. In that
case γ̃0 = γ0 and γ̃1 = γ1, the third term in the left-hand side also cancels
owing to e−λ(h(t+)−h(t−)) = 1, and (3.8) then holds as a trivial equality.
We shall rely on this lemma later on in two different ways: First, fixing

t0 = 0 and letting t1 ↓ 0 (resp. fixing t1 = 1 and letting t0 ↑ 1) to control in
Lemma 3.10 the continuity of t 7→ E(γ̃t) at the boundaries t = 0, 1, and second,
fixing t0 ∈ (0, 1) and letting t1 → t0 to obtain in Proposition 3.11 a pointwise
differential estimate similar to (2.4).
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Remark 3.7. The times t± are just a fancy notation, ordered as h(t−) ≤ h(t+).
Note that in our estimate (3.8) the Fisher information |∂E|2(γ̃t+) is evaluated
at the time t = t+ for which the “smoothing time” s = h(t0) or s = h(t1) is
the largest, i.e. where the regularizing vertical flow has been run for the longest
time. This is somehow natural, as this specific point is “better” than the other
one in terms of regularity. �

Proof : By symmetry we only discuss the case h(t1) ≥ h(t0), i.e. t+ = t1 and
t− = t0. As already mentioned, if h(t0) = h(t1) = 0 our statement is actually
vacuous, thus it is not restrictive to further assume h(t1) > 0. Let us write for
simplicity

γ̂t1 := Sh(t0)γt1.

From an intuitive point of view, this corresponds to freezing a “vertical time”
s = h(t0) and “translating” γ̃t0 in the “horizontal” t direction parallel to the
curve γ until t1. Here, in the “vertical” direction above t1 the smoothing semi-
group Ss associated with E has been run at least for a strictly positive time
h(t1) > 0, so that by (3.6) the solution of the “vertical” gradient flow at that
time lies within the regular domain X1 = D(|∂E|) ⊂ X0 = D(E) ⊂ X, see
Figure 2.

γt0

γt1

γ̃t0

γ̂t1 [s = h(t0)]

γ̃t1 [s = h(t1)]

t

s

Figure 2. The horizontal and vertical curves

The first step is to write (EVIλ) for s 7→ Ss(γt1) with γ̃t0 as a reference point,
namely

1

2

d

ds
d2(Ssγt1, γ̃t0) +

λ

2
d2(Ssγt1, γ̃t0) + E(Ssγt1) ≤ E(γ̃t0),
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which holds true for a.e. s ∈ [0, h(t1)] in the “vertical” direction. This inequality
can be equivalently rewritten as

1

2

d

ds

(
eλsd2(Ssγt1, γ̃t0)

)
≤ eλs

(
E(γ̃t0)− E(Ssγt1)

)
. (3.9)

Note that this estimate carries significant information if and only if the reference
point has finite entropy, i.e. E(γ̃t0) <∞ in the right-hand side. This holds true
for t0 ∈ (0, 1) because γ̃t0 is the EVIλ-gradient flow of E starting from γt0 at a
strictly positive time s = h(t0) > 0, but also for h(t0) = 0 if t0 = 0 since in
this case γ̃0 = γ0 is assumed to have finite entropy.
Integrating (3.9) from s = h(t0) to s = h(t1) gives
1

2
eλh(t1)d2(γ̃t1, γ̃t0)−

1

2
eλh(t0)d2(γ̂t1, γ̃t0)

≤
∫ h(t1)

h(t0)

eλs
(
E(γ̃t0)− E(Ssγt1)

)
ds

=

∫ h(t1)

h(t0)

eλs
((

E(γ̃t0)− E(γ̃t1)
)

+
(
E(γ̃t1)− E(Ssγt1)

))
ds

=

∫ h(t1)

h(t0)

eλs
(
E(γ̃t1)− E(Ssγt1)

)
ds

− eλh(t1) − eλh(t0)

λ

(
E(γ̃t1)− E(γ̃t0)

)
.

(3.10)

If h(t0) > 0 this computation is legitimate because s 7→ Ssγt1 and s 7→ E(Ssγt1)
are locally Lipschitz in (0,∞), hence s 7→ d2(Ssγt1, γ̃t0) and s 7→ E(Ssγt1) are
locally integrable therein. But this computation is also justified when h(t0) = 0
by Lemma 3.5. More specifically s 7→ E(Ssγt1) is absolutely integrable on [0, T ]
for any T > 0 and a fortiori so is s 7→ eλsE(Ssγt1).
Now let us estimate the terms in (3.10) to get (3.8). First, since γ̂t1 = Sh(t0)γt1,

γ̃t0 = Sh(t0)γt0, and Sh(t0)(·) is λ-contractive by (3.3), we observe that the second
term in the left-hand side of (3.10) can be controlled as

d2(γ̂t1, γ̃t0) = d2(Sh(t0)γt1, Sh(t0)γt0) ≤ e−2λh(t0)d2(γt1, γt0). (3.11)

On the right-hand side, let us define

I :=

∫ h(t1)

h(t0)

eλs
(
E(γ̃t1)− E(Ssγt1)

)
ds.
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This integral is clearly non-positive by (3.4), but we need a finer analysis. To
this aim, for fixed 0 < s < h(t1) let us write

E(γ̃t1)− E(Ssγt1) = E(Sh(t1)γt1)− E(Ssγt1)

=

∫ h(t1)

s

d

dτ
E(Sτγt1) dτ = −

∫ h(t1)

s

|∂E|2(Sτγt1) dτ,

where the second equality holds due to τ 7→ E(Sτγt1) being Lipschitz on
[s, h(t1)], and the third one stems from (3.4) for the gradient flow τ 7→ Sτγt1.
By (3.5)

−
∫ h(t1)

s

|∂E|2(Sτγt1) dτ ≤ −
∫ h(t1)

s

|∂E|2(Sh(t1)γt1)e
2λ(h(t1)−τ) dτ

= −e2λh(t1)|∂E|2(Sh(t1)γt1)

∫ h(t1)

s

e−2λτ dτ

=
1

2λ

(
1− e2λ(h(t1)−s)

)
|∂E|2(Sh(t1)γt1),

so that, as a consequence,

I ≤ 1

2λ

∫ h(t1)

h(t0)

eλs
(

1− e2λ(h(t1)−s)
)
|∂E|2(Sh(t1)γt1) ds

=
1

2λ
|∂E|2(Sh(t1)γt1)

∫ h(t1)

h(t0)

(
eλs − e2λh(t1) · e−λs

)
ds

= − 1

2λ2
|∂E|2(γ̃t1)eλh(t1)

(
eλ(h(t1)−h(t0)) + eλ(h(t0)−h(t1)) − 2

)
.

Plugging this estimate together with (3.11) into (3.10) and dividing by (t1 −
t0)

2 > 0 entails our claim.

We also need to study the behaviour of the “regularized” curve γ̃t := Sh(t)γt
and of the entropy E along it: this is the content of the following two results.

Lemma 3.8. With the same assumptions and notations as in Setting 3.1, if
(γt) ∈ AC([0, 1],X) and h : [0, 1] → R is absolutely continuous with h(t) > 0
for all t ∈ (0, 1), then the curve γ̃t := Sh(t)γt belongs to ACloc((0, 1),X) ∩
C([0, 1],X).

Proof : Fix δ ∈ (0, 1/2), t0, t1 ∈ [δ, 1− δ] with t0 ≤ t1 and define

mδ := min
t∈[δ,1−δ]

h(t), Mδ := max
t∈[δ,1−δ]

h(t), (3.12)
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paying attention to the fact thatmδ > 0 by construction. Write as before γ̂t1 :=
Sh(t0)γt1 for the “horizontal” translation of γ̃t0 (see Figure 2). By triangular
inequality and the contraction estimate (3.3) we get

d(γ̃t0, γ̃t1) ≤ d(γ̃t0, γ̂t1) + d(γ̂t1, γ̃t1) ≤ eλ
−Mδd(γt0, γt1) + d(γ̂t1, γ̃t1), (3.13)

where λ− := max{−λ, 0}. Since (γt) is absolutely continuous the first term in
the right-hand side can be controlled as d(γt0, γt1) ≤

∫ t1
t0
|γ̇t|dt. As regards the

second one, by (3.4) and up to assuming h(t0) ≤ h(t1) (which is not restrictive,
as otherwise it is sufficient to swap the boundary values of integration below)
it holds

d(γ̂t1, γ̃t1) = d(Sh(t0)γt1, Sh(t1)γt1) ≤
∫ h(t1)

h(t0)

∣∣∣ d

ds
Ssγt1

∣∣∣ ds =

∫ h(t1)

h(t0)

|∂E|(Ssγt1) ds,

(3.14)
where, to avoid possibly ambiguous notations, | d

dsSsγt1| denotes the metric
speed of the “vertical” curve s 7→ Ssγt1. In order to control the slope in the right-
most term uniformly both in s ∈ [h(t0), h(t1)] ⊂ [mδ,Mδ] and in t1 ∈ [δ, 1− δ],
for fixed δ, let ε be such that −λε < log 2 (if λ ≥ 0, choose ε = mδ) and define
ε′ := min{mδ, ε}. Then by (3.5) and the fact that s ≥ h(t0) ≥ mδ ≥ ε′ we
have

|∂E|(Ssγt1) ≤ eλ(ε′−s)|∂E|(Sε′γt1) ≤ eλ
−(Mδ−ε′)|∂E|(Sε′γt1), ∀s ∈ [mδ,Mδ]

and by (3.6) for any reference point x ∈ D(|∂E|) it holds

|∂E|2(Sε′γt1) ≤
1

2eλε′ − 1
|∂E|2(x) +

1

Iλ(ε′)2
d2(x, γt1).

The squared distance in the right-hand side above is bounded uniformly in
t1 ∈ [δ, 1− δ], since by triangular inequality

d(x, γt1) ≤ d(x, γ0) + d(γ0, γt1) ≤ d(x, γ0) + `(γ).

Therefore there exists Cδ > 0 such that

|∂E|(Ssγt1) ≤ Cδ for all t1 ∈ [δ, 1− δ] and s ∈ [mδ,Mδ]. (3.15)

and plugging this bound into (3.14) yields

d(γ̂t1, γ̃t1) ≤ Cδ|h(t1)− h(t0)| ≤ Cδ

∫ t1

t0

|h′(t)| dt.
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It is now sufficient to combine this inequality with d(γt0, γt1) ≤
∫ t1
t0
|γ̇t|dt and

(3.13) to get

d(γ̃t0, γ̃t1) ≤
∫ t1

t0

(
eλ
−Mδ |γ̇t|+ Cδ|h′(t)|

)
dt. (3.16)

As eλ−Mδ |γ̇t| + Cδ|h′(t)| ∈ L1(δ, 1 − δ) and δ is arbitrary, the fact that (γ̃t) ∈
ACloc((0, 1)) is thus proved.
Turning now to the continuity of (γ̃t) at the endpoints, let t0 = 0 and t1 ∈

(0, 1). Arguing as for (3.13) but with a crucial difference in the choice of the
third point in the triangular inequality, it holds

d(γ̃0, γ̃t1) ≤ d(γ̃0, Sh(t1)γ0) + d(Sh(t1)γ0, γ̃t1)

≤ d(Sh(0)γ0, Sh(t1)γ0) + e−λh(t1)d(γ0, γt1).

The second term on the right-hand side vanishes as t1 ↓ 0 by (absolute) conti-
nuity of γ and so does the first one, since s 7→ Ssγ0 is continuous in [0,∞) with
values in X and h(t1) → h(0). The continuity at t = 1 is obtained similarly
and the proof is complete.

Remark 3.9. If h(t) > 0 also in t = 0, 1, then the previous argument can be
extended to the whole interval [0, 1] and therefore (γ̃t) ∈ AC([0, 1],X). �

Lemma 3.10. With the same assumptions and notations as in Lemma 3.8,
the entropy is locally absolutely continuous in (0, 1) along the regularized curve
γ̃t, i.e.

t 7→ E(γ̃t) ∈ ACloc((0, 1)).

If in addition (γt) ∈ AC2([0, 1],X), E(γ̃0),E(γ̃1) < ∞ and h is differentiable
at t = 0 and t = 1 with h′(0) > 0 and h′(1) < 0, then

t 7→ E(γ̃t) ∈ C([0, 1]).

Note that E(γ̃0),E(γ̃1) < ∞ is automatically satisfied if h(t) > 0 also in
t = 0, 1.

Proof : Let us first prove that t 7→ E(γ̃t) is locally absolutely continuous. Since
|∂E| is a strong upper-gradient, the chain rule (3.2) holds and it suffices to show
that |∂E|(γ̃t)| ˙̃γt| ∈ L1

loc(0, 1), namely∫ 1−δ

δ

|∂E|(γ̃t)| ˙̃γt| dt <∞, ∀δ ∈ (0, 1/2), (3.17)
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as this would imply that E ◦ γ̃ ∈ ACloc((0, 1)) with∣∣∣∣ d

dt
(E ◦ γ̃)(t)

∣∣∣∣ ≤ |∂E|(γ̃t) · | ˙̃γt|, for a.e. t ∈ (0, 1).

To this aim, observe from (3.16) that | ˙̃γt| ∈ L1
loc(0, 1) with | ˙̃γt| ≤ eλ

−Mδ |γ̇t| +
Cδ|h′(t)| a.e. on [δ, 1− δ], with Mδ defined in (3.12). Moreover from (3.15) we
also know that |∂E|(Ssγt) ≤ Cδ uniformly in t ∈ [δ, 1− δ] and s ∈ [mδ,Mδ], so
that by choosing s = h(t) we get in particular |∂E|(γ̃t) ≤ Cδ for all t ∈ [δ, 1−δ].
This shows that t 7→ |∂E|(γ̃t) belongs to L∞loc(0, 1), whence (3.17).
Now assume that (γt) ∈ AC2([0, 1],X), E(γ̃0) < ∞, h is differentiable at

t = 0 with h′(0) > 0 and let us prove that t 7→ E(γ̃t) is continuous at t = 0.
(The argument is identical for t = 1.) On the one hand, as (γ̃t) is continuous
at t = 0 by Lemma 3.8 and E is lower semicontinuous, we see that E(γ̃0) ≤
lim inft↓0 E(γ̃t). On the other hand, choosing t0 = 0 in (3.8), our assumption
that h′(0) > 0 gives h(t1) > h(0) for t1 > 0 small, hence t− = 0 and t+ =
t1. Discarding the first two (non-negative) terms on the left-hand side, and
multiplying by (t1 − t0) = t1 yield

1− e−λ(h(t1)−h(0))

λ(t1 − 0)
·
(
E(γ̃t1)− E(γ̃0)

)
≤ t1

2
e−λ(h(t1)+h(0))

∣∣∣∣d(γt1, γ0)

t1

∣∣∣∣2
≤ t1

2
e−λ(h(t1)+h(0))

( 1

t1

∫ t1

0

|γ̇t| dt
)2

≤ 1

2
e−λ(h(t1)+h(0))

∫ t1

0

|γ̇t|2 dt.

.

Letting t1 ↓ 0, the right-hand side vanishes owing to our assumption that
(γt) ∈ AC2([0, 1],X), and clearly the exponential difference quotient in the
left-hand side converges to h′(0). Rearranging gives

h′(0) lim sup
t1↓0

E(γ̃t1) ≤ h′(0)E(γ̃0),

since h′(0) > 0 the desired upper semicontinuity follows and the proof is com-
plete.

Gathering the results proven so far, we deduce the following:
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Proposition 3.11. With the same assumptions and notations as in Lemma
3.8, for a.e. t ∈ (0, 1) it holds

1

2

∣∣ ˙̃γt∣∣2 +
1

2
|h′(t)|2|∂E|2(γ̃t) + h′(t)

d

dt
E(γ̃t) ≤

1

2
e−2λh(t) |γ̇t|2 . (3.18)

Proof : The argument simply consists in taking the limit t1 → t0 in (3.8),
which should clearly lead (at least formally) to (3.18) by Taylor-expanding the
various exponential difference quotients. In order to make this rigorous, note
that the first and third terms in the left-hand side of (3.18) are well defined
for a.e. t ∈ (0, 1) by Lemma 3.8 and Lemma 3.10, respectively. The second
term is also unambiguously defined because h(t) > 0, hence the “vertical”
EVIλ-gradient flow starting from γt and defining γ̃t = Sh(t)γt falls immediately
within the domain X1 = D(|∂E|). The right-hand side is well defined for a.e. t
since γ ∈ AC([0, 1],X).
After this premise, let t ∈ (0, 1) be any differentiation point for h, t 7→ γt,

t 7→ γ̃t and t 7→ E(γ̃t), choose t0 = t in (3.8) and let us take the right limit
t1 ↓ t0 (since we are considering a differentiability point the left and right limits
exist and are equal, so there is no need to address the left limit). From the very
definition (3.7) of t± it clearly holds t± → t0 as t1 ↓ t, hence the convergence of
the right-hand side of (3.8) to the right-hand side of (3.18) is clear and so is the
convergence of the two difference quotients of h. By Lemma 3.8 the first term
in the left-hand side also passes to the limit, as does the third one according to
Lemma 3.10. The only term left to handle is the Fisher information |∂E|2(γ̃+).
From the continuity of t 7→ γ̃t (cf. Lemma 3.8) we see that γ̃t+ → γ̃t in (X, d),
and the lower semicontinuity of the slope (3.1) results in

|∂E|(γ̃t) ≤ lim inf
t1↓0

|∂E|(γ̃t+).

Thus rigorously taking the liminf t1 ↓ t0 in (3.8) entails (3.18) and achieves the
proof.

The interesting consequence for our purpose is then:

Theorem 3.12. With the same assumptions and notations as in Setting 3.1,
fix ε > 0, and set hε(t) := εmin{t, 1 − t}. Let (γt) ∈ AC2([0, 1],X) be such
that E(γ0),E(γ1) <∞ and define

γεt := Shε(t)γt, t ∈ [0, 1].
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Then (γεt ) ∈ AC2([0, 1],X), t 7→ E(γεt ) belongs to AC([0, 1]) and it holds

1

2

∫ 1

0

|γ̇εt |2 dt+
ε2

2

∫ 1

0

|∂E|2(γεt ) dt ≤ 1

2
eλ
−ε

∫ 1

0

|γ̇t|2 dt− 2εE(γε1/2)

+ ε
(
E(γ0) + E(γ1)

)
.

(3.19)

Note here that hε(0) = hε(1) = 0, so that the endpoints γε0 = γ0 and γε1 = γ1

remain unchanged.

Proof : The strategy of proof simply consists in integrating (3.18) between 0 and
1 while integrating by parts of the term h′ε(t)

d
dtE(γεt ), separately on [0, 1/2] and

[1/2, 1]. Note carefully that our specific choice gives h′ε = ε and h′ε = −ε on
these two time intervals, respectively. Taking into account e−2λhε(t) ≤ eλ

−ε,
where λ− := max{−λ, 0}, this procedure yields

1

2

∫ 1

0

|γ̇εt |2 dt+
ε2

2

∫ 1

0

|∂E|2(γεt ) dt ≤ 1

2
eλ
−ε

∫ 1

0

|γ̇t|2 dt− 2εE(γε1/2)

+ ε
(
E(γε0) + E(γε1)

)
.

The term 2εE(γε1/2) simply arises from the two boundary terms at t = 1/2

in the two integrations by parts. (Alternatively, it can be seen as the result
of −

∫ 1

0 E(γεt )h
′′(t) arising from the integration by parts in the whole interval

[0, 1], with the singularity h′′(t) = −2εδ1/2(t)). However, this argument is not
fully rigorous because all the terms on the left-hand side of (3.18) are only
locally integrable, hence we may not be allowed to integrate them all the way
to t = 0 and t = 1.
In order to circumvent this slight issue, choose δ ∈ (0, 1/2) and carry out the

same argument on [δ, 1/2] and [1/2, 1− δ] rather than on [0, 1/2] and [1/2, 1]:
Integration by parts is now justified by Lemma 3.10 and this provides us with

1

2

∫ 1−δ

δ

|γ̇εt |2 dt+
ε2

2

∫ 1−δ

δ

|∂E|2(γεt ) dt ≤ 1

2
eλ
−ε

∫ 1−δ

δ

|γ̇t|2 dt

+ ε
(
E(γεδ)− 2E(γε1/2) + E(γε1−δ)

)
.

(3.20)

It is then sufficient to pass to the limit as δ ↓ 0. By monotonicity the left-hand
side above converges to the left-hand side in (3.19) and for the same reason so
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does the first term on the right-hand side, while by the current choice of h and
by Lemma 3.10 t 7→ E(γεt ) is continuous on the whole interval [0, 1], so that

lim
δ↓0

ε
(
E(γεδ) + E(γε1−δ)

)
= ε
(
E(γε0) + E(γε1)

)
= ε
(
E(γ0) + E(γ1)

)
and (3.19) follows.
Finally, since the right-hand side of (3.19) is finite we see that |γ̇ε| ∈ L2(0, 1)

and |∂E|(γε) ∈ L2(0, 1). As a consequence |γ̇ε| · |∂E(γε)| ∈ L1(0, 1) in the
strong upper-chain rule (3.2), and E ◦ γε ∈ AC([0, 1]) as desired.

4. Small-temperature limit and convexity
4.1. Γ-convergence of the Schrödinger problem. Relying on the results
of the previous section, we can now turn to Theorem 2.1 and make it rigorous
in the metric setting. To this end, let us first introduce two action functionals:
the kinetic energy A and the (halved) Fisher information I along a curve,
respectively defined as

A(γ) :=
1

2

∫ 1

0

|γ̇t|2 dt and I(γ) :=
1

2

∫ 1

0

|∂E|2(γt) dt

for all (γt) ∈ C([0, 1],X), where it is understood that A(γ) = +∞ whenever γ
is not absolutely continuous. Given two points x, y ∈ X and a temperature/
slowing-down parameter ε > 0, the (metric) Schrödinger problem reads as

inf
(γt) :x y

{
A(γ) + ε2I(γ)

}
, (Schε)

where (γt) : x  y is a short-hand notation meaning that the infimum runs
over all (γt) ∈ C([0, 1],X) such that γ0 = x and γ1 = y. For sake of brevity
we also introduce

Aε(γ) := A(γ) + ε2I(γ).

From (Schε) it is thus clear that the Fisher information I acts as a perturbation
of A and this has a regularizing effect, since minimizers of (Schε) live within
the regular domain X1 = D(|∂E|).

Remark 4.1. The smoothing effect is well understood for the classic Schrödinger
problem in a regular setting, namely when E is the Boltzmann-Shannon relative
entropy and X is the Wasserstein space over a smooth Riemannian manifold. In
this case, under mild assumptions on the end-points, minimizers of (Schε) are
curves of absolutely continuous measures whose densities are bounded, smooth,
Lipschitz, with exponentially fast decaying tails.
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In the current metric framework the properties above are meaningless, but
still minimizers of (Schε) are “regular” from a metric point of view, since as
just said they live within D(|∂E|). Moreover, in Proposition 4.2 we are going
to see that E is absolutely continuous along optimal curves. �

Let us first deal with the solvability of (Schε).

Proposition 4.2. With the same assumptions and notations as in Setting 3.1
and under Assumption 3.2, for any fixed x, y ∈ X and ε > 0 the Schrödinger
problem (Schε) is solvable if and only if E(x),E(y) <∞ and there exists (γt) ∈
AC([0, 1],X) such that γ0 = x and γ1 = y.

As the condition characterizing the solvability of the Schrödinger problem
does not depend on ε, it is clear that if (Schε) is solvable for some ε > 0, then
it is actually solvable for all ε > 0.

Proof : Assume that the endpoints have finite entropy and that there exists
an absolutely continuous curve γ connecting x to y. Up to reparametrization,
we can assume that (γt) ∈ AC2([0, 1],X). Theorem 3.12 thus guarantees that
Aε is finite along the regularization (γεt )t∈[0,1] of this curve and therefore the
variational problem (Schε) is proper. Let then (γnt ) be any minimizing sequence
and observe that the kinetic actionA is bounded uniformly in n, sayA(γn) ≤ C
for all n. We now observe that for any pair 0 ≤ t0 < t1 ≤ 1 it holds

d(γnt0, γ
n
t1

) ≤
∫ t1

t0

|γ̇nt | dt ≤ |t0 − t1|1/2
(∫ t1

t0

|γ̇nt |2 dt
)1/2

≤ C|t0 − t1|1/2. (4.1)

Since the endpoints are fixed, this implies that the set of points γnt is bounded
in (X, d) uniformly in n, t, thus it is σ-relatively sequentially compact by As-
sumption 3.2. By the refined Arzelà-Ascoli lemma [2, Proposition 3.3.1], there
exists a limiting d-continuous (actually 1/2-Hölder continuous) curve γ such
that

γnt
σ→ γt, ∀t ∈ [0, 1].

We now observe that the kinetic action is lower semicontinuous for this pointwise-
in-time convergence w.r.t. σ, cf. [3, Section 2.2] (indeed, d is lower semicon-
tinuous w.r.t. σ, hence the 2-energies of the finite partitions of γ are lower
semicontinuous w.r.t. σ too, whence the lower semicontinuity of the 2-energy
of γ itself). Moreover |∂E|2 is also lower semicontinuous w.r.t. σ by hypothesis,
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and this fact together with Fatou’s lemma gives∫ 1

0

|∂E|2(γt) dt ≤
∫ 1

0

lim inf
n→∞

|∂E|2(γnt ) dt ≤ lim inf
n→∞

∫ 1

0

|∂E|2(γnt ) dt.

Therefore γ is a minimizer of (Schε).
Conversely, assume that there exists a minimizer, denoted by γ (the following

argument actually works for any curve along which Aε is finite and without
Assumption 3.2). Then in particular t 7→ |γ̇t| and t 7→ |∂E|(γt) belong to
L2(0, 1) and by (3.2) we see that t 7→ E(γt) is globally absolutely continuous
with ∣∣∣∣ d

dt
(E ◦ γ)(t)

∣∣∣∣ ≤ |∂E|(γt) · |γ̇t| ∈ L1(0, 1).

The fact that (|γ̇t|) ∈ L2(0, 1) ⊂ L1(0, 1) trivially implies (γt) ∈ AC([0, 1],X),
whereas the fact that t 7→ |∂E|(γt) belongs to L2(0, 1) also implies that |∂E|(γt)
is finite for a.e. t ∈ [0, 1] and a fortiori so is E(γt), sinceD(|∂E|) ⊂ D(E). Hence
let t∗ ∈ (0, 1) be any point satifying E(γt∗) < ∞ and note that together with
(3.2) this gives the following global upper bound valid for all t < t∗

E(γt) ≤ E(γt∗)+

∫ t∗

t

∣∣∣∣ d

dt
(E ◦ γ)(t)

∣∣∣∣ dt ≤ E(γt∗)+

∫ 1

0

∣∣∣∣ d

dt
(E ◦ γ)(t)

∣∣∣∣ dt =: E <∞.

As a consequence, and taking also into account the facts that t 7→ γt is d-
continuous and E is lower semicontinuous, we get

E(γ0) = E
(

lim
t→0

γt
)
≤ lim inf

t→0
E(γt) ≤ E

and the proof is thus complete, as the same argument applies mutatis mutandis
for t = 1 too.

We now fix x, y ∈ X and let C([0, 1],X) 3 γ 7→ ι01(γ) denote the convex
indicator of the endpoint constraints, i.e.

ι01(γ) =

{
0 if γ0 = x and γ1 = y,

+∞ otherwise.

With this said, we can finally state our Γ-convergence result, where the finite-
entropy assumption on the endpoints is motivated by the previous proposition.

Theorem 4.3. With the same assumptions and notations as in Setting 3.1, if
x, y ∈ X are such that E(x),E(y) <∞, then

Γ− lim
ε→0

{
Aε + ι01

}
= A+ ι01
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for the uniform convergence on C([0, 1],X). If Assumption 3.2 holds, then the
Γ-convergence also takes place w.r.t. the pointwise-in-time σ-topology.

Proof : The Γ− lim inf inequality is rather clear, since the kinetic energy A is
lower semicontinuous both w.r.t. uniform-in-time d-convergence and pointwise-
in-time σ-convergence: for the former topology the fact is well known, for the
latter it has been discussed in the proof of Proposition 4.2. An analogous claim
is also true for the convex indicator ι01. As a consequence, we have that for
any γε converging to γ uniformly in time in the metric topology or pointwise
in time in the topology σ (if applicable) it holds

A(γ)+ι01(γ) ≤ lim inf
ε↓0

A(γε) + lim inf
ε↓0

ι01(γ
ε) ≤ lim inf

ε↓0

{
A(γε) + ι01(γ

ε)
}

≤ lim inf
ε↓0

{
A(γε) + ε2I(γε) + ι01(γ

ε)
}

= lim inf
ε↓0

{
Aε(γε) + ι01(γ

ε)
}
,

whence the desired Γ− lim inf inequality.
For the Γ − lim sup, take any (γt) ∈ AC2([0, 1],X) connecting x to y (if it

does not exist, then there is nothing to prove). Then Theorem 3.12 precisely
provides a recovery sequence γεt := Shε(t)γt with hε defined as therein, both
for the uniform-in-time d-convergence and the pointwise-in-time σ-convergence
(the latter is an easy consequence of the former by Remark 3.4). To prove this
claim, note that for any n ∈ N there exist t1, ..., tk ∈ [0, 1] such that, for any
t ∈ [0, 1], d(γt, γti) < 1/n for at least one ti; in addition, since γεt → γt for all
t ∈ [0, 1] there exists εn small enough such that d(γti, γ

ε
ti
) < 1/n for all ε < εn

and i = 1, ..., k. As a consequence, taking (3.3) into account,

d(γt, γ
ε
t ) ≤ d(γt, γti) + d(γti, Shε(t)γti) + d(Shε(t)γti, γ

ε
t )

≤ d(γt, γti) + d(γti, Shε(t)γti) + e−λhε(t)d(γt, γti)

≤ 1

n
(2 + eλ

−ε/2)
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for all t ∈ [0, 1] and ε < εn and by the arbitrariness of n we conclude that γε →
γ uniformly. Furthermore, the lim sup inequality can be proved as follows:

lim sup
ε↓0

{
Aε(γε) + ι01(γ

ε)
}

= lim sup
ε↓0

{
A(γε) + ε2I(γε) + 0

}
(3.19)
≤ lim sup

ε↓0

{
eλ
−εA(γ)− 2εE(γε1/2) + ε

(
E(x) + E(y)

)}
≤ lim sup

ε↓0

{
eλ
−εA(γ) + ε

(
E(x) + E(y)

)}
− 2 lim inf

ε↓0
εE(γε1/2)

≤ A(γ) = A(γ) + ι01(γ),

where the third inequality comes from the fact that, for any ε ↓ 0, (γε1/2)

is contained in a bounded set and by assumption E is bounded from below
on bounded sets, whence E(γε1/2) ≥ c for some c ∈ R. The proof is thus
complete.

As an easy consequence of this result we obtain the following:

Corollary 4.4. With the same assumptions and notations as in Setting 3.1 and
under the further requirements that Assumption 3.2 holds and the Schrödinger
problem (Schε) relative to x, y ∈ X is solvable, let εk ↓ 0 and ωk be a minimizer
of the corresponding Schrödinger problem (Schε) with ε = εk.
Then

lim
k→∞

{
A(ωk) + ε2

kI(ωk)
}

= inf
(γt) :x y

A(γ).

Moreover, there exists ω0 ∈ C([0, 1],X) such that, up to a subsequence, ωk →
ω0 in the pointwise-in-time σ-topology and

A(ω0) = inf
(γt) :x y

A(γ).

Proof : Recall that, under a mild equi-coercivity condition, Γ-convergence pre-
cisely guarantees that the limit of the optimal values of the approximating
problems is the optimal value of the limit problem and limits of minimizers
are minimizers, cf. [16, Theorem 1.21]. In view of Theorem 4.3 and [16, The-
orem 1.21], for the mild equi-coercivity condition to hold it suffices to prove
that the set of minimizers {ωk} is relatively compact in the pointwise-in-time
σ-topology. To this aim, the kinetic energies of the curves ωk are uniformly
bounded since

A(ωk) ≤ A(ωk) + ε2
kI(ωk) ≤ A(ωε) + ε2

kI(ωε) ≤ A(ωε) + ε2I(ωε) < +∞,
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where ωε is the minimizer for the problem with ε = ε := supk εk. Arguing as
in the proof of Proposition 4.2, we deduce that there exists a continuous curve
(ω0

t )t∈[0,1] connecting x and y such that, up to extracting a suitable subsequence,
ωkt → ω0

t w.r.t. σ as k →∞ for all t ∈ [0, 1].

Remark 4.5. Note that in Corollary 4.4 the curve ω0 is length-minimizing but
not necessarily distance-minimizing, namely it needs not be a geodesic between
x and y, since we only know that

inf
(γt) :x y

A(γ) ≥ 1

2
d2(x, y)

and the inequality might be strict, e.g. if X is a non-convex subset of Rd.
However, if (X, d) is a length metric space, i.e. for all x, y ∈ X and ε > 0 there
exists (γt) ∈ AC([0, 1],X) such that γ0 = x, γ1 = y and `(γ) ≤ d(x, y) + ε,
then the inequality above turns out to be an identity and, as a consequence,
ω0 is a geodesic. This means that for any two points having finite energy there
always exists a geodesic connecting them. �

When the endpoints have infinite entropy, the following variant of Theorem
4.3 may be useful:

Theorem 4.6. With the same assumptions and notations as in Setting 3.1,
let x, y ∈ X with possibly E(x),E(y) = +∞ and for any fixed (εn)n∈N, εn ↓ 0,
let (ηn)n∈N be converging to 0 slowly enough so that

εn (E(γn0 ) + E(γn1 ))→ 0 with γn0 := Sηnx, γn1 := Sηny.

Then
Γ− lim

n→∞

{
Aεn + ιn01

}
= A+ ι01,

for the uniform convergence on C([0, 1],X). If Assumption 3.2 holds, then the
Γ-convergence also takes place w.r.t. the pointwise-in-time σ-topology. Here
ιn01 and ι01 are the convex indicators of the endpoint constraints for γn0 , γn1 and
x, y, respectively.

Proof : The proof of the Γ− lim inf is almost identical to that in Theorem 4.3,
with the only extra observation that

ι01(γ) ≤ lim inf
n→∞

ιn01(γ
n).

For the Γ − lim sup, observe that if there does not exist (γt) ∈ AC2([0, 1],X)
joining x and y, then there is nothing to prove. Hence let us suppose that at
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least one curve (γt) ∈ AC2([0, 1],X) connecting x and y exists, fix it and note
that Theorem 3.12 applied to the curve Sηnγt still provides a recovery sequence
γεnt := Sηn+hεn(t)γt with the same choice hεn(t) = εn min{t, 1 − t} as before.
Indeed, on the one hand

lim sup
n→∞

{
Aεn(γεn) + ιn01(γ

εn)
}

= lim sup
n→∞

{
A(γεn) + ε2

nI(γεn) + 0
}

(3.19)
≤ lim sup

n→∞

{
eλ
−εnA(Sηnγ)− 2εnE(γεn1/2) + εn

(
E(γn0 ) + E(γn1 )

)}
≤ lim sup

n→∞

{
eλ
−εnA(Sηnγ) + εn

(
E(γn0 ) + E(γn1 )

)}
− 2 lim inf

ε↓0
εE(γε1/2)

≤ lim sup
n→∞

A(Sηnγ) ≤ lim sup
n→∞

e−2ληnA(γ) = A(γ),

where the third inequality follows by the same argument adopted in the proof
of the previous theorem and the last one is due to (3.18) with h(t) ≡ ηn. On
the other hand, γεnt → γt uniformly in t ∈ [0, 1] in the d-topology and, if
Assumption 3.2 holds, for all t ∈ [0, 1] w.r.t. σ: the argument described in the
previous proof applies also here verbatim.

As conclusion, in the next proposition we show that any EVI-gradient flow is
a solution of the Schrödinger problem with suitable endpoints. Intuitively this
is clear, because up to a rescaling factor ε2 both the trajectories of the gradient
flow of E and the solutions to (Schε) must formally satisfy the same Newton
equation, namely γ̈t = −∇Φ(γt) where the potential Φ is given by (minus)
the Fisher information −|∂E|2, cf. [33, Remark 6]. This is also in complete
analogy with the standard Schrödinger problem, which includes the heat flow
as a particular entropic interpolation.

Proposition 4.7. With the same assumptions and notations as in Setting 3.1,
fix ε > 0. Then for all x, y ∈ X the following lower bound on the optimal value
of (Schε) holds

inf
(γt) :x y

Aε(γ) ≥ ε
∣∣E(x)− E(y)

∣∣. (4.2)

If either y = Sεx or x = Sεy, then equality is achieved. In the former case the
curve [0, 1] 3 t 7→ γ̂t := Sεtx is a minimizer in the Schrödinger problem and
the optimal value is

inf
(γt) :x y

Aε(γ) = ε
(
E(x)− E(Sεx)

)
.

An analogous statement holds when x = Sεy.
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Proof : By (3.2) and Young’s inequality it follows that for any
(γ̃t) ∈ AC2([0, ε],X) joining x and y (if it exists; if not, (4.2) is trivial) it holds∣∣E(γ̃0)− E(γ̃ε)

∣∣ ≤ 1

2

∫ ε

0

| ˙̃γt|2 dt+
1

2

∫ ε

0

|∂E|2(γ̃t) dt.

By setting γt := γ̃εt, t ∈ [0, 1], and by the arbitrariness of γ̃ we thus see that
for all (γt) ∈ AC2([0, 1],X) joining x and y we have

ε
∣∣E(γ0)− E(γ1)

∣∣ ≤ 1

2

∫ 1

0

|γ̇t|2 dt+
ε2

2

∫ 1

0

|∂E|2(γt) dt,

so that
ε
∣∣E(γ0)− E(γ1)

∣∣ ≤ inf
(γt) :x y

Aε(γ).

Now assume that y = Sεx: integrating (3.4) for the EVIλ-gradient flow γ̂
(paying attention to the rescaling factor ε) between 0 and 1 we get

Aε(γ̂) =
1

2

∫ 1

0

| ˙̂γt|2 dt+
ε2

2

∫ 1

0

|∂E|2(γ̂t) dt = ε
(
E(x)−E(y)

)
= ε
∣∣E(x)−E(y)

∣∣,
where the last equality comes from the fact that t 7→ E(Stx) is non-increasing,
as a consequence of (3.4). Combining this identity with (4.2) yields the con-
clusion.

4.2. Displacement convexity. In analogy with Section 2.2, in this short
section we establish the geodesic λ-convexity of E. As already explained in the
Introduction, although the result is known (cf. [27, Theorem 3.2]), our proof is
independent and new and is a further evidence of the wide range of applications
of the Schrödinger problem. Let us stress once more that all the properties of
EVIλ-gradient flows stated in Section 3.1 and used so far do not rely on geodesic
λ-convexity, whence the genuine independence of our approach.

Theorem 4.8. With the same assumptions and notations as in Setting 3.1,
the potential E is λ-convex along any geodesic.

Proof : Let (γt) be any constant-speed geodesic. We want to prove that

E(γθ) ≤ (1− θ)E(γ0) + θE(γ1)−
λ

2
θ(1− θ)d2(γ0, γ1), ∀θ ∈ [0, 1].

We will establish this inequality by carefully estimating at order one as ε ↓ 0
the defect of optimality, in the geodesic problem from γ0 to γ1, of a suitably
regularized version (γεt ) of the geodesic.
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If E(γ0) = +∞ or E(γ1) = +∞ there is nothing to prove, so we can assume
without loss of generality that both endpoints have finite entropy. If θ = 0
or θ = 1 the inequality is trivial as well. Fix then an arbitrary parameter
θ ∈ (0, 1) and let

Hθ(t) :=


1

θ
t if t ∈ [0, θ],

− 1

1− θ
(t− 1) if t ∈ [θ, 1].

be the hat function centered at t = θ with height 1 and vanishing at t = 0, 1.
Setting h(t) := εHθ(t) for small ε > 0, let (γεt ) be the curve constructed as in
Lemma 3.6, i.e.

γεt := Sh(t)γt, for all t ∈ [0, 1].

Arguing as in the proof of Theorem 3.12, it is easily verified that with the
current choice of h it is still true that t 7→ |γ̇εt | and t 7→ |∂E|(γεt ) belong to
AC2([0, 1],X) and t 7→ E(γεt ) to AC([0, 1]), so that we can integrate (3.18) in
time on the whole interval [0, 1].
Discarding the non-negative term |h′(t)|2|∂E|2(γεt ) and using the optimality

of the geodesic γ (namely its optimality between γ0 and γ1) give

0 ≤ 1

2

∫ 1

0

|γ̇εt |2 dt− 1

2

∫ 1

0

|γ̇t|2 dt

(3.18)
≤ −

∫ 1

0

h′(t)
d

dt
E(γεt ) dt+

1

2

∫ 1

0

(
e−2λh(t) − 1

)
|γ̇t|2 dt

= −ε
∫ 1

0

H ′θ(t)
d

dt
E(γεt ) dt+

d2(γ0, γ1)

2

∫ 1

0

(
e−2ελHθ(t) − 1

)
dt,

where the last equality follows from the constant speed property of the geodesic
γ, namely |γ̇t| = d(γ0, γ1). Dividing by ε > 0 and leveraging the explicit
piecewise constant values of H ′θ(t) on each interval (0, θ) and (θ, 1) gives

0 ≤ −
∫ 1

0

H ′θ(t)
d

dt
E(γεt ) dt+

d2(γ0, γ1)

2

∫ 1

0

e−2ελHθ(t) − 1

ε
dt︸ ︷︷ ︸

:=Iε

= −
∫ θ

0

1

θ

d

dt
E(γεt ) dt+

∫ 1

θ

1

1− θ
d

dt
E(γεt ) dt+

d2(γ0, γ1)

2
Iε

=
1

θ

(
E(γ0)− E(γεθ)

)
+

1

1− θ

(
E(γ1)− E(γεθ)

)
+

d2(γ0, γ1)

2
Iε.
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Now let us multiply by θ(1− θ) > 0 and rearrange the terms in order to get

E(γεθ) ≤ (1− θ)E(γ0) + θE(γ1) + θ(1− θ)d
2(γ0, γ1)

2
Iε.

It is easy to check that
∫ 1

0 Hθ(t)dt = 1
2 for all θ, so that

lim
ε↓0

Iε = −2λ

∫ 1

0

Hθ(t) dt = −λ.

On the other hand, by definition of γε and since h(θ) = ε→ 0 it is clear that
γεθ = Sh(θ)γθ = Sεγθ → γθ in X (an EVIλ-gradient flow is continuous up to
t = 0). By lower semicontinuity of E this yields

E(γθ) ≤ lim inf
ε↓0

E(γεθ) ≤ (1− θ)E(γ0) + θE(γ1)−
λ

2
θ(1− θ)d2(γ0, γ1),

whence the conclusion.

5. Derivative of the cost
As a main application of the Γ-convergence results contained in Theorem 4.3

and Corollary 4.4 (and, in a wider sense, of their strategy of proof), in this
section we investigate the dependence of the optimal value of the Schrödinger
problem (Schε) on the regularization parameter ε, focusing in particular on the
regularity as a function of ε and on the behaviour in the small-time regime.
More precisely, and denoting

Cε(x, y) := inf
(γt) :x y

{
A(γ) + ε2I(γ)

}
, ∀ε ≥ 0

the optimal entropic cost, we show that ε 7→ Cε(x, y) is (locally) absolutely
continuous and admits explicit left and right derivatives in a pointwise sense.
Moreover, since Cε(x, y) → C0(x, y) as ε ↓ 0 by Corollary 4.4, we aim at
measuring the error Cε(x, y) − C0(x, y) and studying the minimizers of the
unperturbed problem C0(x, y) selected by Γ-convergence. Since we focus here
on the dependence on ε we will assume throughout the whole Section 5 and
without further mention the well-posedness of the ε-Schrödinger problem:

Assumption 5.1. Fix x, y ∈ X and suppose that for some (hence for any,
by Proposition 4.2) ε > 0 the Schrödinger problem (Schε) admits at least one
minimizer, in other words the infimum is attained in the definition of Cε(x, y).
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We accordingly denote the set of ε-minimizers as

Λε(x, y) :=
{
ω ∈ AC2([0, 1],X) : ω0 = x, ω1 = y and Aε(ω) = Cε(x, y)

}
.

Let us start the analysis with a preliminary monotonicity statement for the
Fisher information and the entropic cost, which generalizes [25, Lemma 3.3].

Lemma 5.2. With the same assumptions and notations as in Setting 3.1 and
for any 0 ≤ ε1 < ε2 <∞ there holds

inf
Λε1(x,y)

I ≥ sup
Λε2(x,y)

I,

with possibly infΛ0(x,y) I = +∞. Moreover, ε 7→ Cε(x, y) is monotone non-
decreasing on [0,∞).

Proof : Let ε1, ε2 as in the statement and choose ωi ∈ Λεi(x, y) for i = 1, 2, so
that by optimality

A(ω1) + ε2
1I(ω1) ≤ A(ω2) + ε2

1I(ω2),

A(ω2) + ε2
2I(ω2) ≤ A(ω1) + ε2

2I(ω1).

Summing these inequalities and dividing by ε2
2 − ε2

1 we obtain I(ω1) ≥ I(ω2),
and since ω1 ∈ Λε1 and ω2 ∈ Λε2 are arbitrary the desired conclusion follows.
As regards the last part of the statement, it is sufficient to note that since ωi
are minimizers of their respective problems and ε1 < ε2,

Cε1(x, y) = A(ω1)+ε2
1I(ω1) ≤ A(ω2)+ε2

1I(ω2) ≤ A(ω2)+ε2
2I(ω2) = Cε2(x, y).

Let us then extend Theorem 4.3 and Corollary 4.4 from ε = 0 to any ε ≥ 0.

Proposition 5.3. With the same assumptions and notations as in Setting 3.1
and under the additional Assumption 3.2, for any ε > 0 there holds

Γ− lim
ε′→ε

{
Aε′ + ι01

}
= Aε + ι01 (5.1)

for the pointwise-in-time σ-topology and

lim
ε′→ε

Cε′(x, y) = Cε(x, y).

Moreover, for any εk → ε and any minimizer ωk ∈ Λεk(x, y), there exists
ω ∈ Λε(x, y) such that, up to a subsequence,

ωkt
σ→ ωt, ∀t ∈ [0, 1]
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as k →∞.

Proof : It is sufficient to prove (5.1), as the other properties follow by a verbatim
application of the arguments in the proof of Corollary 4.4.
Fix ε and take ε′ → ε. The Γ− lim sup inequality is trivial: if γε is such that

the right-hand side of (5.1) is finite (otherwise there is nothing to prove), then
the constant sequence γε′ ≡ γε is an admissible recovery sequence. For the Γ−
lim inf inequality, note that the kinetic action A and the Fisher information I
are lower semicontinuous w.r.t. pointwise-in-time σ-convergence (see the proof
of Proposition 4.2), and clearly so is the convex indicator. Hence for any γε′

converging to γε for the pointwise-in-time σ-topology it holds

Aε(γε) + ι01(γ
ε) ≤ lim inf

ε′→ε

{
Aε(γε

′
) + ι01(γ

ε′)
}

= lim inf
ε′→ε

{
A(γε

′
) + ε2I(γε

′
) + ι01(γ

ε′)
}

= lim inf
ε′→ε

{
A(γε

′
) + (ε′)2I(γε

′
) + ι01(γ

ε′)
}

= lim inf
ε′→ε

{
Aε′(γε

′
) + ι01(γ

ε′)
}
.

As an immediate consequence of this result we deduce the following

Lemma 5.4. With the same assumptions and notations as in Setting 3.1 and
under Assumption 3.2, the function ε 7→ Cε(x, y) is continuous on [0,∞).
Moreover, if ε 7→ ωε is a continuous (w.r.t. the pointwise-in-time σ-topology)

selection of minimizers, then ε 7→ A(ωε) and ε 7→ I(ωε) are also continuous,
on [0,∞) and (0,∞) respectively.

Note that if the minimizers are unique, then ε 7→ ωε is automatically contin-
uous w.r.t. the pointwise-in-time σ-topology, simply by Proposition 5.3, as any
sequence of minimizers admits a subsequence converging to a minimizer and
the limit is in fact unique. Also, the continuity of the Fisher information can
be strengthened up to ε = 0, see later on Theorem 5.7.

Proof : The continuity of Cε(x, y) for ε > 0 is granted by Proposition 5.3, while
continuity at ε = 0 has already been proved in Corollary 4.4.
As regards the kinetic energy A and the Fisher information I, recall that

they are both lower semicontinuous in [0,∞) w.r.t. the pointwise-in-time σ-
topology, as already discussed in the proof of Proposition 4.2. Thus, if ε 7→ ωε
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is as in the statement, we are left to prove that ε 7→ A(ωε) and ε 7→ I(ωε) are
upper semicontinuous. To this aim, it is sufficient to observe that

lim sup
ε′→ε

A(ωε
′
) = lim sup

ε′→ε

{
Cε′(x, y)− (ε′)2I(ωε

′
)
}

≤ lim sup
ε′→ε

Cε′(x, y)− lim inf
ε′→ε

(ε′)2I(ωε
′
)

≤ Cε(x, y)− ε2I(ωε) = A(ωε),

where the last inequality holds by the continuity of ε 7→ Cε(x, y) and the lower
semicontinuity of ε 7→ I(ωε). Thus ε 7→ A(ωε) is upper semicontinuous in
[0,∞). Interchanging A and I and writing now I = 1

ε2 (Cε − A), the same
argument shows that ε 7→ I(ωε) is upper semicontinuous in (0,∞) (continuity
at ε = 0 will require a special treatment later).

We have now all the ingredients to discuss the regularity of the cost Cε(x, y)
as a function of the noise parameter ε and explicitly compute its left and right
derivatives.

Proposition 5.5. With the same assumptions and notations as in Setting 3.1
and if Assumption 3.2 holds, the map ε 7→ Cε(x, y) is ACloc([0,∞)), left and
right differentiable everywhere in (0,∞) and, for any ε > 0, the left and right
derivatives are given by

d−

dε
Cε(x, y) = 2ε max

Λε(x,y)
I, d+

dε
Cε(x, y) = 2ε min

Λε(x,y)
I (5.2)

respectively, and the former (resp. latter) is left (resp. right) continuous. It is
part of the statement the fact that the maximum and the minimum are attained.

Remark 5.6. Heuristically, (5.2) is nothing but the envelope theorem. In-
deed, if ε 7→ Cε(x, y) were differentiable, then its derivative would be given by
∂εAε = 2εI evaluated at any critical point, i.e. at any ωε ∈ Λε(x, y). How-
ever, since we do not know in our general metric framework that Schrödinger
problem has a unique solution, we are not able to prove pointwise differen-
tiability as in [25] and we have to face the possibility of a gap between the
left and right derivatives. In any case, for a.e. ε > 0 this gap is zero, because
ε 7→ Cε(x, y) is locally absolutely continuous in (0,∞) and therefore a.e. differ-
entiable. This means that, up to a negligible set of temperatures, the left and
right derivatives match and I is constant on Λε(x, y). If for whatever reason
the Schrödinger problem (Schε) were uniquely solvable (which is in particular
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true for the classic Schrödinger problem, as proved in [39, Theorem 4.2]), then
the left and right derivatives would be trivially equal and Lemma 5.4 would
give that ε 7→ Cε(x, y) is actually C1((0,∞)). Furthermore, the cost would
also be twice differentiable a.e. since by Lemma 5.2 its first derivative 2εI(ωε)
would be the product of a linear function and of a monotone one. �

Proof : The continuity of ε 7→ Cε(x, y) follows by Lemma 5.4, so let us focus
on left and right differentiability/continuity and local absolute continuity.
Right differentiability. Fix ε > 0, let δ > 0, and choose ωε ∈ Λε(x, y),
ωε+δ ∈ Λε+δ(x, y). Then write

Cε+δ(x, y)− Cε(x, y)

δ
=
Aε+δ(ωε+δ)−Aε(ωε)

δ

=
Aε+δ(ωε+δ)−Aε+δ(ωε)

δ
+
Aε+δ(ωε)−Aε(ωε)

δ

(5.3)

and note that the second term on the right-hand side can be rewritten as

Aε+δ(ωε)−Aε(ωε) = (2εδ + δ2)I(ωε).

The first one is non-positive by optimality of ωε+δ for Aε+δ, hence we obtain

lim sup
δ↓0

Cε+δ(x, y)− Cε(x, y)

δ
≤ lim sup

δ↓0
(2ε+ δ)I(ωε) = 2εI(ωε).

As this inequality holds for any ωε ∈ Λε(x, y), we infer that

lim sup
δ↓0

Cε+δ(x, y)− Cε(x, y)

δ
≤ 2ε inf

Λε(x,y)
I. (5.4)

On the other hand we can also write
Cε+δ(x, y)− Cε(x, y)

δ
=
Aε+δ(ωε+δ)−Aε(ωε)

δ

=
Aε+δ(ωε+δ)−Aε(ωε+δ)

δ
+
Aε(ωε+δ)−Aε(ωε)

δ
.

(5.5)

Using now the optimality of ωε for Aε, we observe that the second term on the
right-hand side is non-negative, whence

Aε+δ(ωε+δ)−Aε(ωε)
δ

≥ Aε+δ(ω
ε+δ)−Aε(ωε+δ)

δ
= (2ε+ δ)I(ωε+δ).
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For any sequence δn ↓ 0, Proposition 5.3 guarantees (up to extraction of a
subsequence if needed) that ωε+δn → ωε in the pointwise-in-time σ-topology
for some ωε ∈ Λε(x, y). By lower semicontinuity of I this implies

lim inf
n→∞

Cε+δn(x, y)− Cε(x, y)

δn
≥ lim inf

n→∞
(2ε+ δn)I(ωε+δn) ≥ 2ε inf

Λε(x,y)
I,

and together with (5.4) this yields

∃ lim
n→∞

Cε+δn(x, y)− Cε(x, y)

δn
= 2εI(ωε) = 2ε inf

Λε(x,y)
I.

As the right-hand side does not depend on the particular sequence δn ↓ 0 we
conclude that

∃ lim
δ↓0

Cε+δ(x, y)− Cε(x, y)

δ
= 2ε min

Λε(x,y)
I,

in particular I is minimized by any accumulation point ωε of {ωε+δ}δ>0.
Left differentiability. The argument is very similar. Indeed, if δ < 0, then
the first term on the right-hand side of (5.3) is non-negative and the second
one can be handled in the same way. Hence there holds

lim inf
δ↑0

Cε+δ(x, y)− Cε(x, y)

δ
≥ 2εI(ωε),

for any ωε ∈ Λε(x, y), and therefore

lim inf
δ↑0

Cε+δ(x, y)− Cε(x, y)

δ
≥ 2ε sup

Λε(x,y)

I.

Applying the same considerations to (5.5) and following the same argument as
above we retrieve the lim sup inequality, first along some subsequence δn ↑ 0
and then along any δ ↑ 0. Combining with the inequality above gives

∃ lim
δ↑0

Cε+δ(x, y)− Cε(x, y)

δ
= 2ε max

Λε(x,y)
I, ∀ε > 0,

whence the pointwise left differentiability of ε 7→ Cε(x, y).
Left and right continuity. In order to prove the right continuity of the right
derivative of ε 7→ Cε(x, y), note that on the one hand by Lemma 5.2 for any
εn ↓ ε it holds

inf
Λε(x,y)

I ≥ lim sup
n→∞

sup
Λεn(x,y)

I ≥ lim sup
n→∞

inf
Λεn(x,y)

I.
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On the other hand, we can assume up to a subsequence if needed that

lim inf
n→∞

inf
Λεn(x,y)

I = lim
n→∞

inf
Λεn(x,y)

I.

As shown in the proof of right differentiability, infΛε′(x,y) I is attained for any
ε′ > 0, hence in particular infΛεn(x,y) I = I(ωn) for some ωn ∈ Λεn(x, y), for all
n. Up to extracting a further subsequence, by Proposition 5.3 we can assume
that ωn → ωε w.r.t. the pointwise-in-time σ-topology for some ωε ∈ Λε(x, y),
and moreover by Lemma 5.4

lim
n→∞
I(ωn) = I(ω) ≥ inf

Λε(x,y)
I.

Putting all these inequalities together provides us with the right continuity of
ε 7→ infΛε(x,y) I and, a fortiori, of the right derivative. Left continuity for the
left derivative follows along an analogous reasoning.
Local absolute continuity. Let 0 < ε1 < ε2 < ∞ and, for any 0 < δ < 1,
define

fδ(ε) :=
Cε+δ(x, y)− Cε(x, y)

δ
.

The monotonicity of ε 7→ Cε(x, y) from Lemma 5.2 gives fδ ≥ 0. Arguing
as in the very beginning of the proof of the right differentiability we see that
fδ(ε) ≤ (2ε+ 1)I(ωε) for any ωε ∈ Λε(x, y), and by Lemma 5.2

fδ(ε) ≤ (2ε2 + 1) sup
Λε1(x,y)

I <∞, ∀ε ∈ (ε1, ε2].

Hence |fδ| ≤M uniformly in δ and fδ converges pointwise to the right deriva-
tive of ε 7→ Cε(x, y) as δ ↓ 0, whence by the dominated convergence theorem∫ ε2

ε1

d+

dε
Cε(x, y) dε = lim

δ↓0

∫ ε2

ε1

fδ(ε) dε.

The right-hand side can be rewritten as

lim
δ↓0

∫ ε2

ε1

fδ(ε) dε = lim
δ↓0

(1

δ

∫ ε2

ε1

Cε+δ(x, y) dε− 1

δ

∫ ε2

ε1

Cε(x, y) dε
)

= lim
δ↓0

(1

δ

∫ ε2+δ

ε2

Cε(x, y) dε− 1

δ

∫ ε1+δ

ε1

Cε(x, y) dε
)

= Cε2(x, y)− Cε1(x, y),
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where the last equality holds by the Lebesgue differentiation theorem for the
continuous function ε 7→ Cε(x, y) (cf. Lemma 5.4). We have thus proved that
the cost belongs to ACloc((0,∞)), since

Cε2(x, y)− Cε1(x, y) =

∫ ε2

ε1

d+

dε
Cε(x, y) dε, ∀ 0 < ε1 < ε2.

For the full ACloc([0,∞)) regularity it is then sufficient to let ε1 ↓ 0: the
left-hand side converges to Cε2(x, y) − C0(x, y) by Lemma 5.4, and by the
monotonicity d+

dεCε ≥ 0 the right-hand side also converges by monotone con-
vergence.

Relying on our previous auxiliary results and on Proposition 5.5, we are finally
in position of estimating the error Cε(x, y)−C0(x, y) with o(ε2) precision. We
will also significantly refine Corollary 4.4 by proving that any accumulation
point of any sequence of minimizers is not only optimal for the unperturbed
problem C0(x, y), but also I-minimizing among all competitors in Λ0(x, y).

Theorem 5.7. With the same assumptions and notations as in Proposition
5.5, if there exists ω0 ∈ Λ0(x, y) such that I(ω0) < ∞, then the map ε 7→
Cε(x, y) is right differentiable also at ε = 0 with

d+

dε
Cε(x, y)

∣∣∣
ε=0

= 0,

the right derivative is right continuous for any ε ≥ 0, and

Cε(x, y)− C0(x, y) = ε2 inf
Λ0(x,y)

I + o(ε2). (5.6)

Moreover, for any εn ↓ 0 and any minimizer ωn ∈ Λεn(x, y) there exists ω∗ ∈
Λ0(x, y) such that (up to a subsequence) ωn → ω∗ for the pointwise-in-time
σ-topology, and ω∗ has minimal Fisher information in Λ0(x, y)

I(ω∗) = min
Λ0(x,y)

I.

Proof : The right differentiability of ε 7→ Cε(x, y) at ε = 0 follows by the same
argument carried out in Proposition 5.5. Indeed, given ω0 as in the statement,
by (5.3) with ε = 0 it holds

lim sup
δ↓0

Cδ(x, y)− C0(x, y)

δ
≤ lim sup

δ↓0
δI(ω0) = 0.
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The liminf inequality is straightforward, since I ≥ 0 and thus by (5.5) with
ε = 0

lim inf
δ↓0

Cδ(x, y)− C0(x, y)

δ
≥ lim inf

δ↓0
δI(ωδ) ≥ 0

for any ωδ ∈ Λδ(x, y). This also shows that the right derivative vanishes at
ε = 0.
As regards the right continuity of the right derivative, the case ε > 0 has

already been discussed in Proposition 5.5. For ε = 0 the same strategy still
works, with the only minor difference that we cannot rely on Lemma 5.4 any-
more. Nonetheless, if ωn ∈ Λεn(x, y) is as in Proposition 5.5, ω ∈ Λ0(x, y)
and ωn → ω for the pointwise-in-time σ-topology (the existence of such ω is
granted by Corollary 4.4) it is still true that

lim inf
n→∞

I(ωn) ≥ I(ω),

simply by lower semicontinuity of I. With this single change in the proof we
deduce that ε 7→ infΛε(x,y) I is right continuous and finite also at ε = 0, thanks
to the present assumptions, and so is the right derivative of the cost due to
ε infΛε(x,y) I → 0 as ε ↓ 0.
The last part of the statement is a slight modification of these lines of thought.

Indeed, given any sequence εn ↓ 0 and ωn ∈ Λεn(x, y), the existence of ω∗ ∈
Λ0(x, y) such that, up to subsequences, ωn → ω∗ is ensured by Corollary 4.4.
The fact that ω∗ has minimal Fisher information among all elements in Λ0(x, y)
follows from

inf
Λ0(x,y)

I ≥ lim sup
n→∞

sup
Λεn(x,y)

I ≥ lim sup
n→∞

I(ωn) ≥ I(ω∗) ≥ inf
Λ0(x,y)

I,

where we used once again Lemma 5.2 and the lower semicontinuity of I. Thus,
it only remains to establish (5.6).
As ε 7→ Cε(x, y) belongs to ACloc([0,∞)) and the right derivative coincides

a.e. with the full derivative, (5.2) and the fundamental theorem of calculus
yield

Cε(x, y)− C0(x, y) = 2

∫ ε

0

s inf
Λs(x,y)

I ds ≤ 2

∫ ε

0

s inf
Λ0(x,y)

I ds = ε2 inf
Λ0(x,y)

I.

Here we used the monotonicity of the Fisher information from Lemma 5.2 in
the middle inequality. By the same monotonicity and the right continuity at
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ε = 0 of ε 7→ infΛε(x,y) I we also deduce that

Cε(x, y)− C0(x, y) ≥ 2

∫ ε

0

s inf
Λε(x,y)

I ds = ε2 inf
Λε(x,y)

I

= ε2 inf
Λ0(x,y)

I + ε2
(

inf
Λε(x,y)

I − inf
Λ0(x,y)

I
)

= ε2 inf
Λ0(x,y)

I + o(ε2)

.

Combining this lower bound with the previous upper one entails (5.6).

Remark 5.8. It is worth stressing that the upper bound on Cε(x, y)−C0(x, y)
is not asymptotic, but pointwise. A possible way to improve (5.6) would rely
on a refined analysis of ε 7→ infΛε(x,y) I, its derivative (which exists a.e. by
monotonicity), and possibly absolute continuity. �

Remark 5.9. The I-minimizing property of the accumulation point ω∗ is not
specific of the choice ε = 0, but of the particular “backward” direction of the
sequence εn ↓. Repeating the argument in the proof of Theorem 5.7 it is
indeed not difficult to check that, given any ε > 0, a sequence εn ↓ ε, and
ωn ∈ Λεn(x, y) there exists ωε ∈ Λε(x, y) such that, up to a subsequence,
ωn → ωε for the pointwise-in-time σ-topology and

I(ωε) = inf
Λε(x,y)

I.

In a symmetric fashion, a closer look into the proof of Proposition 5.5 suggests
that an opposite behaviour appears in the “forward” direction. More precisely,
if εn ↑ ε instead of εn ↓ ε, then any accumulation point ωε of (ωn) is such that

I(ωε) = sup
Λε(x,y)

I.

However, the “backward” direction and the case ε = 0 are usually more inter-
esting, because of the connection with the unperturbed problem C0(x, y) for
which there might be multiple solutions even if the Schrödinger problem (Schε)
has a unique minimizer for all ε > 0. It is therefore natural to look for the
(properties of the) solutions selected via Schrödinger regularization. �

6. Examples
In this section we collect several and heterogeneous situations where our

abstract approach (in particular Theorem 4.3, Corollary 4.4, and Theorem
5.7) applies. We shall also comment the novelty of the results thus obtained
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in comparison with the existing literature. In this perspective, it is worth
discussing in more detail the role played by Assumption 3.2 so far, singling out
when the sequential lower semicontinuity of |∂E| w.r.t. σ is needed and when
it is not:

• to show the existence of a solution to the Schrödinger problem (Schε)
(cf. Proposition 4.2) it is crucial, in order to apply the direct method of
the calculus of variations;
• in Theorem 4.3 and Corollary 4.4 it is not used;
• unlike Corollary 4.4, in Proposition 5.3 it is needed for the Γ-liminf
inequality and so is in Lemma 5.4;
• Proposition 5.5 relies on Proposition 5.3 and Lemma 5.4, hence it is
implicitly used;
• in Theorem 5.7 the continuity of ε 7→ infΛε(x,y) I at ε = 0 requires the
lower semicontinuity of |∂E| and also Proposition 5.5 is used in the proof
of (5.6); hence the lower semicontinuity of |∂E| is really needed.

This means that if one is able to show the solvability of the Schrödinger problem
(Schε) by means other than those used in Proposition 4.2, then Theorem 4.3
and Corollary 4.4 are still valid under the following weaker hypothesis.

Assumption 6.1. There exists a Hausdorff topology σ on X such that d-
bounded sequences contain σ-converging subsequences. Moreover, the distance
d is sequentially lower semicontinuous w.r.t. σ.

Theorem 5.7, instead, requires the full validity of Assumption 3.2.

6.1. The Boltzmann-Shannon relative entropy. As a first example, let
us consider the Boltzmann-Shannon relative entropy on the Wasserstein space
built over a (locally compact) RCD(K,∞) space. To this end, let (M, d,m) be
a complete and separable locally compact length metric space endowed with
a Radon measure and assume that it is an RCD(K,∞) space [4] for some
K ∈ R. Let X := P2(M) be the 2-Wasserstein space over M , namely the
space of probability measures with finite second moments, and equip it with
the 2-Wasserstein distance W2: it turns out to be a complete and separable
metric space [14] as well. The Boltzmann-Shannon relative entropy E on X is
defined as

E(µ) :=


∫
M

ρ log(ρ) dm if µ = ρm,

+∞ if µ 6� m.
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As by [61, Theorem 4.24] there exist C > 0, x ∈M such that
∫
M e−Cd

2(·,x)dm <
∞, E can be equivalently rewritten as

E(µ) =

∫
M

ρ̃ log(ρ̃) dm̃︸ ︷︷ ︸
≥0

−C
∫
M

d2(·, x) dµ− logZ,

where ρ̃ is the Radon-Nikodym derivative of µ w.r.t. m̃, with the normalization

Z :=

∫
M

e−Cd
2(·,x)dm, m̃ :=

1

Z
e−Cd

2(·,x)m.

From this very definition, it is easy to see that E is a proper lower semicontinu-
ous functional, bounded from below on W2-bounded sets. In addition, it has a
dense domain, since by (one of the equivalent) definition of RCD spaces, cf. [4,
Theorem 5.1], for any µ ∈ X there exists an EVIK-gradient flow of E starting
from it. Thus Setting 3.1 holds.
As regards Assumption 6.1, note that X is not locally compact unless M is

compact, so that in general the metric topology ofX is not an admissible candi-
date for σ. Nonetheless there is a natural alternative: the narrow convergence of
probability measures. Indeed, W2-bounded sequences in X are uniformly tight
(the second moments are uniformly bounded and the balls in M are relatively
compact, so that the claim follows from [2, Remark 5.1.5]) and thus relatively
compact w.r.t. the narrow topology. Moreover, W2 is lower semicontinuous
w.r.t. narrow convergence of measures [1, Proposition 3.5]. Therefore, given
any µ, ν ∈ X for which the dynamical Schrödinger problem (Schε) is solvable,
the Γ-convergence results of Section 4 are fully applicable. This is for instance
the case if µ, ν � m have bounded densities and supports (in [38, 39] this is
proved for RCD∗(K,N) spaces, N <∞, but the argument can be adapted to
locally compact RCD(K,∞) spaces thanks to the existence of “good” cut-off
functions [52]).

In the present framework, taking into account the equivalence between W2-
absolutely continuous curves and distributional solutions of the continuity equa-
tion (see [37]) and the fact that the slope |∂E|2 coincides with the Fisher infor-
mation [3, Theorem 9.3], (Schε) reads as

inf

{
1

2

∫∫ 1

0

|vt|2ρt dtdm +
ε2

2

∫∫ 1

0

|∇ log ρt|2ρt dtdm
}
,
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where the infimum runs over all couples (µt, vt), µt = ρtm, solving the conti-
nuity equation ∂µt + div(vtµt) = 0 with the constraint µ0 = µ and µ1 = ν.
This is the dynamical formulation of the “classical” Schrödinger problem [45].
A thorough study of this problem and its equivalent formulations (at the static,
dual, and dynamical levels) has been carried out by the second author in [39],
but in the more restrictive framework of RCD∗(K,N) spaces, and only for ε
fixed. The behaviour of the (unique) minimizers as ε ↓ 0 is instead studied in
[38, Proposition 5.1], again only in RCD∗(K,N) spaces, but the Γ-convergence
of the corresponding variational problems is not investigated. Hence Theorem
4.3 and Corollary 4.4 are new in the RCD framework.

Under the stronger assumption thatM is compact (e.g. the torus, the sphere
or any convex closed bounded subset of a smooth weighted Riemannian mani-
fold), as said above we can choose the σ topology to be the strong one induced
by W2, and in this case |∂E| is lower semicontinuous by (3.1) and Assumption
3.2 is fully satisfied. Another interesting situation where Assumption 3.2 fully
holds is represented by a convex domain in Rd (in this case σ is, as before, the
narrow topology; see [35, Lemma 2.4] for a proof of the narrow lower semicon-
tinuity of |∂E|). As a consequence, in these examples also the results in Section
5 hold true and this partly extends the recent work [25], where an analogue of
Theorem 5.7 is proved in the Riemannian setting.

6.2. Internal energies and the Rényi entropy. As a second class of ex-
amples, we consider generalized entropy functionals (usually called internal
energies) on the Wasserstein space built over an RCD∗(0, N) space, N < ∞.
Taking advantage of the non-negative curvature assumption and of the finite
dimensionality we shall indeed be able to cover a wide range of functionals,
including in particular Rényi entropies (naturally linked to the porous medium
equation). By the discussion carried out in the previous section and by the fact
that RCD∗(K,N) spaces are in particular locally compact RCD(K,∞) spaces
(the notion of RCD∗(K,N) space is first introduced in [36]; for the distinc-
tion between RCD and RCD∗ conditions see [6] and [21]), the 2-Wasserstein
space X := P2(M) over an RCD∗(0, N) space (M, d,m) endowed with the
2-Wasserstein distance W2 is a complete and separable metric space.
As regards the entropy functionals we shall consider on X, they are of the form∫
M U(ρ) dm, where U : [0,∞) → R is a continuous and convex function with
U(0) = 0 and U ′ locally Lipschitz in (0,∞) satisfying McCann’s condition [49]
for some N ′ ≥ N : this means that the corresponding pressure function P (r) :=
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rU ′(r) − U(r) is such that P (0) := limr↓0 P (r) = 0 and r 7→ r−1+1/N ′P (r) is
non-decreasing or, equivalently,

r 7→ rN
′
U(r−N

′
) is convex and non-increasing on (0,∞).

Under these assumptions on U , the internal energy E is defined as

E(µ) :=

∫
M

U(ρ) dm + U ′(∞)µ⊥(M), if µ = ρm + µ⊥, µ⊥ ⊥ m (6.1)

where U ′(∞) := limr→∞ U
′(r). In the case U is chosen equal to

UN ′(r) := −N ′(r1−1/N ′ − r), N ′ ≥ N or Um(r) :=
1

m− 1
rm, m ≥ 1− 1

N

(UN ′ being more linked to Lott-Sturm-Villani theory of curvature-dimension
bounds, Um with the porous medium equation of power m), the well-known
Rényi entropy is recovered. A detailed discussion of internal energies like E,
associated non-linear diffusion semigroups and evolution variational inequali-
ties in connection with curvature-dimension conditions is at the heart of the
monograph [5] and can also be found in [63, Chapters 16 and 17].
Since U(0) = 0, M is locally compact and U is continuous, it is clear that

E is well defined and finite on all probability measures with bounded support,
so that E is proper and has a dense domain in X. Actually, D(E) is dense in
energy in X, i.e. for all µ ∈ X there exist µn ∈ D(E) with W2(µn, µ) → 0
and E(µn) → E(µ) as n → ∞. By the properties of U it is also easy to see
that E is lower semicontinuous [63, Theorem 30.6] and bounded from below
on W2-bounded sets. Finally, from [5, Theorem 9.21] with K = 0 (since M is
assumed to be an RCD∗(0, N) space) and the fact that D(E) is dense in energy
in X, we see that for all µ ∈ X there exists an EVI0-gradient flow of E starting
from it.
We are therefore within Setting 3.1 and by what we said in Section 6.1 the

narrow topology complies with Assumption 6.1. Hence whenever the dynamical
Schrödinger problem (Schε) is solvable, our metric results of Section 4 can be
applied. As regards the lower semicontinuity of |∂E| w.r.t. σ, and thus the full
validity of Assumption 3.2 and, as a consequence, of the abstract results of
Section 5 too, if M is compact then by (3.1) we see that the W2-topology is
an admissible candidate for σ. If M = Rd and U is superlinear at ∞ (which
is the case for Um defined above with m > 1), then by [2, Theorem 10.4.6] the
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slope can be represented as

|∂E|2(µ) =

∫
Rd
|∇U ′(ρ)|2 dµ, if µ = ρLd

and by [35, Proposition 2.2] it is lower semicontnuous w.r.t. narrow convergence.
Hence also in this situation the results of Section 5 hold true.

To the best of our knowledge, up to now the dynamical Schrödinger problem
(Schε) with the slope of a general internal energy in place of the slope of the
Boltzmann entropy has been considered only in [33] from a purely formal point
of view. Static Monge-Kantorovich problems regularized by means of the Rényi
entropy or more general internal energies have recently been introduced in [32,
48, 47, 30] (see also the references therein). Remarkably, [47] establishes the Γ-
convergence of the regularized problems towards the optimal transport one (cf.
[30] where the convergence of the optimal values and minimizers is discussed).
However, in [30] only bounded costs are considered (the quadratic cost function
associated to (1.4) is thus ruled out for non-compact sample spaces), while
[47] the discussion is restricted to sample spaces which are compact subset of
Rd. Other questions our paper is concerned with have not been examined in
these references. Note also that the issue of the equivalence between static
and dynamical formulations is far from being clear at this level of generality.
In view of this discussion, in all the applicability situations presented in this
section our results are new.
The case of a (possibly) negatively curved base space M is not discussed

since, as already argued above, [5, Theorem 9.21] allows to deduce (EVIλ) with
λ = 0 only for K ≥ 0. Moreover, it has recently been proved [28, Theorem
2.5 and Remark 2.6] that in the hyperbolic space the porous medium equation
cannot be seen as the Wasserstein gradient flow of some λ-convex functional
in the EVI-sense, hence the Rényi entropy cannot generate an EVIλ-gradient
flow there.

6.3.Mean-field Schrödinger problem. In the seminal thought experiment
proposed by Schrödinger [59, 60] the physical system, whose evolution between
two subsequent observations has to be determined, consists of independent
Brownian particles. An important generalization has been recently proposed
in [7], where particles are allowed to interact through a pair potential W . This
leads to the so-called Mean Field Schrödinger Problem (MFSP henceforth). In
order to see that this example falls within our abstract metric theory, let us first
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check the validity of Setting 3.1. As already said in Section 6.1, X := P2(Rd),
the 2-Wasserstein space over Rd, endowed with the Wasserstein distace W2 is
a complete and separable metric space. The role played by the Boltzmann-
Shannon relative entropy in the “classical” Schrödinger problem is here taken
by the functional E : X→ R defined (up to a shift by a constant) by

E(µ) :=

 H(µ | Ld) +

∫
Rd
W ∗ ρ dµ if µ = ρLd

+∞ if µ 6� Ld

where H(µ | Ld) is the Boltzmann-Shannon relative entropy of µ w.r.t. the
Lebesgue measure Ld, already introduced in Section 6.1, and W is the pair
potential, describing via convolution the interaction between the particles of
the system. On such a potential the following assumptions are made: it is of
class C2(Rd,R), is symmetric, i.e. W (x) = W (−x) for all x ∈ Rd, and satisfies
the two-sided bound

ΛId ≥ ∇2W ≥ λId

for some Λ, λ > 0 (actually λ ∈ R is enough, but in [7] the authors are inter-
ested in the ergodic behaviour of MFSP). While the upper bound is technical,
the lower one is geometric and crucial. The lower semicontinuity of E is easily
seen to hold: the relative entropy has already been discussed, whereas the con-
tinuity of the convolution term follows from the fact that if µn → µ in P2(Rd),
then µn ⊗ µn → µ ⊗ µ in P2(R2d), cf. [2, Example 9.3.4]. The fact that E is
proper and the density of its domain are also clear. Moreover, the assump-
tions on W guarantee that E is bounded from below on W2-bounded sets. As
concerns the existence of EVIλ-gradient flows starting from any µ ∈ X, this
is ensured by [2, Theorem 11.2.1] in conjunction with [2, Remark 9.2.5 and
Proposition 9.3.5], granting the λ-convexity of E along generalized geodesics
(see [2, Definitions 9.2.2 and 9.2.4]). Therefore, Setting 3.1 holds.
As regards Assumption 3.2, for the topology σ the natural candidate is once

again the sequential topology induced by narrow convergence of probability
measures. By the discussion in Section 6.1, W2-bounded sets are relatively
narrow compact and W2 is sequentially narrow lower semicontinuous. The
slope of E is explicitly given by

|∂E|2(µ) =


∫
Rd
|∇ log ρ+ 2∇W ∗ ρ|2 dµ if µ = ρLd, ∇ log ρ ∈ L2

µ,

+∞ otherwise,
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cf. [7, Section 1.4.2], and one can rely on [35, Proposition 2.2], the fact that
∆W is continuous and bounded (as a consequence of the boundedness of∇2W )
and the regularization properties of the convolution to show that |∂E| is also
sequentially narrowly lower semicontinuous. Hence Assumption 3.2 is fully
satisfied and all the results of Sections 4 and 5 are applicable.

From the novelty standpoint, a first interesting remark is the fact that in [7]
the approach is purely stochastic, while our point of view is completely analytic.
For instance, in [7, Proposition 1.1] the existence of solutions to MFSP is proved
under the same assumptions we have in Proposition 4.2, namely µ, ν ∈ X with
E(µ),E(ν) <∞. However, already at this basic level the reader may appreciate
the difference between the two approaches.
But more than anything else, our abstract results are completely new when

specialized to MFSP: indeed, only the ergodic behaviour in the long time regime
ε → ∞ is studied in [7], so that the Γ-convergence results of Section 4 are
entirely novel. The same is true for Section 5, since in [25] the derivative of the
cost associated to MFSP is not investigated nor is the Taylor expansion (5.6).

6.4. Non-linear mobilities. In [31] the authors studied a generalization Wm

of the quadratic Wasserstein distance on P(Ω), generated by Benamou-Brenier-
type formulas in convex bounded domains Ω ⊂ Rd. The latter are based on
nonlinear continuity equations and pseudo-Riemannian norms

‖µ̇‖2
µ = min

v

{∫
Ω

m(µ)|v|2 s.t. µ̇+ div(m(µ)v) = 0

}
,

where m : R+ → R+ is a given nonlinear mobility function satisfying suitable
structural conditions (mainly concavity). The linear case m(r) = r corresponds
to the standard Wasserstein distance. In the nonlinear case, the lack of 1-
homogeneity may impose restricting to absolutely continuous measures µ =
ρ(x) dx (as in [20, Section 3] depending on cases A or B therein), thus for the
ease of exposition in this section we identify measures µ with their densities ρ
with a slight abuse of notation.
Specifying the reference measure m in (6.1) to be the (normalized) Lebesgue

measure Ld and taking U to be superlinear U(+∞) = +∞ for convenience,
let us check that our previous internal energies

E(ρ) =

∫
Ω

U(ρ(x)) dx



SCHRÖDINGER PROBLEM IN METRIC SPACES 51

fit our setting. First of all, completeness is known from [31, Theorem 5.7], and
separability readily follows from the density of compactly supported continuous
functions, whence (A1). Next, from [31, Theorem 5.5] it is known that the Wm

topology is at least stronger than the weak-∗ convergence of measures, thus the
lower semicontinuity in (A2) holds as soon as z 7→ U(z) is lower semicontinuous.
The density of the domain D(E) in (A2) should be again a simple exercise
involving standard approximation arguments, provided U is reasonable. As
regards our more fundamental assumption (A3), the generation of an EVIλ-flow
is exactly the purpose of [20] for λ = 0. More precisely, under some generalized
McCann condition GMC(m, d) involving U,m, and the ambient dimension d,
[20, Theorem 4.10] guarantees that our internal energy functionals generate
0-contractive gradient flows. As a consequence we can rigorously take our
Setting 3.1 as applicable here. As concerns Assumption 3.2, a reasonable and
natural choice for the weaker σ-topology is of course the weak-∗ convergence of
measures. Given the pseudo-Riemannian structure induced by [20, Eq. (3.2)],
the (squared) metric slope is at least formally given by

|∂E|2(ρ) =

∫
Ω

m(ρ)|∇U ′(ρ)|2 =

∫
Ω

|∇P (ρ)|2

m(ρ)
, (6.2)

where the pressure P is defined as P (r) =
∫ r

0 U
′′(z)m(z) dz. With reasonable

assumptions on U,m it should not be difficult to check the lower semiconti-
nuity of this generalized Fisher information for this specific choice of the σ
topology, and from [31, Theorem 5.6] the distance Wm is also known to be
lower semicontinuous w.r.t. the weak-∗ convergence.
As a consequence our metric results apply to this context as well (although

full proofs of the representation (6.2) for the metric slope and of its weak lower
semicontinuity are still missing for a completely rigorous statement, but this is
out of scope of the paper).

6.5. Hadamard spaces. Let (X, d) be a complete and separable CAT(0)
space (i.e. a separable Hadamard space), x0 ∈ X be a fixed point, and E =
1
2d

2(x0, ·). Then E is a 1-convex functional. By [54, Theorem 3.14], there exists
an EVI1-gradient flow of E starting from any x ∈ X. Thus, we fit into Setting
3.1.
Although Assumption 6.1 is satisfied, existence of some “weak” Hausdorff

topology σ on X is required to secure Assumption 3.2 (unless X is locally
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compact, cf. Remark 3.3). Such a topology indeed exists, at least if X sat-
isfies a rather mild geometric Q4 condition [41, 42], and is called the half-
space topology. The corresponding convergence is known as the ∆-convergence
[46]. Indeed, d-bounded sequences contain ∆-converging subsequences [46, 41].
Bounded closed convex sets (in particular, balls) are ∆-closed [42], which easily
implies that d is ∆-lower semicontinuous. Moreover, it is easy to see from (3.1)
that |∂E(x)| = d(x0, x), thus the slope is ∆-lower semicontinuous too.
In this framework, all our results are applicable. Note that E is always finite.
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