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Abstract: Three-dimensional (3D) printing, also known as additive manufactur-
ing (AM), has emerged in the last decades as an innovative technology to build
complex structures. It enables increasing design complexity and low-cost customiza-
tion with a vast range of materials. AM capabilities contributed to a widespread
acceptance of 3D printing in different industries such as the aerospace and the au-
tomotive. However, important issues and limitations still need to be addressed,
namely in printing complex objects where supports and material roughness surface
are to be minimized.

In this work we consider a 5-axis printer with the three traditional xyz movements
and two additional degrees of freedom on the printer table bed. These extra degrees
of freedom (table bed rotation and tilt) allow printing of more complex objects, and
we propose an approach which consists on the decomposition of complex objects
into simpler parts, allowing each part to be printed in an optimal way. We aim to
reduce the number of supports needed and attain high final object quality due to
lower material surface roughness.

The optimal printing direction (or, equivalently, rotation) and sequencing of the
object parts is determined by solving a combinatorial sequencing optimization prob-
lem. All the local and global optimal parts rotations are obtained by solving a
global optimization sub-problem for each part, and are taken as input parameters
for the sequencing optimization problem. We provide a heuristic approach for the
combinatorial sequencing optimization problem, and a multistart multisplit search
methodology for computing all the local and global optimal parts rotations for the
sub-problems.

Math. Subject Classification (2010): 90C11, 90C26, 90C56, 90C90.

1. Introduction
Three-dimensional (3D) printing also known as additive manufacturing

(AM) has emerged in the last decades, becoming an alternative to the tra-
ditional subtractive manufacturing. AM builds up a component through
the deposition of materials layer-by-layer, in opposition to starting with an
over dimensioned raw block and removing unwanted material as in conven-
tional subtractive manufacturing [8, 32]. It became a promising alternative
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for fabricating components made of expensive materials, thanks to its many
benefits and affordable prices, leading to a growing revolution on AM at a
global scale. From education to health, from archeology to engineering, 3D
printers are already making significant practical impacts [4].

Most of the established 3D printing technologies are based on layered manu-
facturing, e.g., fused deposition modeling (FDM) or stereo lithography. Such
a technology requires four main preparation tasks to be able to print a com-
plete object [20]: i) object orientation – computation of the best orientation
for the object to be built; ii) design of supports – to hold, during the printing
process, the overhang parts of the object; iii) slicing – extracting layers (as
sets of 2D polygons) from the object, converting the 3D object into 2D im-
ages; iv) path planning – extruder head path for printing. In particular, FDM
printers build a sequence of structures by depositing material bottom-up
layer-by-layer by heating and extruding thermoplastic filaments [25, 33, 35].
Typically, the extruder travels along the x and y axes to build an object layer
and along the z axis to build the layers. Printers limited to movements in the
3-axis need to introduce support structures to support overhanging layers or
overhangs higher than 45 degrees from the vertical axis [35]. An immedi-
ate consequence of this approach is that the effective printing resolution and
consequently the resulting surface smoothness is strongly anisotropic [33].

The type of printer considered herein provides the 3 traditional xyz move-
ments together with two additional degrees of freedom on the printer table,
allowing rotation and tilt (inclination) of the table. These extra degrees of
freedom will allow printing of more complex objects with improvements in
the surface quality and reduction of support structures. A 5–axis system en-
ables re-orientation of the object during the printing process, being extremely
useful for 3D printing, since overhanging structures can be minimized or re-
moved.

There is extensive research literature on AM related fields like computa-
tional design for AM [10, 18, 19], AM processes [14, 18], process modeling
and optimization [3, 7, 26, 31, 37], material science [18], and energy and sus-
tainability [34]. However, additive manufacturing for 3D printing of complex
objects by its decomposition into parts was only recently addressed. Let us
briefly review these recent studies.

Ding et al. [8] addressed a new strategy for multi-direction slicing of CAD
models in STL (Standard Triangle Language or Standard Tessellation Lan-
guage) format by considering an optimal volume decomposition-regrouping
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strategy, applying a curvature-based volume decomposition method, which
decomposes complex objects into sub-volumes using a depth-tree structure.
Wang et al. [35], in order to improve the surface quality in 3D printing,
presented a pipeline of algorithms that compute an object decomposition
by using the co-compatibility of the facet normals with the printing direc-
tions. A 3D Voronoi diagram is computed to consolidated the parts shape.
This technique has the particularity that the (manual) assembly order of
parts is collision free, and parts ordering and direction for assembling are
also obtained [36]. Massoni et al. [24] proposed a method that automatically
decomposes 3D complex models into parts with the goal of lowering overall
production costs. The proposed approach generates many alternative parts
by using iterative cutting planes, followed by an exhaustive list of manufac-
turing plans for each assembly option where costs are estimated. A beam
search optimization algorithm was applied with the search space organized as
a decision tree, providing the best assembly and manufacturing cost. Luo et
al. [22] proposed a framework called chopper also based on the beam search
algorithm, decomposing large 3D objects into smaller parts so that each part
fits into the printing volume space. Parts are assembled by the user to form
the complete object.

We propose an approach where complex objects are decomposed into sim-
pler parts, allowing each part to be printed in an optimal way, reducing the
number of supports needed and attaining high final object quality due the
lower material surface roughness. Additionally, we take advantage of the
5–axis printer in order to propose an approach that builds complex objects
without the user intervention to assembly the parts. This approach relies on
the solution of two distinct optimization problems. The first one considers
the possible many optimal printing direction (which is equivalent to compute
a rotation or orientation) of parts, i.e., for each part an optimization problem
is solved for the optimal part printing direction that minimizes the staircase
effect (or alternatively the support area or building time). Since the consid-
ered objective function of the optimization problem is multimodal, i.e., many
global or local optimal printing directions may exist, a multistart multisplit
local search (MMLS) algorithm for global optimization is proposed, with the
aim to compute as many global and local optima as possible. The first one
may be seen as sub-problems (one for each part of the object) of the second
one, which is a sequencing optimization problem where we seek to obtain the
sequence of parts and corresponding optimal rotations. The many optimal



4 B. RAMOS, D. PINHO, D. MARTINS, A. I. F. VAZ AND L. N. VICENTE

solutions computed by the MMLS algorithmic are crucial to the sequencing
algorithm, since more feasible points exist for the sequencing optimization
problem when more parts printing rotations optima are computed.

The remainder of the paper is organized as follows: Section 2 gives a simple
introduction to the printer features we consider and provides further moti-
vation to our work. Section 3 describes the MMLS algorithm use to address
the printing direction sub-problems. These sub-problems rely on one of sev-
eral objective functions described in Section 4. The approach for printing
complex objects is described in Section 5. Section 6 presents and discusses
the results on two case-studies. The paper is ended on Section 7 with some
conclusions and remarks. An appendix is used to provide additional details
on the MMLS algorithm.

2.Motivation for 3D printing of complex objects
In this section we provide additional information about the 5-axis printer

setting considered in this paper. The considered printer provides the stan-
dard x, y, and z head movements and two additional degrees of freedom at
the printer table, allowing for its rotation and tilt. Figure 1 shows a virtual
representation of the 5–axis printer (FIBR3DEmul [9]).

Figure 1. Virtual representation of the 5-axis printer
(FIBR3DEmul [9]).

Our approach considers a decomposition of complex objects into simpler
parts. Taking advantage of the 5–axis printing capability, each part may be
individually printed in an optimal way, thus reducing the number of supports
needed in the overall object and attaining high final object quality due the
lower material surface roughness. The approach can be structured in four
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Figure 2. Object with two closed parts.

stages: STL input, where the object to be printed is provided in the STL
file format, possible obtained from a CAD model; Object parts identification,
where the object is decomposed into parts; Optimal object building sequence,
to determine the optimal building sequence of parts leading to the desired ob-
ject; and Sequence slicing and printing, where each part is sliced accordingly
to the selected rotation, and the printer path is generated.

An STL file is expected to be provided in the STL input stage. The STL
file is nothing more than a description of the model to be printed, defined
by a set of triangles (facets) and a normal direction to the facet, pointing
outwards the object. In the last decades a few strategies to split an object
into several parts have emerged, but they often considered the angle between
two consecutive facets (e.g., angles close to 90o) to decide about possible
locations for splitting the object (see [8]). However, such a splitting strategy
is not suitable for some type of objects, since angles close to 90o between
surfaces in smooth objects may be defined by a high number of facets whose
consecutive angles are faraway from 90o. In the present work we assume
that the object to be built is already provided as a collection of parts from
the CAD model, i.e., the user builds the object CAD model by taking into
consideration the object possible many parts. The object CAD model is to
be exported (saved) in STL making sure that parts are closed and not merged
into a single object part. For example, in SolidWorks© each part is to be
designed at a 2D drawing plan and when extruding it to 3D the option merge
result must be switched off to create a closed part (surface). See Figure 2
for an example of an object formed by two closed parts. In the Object parts
identification stage the object is obtained by reading the provided STL file
providing the closed parts of the object.



6 B. RAMOS, D. PINHO, D. MARTINS, A. I. F. VAZ AND L. N. VICENTE

The main contribution of our paper is in the stage Optimal object building
sequence, where we propose a strategy to compute the optimal part build-
ing sequence and corresponding orientation (rotation) of parts. The strategy
takes advantage on the printer ability to rotate and tilt the printer bed and
on the decomposition of the complex object into closed parts, allowing each
part of the object to be printed in an optimal oriented way. The printing con-
sists in determining when (sequence) and how (orientation/rotation) to print
each part. To reduce the complexity of the sequencing optimization problem
in hands, the many optimal printing directions of each part are previously
addressed. The authors in [26] addressed the computation of a unique global
optimum for the optimization problem of getting the optimal printing direc-
tion. However, a single optimum computation reveal itself insufficient, since
the computed optimal printing direction may lead to an infeasible sequenc-
ing problem (as the unique obtained optimal printing direction may still lead
to a collision when building other parts). Therefore, our optimal building
planning relies on the computation of all parts optimal rotations separately
and previously.

After obtaining the optimal printing sequencing, the last stage (Sequence
slicing and printing) addresses the traditional slicing and printing using the
previously computed optimal sequence and parts’ orientation. This last stage
is out of the scope of the present paper, and, therefore, not reported here
in details. However, an implementation of this stage was carried out for a
5–axis printer setting. In practice, it is only this last stage that can properly
validate the proposed strategy and show that a valid path planning is indeed
obtained. In this stage, given an optimal sequence and a parts’ orientation,
one produces the so-called CNC (Computer Numeric Control) instructions
for the printer.

In the next section we briefly describe a strategy to compute all the optimal
rotations of a given part, whose obtained solutions are to be used in the fi-
nal optimal object sequencing strategy. The proposed algorithm to compute
all optimal rotations is based on a multistart multisplit approach relying on
a local optimization solver in order to converge to stationary points/local
minimizers of the rotation optimization problem in hands. The optimal se-
quencing algorithm is described in Section 5.



OPTIMAL 3D PRINTING OF COMPLEX OBJECTS IN A 5-AXIS PRINTER 7

3. A multistart multisplit local search approach
As previously described, the proposed approach to print complex objects

relies on the capability of determining all possible optimal ways to print a
part, w.r.t. some performance measure f(x), i.e., propose to compute all the
local optima of a part rotation optimization problem. In this section we
address a general optimization algorithm for the bound constrained mini-
mization of a performance measure f(x) given by

min
x∈Ω

f(x), (1)

where Ω ⊂ Rn is defined by Ω = {(x1, . . . , xn)
T ∈ Rn : −∞ ≤ lbi ≤ xi ≤

ubi ≤ +∞, i = 1, . . . , n}. Assumptions on the smoothness of objective func-
tion f(x) are postponed to Subsection A.4 (since they will depend on the local
search optimization strategy to be used). We assume it is computationally
expensive to evaluate objective function.

There are a few solvers available to address problem (1) (see [21] and the
references therein). Previous proposed approaches for the computation of
all the local and global optima include methods that multistart local search
algorithms (e.g., MLSL [29, 30], GLODS [6], MADS [2]), but often the local
search runs do not share information among them. Concurrent evaluation of
the objective function is also possible for some available solvers (e.g. pVTDi-
rect [15, 16, 17], APPSPACK [13], and HOPSPACK [27]). In this section we
propose a solver to address problem (1), for concurrent function evaluations
and multistart of local search algorithms sharing information of the objec-
tive function evaluations. Additionally, the number of simultaneous local
search runs is dynamic. By constructing quadratic models of the objective
function, the solver detects possible valleys of convexity of the objective func-
tion, where new local search runs are initiated. This algorithm is more suited
for the application in hands, since the considered objective function in the
rotation problem is expected to be convex in the vicinity of local optima and
we aim to explore this local convexity.

Our framework considers a certain number R of local search (LS) runs,
possible made in parallel. Each LS run is guided by the run center, which
consists of the point where LS is taking place. LS runs may be seen as
independent runs of the local search algorithm. LS runs share information
between runs, in the sense that all history of objective function evaluations is
available to every LS run. Our framework is organized around inner and outer
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iterations. Inner iterations consist of LS iterations, while outer iterations
consist of a clustering of historic objective function evaluations used to build
a piecewise quadratic underestimator of the objective function. By forming
clusters of points, from all the points where f has been evaluated, we are able
to make a decision about the objective function landscape. The convexity
information obtained from the clusters allows us to decide if a split of LS
runs is appropriate. By splitting we mean that a new LS run will start based
on the convexity information available.

In this way we parallelize LS runs when exploiting the objective function
landscape by building underestimation models. Multistart is easily accom-
plished by starting with a set of initial points and starting new LS runs
whenever the objective function landscape justifies. Unnecessary LS runs are
removed/merged whenever convergence to the same local stationary points
is detected.

The Multistart Multisplit Local Search (MMLS) framework is presented in
Algorithm 1.

Algorithm 1 MMLS framework

1: Select initial points, x0
j , j = 1, . . . , R0, for R0 LS runs (and additional LS

parameters).
2: In parallel:
3: for each OUTER iteration ` = 0, 1, . . . do
4: Create R` clusters C`

j , j = 1, . . . , R`, (using all the history of points

available so far), taking x`j, the run centers, as centroids, i.e., cluster R`

is formed by x`j and the historical points closer to x`j (w.r.t. other run
centers).

5: Build an underestimator quadratic model for each cluster.
6: Decide whether any LS run is split. Let x`+1

j , j = 1, . . . , R`+1 be the
new run centers.

7: Perform a certain number of INNER iterations for the R`+1 LS runs,
starting from x`+1

j , j = 1, . . . , R`+1.
8: Decide whether any LS run is merged, i.e., remove runs from R`+1

whose run centers are too close.
9: end for

Note that each outer iteration may be done in parallel, assuming that each
LS run has access to the historic data of other LS runs. Each LS run may
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report the objective function evaluations (evaluations possible done in par-
allel) and the current run center point (a point in the historical data) to a
master process. In this way, Step 4 has all the ingredients to run indepen-
dently for each LS run. Step 8 may also be taken in parallel as long as each
LS run makes the decision to stop whenever some efficiency measure is met
(e.g., either stop due to stationarity, if the run center is approaching a known
stationary point, or if the run center is approaching another LS run center
with sufficiently lower objective function value).

Convergence of the proposed approach is highly based on the convergence
properties of the LS algorithmic choice. As long as the clustering and splitting
approaches are kept finite, we note that the proposed approach generates se-
quence of iterates from the LS framework (one for each run center). Insuring
inner iterations of the proposed approach to comply with the LS convergence
rules and taking the new run center to be the one with the lowest objective
function value when two runs are merged would most likely lead to the same
convergence results of the chosen LS algorithm (and that is the case when
the choice is direct search). The proposed approach details are postponed to
an appendix.

4. Optimal part rotation
In this section we use the MMLS algorithm to address the optimal part

orientation/rotation. Object (or part) orientation is an important stage of
the printing process, consisting of the computation of the printing direction,
or, equivalently, in the computation of the object rotation while the printing
direction is kept fix. There are several performance metrics that can be used
to compute the optimal printing direction. We will be considering the math-
ematical optimization problem of determining the optimal printing direction
for which the staircase effect, support area, or building time is minimized
(see [26] for additional details). In the context of a standard 3D printer,
where the printer is able to move along the x, y, and z axes, the printing
direction corresponds to compute a vector along which slicing is to take place.

The printing direction is represented by a normalized vector described by
two angles in a spherical coordinate system, i.e., one is requested to compute
α (a rotation along the x axis) and β (a rotation along the y axis) angles to
obtain a printing direction. For a matter of completeness, we reproduce the
objective functions mathematical expressions of [26] below. The staircase
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effect can be measured by computing

ŜE(r) =
t2

2

∑
j

 |d.nj(r)|Aj, if |d.nj(r)| 6= 1,

0 otherwise,

where t is the (constant) layers height, d = [0, 0, 1]> is the slicing direction
along the z axis, and Aj is the area of the mesh triangle j. The vector nj(r)
is the normal to the mesh triangle j related to a rotation given by r = (α, β).
The part area that needs to be supported can be measured by computing

ŜA(r) =
∑
j

 Aj|d.nj(r)|δ, if d.nj(r) 6= −1 and j is not at the printing table,

0 otherwise,

where

δ =

{
1, if d.nj(r) < 0
0, if d.nj(r) > 0.

An approximation to the building time may be obtained by computing the
object height along the slicing direction, leading to the following equation:

BT (r) = max(d.v1(r), d.v2(r), ..., d.vn(r))−min(d.v1(r), d.v2(r), ..., d.vn(r)),

where vi(r), i = 1, . . . , n, are the mesh triangles vertices related to a rotation
given by r.

The objective function landscape of a duct object w.r.t. the ŜE measure
can be observed in Figure 3, as a function of α and β. Observing the func-
tion landscape, one clearly sees that the objective function has two global
minima and an infinite number of local minima at β = 90o. This optimiza-
tion problem was first solved to global optimality by considering the PSwarm
solver in [26]. Since we aim all possible local optima, the MMLS solver was
used to address the optimal printing direction of the duct object presented
in Figure 3a. A maximum of 2000 functions evaluations was imposed and
the solver stopped after 2115 objective function evaluations, after performing
80 inner iterations. Twenty points (candidates to minimizers) were obtained
and four of them attained the convergence tolerance of 10−5 in the inner iter-
ation, indicating that they are local optimal points. The objective function
values at the obtained local optimal points allows us to conclude that two
are indeed global optima and two are local optima points. We depict the
two global optima and one selected local optima in Figure 4, showing that
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(a) Duct object.
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Figure 4. Duct object slices at optimal rotations.

MMLS is able to compute all the global optima and some local optima for
this problem.

5. Complex objects printing approach
Figure 5a illustrates an object with four closed parts obtained from the

STL file, from which we can establish the parts printing connections for the
object and build the corresponding direct graph (Figure 5b). Without loss of
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(a) Decomposi-
tion of complex
object.
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Figure 5. Complex object proposed by Ding et al. [8].

generality we can assume that part 0 is connected to the printer bed (floor),
while part 1 is connected with part 0, and parts 2 and 3 are connected with
part 1. The object is decomposed into T = 4 parts. We start by introducing
some notation needed to describe the sequencing optimization model and to
present the proposed printing approach.

5.1. Variables and constraints of the model. We will assume that the
set of local and global optima for the part rotation (or slicing direction) is
available, obtained by using the MMLS solver described in Section 3. Let Ki

be the number of known optima for the rotation of part i, i = 0, . . . , T−1, i.e.,
let r∗i,k, k = 1, . . . , Ki, be the known optimal solutions of sub-problem (1) for
part i obtained with the MMLS solver. We define the set of binary variables
yi,k to be

yi,k =

{
1, if rotation k of part i (r∗i,k) is to be considered
0, otherwise.

Clearly we may only print a part once and natural constraints on the variables
yi,k are

Ki∑
k=1

yi,k = 1, i = 0, . . . , T − 1. (2)

To compute the optimal sequencing of parts we further define the xi,t binary
variables that indicate if part i = 0, . . . , T − 1 is to be built at the time slot
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t, where t = 0, . . . , T − 1, i.e.,

xi,t =

{
1, if part i is to be built at time slot t
0, otherwise.

Only T time slots are necessary, since the worst case corresponds to build all
parts sequentially. Clearly a part may only be built at one time slot, i.e.,

T−1∑
t=0

xi,t = 1, i = 0, . . . , T − 1. (3)

To impose a precedence of parts in the building process, we need to impose
two sets of constraints that must be satisfied for every part i that precedes
part j:

l∑
t=0

xi,t ≥
l∑

t=0

xj,t, l = 0, . . . , T − 1, (4)

imposing that part i must be built at least at the same time slot, and

xi,l ≤
T−1∑

k=0,k 6=l

xj,k, l = 0, . . . , T − 1, (5)

eliminating the possibility of building i and j at the same time slot.
A nonlinear black-box constraint has to be imposed to ensure that the

parts building sequence (together with the parts rotation) provides a feasible
building sequence, i.e., to insure that the building sequence does not provide
any type of collision between the printer (head or table) and previously built
parts. The constraint

NoCollision(r, x) = true (6)

is thus imposed so that the model produces an optimal solution that leads
to a building sequence that is in fact possible to be implemented, where
NoCollision(r, x) is a function returning true if r and x do not leads to a
collision.

A second nonlinear black-box constraint

NoSupport(r, x) = true (7)

must also be included in the model if one wishes to obtain an optimal solution
that does not need the use of supports, where NoCollision(r, x) is a function
returning true if r and x lead to a support free printing process.
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Additionally, we assume that the parts on the printing table, i.e., on the
base, must be built at the first time slot, and so xi,0 = 1 for all parts i
attached to the printer table.

5.2. The optimization model. While the constraints in the previous sub-
section provide a mathematical model for a feasible building sequence of
parts, we aim to compute an optimal solution with respect to some perfor-
mance measure of the printing process.

Consider ŜE(ri,k) to be the staircase effect, ŜA(ri,k) to be the support area,
and BT (ri,k) to be the building time of part i with rotation k (represented
by ri,k), as described in Section 4. Based on these performance measures and
on the shortest building sequence to be defined below, we will formulate four
objective functions to be used individually (using the one that best fits the
application) or in a multi-objective formulation.

The building sequence size can be computed by

BSS(x) =
T−1∑
t=0

(
t

(
T−1∑
i=0

xi,t

))
. (8)

The objective function of our optimization model can take any of the forms

f(x, y) =
T−1∑
i=0

Ki∑
k=1

yi,kP (ri,k) or f(x, y) = BSS(x), (9)

where P (ri,k) is any of the functions ŜE(ri,k), ŜA(ri,k), or BT (ri,k). Our
optimization model can then be stated as

min
x,y

f(x, y), subject to (2)–(7). (10)

While problem (10) has a linear objective function, constraints (6) and (7)
are nonlinear and of a black-box type, which makes the optimization prob-
lem nonlinear with black-box type constraints over binary variables. Rig-
orous methods could (theoretically) be used to solve such an optimization
(e.g. NOMAD [1] or even BFO [28]), but we aim for a global optima for
problem (10). While evolutionary strategies for optimization could also be
used, we also aim for an algorithm that efficiently computes a global op-
tima. Therefore we propose in the next section an heuristic to address this
challenging optimization problem.
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5.3. A heuristic to obtain an optimal building sequence. We solve
the previously described optimization problem by using a heuristic method.
Our heuristic constructs all feasible points for the optimal sequencing opti-
mization problem. The decision maker may then select an objective func-
tion among (9), or a convex linear combination of them, and based on that
determine an optimal building sequence. The heuristic is presented in Al-
gorithms 2 and 3. The input of Algorithm 2 (the main algorithm) is a list
of pairs with all combinations of parts and corresponding optimal rotations,
i.e.,

Pinput = {(pi, r∗i,k)}, i = 0, . . . , T − 1, k = 1, . . . , Ki,

where pi is the part number and r∗i,k are the Ki determined optimal rotations
for part number i. The heuristic relies on a recursive construction of lists
with the main computational work done in the sub-routine Level, presented
in Algorithm 3.

Algorithm 2 Main algorithm to enumerate all possible object printing se-
quences

1: Input: Pinput, list or pairs with parts and corresponding optimal rota-
tions.

2: Output: LF , a list of lists with all the possible building sequences.
3: Initialization: Set LF = ∅, Lc = ∅ (the list of parts in the current time

slot is empty) and Lt = ∅ (the list of parts in previous time slots is
empty).

4: Main: LF will be the result of the call to Level(Lt, Lc, Pinput)



16 B. RAMOS, D. PINHO, D. MARTINS, A. I. F. VAZ AND L. N. VICENTE

Algorithm 3 Recursive Level sub-routine

1: Subroutine Level(Lt, Lc, P̂)

2: if P̂ = ∅ then
3: // No more available parts to add to current lists
4: if Lc = ∅ then
5: // The current time slot is empty, so add current sequence to the

list of feasible points
6: LF = LF ∪ {Lt}
7: end if
8: return
9: end if

10: // Get parts not used and connected to current time slot

11: Let Pconnected =Connected(P̂ ,Lt).
12: if Pconnected = ∅ then
13: return
14: end if
15: for p = (pi, r

∗
i,k) ∈ Pconnected do

16: if !Collision(Lt ∪ Lc, p) and !Support(Lt ∪ Lc, p) then

17: P̃ = {p̃ = (pi, r
∗
i,k̄

) ∈ P̂ , k̄ = 1, . . . , Ki} // Prepare to exclude part
remaining rotations

18: Level(Lt, Lc ∪ {p}, P̂ \ P̃) // Go recursively considering p in the
current time slot

19: Level(Lt∪{Lc∪{p}}, ∅, P̂ \ P̃) // Go recursively starting a new
time slot

20: end if
21: end for

The Level sub-routine takes as input a list Lt of lists with the parts to be
built in previous time slots (initially set as empty), a list of parts Lc to be

built in the current time slot (initially set as empty), and P̂ a set of parts not
yet assigned to any time slot (initially set as Pinput). The Level sub-routine

starts by checking the set P̂ of not assigned parts for emptiness (line 2). If it
is empty then the sub-routine ends, since no further parts are available to be
assigned to the current time slot. The Level sub-routine is recursively called
twice per sub-routine call, and in case of an empty P̂ set the temporary list
Lt is only saved once in LF to avoid duplications, i.e., when the Lc list is
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empty. If only a feasible point were to be computed, then the full algorithm
could stop right after the first assignment in line 6.

The sub-routine proceeds (line 11) by selecting parts still available in P̂
that are physically connected to the parts to be built in previous time slots,
given in Lt. When Lt = ∅, the Connected(P̂ ,Lt) routine will return the

parts p ∈ P̂ that are physically connected to the printer table. If no parts are
available, the sub-routine simply returns (meaning that such an Lt does not
lead to a feasible point, since there exist parts to be built without a physical
connection to parts already built).

For each part p in the set PConnected, the algorithm checks if a collision
with parts already assigned (indicated by Lt ∪ Lc) occurs and if the part p
needs support to be built. The Collision(Lt ∪Lc, p) and Support(Lt ∪Lc,
p) functions return true if there is a collision or the need of support when
building part p after parts in Lt ∪ Lc were built, respectively. If no collision
and no need of support is detected the algorithm proceeds recursively by
considering the part p in the current time slot (line 18) and considering part
p in the current time slot with an initialization of a new time slot (line 19).
Since p is a pair of the part number and rotation, the set of parts available
for future assignments must exclude the parts with the same part number as
the one currently being assigned (available in P̃ , see 17), i.e., a part may not
be built again regardless of the rotation.

Algorithm 2 ends providing a list of lists with building sequences in LF .
Given a list in LF , a correspondence to a (x∗, y∗) solution is easily obtained
by setting x∗i,t = 1 if part pi is in the time slot t and y∗i,k = 1 if rotation k is
to be considered, with the remaining variables set to zero. A few comments
about Algorithm 2 are in order.

While the algorithm constructs an enumeration of all feasible points, the
number of feasible points is typically small, since the number of parts con-
nections is also expected to be small (i.e., in the Level sub-routine we expect
#Pconnected to be small). Additionally, the Collision and Support routines
allow to identify, possibly in an early stage, infeasible points. Recall that
exact or heuristic approaches to the optimization problem (10) need to check
equations (6) and (7) for each x, y values, corresponding to a complete build-
ing sequence.

The procedure can be stopped prematurely if a single global optima for
problem (10) is to be obtained, since a lower bound on the objective function
value at a global optima is known. We have f(x, y) ≥ 0 for all objective
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functions and a global optima is attained if f(x∗, y∗) = 0, except for the BT
measure.

Additionally, we can take advantage on the printer characteristics and col-
lision detection to further improve Algorithm 3 efficiency. We postpone this
improvement to the numerical results section. The complex case-study of
Section 6 helps to clarify these improvements.

5.4. Exemplifying the lists used in the heuristic. We consider a simple
object depicted in Figure 6. Figure 6a presents the full object to be printed.
Clearly this object could be printed in a standard 3D printer after a proper
rotation of the object (e.g., a rotation of 0o around the x axis and a counter-
clockwise rotation of 90o around the y axis, i.e., r = (0o, 90o)). The optimal
orientation of the object using the strategy proposed in [26] would lead to
an optimal way to print the part.

However, we are interested in illustrating that our proposed methodology
also provides an optimal way to print the object. The object in Figure 6a
is decomposed into two parts, presented in Figures 6b and 6c. Since each

part represents a 3D rectangle, optimal object orientation w.r.t. the ŜA and

ŜE measures leads to ŜA(r) = 0 and ŜE(r) = 0 for any rotation r corre-
sponding to the combinations of rotating 90o, 180o around any axis (x or y).
Considering the BT measure (measure of the part height) we have several
local and global optima for each parts. Figures 6b and 6c provide a rotation
that leads to global optima w.r.t. all the P measures (e.g., r = (0o, 90o) for
the first part and r = (0o, 90o) for the second one), if parts were to be built
separately.

While the object is considered simple there are many ways to individually
print the two parts. For the brevity of exposition we only consider two opti-
mal rotations for each part, i.e., we consider P = {(0, (0o, 0o)), (0, (0o, 90o)),
(1, (0o, 0o)), (1, (0o, 900))}, part 0 precedes part 1 in the building process, and
part 0 is connected to the printer table.

If collisions and need of support are ignored, Algorithm 2 considers four
possible scenarios given by L1 = {{(0, (0o, 0o))}; {(1, (0o, 0o))}},
L2 = {{(0, (0o, 0o))}; {(1, (0o, 90o))}}, L3 = {{(0, (0o, 90o))}; {(1, (0o, 0o))}},
and L4 = {{(0, (0o, 90o))}; {(1, (0o, 90o))}}. But L1 is a building sequence
that leads to the need of support for part 1. Besides, a collision takes place
in L1 since after building part 0 with (0o, 0o), a collision occurs between the
printer head and part 0, when building part 1. The same type of collision
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occurs in L3, resulting in LF = {L2,L4}. If one considers the BSS objective
function in (8) then both L2 and L4 solutions attain an objective function
value of 1 (two time slots) and if one considers the BT measure then L4

is the optimal solution because part 0 height is higher than part 0 with a
(0o, 90o) rotation (part 0 width). The L4 solution corresponds to the printing
approach obtained by using the strategy proposed in [26].

(a) 3D com-
posed object
w.r.t. any
objective
function.

(b) First part
optimal rotation
w.r.t. any objec-
tive function.

(c) Sec-
ond part
optimal
rotation
w.r.t. any
objective
function.

Figure 6. First case-study with two simple composed parts.

6. Results
In this section we illustrate Algorithm 2 applied to a complex case-study.

The object to be printed is a candelabrum with eight arms attached to a
pedestal made of a circular base, depicted in Figure 7. Each arm is com-
posed by two parts with different inclinations. Four arms are described by
approximately 4000 facets (2000 facets for each part), making them to ap-
pear smooth. The other four arms are described by 24 facets (12 facets for
each part) whose wire frame is clear visible in the figure. The pedestal base
is a cylinder described by 740 facets and a stem described by 12 facets. The
complete object is described by 15190 facets.



20 B. RAMOS, D. PINHO, D. MARTINS, A. I. F. VAZ AND L. N. VICENTE

Figure 7. Candelabrum used as a complex case-study.

First, in Sub-section 6.1, we describe the application of Algorithm 1 to find
as many optimal rotation of parts as possible. In Sub-section 6.2, we report
how Algorithm 2 has computed the optimal sequence of parts. We finish this
section with an illustration of the printing approach of the complex object
in our 5–axis printer setting.

6.1. Applying MMLS to parts. In this subsection we report on the nu-
merical results of the MMLS solver (Algorithm 1) applied to the optimization
problem

min
r=(α,β)∈[0,180]2

ŜE(r), (11)

where we aim to compute all the local and global optima, to be later used in
Algorithm 2.

The MMLS considers maxi iter = 10, maxo iter = 1000, α = max(ub −
lb)/500, and αtol = 10−5 (see Algorithm 4, a more detailed version of Algo-
rithm 1), and the nonconvex piecewise quadratic interpolation described in
Section A.2. We restrict the MMLS solver to a maximum of 20 simultaneous
LS runs and a maximum of 10000 objective function evaluations. An initial
set of ni = 10 points is considered. Optimization problem (11) is solved for
each part of the object. For the sake of brevity we report the numerical re-
sults for the pedestal base (part 0), pedestal stem (part 1), non-smooth arm
part (part 3), and smooth arm part (part 11). For this particular application,
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Figure 8. Pedestal base (part 0) ŜE objective function.

MMLS was given four initial guesses, namely (0, 0), (180, 180), (0, 90), and
(90, 0).

6.1.1. Pedestal base (part 0). The 3D printing procedure starts by reading
a STL file with the object representation, where objects are in a certain

position in space. The ŜE objective function landscape depicted in Figure 8
is dependent on the part position in space defined at the design stage. In this
particular case, the pedestal base is positioned faced down, i.e., the circular
planar face of the pedestal base is parallel to the printing table. Clearly, if
(α, β) = (0, 0), we have no staircase effect since both circular planar faces
(bottom and top) are perpendicular to the z-axis, and remaining surface
facets are parallel to the z-axis. Any slightly rotation along the x- or y-
axes will provide a high increase in the staircase effect. This justifies the
non-smoothness of the objective function for this particular example, which
actually poses difficulties to any derivative–based solver.

With the settings previously described, MMLS reports 23 local optima
(local search stopped with α < 10−5 for all reported minimizers) after 2078
objective function evaluations. By inspecting the objective function values
one finds that two global optima are obtained (corresponding to (α, β) =
(0, 0) and (180, 180)). The remaining solutions are combinations of α = 90
or β = 90. The optimal value is approximately 125.

6.1.2. Pedestal stem (part 1). The ŜE objective function for the pedestal
stem is depicted in Figure 9. MMLS stops after 6240 objective function eval-
uations, reporting six global optima and fourteen local optima with objective
function value of approximately 500. By inspecting the objective function
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Figure 9. Pedestal stem (part 1) ŜE objective function.
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Figure 10. Non-smooth part (part 3) ŜE objective function.

values of the reported points, we identified the global minima (α, β) = (0, 0),
(α, β) = (0, 90), (α, β) = (90, 0), (α, β) = (180, 0), (α, β) = (0, 180), and
(α, β) = (180, 180).

6.1.3. Non-smooth arm part (part 3). The ŜE objective function for the
non-smooth arm part is depicted in Figure 10. This part is described by 12
facets and is attached to the pedestal stem. MMLS stops after 6665 function
evaluations. It reports seventeen points attaining the requested accuracy
(α < αtol). By observing the objective function values we conclude that one
global optima ((α, β) = (0, 90)) and two local optima were found with an
objective function value of approximately 15, corresponding to the points
(α, β) = (110, 0) and (α, β) = (110, 180). The remaining fourteen points are
local optima points with β = 90, with objective function value of 240 and
two points with objective function value around 247.
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Figure 11. Smooth part (part 11) ŜE objective function.

6.1.4. Smooth arm part (part 11). The ŜE objective function for the smooth
arm part is depicted in Figure 11. Part 11 is described by 1676 facets cor-
responding to a smooth arm part of the candelabrum. MMLS is able to
compute the global optima with objective function value of 0 and two local
optima with objective function value of 11.88 for (α, β) = (109.95, 180) and
(α, β) = (109.95, 0). The remaining fifteen local optima led to an objective
function value of approximately 60 corresponding to points with β = 90.
These numerical results were attained after 6850 objective function evalua-
tions.

6.2. Obtaining the optimal sequencing. Figure 12 depicts the cande-
labrum parts number and their connections (the part numbers are in accor-
dance with Figure 7). As already stated, the parts numbers correspond to
the order they are found in the STL file, without any other meaning. The
connections were detected by inspecting which facets are side-by-side with
other parts or with the printing table.

While Algorithm 2 does incorporate a metric about the sequencing perfor-
mance as it merely computes all feasible sequencing plans. As a sequencing
performance metric, one can consider summing all the individual parts con-
tribution for the staircase effect. One could also take into consideration
additional penalties for building simultaneous parts (since additional move-
ments from the printer are needed) or for positioning the printer head in a
safe position before changing printing parts.

Algorithm 2 is designed to compute all feasible sequences, but it can be
stopped prematurely to provide as many feasible sequences as needed. At
line 6 of Algorithm 3, one can account for the Lf size and stop the procedure
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Figure 12. Graph with parts connections for the candelabrum
object.

when desired. Prematurely ending Algorithm 2 can lead to a non optimal se-
quencing. However, Algorithm 3 can be implemented to prioritize some type
of solutions. For example, the optimal rotations for each part i can be sorted
by objective function value (f(r∗i,k1) < f(r∗i,k2), k1 < k2, k1, k2 = 1, . . . , Ki),
allowing rotations with lower objective function values to be considered first.
Also, lines 18 and 19 of Algorithm 2 can be swapped if one wishes to priori-
tize single parts to be built at each time slot, i.e., considering the possibility
of more than one part to be later built at the same time slot.

Taking advantage of the printer settings, we can go further ahead and check
if the optimal rotations found for each part leads to the same printer setup
(by computing the corresponding printer table rotation and tilt), discarding
repeated ones. This pre-processing stage can discard some rotations found by
the MMLS solver, leading to less combinations to be tested by Algorithm 2.
To further improve Algorithm 2 (and make it viable for our application) one
needs to take advantage of the Collision procedure. This procedure must
be as computationally light as possible, avoiding unnecessary evaluations,
and allowing the identification of infeasible sequences as early as possible.
In order to make it computationally lighter, before calling Algorithm 2, all
parts rotations are verified for collisions between the printer table and the



OPTIMAL 3D PRINTING OF COMPLEX OBJECTS IN A 5-AXIS PRINTER 25

printer head. Rotations that provide such a collision are not considered, since
they cannot make part of a feasible sequencing. Additionally, if all optimal
rotations of a given part lead to a collision with parts in Lt, then the Lt
sequencing can be stopped. Suppose that Lt = {{0}, {1}, {3}, {2}}∗ and all
possible rotations of part 5 lead to a collision, then a feasible sequencing
cannot be obtained from Lt, since part 5 must be included in the sequencing
and a collision will be attained even if part 5 would be included later. In
fact, a more sophisticate strategy can be used since the Level routine can
return to a previous state by accounting for the parts that lead to a collision.
Suppose that Lt = {{0}, {1}, {3}, {2; 5}, {4}, {7}, {6}, {8}, {9}} and part 11,
to be included, leads to a collision with part 1, 4, and 7 (with possible
different rotations w.r.t. each part). Clearly parts 6, 8, and 9 are irrelevant
for the sequencing to provide a collision, i.e., a sequencing starting with
{{0}, {1}, {3}, {2; 5}, {4}, {7}} will always provide a collision with part 11.
For this case the Level routine can return to where part 7 was selected
(replacing it with another part available). Returning to any earlier part (1
or 4) is not appropriate, since the part 11 rotation that led to a collision
between part 11 and part 7 may not lead to a collision with other, not
considered, parts. A possible speedup strategy for Algorithm 3 is to consider
a cache for collision evaluations, specially in cases where parts are defined by
a huge number of facets. This would avoid the need to reevaluate collisions
between parts.

6.3. Printing the object. In this section we report the numerical results
obtained with the proposed framework. Table 1 presents the numerical re-
sults for the MMLS runs on each part (Part number in table). The number
of objective function evaluations (o.f.e.) is reported in the second column,
while the lower objective function value (o.f.v.) obtained is reported in the
third column. MMLS found the number of optima reported in the forth col-
umn, and Algorithm 2 uses the number of optima reported in the last column
(since these latter ones are those that correspond to a unique printer config-
uration not leading to a printer table or head collision). Support subroutine
was not taken into consideration. One can assume that a proper rotation of
parts eliminates the need for supports.

∗Corresponding part rotations in the sequencing are not include for the sake of brevity.
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Part number of minimum number of number of
number o.f.e. o.f.v. optima found selected optima

0 2078 0 23 1
1 6240 0 20 1
2 7252 0 20 7
3 7275 0 17 4
4 4215 0 19 7
5 5403 0 18 5
6 5181 0 21 7
7 3668 0 20 5
8 3656 0 17 6
9 6469 0 20 7

10 10110 148.127 12 6
11 10316 297.078 15 7
12 10109 148.211 8 4
13 10076 297.876 15 8
14 1402 148.115 4 3
15 6616 297.009 17 4
16 1983 148.211 4 3
17 9128 297.881 18 8

Table 1. Numerical results for Algorithm 1 and 2. The o.f.v. is
rounded to zero when lower than 10−5.

Algorithm 2, fed with the global and local minimizer in Table 1, returns
as the first sequence the following list†:

L1 = {{0, (0, 0)}, {1, (0, 0)},
{3, (70,−90); 5, (70,−90); 7, (70, 90); 8, (70, 90);

11, (70,−90); 13, (70,−90); 15, (70, 90); 17, (70, 90)},
{2, (0, 0); 4, (0, 0); 6, (0, 0); 9, (0, 0); 10, (0, 0); 12, (0, 0); 14, (0, 0); 16, (0, 0)}}.

This sequence indicates that part 0 should be built with a rotation of (0, 0),
followed by part 1 also with a rotation of (0, 0). Since Algorithm 2 prioritizes
parts to be built in the same time-slot, parts 3, 5, 7, 8, 11, 13, 15, and 17

†These are the reported angles (in degrees and rounded to integer) corresponding to the printer
table tilt and rotation, respectively.
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Figure 13. Simultaneous printing of parts 3, 5, 7, 8, 11, 13, 15,
and 17 of the L1 sequencing.

are to be built simultaneous taking into consideration the rotations that do
not lead to printing collisions. Figure 13 and the remaining figures were
obtained with the FIBR3DEmul [9] software package and a slice width of
2.5mm for an extrusion diameter of 0.5mm (in order to obtain an affordable
simulation time). In the last time-slot, parts 2, 4, 6, 9, 10, 12, 14, and 16 are
built simultaneously (see Figure 14) leading to the final Candelabrum object
(Figure 17 depicts it for other sequencing). While this building sequence
minimizes the staircase effect, building parts simultaneously may lead to a
longer printing time, since the printer is requested to move between each part
slices.

Algorithm 2 can be adapted to give priority to individual parts building
(by swapping line 18 with line 19). With this algorithm change, the first
sequence returned by Algorithm 2 is:

L2 = {{0, (0, 0)}, {1, (0, 0)}, {3, (70,−90)}, {2, (0, 0); 13, (70,−90); 5, (70,−90)},
{7, (70, 90)}, {8, (70, 90)}, {9, (0, 0); 6, (0, 0); 12, (0, 0); 4, (0, 0); 17, (70, 90);

11, (70,−90); 15, (70, 90)}, {10, (0, 0)}, {14, (0, 0)}, {16, (0, 0)}}.

This sequence uses the same part rotations as the previous one, but single
parts are firstly attempted at each time slot before considering the possibility
of building multiple parts at the same slot. Figure 15 depicts the simultane-
ous printing of parts 2, 13, and 5.
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Figure 14. Simultaneous printing of parts 2, 4, 6, 9, 10, 12, 14,
and 16 of the L1 sequencing.

Figure 15. Simultaneous printing of parts 2, 13, and 5 of the
L2 sequencing.

If the possibility to build parts simultaneously is removed, i.e., if we remove
line 18 in Algorithm 3, the following sequence is obtained.

L3 = {{0, (0, 0)}, {1, (0, 0)}, {3, (70,−90)}, {5, (70,−90)}, {7, (70, 90)}, {8, (70, 90)},
{11, (70,−90)}, {4, (0, 0)}, {10, (0, 0)}, {13, (70,−90)}, {2, (0, 0)}, {12, (0, 0)},
{15, (70, 90)}, {6, (0, 0)}, {14, (0, 0)}, {17, (69.9928, 90)}, {9, (0, 0)}, {16, (0, 0)}}.
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Figure 16. Printing of part 5 for the L3 sequencing.

Figure 17. Final printing of the L3 sequencing.

While this building sequence uses the same rotation for each part as the
previous approaches, the sequence now considers the parts to be individually
printed, since they belong to individual time slots. Part 3 is to be printed
after part 0 and part 1 are built, followed by part 5. Figure 16 presents the
printing of part 5, and Figure 17 presents the final object print.

The computation time needed to obtain the herein reported sequencing
was less than 2 minutes in a laptop computer (Windows 10, quad core i7
processors), which is negligible when compared with the printing process.

7. Conclusions
Additive manufacturing, also known as 3D printing is an innovating tech-

nology that allows the manufacturing of complex objects at a low cost (e.g., pro-
totyping, material, energy). By taking advantage of a 5–axis printer, we
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propose a strategy to print complex objects by decompose them into sim-
pler parts. A heuristic was proposed to address the optimal parts printing
sequencing, taking into consideration the (possible many) optimal printing
direction of each part. This strategy is shown to provide optimal printing
sequences of parts avoiding the need of support for overhang parts.

The optimal printing sequence relies on the previous solution of auxiliary
sub-problems consisting of the minimizing of the staircase effect, the support
area, or the building time of each part forming the object to be printed.
A multistart multisplit local search (MMLS) was proposed to compute the
possible many local and global optima for each sub-problem. The MMLS
solver considers a set of points from which local search (LS) procedures then
proceed. The LS set of points is dynamically updated by using quadratic
models as underestimators of the objective function, which are used to guess
about the objective function landscape. Based on how well these quadratic
models fit the true objective function, new points are added (splitting) or
removed (merging) from the LS set of points. The MMLS solver provides a
set of optimal printing directions for each part of the object, which are of
major importance for the next stage of finding an optimal printing sequence
of parts.

The computation of an optimal printing sequence may be formulated as
a nonlinear optimization problem with black-box type constraints over bi-
nary variables. However, solving such an optimization problem poses many
difficulties, and a heuristic to compute all feasible points is proposed. The
heuristic takes into consideration the parts, their connections, and all their
optimal printing directions (computed by MMLS). Printer characteristics
and collision detection are exploited to make the heuristic computationally
efficient. The collision detection process (on which the heuristic relies on)
could still be further improved by considering a cache, where results from
previous collision detections are saved for later use.

The MMLS and the printing sequence heuristic are illustrated with a com-
plex case-study, showing that the proposed approach is valid and efficient
for printing complex objects in the context of a 5–axis printer. While the
proposed strategy addresses a specific 5–axis printer, this strategy can be
adapted to other printer settings and requests.
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Appendix A.Appendix
In this appendix we provide some information on our multistart multisplit

local search framework (MMLS; Algorithm 1). We will describe the four main
components, namely the clustering approach, the underestimator quadratic
model, the splitting and merging procedures, and the local search procedure
are briefly described.

A.1. The space clustering approach. The clustering approach must ter-
minate in a finite number of operations, so that our algorithm may generate
an infinite number of LS iterates converging to a point. While any clustering
technique can be used, like for example the kmeans clustering technique, an
efficient (both in term of computational efficiency and in terms of its ability
to find convexity zones in the objective function landscape) approach is re-
quested. Our multistart approach consider several runs led by run centers,
and thus we can take the run centers as natural centroids for clustering. Run
centers are converging to stationary points and are natural candidates to
be in the neighborhood of local or global optima, or stationary points. By
considering run centers as centroids for the clustering, we also obtain a com-
putational advantage, since the clustering strategy amounts then to compute
the distance between all the historical data and the current run centers. At
each outer iteration `, our approach consists in creating R` clusters by com-
puting the distances between every point where the objective function has
been evaluated and all the R` run centers. A point x, where the objective
function has been evaluated, is assigned to cluster C`

j , j = 1, . . . , R`, if the
run center j is the closest to x. Ties are broken randomly.

A.2. A nonconvex piecewise quadratic model. We aim to approxi-
mate the objective function by using an underestimate nonconvex piecewise
quadratic model. This underestimate model allows for the identification of
convexity valleys, where local minimizers are located. LS runs are then able
to successfully identify local stationary points.

We will use a simplified technique based on the nonconvex quadratic piece-
wise model suggested in [23], consisting of the minimum of several quadratics.
Given a sample set X = {x1, . . . , xnp}, a nonconvex piecewise quadratic un-
derestimate of f (with nq quadratics) can be obtained by solving a convex
quadratic model. Although we can rewrite this convex piecewise quadratic
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model into another model with a linear objective, there are still several pit-
falls. First, we have to solve it for global optimality to ensure effective un-
derestimation. Then, the number of variables is excessive, since we have
np auxiliary variables plus (n + 1)(n + 2)/2 × nq ones, which correspond to
the number of variables for the quadratic coefficients times the number of
quadratics considered. Finally, the number of constraints is also high when
imposing positive definiteness on all quadratics.

There are several possibilities to provide good approximations, one being
to compute just a feasible point for the model. Our approach was to take
a subset of np ≤ np points and considering nq = 1, i.e., fitting only one
quadratic, resulting in a linear programming problem, where the number of
variables reduces to np + (n + 1)(n + 2)/2. In the context of our MMLS
algorithm we consider as many subsets of points as the number of clusters,
taking np = #C`

j at each iteration ` and for each cluster j, j = 1, . . . , R`, a

subset of points consisting of those in C`
j .

A.3. LS runs splitting and merging. At each outer iteration ` we com-
pute C`

j , j = 1, . . . , R`, clusters of points and fit R` quadratics (one to each
cluster). How well the quadratic fits the cluster points allows us to conclude
about the local objective function landscape. A possible measure of fitness
is the sum of squares between the objective function and quadratic model
values, given by

θ`j =

(np)`j∑
i=1

(
f(xij)− q`j(xij)

)2
, j = 1, . . . , R`,

where (np)
`
j is the number of points xij in cluster C`

j , and q`j is the correspond-
ing quadratic model.

We always have θ`j ≥ 0, and θ`j = 0 if q`j is an interpolation model. Since θ`j
gives us a measure of how well the model locally fits the objective function,
we use θ`j to decide about a new LS run. If θ`j is large a new LS run is

attempted, whose run center is a point in cluster C`
j not already used in a LS

run and sufficiently away from the current run center. If such a point does
not exist, then we start a new LS run using a random generated point that
is sufficiently away from the current run center.

Starting a new LS run at random points sufficiently away from the current
run center provides no guarantee that the LS run converges to a different
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point. So, we may have two LS runs converging to the same point. A LS
run is stopped if some LS stopping criteria is met or if its run center is close
enough to another LS run center (running or already stopped). In order to
promote convergence, the LS run whose run center has the highest objective
function value is the one to be stopped.

A.4. Direct search local procedure and implementation details. We
assume that derivatives of the objective function in (1) are unavailable or are
difficult to obtain, and we have chosen (probabilistic) Direct Search (DS) [11]
as our local search (LS) method. Probabilistic DS has shown superior perfor-
mance when compared to deterministic DS, and the version with two polling
directions (one randomly generated and its negative) has exhibited the best
performance [12]. DS is in general a robust method that handles well noise
and non smoothness in the objective function. Other derivative-free methods
are described in [5].

The MMLS approach of Algorithm 1 is now described in Algorithm 4 as
a full implementable algorithm. We need to detail some parameter settings.
DS is controlled by a step size parameter (α in our case). While typical im-
plementation of a DS algorithm considers a high value for the initial α, in the
hope not to focus right away in a local search, our goal is the opposite, since
we aim for DS to converge to a local (closer to the run center) minimizer. The
α parameter is thus initialized with a small value, α = ‖ ub− lb ‖/(50R0),
where R0 is the initial number of runs, and lb and ub are the vectors of lower
and upper bounds on the variables in (1). The LS α parameter is also used
to control if two run centers are close enough and to generate random points
far away from the current run center. Since α is expected to be a small value,
instead of α we use ᾱ � α such that ᾱ = α2 if α > 1,

√
α if α < 1, and 2α

if α = 1.
If f is Lipschitz continuous with constant L we have ‖f(x) − f(y)‖ ≤

L‖x − y‖ ≈ O(α). If q is a good approximation of f we would also expect
‖f(x)− q(x)‖ ≈ O(α), and, therefore we make a decision of splitting cluster
j if θ`j > α.
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Algorithm 4 A practical MMLS framework

1: Choose parameters α (initial step size for DS), αtol (tolerance for DS step
size), ni (the number of initial starting points), maxo iter (maximum of
outer iterations), maxi iter (maximum of inner iterations), and a budget
of objective function evaluations. Choose ᾱ > α.

2: Randomly generate ni feasible points and select an initial point x0
1 for a

R0 = 1 LS run.
3: In parallel:
4: for each ` = 0, ...,maxo iter do
5: Create R` clusters C`

j , j = 1, . . . , R` (using all the history of points

available so far), taking x`j as centroids.
6: Build the quadratic underestimators by solving ` linear programming

problems corresponding to each cluster.
7: Compute θj and decide if the j LS run is to be splitted, i.e., if θj > α

then start a new LS run using y as a new run center, where y ∈ C`
j and

‖y−x`j‖ ≥ ᾱ and y was drawn from an uniform random distribution and
has not been used before to start a run. If such a y does not exist, then
randomly generate, from an uniform random distribution, a point in Ω
such that ‖y−x`j‖ ≥ ᾱ. Let x`+1

j , j = 1, . . . , R`+1 be the new run centers.

8: Perform a maximum of maxi iter LS iterations taking x0 = x`+1
j .

9: Stop if some optimality condition is met for all j = 1, . . . , R`+1 or if
the budget of objective function evaluations has been reached.

10: Decide whether any LS run is merged, i.e., if ‖x`+1
j − x`+1

k ‖ ≤ ᾱ, for

j, k = 1, . . . , R`+1, j 6= k, and f(x`+1
j ) > f(x`+1

k ), then remove LS run j.
11: end for
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