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Abstract: In the application of machine learning to real-life decision-making sys-
tems, e.g., credit scoring and criminal justice, the prediction outcomes might dis-
criminate against people with sensitive attributes, leading to unfairness. The com-
monly used strategy in fair machine learning is to include fairness as a constraint
or a penalization term in the minimization of the prediction loss, which ultimately
limits the information given to decision-makers. In this paper, we introduce a new
approach to handle fairness by formulating a stochastic multi-objective optimiza-
tion problem for which the corresponding Pareto fronts uniquely and comprehen-
sively define the accuracy-fairness trade-offs. We have then applied a stochastic
approximation-type method to efficiently obtain well-spread and accurate Pareto
fronts, and by doing so we can handle training data arriving in a streaming way.
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1. Introduction
Machine learning (ML) plays an increasingly significant role in data-driven

decision making, e.g., credit scoring, college admission, hiring decisions, and
criminal justice. As the learning models became more and more sophisti-
cated, concern regarding fairness started receiving more and more attention.
In 2014, the Obama Administration’s Big Data Report [24] claimed that dis-
crimination against individuals and groups might be the “inadvertent out-
come of the way big data technologies are structured and used”. Two years
later, a White House report [1] on the challenges of big data emphasized the
necessity of promoting fairness and called for equal opportunity in insurance,
education, employment, and other sectors.

In supervised machine learning, training samples consist of pairs of feature
vectors (containing a number of features that are descriptive of each instance)
and target values/labels. One tries to determine an accurate predictor, seen
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as a function mapping feature vectors into target labels. Such a predictor
is typically characterized by a number of parameters, and the process of
identifying the optimal parameters is called training or learning. The trained
predictor can then be used to predict labels for unlabeled instances.

If a ML predictor does inequitably treat people from different groups de-
fined by sensitive or protected attributes, such as gender, race, country, or
disability, we say that such a predictor is unfair. The sources of unfairness
in supervised ML are twofold. Firstly, the ML predictors are trained on data
collected by humans (or automated agents developed by humans), which may
contain inherent biases. Hence, by learning from biased or prejudiced tar-
gets, the prediction results obtained from standard learning processes can
hardly be unbiased. Secondly, even if the targets are unbiased, the learning
process may sacrifice fairness, as the main goal of ML is to make predictions
as accurate as possible. In fact, previous research work [22, 30] has showed
that simply excluding sensitive attributes from features data (also called fair-
ness through unawareness) does not help due to the fact that the sensitive
attributes can be inferred from the nonsensitive ones.

Hence, a proper framework for evaluating and promoting fairness in ML
becomes indispensable and relevant. Depending on when the fairness criteria
are imposed, there are three categories of approaches proposed to handle fair-
ness, namely pre-processing, in-training, and post-processing. Pre-processing
approaches [5, 30] modify the input data representation so that the predic-
tion outcomes from any standard learning process become fair, while post-
processing [13, 23] tries to adjust the results of a pre-trained predictor to
increase fairness while maintaining the prediction accuracy as much as pos-
sible. Assuming that the sensitive attributes information are accessible in
the training samples, most of in-training methods [2, 3, 15, 29, 27, 28] en-
force fairness during the training process either by directly imposing fairness
constraints and solving constrained optimization problems or by adding pe-
nalization terms to the learning objective.

The approach proposed in our paper falls into the in-training category.
We will however explicitly recognize the presence of at least two conflicting
objectives in fair machine learning: (1) maximizing prediction accuracy; (2)
maximizing fairness (w.r.t. certain sensitive attributes).
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1.1. Existing Fairness Criteria in Machine Learning. Fairness in ma-
chine learning basically requires that prediction outcomes do not dispropor-
tionally benefit people from majority and minority or historically advanta-
geous and disadvantageous groups. In the literature of fair machine learn-
ing, several prevailing criteria for fairness include disparate impact [2] (also
called demographic parity [3]), equalized odds [13], and its special case of equal
opportunity [13], corresponding to different aspects of fairness requirements.

In this paper, we will focus on binary classification to present the formula
for fairness criteria and the proposed accuracy and fairness trade-off frame-
work, although they can all be easily generalized to other ML problems (such
as regression or clustering). We point out that many real decision-making
problems such as college admission, bank loan application, hiring decisions,
etc. can be formulated into binary classification models.

Let Z ∈ Rn, A ∈ {0, 1}, Y ∈ {−1,+1} denote feature vector, binary-
valued sensitive attribute (for simplicity we focus on the case of a single
binary sensitive attribute), and target label respectively. Consider a general

predictor Ŷ ∈ {−1,+1} which could be a function of both Z and A or only
Z. The predictor is free of disparate impact [2] if the prediction outcome is
statistically independent of the sensitive attribute, i.e., for ŷ ∈ {−1,+1},

P{Ŷ = ŷ|A = 0} = P{Ŷ = ŷ|A = 1}. (1)

However, disparate impact could be unrealistic when one group is more likely
to be classified as a positive class than others, an example being that women
are more dominating in education and healthcare services than men [16]. As a

result, disparate impact may never be aligned with a perfect predictor Ŷ = Y .
In terms of equalized odds [13], the predictor is defined to be fair if it is

independent of the sensitive attribute but conditioning on the true outcome
Y , namely for y, ŷ ∈ {−1,+1},

P{Ŷ = ŷ|A = 0, Y = y} = P{Ŷ = ŷ|A = 1, Y = y}. (2)

Under this definition, a perfectly accurate predictor can be possibly defined
as a fair one, as the probabilities in (2) will always coincide when Ŷ =
Y . Equal opportunity [13], a relaxed version of equalized odds, requires
that condition (2) holds for only positive outcome instances (Y = +1), for
example, students admitted to a college and candidates hired by a company.
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1.2. Our Contribution. From the perspective of multi-objective optimiza-
tion (MOO), most of the in-training methods in the literature [2, 3, 15, 27,
28, 29] are based on the so-called a priori methodology, where the decision-
making preference regarding an objective (the level of fairness) must be speci-
fied before optimizing the other (the accuracy). For instance, the constrained
optimization problems proposed in [28, 29] are to some extent nothing else
than the ε–constraint method [12] in MOO. Such procedures highly rely on
the decision-maker’s advanced knowledge of the magnitude of fairness, which
may vary from criterion to criterion and from dataset to dataset.

In order to better frame our discussion of accuracy vs fairness, let us in-
troduce the general form of a multi-objective optimization problem

min F (x) = (f1(x), . . . , fm(x)), (3)

with m objectives, and where F : Rn → Rm. Usually, there is no single
point optimizing all the objectives simultaneously. The notion of dominance
is used to define optimality in MOO. A point x is said to be nondominated
if F (y) 6≤ F (x) holds element-wise for any other point y. An unambiguous
way of considering the trade-offs among multiple objectives is given by the
so-called Pareto front, which lies in the criteria space Rm and is defined as
the set of points of the form F (x) for all nondominated points x.

In this paper, instead of looking for a single predictor that satisfies cer-
tain fairness constraints, our goal is to directly construct a complete Pareto
front between prediction accuracy and fairness, and thus to identify a set
of predictors associated with different levels of fairness. We propose a sto-
chastic multi-objective optimization framework, and aim at obtaining good
approximations of true Pareto fronts. We summarize below the three main
advantages of the proposed framework.

• By applying an algorithm for stochastic multi-objective optimization
(such as the Pareto front stochastic multi-gradient (PF-SMG) algo-
rithm developed in [21]), we are able to obtain well-spread and ac-
curate Pareto fronts in a flexible and efficient way. The approach
works for a variety of scenarios, including binary and categorical multi-
valued sensitive attributes. It also handles multiple objectives simul-
taneously, such as multiple sensitive attributes and multiple fairness
measures. Compared to the constrained optimization approaches,
e.g., [28, 29], our framework is proved to be computational efficient in
constructing the whole Pareto fronts.
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• The proposed framework is quite general in the sense that it has no
restriction on the type of predictors and works for any convex or non-
convex smooth objective functions. In fact, it can not only handle the
fairness criteria mentioned in Section 1.1 based on covariance approx-
imation, but also tackle other formula proposed in the literature, e.g.,
mutual information [14] and fairness as a risk measure [26].
• The PF-SMG algorithm falls into a Stochastic Approximation (SA)

algorithmic approach, and thus it enables us to deal with the case
where the training data is arriving on a streaming mode. By using
such an SA framework, there is no need to reconstruct the Pareto
front from scratch each time new data arrives. Instead, a Pareto front
constructed based on consecutive arriving samples will eventually con-
verge to the one corresponding to the overall true population.

The remainder of this paper is organized as follows. Our stochastic bi-
objective formulation using disparate impact is suggested in Section 2. The
PF-SMG algorithm, used to solve the multi-objective problems, is briefly in-
troduced in Section 3 (more details in Appendix B). A number of numerical
results for both synthetic (Subsection 4.1) and real data (Subsection 4.2) are
presented in Section 4 to support our claims. Further exploring our line of
thought, we introduce another stochastic bi-objective formulation, this time
for trading-off accuracy vs equal opportunity (see Section 5), also reporting
numerical results. In Section 6, we show how to handle multiple sensitive
attributes and multiple fairness measures. For the purpose of getting more
insight on the various trade-offs, two tri-objective problems are formulated
and solved. Finally, a preliminary numerical experiment described in Sec-
tion 7 will illustrate the applicability of our approach to streaming data.
The paper is ended with some conclusions and prospects of future work in
Section 8.

2. The Stochastic Bi-Objective Formulation Using Dis-
parate Impact

Given that disparate impact is the most commonly used fairness criterion
in the literature, we will first consider disparate impact in this section to
present a stochastic bi-objective fairness and accuracy trade-off framework.

In our setting, the training samples consist of nonsensitive feature vectors
Z, a binary sensitive attribute A, and binary labels Y . Assume that we have
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access to N samples {zj, aj, yj}Nj=1 from a given database. Let the binary

predictor Ŷ = Ŷ (Z;x) ∈ {−1,+1} be a function of the parameters x, and
only learned from the nonsensitive feature Z.

Recall that the predictor Ŷ is free of disparate impact if it satisfies equa-
tion (1). A general measurement of disparate impact, the so-called CV
score [4], is defined by the maximum gap between the probabilities of getting
positive outcomes in different sensitive groups, i.e.,

CV(Ŷ ) = |P{Ŷ = 1|A = 0} − P{Ŷ = 1|A = 1}|. (4)

The trade-offs between prediction accuracy and fairness can then be formu-
lated as a general stochastic bi-objective optimization problem as follows

min f1(x) = E[`(Ŷ (Z;x), Y )], (5)

min f2(x) = CV(Ŷ (Z;x)), (6)

where the first objective (5) is a composition function of a loss function `(·, ·)
and the prediction function Ŷ (Z;x), and the expectation is taken over the
joint distribution of Z and Y .

The logistic regression model is one of the classical prediction models for bi-
nary classification problems. For a given feature vector zi and corresponding
true label yi, one searches for a separating hyperplane φ(zj;x) = φ(zj; c, b) =
c>zj + b such that (noting x = (c, b)>){

c>zj + b ≥ 0 when yj = +1,

c>zj + b < 0 when yj = −1.

The predictor defined by the separating hyperplane is known as the threshold
classifier, i.e., Ŷ (zj; c, b) = 2×1(c>zj +b ≥ 0)−1. The logistic loss function
of the form `(z, y; c, b) = log(1 + exp(−y(c>z + b))) is a smooth and convex
version of the classical 0–1 loss. The first objective can then be approximated
by the empirical logistic regression loss, i.e.,

f1(c, b) = 1
N

N∑
j=1

log(1 + exp(−yj(c>zj + b))), (7)

based on N training samples. A regularization term λ
2‖c‖

2 can be added to
avoid over-fitting.

Dealing with the second objective (6) is challenging since it is nonsmooth
and nonconvex. Hence, we make use of the decision boundary covariance
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proposed by [29] as a convex approximate measurement of disparate impact.
Specifically, the CV score (4) can be approximated by the empirical covari-
ance between the sensitive attributes A and the hyperplane φ(Z; c, b), i.e.,

Cov(A, φ(Z; c, b))

= E[(A− Ā)(φ(Z; c, b)− φ(Z; c, b))]

= E[(A− Ā)φ(Z; c, b)]− E[A− Ā]φ(Z; c, b)

' 1
N

∑N
j=1(aj − ā)φ(zj; c, b),

where Ā is the expected value of the sensitive attribute, and ā is an approxi-
mated value of Ā using N samples. The intuition behind this approximation
is that the disparate impact (1) basically requires the predictor completely
independent from the sensitive attribute.

Given that zero covariance is a necessary condition for independence, the
second objective can be approximated as:

fDI
2 (c, b) =

(
1

N

N∑
j=1

(aj − ā)(c>zj + b)

)2

, (8)

which, as we will see later in the paper, is monotonically increasing with
disparate impact. We were thus able to construct a finite-sum bi-objective
problem

min
(
f1(c, b), f

DI
2 (c, b)

)
, (9)

where both functions are now convex and smooth.

3. The Stochastic Multi-Gradient Method and Its Pareto
Front Version

Consider again a stochastic MOO of the same form as in (3), where some
or all of the objectives involve uncertainty. Denote by gi(x,w) a stochastic
gradient of the i-th objective function, where w indicates the batch of samples
used in the estimation. The stochastic multi-gradient (SMG) algorithm is
described in Algorithm 1 (see Appendix A). It essentially takes a step along
the stochastic multi-gradient g(xk, wk) which is a convex linear combination
of gi(x,w), i = 1, . . . ,m. The SMG method is a generalization of stochastic
gradient (SG) to multiple objectives. It was first proposed by [25] and further
analyzed by [21]. In the latter paper it was proved that the SMG algorithm
has the same convergence rates as SG (although now to a nondominated
point), for both convex and strongly convex objectives. As we said before,
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when m = 1 SMG reduces to SG. When m > 1 and the f ’s are deterministic,
−g(xk) = −g(xk, wk) is the direction that is the most descent among all
the m functions [10, 11].

Note that the two smooth objective functions (7) and (8) are both given in
a finite-sum form, for which one can efficiently compute stochastic gradients
using batches of samples.

To compute good approximations of the entire Pareto front in a single
run, we use the Pareto Front SMG algorithm (PF-SMG) developed by [21].
PF-SMG essentially maintains a list of nondominated points using SMG
updates. It solves stochastic multi-objective problems in an a posteriori
way, by determining Pareto fronts without predefining weights or adjusting
levels of preferences. One starts with an initial list of randomly generated
points (5 in our experiments).

At each iteration of PF-SMG, we apply SMG multiple times at each point
in the current list, and by doing so one obtains different final points due
to stochasticity. At the end of each iteration, all the dominated points are
removed to get a new list for the next iteration (see Appendix B for an
illustration). The process can be stopped when either the number of non-
dominated points is greater than a certain budget (1,500 in our experiments)
or when the total number of SMG iterates applied in any trajectory exceeds
a certain budget (1,000 in our experiments). We refer to the paper [21] for
more details.

4. Numerical Results for Disparate Impact
To numerically illustrate our approach based on the bi-objective formu-

lation (9), we have used synthetic data and the Adult Income dataset [17],
which is available in the UCI Machine Learning Repository [9].

There are several parameters to be tuned in PF-SMG for a better per-
formance: (1) p1: number of times SMG is applied at each point in the
current list; (2) p2: number of SMG iterations each time SMG is called; (3)
{αk}T1 : step size sequence; (4) {b1,k}T1 , {b2,k}T1 : batch size sequences used in
computing stochastic gradients for the two objectives. To control the rate
of generated nondominated points, we remove nondominated points from
regions where such points tend to grow too densely.

4.1. Synthetic Data. Using synthetic data, our approach is first compared
to the ε-constrained optimization model proposed in [29, Equation (4)]. From
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now on, we note their ε-constrained method as EPS-fair. It basically mini-
mizes prediction loss subject to disparate impact being bounded above by a
constant ε, i.e.,

min (7) s.t. | 1
N

N∑
j=1

(aj − ā)φ(zj; c, b)| ≤ ε.

Since the bi-objective problem (9) under investigation is convex, EPS-fair is
able to compute a set of nondominated points by varying the value of ε. The
implementation details of EPS-fair method can be found in [29]. First, by
solely minimizing prediction loss, a reasonable upper bound is obtained for
disparate impact. Then, to obtain the Pareto front, a sequence of thresholds
ε is evenly chosen from 0 to such an upper bound, leading to a set of convex
constrained optimization problems. The Sequential Least SQuares Program-
ming (SLSQP) solver [18] based on Quasi-Newton methods is then used for
solving those problems. We found that 70-80% of the final points produced
by this process were actually dominated ones, and we removed them for the
purpose of analyzing results.

The synthetic data is formed by 20 sets of 2,000 binary classification data
instances randomly generated from the same distributions setting specified
in [29, Section 4], specifically using an uniform distribution for generat-
ing binary labels Y , two different Gaussian distributions for generating 2-
dimensional nonsensitive features Z, and a Bernoulli distribution for gener-
ating the binary sensitive attribute A. We evaluated the performance of the
two approaches by comparing CPU time, number of gradient evaluations,
and the quality of Pareto fronts. Such a quality is measured by a formula
called purity (which tries to evaluate how the fronts under analysis dominate
each other) and two formulas for the spread of the fronts (Γ and ∆, mea-
suring how well the nondominated points on a Pareto front are distributed).
Higher purity corresponds to higher accuracy, while smaller Γ and ∆ indi-
cate better spread. The detailed formulas of the three measures are given in
Appendix C.

The five performance profiles (see [8]) are shown in Figure 1. The purity
(see (a)) of the Pareto fronts produced by the EPS-fair method is only slightly
better than the one of those determined by PF-SMG. However, notice that
PF-SMG produced better spread fronts than EPS-fair without compromising
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accuracy too much (see (b)–(c)). In addition, PF-SMG outperforms EPS-
fair in terms of computational cost quantified by CPU time and gradient
evaluations (see (d)–(e)).
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(a) Purity.
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(b) Spread: Γ.
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(c) Spread: ∆.
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(d) CPU time.
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Figure 1. Performance profiles for 20 synthetic datasets: PF-
SMG versus EPS-fair. Parameters used in PF-SMG: p1 = 1,
p2 = 1, αk = 0.3, b1,k = 5× 1.01k, and b2,k = 200× 1.01k.

Figure 2 gives the detailed trade-off results for one of the synthetic data
sets. The Pareto front in (a) confirms the conflict between two objectives.
Given a nondominated solution x = (c, b) from (a), the probability of getting
positive prediction for each sensitive group is approximated by the percentage
of positive outcomes for the data samples, i.e.,

P{Ŷ (Z;x) = 1|A = a} ' N(Ŷ = 1, A = a)

N(A = a)
,

where N(Ŷ = 1, A = a) denotes the number of instances predicted as positive
in group a and N(A = a) is the number of instances in group a. For concise-
ness, we will only compute the proportion of positive outcomes for analysis.
Figure 2 (b) presents how the proportions of positive outcomes for the two
groups change over fDI

2 . As the covariance goes to zero, one can observe a
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smaller gap between the percentages of positive outcomes. Furthermore, Fig-
ure 2 (c) confirms that the value of fDI

2 is monotonically increasing with CV
score and hence a good approximation of disparate impact. The last plot in
Figure 2 indicates that requiring lower CV scores results in lower prediction
accuracy.
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Figure 2. Trade-off results for synthetic data. Parameters used
in PF-SMG: p1 = 1, p2 = 1, αk = 0.3, b1,k = 5 × 1.01k, and
b2,k = 200× 1.01k.

4.2. Real Datasets. The cleaned up version of Adult Income dataset con-
tains 45,222 samples. Each instance is characterized by 12 nonsensitive at-
tributes (including age, education, marital status, and occupation), a binary
sensitive attribute (gender), and a multi-valued sensitive attribute (race).
The prediction target is to determine whether a person makes over 50K per
year. Tables 1 and 2 in Appendix D show the detailed demographic compo-
sition of the dataset with respect to gender and race.

In the following experiment, we have randomly chosen 5,000 training in-
stances, using the remaining instances as the testing dataset. The PF-SMG
algorithm is applied using the training dataset, but all the Pareto fronts and
the corresponding trade-off information will be presented using the testing
dataset.

Considering gender as the sensitive attribute, the obtained Pareto front
is plotted in Figure 3 (a), reconfirming the conflicting nature of the two
objectives. It is observed from (b) that as fDI

2 increases, the proportion of
high income adults in females decreases, which means the predictors of high
accuracy are actually unfair for females. Similar to the results for synthetic
data, from (c) we can conclude that the value of fDI

2 has positive correlation
with CV score for this dataset. Figure 3 (d) implies that zero disparate
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impact can be achieved by reducing 2% of accuracy (the range of the x-axis
is nearly 2%). To eliminate the impact of the fact that female is a minority
in the dataset, we ran the algorithms for several sets of training samples with
50% females and 50% males. It turns out that the conflict is not alleviated
at all.
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Figure 3. Trade-off results for Adult Income dataset w.r.t. gen-
der. Parameters used in PF-SMG: p1 = 2, p2 = 3, α0 = 2.1
and then multiplied by 1/3 every 500 iterates of SMG, and
b1,k = b2,k = 80× 1.01k.

Dealing with multi-valued sensitive attribute race is more complicated. In
general, if a multi-valued sensitive attribute has K categorical values, we
convert it to K binary attributes denoted by A1, . . . , AK ∈ {0, 1}. Note that
the binary attribute Ai indicates whether the original sensitive attribute has
i-th categorical value or not. The second objective is then modified as follows

fDI
3 (c, b) = max

i=1,...,K

(
1

N

N∑
j=1

(aij − āi)(c>zj + b)

)2

, (10)

which is still a convex function. We have observed that the non-smoothness
introduced by the max operator in (10) led to more discontinuity in the true
trade-off curves, and besides stochastic gradient type methods are designed
for smooth objective functions. We have thus approximated the max op-
erator in (10) using Sβ(max(x1, . . . , x`)) =

∑`
i=1 x

ieβx
i

/
∑`

i=1 e
βxi. In our

experiments, we set β = 8. Figure 4 (a) plots the obtained Pareto front of
the bi-objective problem of min(f1(c, b), f

DI
3 (c, b)). Figure 4 (b) implies that

solely optimizing over prediction accuracy might result in unfair predictors
for American-Indian, Black, and Other. Regardless of the noise, it is ob-
served that the value of fDI

3 is increasing with CV score (Figure 4 (c)) and
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that the prediction accuracy and CV score have positive correlation (Fig-
ure 4 (d)). Note that CV score in this case was computed as the absolute
difference between maximum and minimum proportions of positive outcomes
among K groups.
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Figure 4. Trade-off results for Adult dataset w.r.t. race. Pa-
rameters used in PF-SMG: p1 = 3, p2 = 2, α0 = 2.6 and multi-
plied by 1/3 every 100 iterates of SMG, b1,k = 50 × 1.005k, and
b2,k = 80× 1.005k.

5. Equal Opportunity
Recall that equal opportunity focuses on positive outcomes Y = +1 and

requires the following for ŷ ∈ {−1,+1}

P{Ŷ = ŷ|A = 0, Y = +1} = P{Ŷ = ŷ|A = 1, Y = +1}.

When ŷ = −1 in the above equation, this condition essentially suggests
equalized false negative rate (FNR) across different groups. Similarly, the
case of ŷ = +1 corresponds to equalized true positive rate (TPR). Given
that FNR + TPR = 1 always holds, we will focus on the ŷ = −1 case where
qualified candidates are falsely classified in a negative class by the predictor
Ŷ .

For simplicity, let FNRa(Ŷ ) = P{Ŷ = −1|A = a, Y = +1}, a ∈ {0, 1}.
The CV score associated with equal opportunity is now defined as follows

CVFNR(Ŷ ) = |FNR0(Ŷ )− FNR1(Ŷ )|. (11)

Since equalized FNR indicates statistical independence between sensitive at-
tributes and instances that have positive targets but falsely predicted as
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negative, CVFNR(Ŷ ) could thus be approximated [28] by

Cov(A,ψ(Z, Y ; c, b)) ' 1
N

N∑
j=1

(aj − ā)ψ(zj, yj; c, b),

where ψ(z, y; c, b) = min{0, (1+y)
2 yφ(z; c, b)}. Here, (1 + y)/2 excludes truly

negative instances y = −1 and yφ(z, y; c, b) < 0 implies wrong prediction.
Similar to (8), the objective function for equalized FNR is given by

fFNR
4 (c, b) =

(
1
N

N∑
j=1

(aj − ā)ψ(zj, yj; c, b)

)2

,

which is a nonconvex finite-sum function. (Note that as in (10) we have
also smoothed here the min operator in ψ(z, y; c, b).) Now, the finite-sum
bi-objective problem becomes

min
(
f1(c, b), f

FNR
4 (c, b)

)
. (12)

The ProPublica COMPAS dataset [20] contains features that are used by
COMPAS algorithms [19] for scoring defendants together with binary labels
indicating whether or not a defendant recidivated within 2 years after the
screening. For analysis, we take blacks and whites from the two-years-violent
dataset (see the link in the reference [20]) and consider features including
gender, age, number of prior offenses, and charge for which the person was
arrested. For consistency with the word “opportunity”, we marked the case
where a defendant is non-recidivist as the positive outcome. The demo-
graphic composition of the dataset is given in Table 3 in Appendix D. Due
to shortage of data, we use the whole dataset for both training and testing.

By applying PF-SMG to the bi-objective problem (12), we obtained the
trade-off results in Figure 5. The conflicting nature of prediction loss and
equalized FNR is confirmed by the Pareto front in Figure 5 (a). For each
nondominated solution x, we approximated FNR using samples by

FNRa(Ŷ (Z;x)) ' N(Ŷ (Z;x) = −1, A = a, Y = +1)

N(A = a, Y = +1)
,

where N(·) is the number of instances satisfying all the conditions.
From the rightmost part of (b), we can draw a similar conclusion as in [19]

that black defendants (blue curve) who did not reoffend are accidentally pre-
dicted as recidivists twice as often as white defendants (green curve) when
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using the most accurate predictor obtained (i.e., 0.35 versus 0.175). However,
the predictor associated with zero covariance (see the leftmost part) mitigates
the situation to 0.28 versus 0.23, although by definition the two rates should
converge to the same point. This is potentially due to the fact that the co-
variance is not well approximated using a limited number of samples. In fact,
the leftmost part of Figure 5 (c) shows that zero covariance does not corre-
spond to zero CVFNR. Finally, Figure 5 (d) provides a rough confirmation of
positive correlation between CV score and prediction accuracy.
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Figure 5. Trade-off results for COMPAS dataset w.r.t. race.
Parameters used in PF-SMG: p1 = 3, p2 = 3, α0 = 4 and multi-
plied by 1/3 every 100 iterates of SMG, and b1,k = b2,k = 80 ×
1.005k.

The results for equal opportunity presented in this section show the ap-
plicability of our multi-objective optimization framework when dealing with
nonconvex fairness measures.

6. Handling Multiple Sensitive Attributes and Multiple
Fairness Measures

A main advantage of handling fairness in machine learning through multi-
objective optimization is the possibility of considering any number of criteria.
In this section, we explore two possibilities, multiple sensitive attributes and
multiple fairness measures.

6.1. Multiple Sensitive Attributes. Let us see first how we can handle
more than one sensitive attribute. One can consider a binary sensitive at-
tribute (e.g. gender) and a multi-valued sensitive attribute (e.g. race), and
formulate the following tri-objective problem

min (f1(c, b), f
DI
2 (c, b), fDI

3 (c, b)). (13)



16 S. LIU AND L. N. VICENTE

In our experiments, we use the Adult Income dataset and the splitting of
training and testing samples of Subsection 4.2. A 3D Pareto front is plotted
in Figure 6 (a) resulting from the application of PF-SMG to (13), with gender
(fDI

2 ) and race (fDI
3 ) as the two sensitive attributes.

Figure 6 (b) depicts all the nondominated points projected onto the f2–
f3 objective space, where the green, blue, and black points correspond to
low, medium, and high prediction accuracy, respectively. It is observed that
there is no conflict between fDI

2 and fDI
3 . Although it could happen for other

datasets, eliminating disparate impact with respect to gender does not hinder
that with respect to race for this dataset. Intuitively, one could come up with
a predictor where the proportions of positive predictions for female and male
are equalized and the proportions of positive predictions for different races
are equalized within the female and male groups separately, which would
lead to zero disparate impact in terms of gender and race simultaneously.
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Figure 6. Trade-off results for problem (13) using Adult Income
dataset. Parameters used in PF-SMG: same as in Fig. 4 except
for b1,k = b2,k = b3,k = 80× 1.005k.

6.2. Multiple Fairness Measures. Now we see how to handle more than
one fairness measure. As an example, we consider handling two fairness
measures (disparate impact and equal opportunity) in the case of a binary
sensitive attribute, and formulate the following tri-objective problem

min (f1(c, b), f
DI
2 (c, b), fFNR

4 (c, b)). (14)

In our experiments, we use the whole ProPublica COMPAS two-years-violent
dataset (see Section 5) for both training and testing. Figure 7 (a) shows an
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approximated 3D Pareto front (resulting from the application of PF-SMG
to (14)). By projecting all the obtained nondominated points onto the 2D
f2–f4 objective space, we have subplot (b), where the three colors indicate the
three levels of prediction accuracy. From Figure 7 (b), one can easily find that
an unique minimizer (in the green area with lower prediction accuracy) exists
for both fDI

2 and fFNR
4 , and thus conclude that there is indeed no conflict

between disparate impact and equal opportunity. In fact, by definition, the
CV score (11) generalized to equal opportunity is a component of the CV
score (4) measuring disparate impact. Therefore, in the black area where the
accuracy is high enough, the values of the two fairness measures are aligned
and increasing as the prediction accuracy increases. Interestingly, we have
discovered a little Pareto front between f2 and f4 when the accuracy is fixed
in a certain medium level, marked in blue.
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Figure 7. Trade-off results for problem (14) using COMPAS
dataset. Parameters used in PF-SMG: same as in Fig. 5 except
for b1,k = b2,k = b3,k = 80× 1.005k.

The proposed multi-objective approach works well in handling more than
one sensitive attribute or multiple fairness measures. We point out that look-
ing at Pareto fronts for three objectives helps us identifying the existence of
conflicts among any subset of two objectives (compared to looking at Pareto
fronts obtained just by solving the corresponding bi-objective problems). In
the above experiments, by including f1, we were able to obtain additional
helpful information in terms of decision-making reasoning.
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7. Streaming Data
As we claimed in the Abstract and Introduction, another advantage of

an SA-based approach like ours is its ability to handle streaming training
data. We conducted a preliminary test using the Adult Income dataset and
gender as the binary sensitive attribute. To simulate the streaming scenario,
the whole dataset is split into batches of 2,000. The initial Pareto front
is constructed by applying PF-SMG to one batch of 2,000 samples. Each
time a new batch of samples is given, the Pareto front is then updated by
selecting a number of nondominated points from the current Pareto front as
the starting list for PF-SMG. Figures 8 given below shows how the successive
Pareto fronts approach the final one computed for the whole dataset.

0.36 0.37 0.38 0.39 0.40
f1(x)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f 2
(x

)

Current PF
Final PF

(a) 2,000 samples.

0.36 0.37 0.38 0.39 0.40
f1(x)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f 2
(x

)

Current PF
Final PF

(b) 4,000 samples.

0.36 0.37 0.38 0.39 0.40
f1(x)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f 2
(x

)

Current PF
Final PF

(c) 6,000 samples.

0.36 0.37 0.38 0.39 0.40
f1(x)

0.00

0.02

0.04

0.06

0.08

f 2
(x

)

Current PF
Final PF

(d) 8,000 samples.

0.36 0.37 0.38 0.39 0.40
f1(x)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f 2
(x

)

Current PF
Final PF

(e) 10,000 samples.

0.36 0.37 0.38 0.39 0.40
f1(x)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f 2
(x

)

Current PF
Final PF

(f) 12,000 samples.

Figure 8. Updating Pareto fronts using streaming data.

8. Concluding Remarks
We have proposed a stochastic multi-objective optimization framework to

evaluate trade-offs between prediction accuracy and fairness for binary clas-
sification. The fairness criterion used was the covariance approximation of
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disparate impact and equal opportunity, but we could have handled equal-
ized odds in the same vein. A Stochastic Approximation (SA) algorithm like
PF-SMG was proved to be computationally efficient to produce well-spread
and sufficiently accurate Pareto fronts. We have confirmed the conflicting
nature of prediction accuracy and fairness, and presented complete accu-
racy vs fairness trade-off results. The proposed multi-objective framework
can handle both binary and categorical multi-valued sensitive attributes as
well as handle more than one sensitive attribute or different fairness mea-
sures simultaneously. Using an SA-type approach has allowed us to handle
streaming data.

The proposed framework can be generalized to accommodate different
types of predictors and loss functions. Hence, one could frame other pre-
diction models, e.g., SVM and neural networks, to multi-objective optimiza-
tion problems and report accuracy and fairness trade-offs for various machine
learning tasks, including multi-class classification and regression. Moreover,
our approach allows us to handle nonconvex approximations of disparate im-
pact, equalized odds, or equal opportunity, two potential ones being mutual
information [14] and fairness risk measures [26].

Appendix A.The Stochastic Multi-Gradient (SMG) Al-
gorithm

Algorithm 1 Stochastic Multi-Gradient (SMG) Algorithm

Input: an initial point x1 ∈ Rn, a step size sequence {αk}k∈N > 0, and
maximum iterates T .
for k = 1, . . . , T do

Compute the stochastic gradients gi(xk, wk) for the individual functions,
i = 1, . . . ,m.
Solve the quadratic subproblem

λk ∈ argminλ∈Rm ‖
∑m

i=1 λigi(xk, wk)‖
2

s.t.
∑m

i=1 λi = 1, λi ≥ 0,∀i = 1, ...,m.

Calculate the stochastic multi-gradient g(xk, wk) =
∑m

i=1 λ
k
i gi(xk, wk).

Update the iterate xk+1 = xk − αkg(xk, wk).
end for
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Appendix B.Illustration of the Pareto-Front Stochastic
Multi-Gradient algorithm

In Figure 9, the blue curve represents the true Pareto front. The PF-
SMG algorithm first randomly generates a list of starting feasible points (see
blue points in (a)). For each point in the current list, a certain number of
perturbed points (see green circles in (a)) are added to the list, after which
multiple runs of the SMG algorithm are applied to each point in the current
list. These newly generated points are marked by red circles in (b). At the
end of the current iteration, a new list for the next iteration is obtained by
removing all the dominated points. As the algorithm proceeds, the front will
move towards the true Pareto front.

f1

f2

(a) Adding perturbed points.

f1

f2

(b) Applying SMG steps.

f1

f2

(c) Removing dominated points.

f1

f2

(d) Moving front.

Figure 9. Illustration of Pareto-Front stochastic multi-gradient algorithm.
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The complexity rates to determine a point in the Pareto front using sto-
chastic multi-gradient are reported in [21]. However, in multiobjective opti-
mization, as far as we know, there are no convergence or complexity results
to determine the whole Pareto front (under reasonable assumptions that do
not reduce to evaluating the objective functions in a set that is dense in the
decision space).

Appendix C.Metrics for Pareto front comparison
Let A denote the set of algorithms/solvers and T denote the set of test

problems. The Purity metric measures the accuracy of an approximated
Pareto front. Let us denote F (Pa,t) as an approximated Pareto front of
problem t computed by algorithm a. We approximate the “true” Pareto
front F (Pt) for problem t by all the nondominated points in ∪a∈AF (Pa,t).
Then, the Purity of a Pareto front computed by algorithm a for problem t
is the ratio ra,t = |F (Pa,t) ∩ F (Pt)|/|F (Pa,t)| ∈ [0, 1], which calculates the
percentage of “true” nondominated solutions among all the nondominated
points generated by algorithm a. A higher ratio value corresponds to a more
accurate Pareto front.

The Spread metric is designed to measure the extent of the point spread
in a computed Pareto front, which requires the computation of extreme
points in the objective function space Rm. Among the m objective func-
tions, we select a pair of nondominated points in Pt with the highest pair-
wise distance (measured using fi) as the pair of extreme points. More
specifically, for a particular algorithm a, let (ximin, x

i
max) ∈ Pa,t denote the

pair of nondominated points where ximin = argminx∈Pa,t
fi(x) and ximax =

argmaxx∈Pa,t
fi(x). Then, the pair of extreme points is (xkmin, x

k
max) with

k = argmaxi=1,...,m fi(x
i
max)− fi(ximin).

The first Spread formula calculates the maximum size of the holes for
a Pareto front. Assume algorithm a generates an approximated Pareto
front with M points, indexed by 1, . . . ,M , to which the extreme points
F (xkmin),F (xkmax) indexed by 0 and M + 1 are added. Denote the maximum
size of the holes by Γ. We have

Γ = Γa,t = max
i∈{1,...,m}

(
max

j∈{1,...,M}
{δi,j}

)
,

where δi,j = fi,j+1− fi,j, and we assume each of the objective function values
fi is sorted in an increasing order.
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Table 1. Adult Income dataset: Gender

Gender ≤ 50K > 50K Total

Males 20, 988 9, 539 30, 527
Females 13, 026 1, 669 14, 695

Total 34, 014 11, 208 45, 222

The second formula was proposed by [7] for the case m = 2 (and further
extended to the case m ≥ 2 in [6]) and indicates how well the points are
distributed in a Pareto front. Denote the point spread by ∆. It is computed
by the following formula:

∆ = ∆a,t = max
i∈{1,...,m}

(
δi,0 + δi,M +

∑M−1
j=1 |δi,j − δ̄i|

δi,0 + δi,M + (M − 1)δ̄i

)
,

where δ̄i, i = 1, . . . ,m is the average of δi,j over j = 1, . . . ,M − 1. Note that
the lower Γ and ∆ are, the more well distributed the Pareto front is.

Appendix D.Demographic composition of the real datasets
The data pre-processing details for the Adult Income dataset are given

below.

(1) First, we combine all instances in adult.data and adult.test and remove
those that values are missing for some attributes.

(2) We consider the list of features: Age, Workclass, Education, Education
number, Martial Status, Occupation, Relationship, Race, Sex, Capital
gain, Capital loss, Hours per week, and Country. In the same way as
the authors [28] did for attribute Country, we reduced its dimension
by merging all non-United-Stated countries into one group. Similarly
for feature Education, where “Preschool”, “1st-4th”, “5th-6th”, and
“7th-8th” are merged into one group, and “9th”, “10th”, “11th”, and
“12th” into another.

(3) Last, we did one-hot encoding for all the categorical attributes, and
we normalized attributes of continuous value.

In terms of gender, the dataset contains 67.5% males (31.3% high in-
come) and 32.5% females (11.4% high income). Similarly, the demographic
compositions in terms of race are 2.88% Asian (28.3%), 0.96% American-
Indian (12.2%), 86.03% White (26.2%), 9.35% Black (1.2%), and 0.78%
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Table 2. Adult Income dataset: Race

Race ≤ 50K > 50K Total

Asian 934 369 1, 303
American-Indian 382 53 435

White 28, 696 10, 207 38, 903
Black 3, 694 534 4, 228
Other 308 45 353
Total 34, 014 11, 208 45, 222

Table 3. COMPAS dataset: Race

Race Reoffend Not reoffend Total

White 822 1, 281 2, 103
Black 1, 661 1, 514 3, 175
Total 2, 483 2, 795 5, 278

Other (12.7%), where the numbers in brackets are the percentages of high-
income instances.
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[6] A. L. Custódio, J. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multi-
objective optimization. SIAM J. Optim., 21:1109–1140, 2011.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6:182–197, 2002.
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