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ABSTRACT: Motivated by the categorical-algebraic analysis of split epimorphisms
of monoids, we study the concept of a special object induced by the intrinsic Schreier
split epimorphisms in the context of a regular unital category with binary co-
products, comonadic covers and a natural imaginary splitting in the sense of our
article [20]. In this context, each object comes naturally equipped with an imagin-
ary magma structure. We analyse the intrinsic Schreier split epimorphisms in this
setting, showing that their properties improve when the imaginary magma struc-
tures happen to be associative. We compare the intrinsic Schreier special objects
with the protomodular objects, and characterise them in terms of the imaginary
magma structure. We furthermore relate them to the Engel property in the case of
groups and Lie algebras.

KeEYwWORDS: Imaginary morphism; approximate operation; regular, unital, proto-
modular category; monoid; 2-Engel group, Lie algebra; Jonsson—Tarski variety.
MATH. SUBJECT CLASSIFICATION (2000): 20M32, 20J15, 18E13, 03C05, 08C05.

1. Introduction

Recently, two different categorical approaches have been developed which aim
to describe the homological properties of monoids, mainly in comparison with
the properties groups have. The first one started with the observation that
an important class of split epimorphisms of monoids, called Schreier split epi-
morphisms, satisfies the convenient properties of split epimorphisms of groups
8, 9]. The idea of considering Schreier split epimorphisms originated from the
fact that these split epimorphisms correspond to monoid actions in the usual
sense |21, 18]. Although the category of monoids is not protomodular, Schreier
split epimorphisms satisfy the properties that are typical for split epimorph-
isms in a protomodular category. This led to the notion of an . -protomodular
category, with respect to a chosen class . of points—i.e., split epimorphisms
with fixed section [10]. In an .#-protomodular category, it is always possible
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to identify a full subcategory which is protomodular [2], called in [9] the proto-
modular core with respect to the class .. The objects of this subcategory are
the . -special objects, namely those objects X for which the split epimorph-
ism X x X < X, given by the second product projection and the diagonal
morphism, belongs to .. The category of monoids is not protomodular but
it is .-protomodular with respect to the class of Schreier split epimorphisms,
and its protomodular core is the category of groups.

The second approach consists in considering, in a pointed category with finite
limits, a suitable class of objects, called protomodular objects [19]. These are
the objects Y such that every split epimorphism with codomain Y is stably
strong. A split epimorphism is strongly split if its kernel and section are jointly
extremal-epimorphic. It is stably strong it every pullback of it along any morph-
ism is a strongly split epimorphism. As proved in [19], in the category of
monoids the protomodular objects are precisely the groups.

The notion of protomodular object makes sense in every (pointed) category
with finite limits, while Schreier special objects can apparently be considered
only in the context of a Jonsson-Tarski variety [15], because the notion of
Schreier split epimorphism depends on the existence of a function, which is not
a morphism in general, called the Schreier retraction. In order to study this
from a categorical perspective, we introduced in [20] the concept of intrinsic
Schreier split epimorphism, in the context of a regular unital category |[3]
equipped with a comonadic cover (in the sense we recall in Subsection 2.3).
This approach is inspired by the notion of imaginary morphism [5]: indeed,
the Schreier retraction we need is such an imaginary morphism. We showed
in [20] that these categories are .-protomodular with respect to the class of
intrinsic Schreier split epimorphisms, and we obtained an intrinsic version of
the so-called Schreier special objects. It is shown in [20] that the concepts
of intrinsic Schreier special object and protomodular object are independent.
Since, however, the two coincide in the category of monoids, the question of
understanding when the two notions are related arises naturally.

One of the goals of the present paper is to give an answer to this question. An
important ingredient here is the observation that, when considering the Kleisli
category associated with the comonad involved in the definition of an intrinsic
Schreier split epimorphism, the definition itself simplifies greatly (Section 5).
Also, each object admits a canonical imaginary magma structure whose oper-
ation (called imaginary addition in the text) depends on a choice of a natural
imaginary splitting, which is part of our initial setting (Section 4). It turns out
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that an object is intrinsic Schreier special precisely when its imaginary magma
structure is a one-sided loop structure (Theorem 8.2). Under the assumption
that the imaginary addition is associative (Section 6) we are able to extend
several stability properties and homological lemmas which hold for Schreier
extensions of monoids [8] to our intrinsic context (Section 7). Moreover, we
prove that every intrinsic Schreier special object is a protomodular object (Co-
rollary 10.4).

It was shown in [20] that there are only two possible choices for the natural
imaginary splitting in the category of monoids, which leads to only two possible
imaginary additions. This is no longer true for the category of groups or Lie
algebras, where many options are available. Therefore, we focus on studying
intrinsic Schreier special objects with respect to all natural imaginary addi-
tions in these categories. We prove that 2-Engel groups are intrinsic Schreier
special with respect to all possible imaginary additions (Proposition 11.10).
The similar result also holds for Lie algebras (Proposition 12.1).

2. Imaginary morphisms

In this section we recall the notions of imaginary morphism needed through-
out the text. We fix the particular setting for which we consider imaginary
morphisms in this work.

2.1. Imaginary morphisms [7|. We take X to be the functor category
Set®™ > where C is an arbitrary (small) category. Consider functors homg
and A: C°? x C — Set and a natural transformation o: homc = A. If all
the components axy: homc(X,Y) — A(X,Y) are injective, then all sets
A(X,Y) contain (an isomorphic copy of) homeg(X,Y). So, we may think of
A(X,Y) as an extension of home(X,Y), and indeed in [7] the triple (C, A, «)
was called an extended category. The elements of A(X,Y)\ hom¢(X,Y) will
be called imaginary morphisms. Sometimes it will be convenient to call a
morphism in home¢ (X, Y) a real morphism to emphasise that it is an actual
morphism in C.
We use arrows of the type

X-->Y

to represent an element of A(X,Y’), which could be an imaginary morphism
or not. To distinguish those which are not, i.e., the elements of A(X,Y") cor-
responding to a real morphism, say f: X — Y, we tag the dashed arrow with
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the name of that real morphism overlined (instead of axy(f)):

x-l.y

It is possible to define an extended composition, denoted by o, between real
and imaginary morphisms as follows:

X:9>Y%V, where voa = A(lx,v)(a)

-~

voa
and
U \\%_X_:%; Y, where aou = A(u,1ly)(a).
If a corresponds to a real morphism, ie., a = f = axy(f: X — Y), then
the same is true for v o @ and a o u. Indeed, by the naturality of a we have

A(lx,v)(axy(f)) = axy(vf),

so that vof = vf(= ax.y(vf)) corresponds to the real morphism v f. Similarly,
fou = fu(= ayy(fu)) corresponds to the real morphism fu. In particular, we
obtain identity axioms voly = ¥ and 1y ou = . There is also an associativity
axiom, which follows from the fact that A is a functor

(vea)ou = A(u,1v)(A(lx,v)(a)) = A(u,v)(a) = A(ly,v)(A(u, 1y)(a))

=vo(aou).

Definition 2.2. We say that a real morphism f: X — Y admits an ima-
ginary splitting when there exists an imaginary morphism s such that the
following diagram commutes

2.3. Comonadic covers. We assume that C is a regular category equipped
with a comonad (P,d,¢) whose counit € is a regular epimorphism. We write
ex: P(X) — X for the chosen cover of some object X in C: ex is a regular
epimorphism. Note that for any morphism f: X — Y in C

fex =evP(f) (1)
and

P*(f)0x = oy P(f), (2)
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where P? = PP. Also
5P(X)5X = 1P(X) = P(EX)5X (3)

and
P(6x)0x = 6pix)ox, (4)
for all objects X in C.

Example 2.4. If V is a variety of universal algebras, then we may consider the
free algebra comonad (P, d,¢). For any algebra X, we have

ex: P(X) - X and dx: P(X) — P*X),
2] — [z] = {l=]]
where [x] denotes the one letter word x; such words are the generators of

P(X). In this case, any function f: X — Y between algebras X and Y extends
uniquely to a morphism
P(X) - Y
[z] — [f(z)
in V.

2.5. Imaginary morphisms induced from comonadic covers. The idea
behind functions extending to real morphisms in Example 2.4 can be captured
through the notion of imaginary morphism: it is like a function (not a morph-
ism) X --» Y of algebras X and Y that extends to an actual morphism of
algebras P(X) — Y. More precisely, given a regular category C with comon-
adic covers we define the functor
A:CPxC —> Set,

(X,Y) — home¢(P(X),Y)

ullw | A(u,v)

(U,V) ~— homc¢(P(U),V)

where A(u,v) = home(P(u),v). So, A is just the functor home (PP x 1¢).
The components of o: home = A are defined, for all objects X, Y by
axy :home(X,Y) — homce(P(X),Y).
XLy — Px)3 x4y
Note that « is indeed a natural transformation because € is (see (1)). Also,

the components ayy are injective, for all objects X, Y, since ex is a regular
epimorphism. Since the elements of A(X,Y) = hom¢(P(X),Y) are actual
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morphisms in C, an arrow of the type X --+ Y corresponds to a morphism
P(X) — Y. According to Subsection 2.1:

it X L visareal morphism, then X —”L Y corresponds to the morphism
P(X) 55 Y 50 ] = fex;

— an imaglnary morphism X -%» Y is a (real) morphism P(X) > Y which
is not of the type a = fex, for some real morphism X ER Y;

— the composition of a real morphism with an imaginary one is defined by

-

X-2>Y—V, wherevoa=va: P(X) —V,
U\%X—%;Y, where aou = aP(u): P(U) — Y.

aou

\

Convention 2.6. From now on, we only consider imaginary morphisms that
are induced from comonadic covers.

Remark 2.7. Tt is clear that in this setting the existence of an imaginary splitting
(Definition 2.2) for a morphism f implies that f is a regular epimorphism
(f os = 1y implies that fs = ey, which is a regular epimorphism). The
converse holds when the values of P are projective objects in C. If f: X —» Y
is a regular epimorphism, then f admits an imaginary splitting because P(Y")

1s projective
/ lEY

X%>Y

thus fs = ey. So the existence of imaginary splittings characterises regular
epimorphisms in this setting. Moreover, P(f) is a split epimorphism since

P(f)P(s)dy = Pley)dy & 1py).

3. The Kleisli category

Let C be a regular category with comonadic covers. We denote by K the
Kleisli category associated to the comonad (P, d,¢). Its objects are those of C
and homg (X,Y) = homc(P(X),Y). The morphisms of K are the imaginary
morphisms together with those of the type f: X --» Y, for some real morphism
f: X — Y (Subsection 2.5).
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composition o

composition in C

X:g>Y%V

PX) >y v

voa

P(u)

") poy M px) 2y

> PU) 2% P2(U)
aoT W

TABLE 1. Composition in the Kleisli category

P(U)

The composition in K will also be denoted by o (as in Subsections 2.5 and 2.1)
A-%-B-!sc,
S~_ _ _ -7
boa
where b o a corresponds to the morphism in C

P(A) 2 p2(a) 2 ppy -

Remark 3.1. If any of the morphisms in a composite in K corresponds to a real

morphism, then this composite coincides with the one defined in Subsections 2.5
and 2.1—See Table 1.

The comonad (P, d,¢) gives rise to an adjunction K & C, where the right
adjoint is the embedding

ICoK: X-Lv - x-Loy
Consequently, K has a limit for every finite diagram in C, which is just the
limit of that diagram in C, embedded into K.
4. Imaginary addition in unital categories

In this section we define an imaginary addition on each object X of a unital
category with comonadic covers, i.e., an imaginary morphism pX: X x X --» X
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such that p~o(1x,0) = Tx and u*0{0,1x) = 1x. Such an imaginary addition
provides one of the tools needed to define intrinsic Schreier split epimorphisms
in Section 5.

4.1. Unital categories [3]. A pointed and finitely complete category is called
unital when, for all objects A, B,

AﬂAxBMB

is a jointly extremal-epimorphic pair.

Ezample 4.2. As shown in [1], a variety of universal algebras V is unital if and
only if it is a Jonsson-Tarski variety [15]. Recall that a Jonsson—Tarski vari-
ety is such that its theory contains a unique constant 0 and a binary operation
+ satisfying the identities x+0 = x = 0+x. So an algebra is a unitary magma,
possibly equipped with additional operations.

A pointed finitely complete category C is unital if and only if for any punc-
tual span in C

s t
AZ C > B, fs=14,gt =1p,ft =0,95 =0
f g

the factorisation {f, gy: C'— A x B is a strong epimorphism (Theorem 1.2.12
in [1]). Consequently, a pointed regular category with binary coproducts is
unital if and only if for all objects A, B, the comparison morphism

rag=(%¢1,):A+B—>AxB

is a regular epimorphism.

4.3. Natural imaginary splittings [20]|. If C is a regular unital category
with binary coproducts and comonadic covers, then for all objects A, B, the
comparison morphism r4 p = [15‘ 1(;] : A+ B — A x B is a regular epimorph-
ism. When P(A x B) is a projective object, as in the varietal case, there exists

a (not necessarily unique) morphism t4 p: P(A x B) — A+ B such that

TABtAB = €AxB (5)

(see Remark 2.7).
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Example 4.4. Let V be a Jonsson-Tarski variety. For any pair of algebras
(A, B) in V, we can make the following choices of an imaginary splitting for
r4,B: the direct imaginary splitting td

[(a,0)] > a+b

which sends a generator [(a,b)] € P(A x B) to the sum of a = t4(a) with
b =1p(b) in A+ B (where 14 and tp are the coproduct inclusions); and the
twisted imaginary splitting t*

[(a,0)] =~ b+a

which does the same, but in the opposite order. Note that each of those choices
determines a natural transformation

such that rt = .y, where r: (-) + (-) = (-) x (-) and

Eyx(y: P() x (1) = () x ().

It was shown in [20] that when V is the category Mon of monoids, then the
above choices of natural imaginary splittings (direct and twisted) are the only
options. As we shall see below, this is far from being true in general.

We make the existence of a natural ¢ into an axiom. Let C be a pointed regu-
lar (unital) category C with binary coproducts and comonadic covers. Suppose
also that there exist ¢4 p such that (5) holds and that they are the components
of a natural transformation

tP(() x ()= () + ()

where 7t = £ (). Then all 74 p are necessarily regular epimorphisms (because
the e4xp are) and, consequently, C is a unital category. In [20] such a natural
transformation ¢ was called a natural imaginary splitting.

Remark 4.5. Any natural imaginary splitting ¢: P((-) x (-)) = (-) + (+) has the
following properties:
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. tap is isomorphic to €4

PA) — A s A—24 4

| | |

l tA0 l A0 l
P(Ax0)— A+0—> A x0,

for all objects A in C;

. the naturality of ¢ gives the commutative diagram

P(Ax B) 2" A+ B

;xuxv>l lu+v (6)

P(CxD)—C+ D
te,p

forallu: A - C,v: B— D in C;

. from (5), we deduce

1
[1A O]tA7B=7TA8A><B(=)€AP(7TA) (7)
and
1
(O 1B]tA,B:7TB<€A><B(:)53P(7TB) (8)

for all objects A and B in C;

. using properties 1. and 2. above, we obtain the (regular epimorphism,

monomorphism) factorisations

PO pax B —2 A4+ B

x> A % (9)

P(A)

and

PO pax By — . A4 B, 10
x/\B/

for all objects A and B in C.

P(B)
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4.6. Imaginary addition. Let C be a regular unital category with binary
coproducts, comonadic covers and a natural imaginary splitting ¢. For every
object X, we consider the imaginary morphism p*: X x X --» X given by

PX x X) —2 y g x 2y (11)

We call X an imaginary addition on X since:

(1x,0) wx

X%XxX————gX (12)
X o1y 0Ty
and
XY X x-Sl x (13)
X0 15Ty
Indeed,
Xo1y,00 = (1x 1)ty xP((1x,00) 2 (1x 1y)uey = ey = 1y
and

XO<0, 1X> (1)( 1X)tXXP(<0 1X>) (1X 1X]L28X =E&x = 1X

We adapt Definition 3.15 in [7] to the unital context and call the family
(1¥: X x X --» X)yec a natural addition. Here natural means that for
any morphism f: X — Y the diagram

X

XxX-CsXx
fol lf (14)
YXY——;>Y

"

commutes. In fact,

fou® = fllx Ix)txx = (Iy W)(f + fltxx
QD 1y 1)tyy P(F < £) = ¥ o (f % f).
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5. Intrinsic Schreier split extensions

In this section we recall the notion of a Schreier split epimorphism of mon-
oids and its extended categorical version, the notion of an intrinsic Schreier
split epimorphism. We actually give a simplified version of the intrinsic defini-
tion by using the direct composition of imaginary morphisms, which is simply
the composition in the Kleisli category associated with the comonad of the
comonadic covers.

5.1. Schreier split extensions of monoids [8, 9]. We recall the definition
and the main properties concerning Schreier split epimorphisms.

A split epimorphism of monoids f with chosen section s and kernel K

KD?(X,-,1)$Y (15)
is called a Schreier split epimorphism if, for every x € X, there exists a
unique element a € K such that x = k(a) - sf(z). Equivalently, if there exists
a unique function ¢: X --» K such that = = kq(z) - sf(x) for all z € X.
We emphasise the fact that ¢ is just a function (not necessarily a morphism of
monoids) by using an arrow of type --».

The uniqueness property may be replaced |9, Proposition 2.4] by an extra,
condition on ¢: the couple (f,s) is a Schreier split epimorphism if and only if
(S1) z = kq(z) - sf(z), for all x € X;

(S2) q(k(a) - s(y)) =a,forallae K, yeY.

Remark 5.2. Recall from [8] that Schreier split epimorphisms are also called
right homogenous split epimorphisms. A split epimorphism as in (15) is
called left homogenous if, for every x € X, there exists a unique element
a € K such that z = sf(x) - k(a).

Proposition 5.3. [8, Proposition 2.1.5| Given a Schreier split epimorphism
as in (15), the following hold:

(S3) gk = 1k;
(S4) gs =0;
(S5) ¢(1) = 1;

(S6) kq(s(y) - k(a)) - s(y) = s(y) - k(a), for allae K,y eY;
(S7) q(z - 2') = q(x) - q(sf(x) - kq(z")), for all z,2" € X.

A split epimorphism as in (15) is said to be strong when (k, s) is a jointly
extremal-epimorphic pair. It is stably strong if every pullback of it along any
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morphism is strong. Any Schreier split epimorphism is (stably) strong (see [8],
Lemma 2.1.6 and Proposition 2.3.4), thus f is the cokernel of its kernel k. So,
such a split epimorphism is in fact a Schreier split extension.

As shown in [17], the definition of a Schreier split epimorphism makes sense
also in the wider context of Jonsson-Tarski varieties.

5.4. Intrinsic Schreier split extensions [20]. We recall our approach to-
wards Schreier extensions. Here C will denote a regular unital category with
binary coproducts, comonadic covers and a natural imaginary splitting ¢.

Definition 5.5. A split epimorphism f with chosen section s and kernel k

K—sX<—%Y, (16)
f

is called an intrinsic Schreier split epimorphism (with respect to t) if there
exists an imaginary morphism ¢: X --» K (i.e., a morphism ¢: P(X) — K),
called the imaginary (Schreier) retraction, such that

(iS1) pu* olkoq,sf) = 1x, i.e., the diagram

x & x

N |

N X

RN I p
Ix Sy v

X
commutes;
(iS2) go pu¥ o (k x 8) = T, i.e., the diagram

X
kxs

KxY 2 xxX-foXx

~

q

|
|
|
A4
\gK

TK ~

~

commutes.

The original definition in [20] expressed the above axioms through their cor-
responding morphisms and equalities in C. However, using the composition in
the Kleisli category K, as above, gives a better understanding of the link with
(S1) and (S2).
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The imaginary retraction of an intrinsic Schreier split epimorphism is neces-

sarily unique (see |20, Proposition 5.3]) and we also have (by |20, Proposition
5.4]):

(63)}(:§?XC:%;K;iequ%):5K

qok=1g

(iS4) Y \%X - 2/_; K, ie., qP(s) =0;

qos=0

(i85) 02> X - 1> K, ic., qP(0x)(= q0px)) = O

qo0x=0p
kogouXo(sxk), 5wy

(iS6) Y x K ~SIUCIITY e x

[
sxkl :uX

v

X X X mmmmmme o . X,

X

ie., ut olkoqou®o(sxk),smyy=pu’o(sxk).
In order to get the intrinsic version of (S7), we will need a further assumption,
that will be discussed in the next section.
If we apply this intrinsic definition to the category Mon of monoids, we re-
gain the original definition of a Schreier split epimorphism (= right homo-

geneous split epimorphism). Also, left homogeneous split epimorphisms (see
Remark 5.2) fit the picture. Indeed:

Theorem 5.6. |20, Theorem 5.10] In the case of monoids, the intrinsic
Schreier split epimorphisms with respect to the direct imaginary splitting t°
are precisely the Schreier split epimorphisms. Similarly, the intrinsic Schreier
split epimorphisms with respect to the twisted imaginary splitting t* are the
left homogeneous split epimorphisms.

This result extends to Jonsson-Tarski varieties [20].

5.7. /-protomodular categories [8]. We recall now the definition of an
& -protomodular category, with respect to a class . of points (i.e., of split
epimorphisms with a fixed section) in a pointed category C with finite limits.

We denote by Pt(C) the category of points in C, whose morphisms are pairs of
morphisms which form commutative squares with both the split epimorphisms
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and their sections. The functor cod: Pt(C) — C associates with every split
epimorphism its codomain. It is a fibration, usually called the fibration of
points. For each object Y of C, we denote by Pty (C) the fibre of this fibration,
whose objects are the points with codomain Y .

Let . be a class of points in C which is stable under pullbacks along any
morphism. If we look at it as a full subcategory .#-Pt(C) of Pt(C), then it
gives rise to a subfibration .#’-cod of the fibration of points.

Definition 5.8. [8, Definition 8.1.1] Let C be a pointed finitely complete cat-
egory, and . a pullback-stable class of points. We say that C is .¥-proto-
modular when:

1. every point in .#-Pt(C) is a strong point;
2. #-Pt(C) is closed under finite limits in Pt(C).

As shown in [10], ./-protomodular categories satisty, relatively to the class
&, many of the properties of protomodular categories [2]. In particular, a
relative version of the Split Short Five Lemma holds: given a morphism of
<-split extensions, i.e., a diagram

K &
/ / /
Kr—X=—3Y

f/
gl 9 h
KDLX_% :

such that the two rows are .-split extensions (points in . with their ker-
nel) and the three squares involving, respectively, the split epimorphisms, the
kernels, and the sections commute, ¢ is an isomorphism if and only if both
and h are isomorphisms. In Section 7 we will show that, when . is the class
of intrinsic Schreier split extensions, a stronger version of this lemma holds.
Moreover, we will discuss the validity of other homological lemmas.

Example 5.9. [8] The category Mon of monoids is .-protomodular with respect
to the class . of Schreier split epimorphisms.

Ezample 5.10. [17] Every Jonsson-Tarski variety is an .#-protomodular cat-
egory with respect to the class of Schreier split epimorphisms.

Ezxample 5.11. |20] Every regular unital category with binary coproducts, equip-
ped with comonadic covers and a natural imaginary splitting, is .#-protomo-
dular with respect to the class . of intrinsic Schreier split epimorphisms.
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Consequently, any such split epimorphism is an intrinsic Schreier split exten-
s10M.

The reader may find several other examples in |11].

6. The associativity axiom

In order to improve the behaviour of the intrinsic Schreier split extensions,
it is useful to consider an additional assumption, concerning the associativity
of the imaginary addition .

Let C be a regular unital category with binary coproducts, comonadic covers
and a natural imaginary splitting £. Suppose that, for every object X, the
imaginary addition p* satisfies the associativity axiom pX o (u* x 1x) =
X o (1x x p), ie., the diagram

p~ x1x
X xXxX---5XxX

| |
TxxpX |

commutes. In particular, for arbitrary imaginary morphisms a,b,c: A --+» X,
we get

15 o (¥ o (a, by, ¢ = i o da, u¥ o (b, 0. (17)

Example 6.1. In Gp and in Mon, the direct and twisted imaginary splittings
induce associative imaginary additions.

Among the properties, listed in the previous section, of Schreier split epi-
morphisms of monoids, there is one, namely the property given by (S7), which
uses the associativity of the monoid operation (for X). Hence it is not so sur-
prising that we may prove its intrinsic version when we assume the associativity
axiom.

Proposition 6.2. Suppose that the natural addition (u~: X x X —-+ X)xec
is associative. Given an intrinsic Schreier split extension (16) with imaginary
retraction q, the following diagram commutes
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omy,sfm1,kogom Tr x (qgouX
(iST) X x X - 4mslmbee) ooy x oo UL gk
' |
v v
D e i > K

e, o (g x (qop™)) olgom,sfm,kogom) =qop®.
Proof: Using Lemma 6.3 below, it suffices to prove that

p o lkopXo(Ig x (qop™))olgom,sfm,koqomy,sfou®)=

=X olkoqou®, sfou’)

which, by (iS1), is the same as

pX o lkopo(Ix x (qop™))olgom, sfm,koqom),sfou™)=p~.
We have

polkop®o(Tg x (qop™))olgom,sfm,kogomy,sfou™)
= ¥ olut o (kx k)olgom,qopu” olsfm, koqomy), u* o(sf xsf))
= pto{ut olkogom,kogopt olsfm,kogqomy), uto(sf xsf))
= p* olkogqom,ut olkogop™ olsfm,koqomy,u* o(sf xsf)))
= p*olkogqom,ut olkoqop™ olsfm,koqomy,u* olsfm,sfra)))
=" ptolkogqom,pt o(ut olkogou® olsfm,koqomy,sfm),sfm))
= WX olkogom, i o X okogouXo(sx k)olfm,qom),

sy o (fm1,q o ma), sfma))
= X olkogom, X ou¥ olkogou®o(sx k),5mdo
(fm1,qoma), sfm))
prolkogom,ut ot o (s x k)o(fm,qom),sfra))
= ptolkogom,ut olut olsfm,koqom),sfm))

(i86)

= IuXo<k;oqo7r1,,uXO<Sf7T1,,UXO<kOQO7T2an7T2>>>
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(81) X
="t olkoqom,u® olsfm,m2))

17 P
(17) pX o uX olkoqom,sfm), Ty

iS1  __
(Z),LLX O<7T1,7T2>
= % m

Lemma 6.3. Let (16) be a split epimorphism with an imaginary morphism q
such that (1S2) holds. If

prolkoasoby =yt olkoc,sod),
where a,c: A --+» K and b,d: A --+Y are imaginary morphisms, then a = c.

Proof -

pXolkoa,soby=pXolkoec sod)
qop* o(koa,soby = qopX olkoc,sod)
qopuXo(kxs)ola,by=qop*o(kxs)olcd)

! 7R ola,b) = TR o (e, dy
a/:

C.

B |

=

Remark 6.4. As an immediate consequence of Lemma 6.3, we obtain the unique-
ness of the imaginary retraction for any intrinsic Schreier split extension (16)
(which was already known from |20, Proposition 5.3]). Given two possible
imaginary retractions ¢, ¢": X --+ K, (iS1) gives

X olkoq sfy=Tx =pu~ olkoq, sf);

consequently, ¢ = ¢'.

7. Stability properties and homological lemmas

In this section we prove that certain stability properties for Schreier exten-
sions of monoids shown in 8] still hold for intrinsic Schreier extensions in our
context: C will denote a regular unital category with binary coproducts, co-
monadic covers and a natural imaginary splitting ¢t. Moreover, we will observe
that some of these stability properties allow to extend the validity of some
classical homological lemmas to our intrinsic context.
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In order to extend those proofs in [8] which use the associativity of the mon-
oid operations, we assume the associativity axiom holds. This is the case, in
particular, of the first stability property we consider:

Proposition 7.1. (See |8, Proposition 2.3.2|) Suppose that the natural addi-
tion (X X x X —-» X)xec is associative. Then the intrinsic Schreier split
extensions are stable under composition.

Proof: Suppose that

q S
D

k f
and
qg t
Lg=-=-=sY=—"7"7T7
l g

are intrinsic Schreier extensions. We want to prove that
st
M DT X NS Z

gf

is an intrinsic Schreier extension, where m is the kernel of g f

M X

7]

/I_IDZ%Y

gt

0——Z.

We must define the imaginary retraction q: X --+» M. The imaginary morph-
ism p* o(kogqs slog,o fy: X --+» X is such that the composition with gf
gives the following equalities in C:

9f(1x 1x)tx xP({kqy, sla,P(f)))ox
= gf(1x 1x)txxP((kqr) x (slgsP(f)))P({(1px), 1p(x)))dx
= gf(lx 1x)((kqr) + (slgyP(f))tpcx).pooy P((px), Lpx)))ox

= (9fkar gfsla,P(f))tpx),rx)P((px), Lpx)))0x
0.

—~
~
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This gives a unique morphism ¢: P(X) — M in C, i.e., an imaginary morphism
q: X --» M, such that moq = u* o{koqy,slog,o f). Next we prove that g
is the imaginary retraction for the split epimorphism ¢f:

(iS1)

Yolmoq,stgf)
— NJXo<,uXo<koqf,lengf>,W>
— MXo<kOqu,,LLXO<SlOQgOfa@>>
= pu¥olkogqp,u¥o(sxs)ollogytgyof)
Y X okogrson” 0000 )
= ly,

where in the last step we use (iS1) for g and then (iS1) for f
Next we prove that m o qo u* o (m x (st)) = m o7 and use the fact that
m is a monomorphism, to conclude (iS2):

m o go ¥ o (m x (s1)
_ MXo</<;quc,SqugOf>O,uXo(mx (st))

= p¥olkogpopto(mx(st)),sloggofou*o(mx(st))

WX (ko gro X o (mx (st)), slo gy oY o (f x f)o(m x (st)))
G

= 'UJXo oqfo,uXO m x (st)),s Ong,LLY /

O A e D e A A P
= p¥odkogpopto(mx (st),slomo(f' x 12)),

where in the last equality we use (iS2) for g. Now we use slompo(f' x1z) =
sfmmy and (iS7) applied to f. This gives

moqopto(mx(st) = -

= ptolkop o (Ix x (qr o p™)) o gy om, sfm, kogsom)
o(m x (st)),sfmmary -

= X olkou® olgromo(mx (st)),qrop® olsfm,koqrom)
o(m x (st))), sfmmy).
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Note that, part of the composite above is

qf oluX o<5f7T1,/<:oqf oy o (m x (st))

=" o (qr x qp) o (sfm, koqpomyo(m x (st))
= " olgposfmo(m x (st),qrokoqyom(mx (st))

=" ulolgrosfmo(m x (st)),qso stm)

Thus,
mogqopuXo(mx(st))=---
= p¥olkou® ollk,0)0qsommar, sfmmy)
= MXO<kOQf7§>Om7TM

(iS1) —
=" lxyommy = moTyy.

Proposition 7.2. (See [8, Proposition 2.3.2]) Consider split epimorphisms

S t

X Y A
f 9

in C. If (gf, st) is an intrinsic Schreier split extension, then so is (g,t).

Proof: We use the same notation as in Proposition 7.1. We define the imaginary
retraction for g as ¢, = foqos:Y --» L. From (iS1) for ¢f, we have

pXolmog,stgfy=1x = fouXolmogqstgf)y=7F
14 — =
L o (mog gy =T

Then

p'odllogytgy = p ollf'oqosty)
p o{fmoqostyfs)
= " o{fmog,tgf)os
Fos

:E7
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which proves (iS1) for g. As for (iS2) for g, we have

ggop' o(lxt) = flogosopu’ o(lxt)

= progqo ¥ o ((sl) x (st))
= [rogou’ o((ms) x (st))
= [rogopto(mx(st))o(s x1z)
— Fomio(s x 1)
= [f's'omp
= 7L

where we use (iS2) for ¢gf in the fifth equality. |

Lemma 7.3. Suppose that the values of P are projective objects in C. Let
a,b: A --+ X be imaginary morphisms and z: Z — A be a regular epimorph-
ism. If aoz=">boz, then a =0b.

Proof: a o z = bo z corresponds to the equality aP(z) = bP(z) in C. Then
a = b, since P(z) is a split epimorphism (see Remark 2.7). n

In the following Eq(f) denotes the kernel pair of a morphism f.

Proposition 7.4. (See [8, Proposition 2.3.5] and [11, Proposition 4.8]) Sup-
pose that the values of P are projective objects in C. Consider the following
commutative diagram

Eq(y) £ 5 Bq(g) < Bq(h)

K @
’Ylll’h glllQQ hlllhg
Klg__q___X/%S/ >Y/
kl f/
¥ g h

S Y
Kr— s X ;

Note that, by the commutativity of limits, k is the kernel of . If the top two
rows are intrinsic Schreier split extensions and g and h are reqular epimorph-
isms, then the bottom row is also an intrinsic Schreier split extension.

Proof: C is an .-protomodular category (Example 5.11), thus it is an .#-
Mal’tsev category [11, Theorem 5.4]. By Proposition 3.2 in [11], « is a regular
epimorphism.



INTRINSIC SCHREIER SPECIAL OBJECTS 23

Since P(X) is a projective object and ¢ is a regular epimorphism, then it
admits an imaginary splitting £: X --+ X’ with got = 1y (see Remark 2.7).
We define the imaginary retraction for the bottom row as ¢ = yoq'ot: X --» K.
We must prove (iS1)

Yolkogqsfy = pXolkyoqot,sf)
= pXolgkloq ot,sfogot)
= pXolgk'oq ot,gos fot)
= pXo(gxg)olkoq,sfyot

= gopX ok og,s'f)ot

= golyxy ot

Ix,

where we use (iS1) applied to the second row in the next to last equality.
For (iS2), we precompose the equality we wish to prove with the regular
epimorphism v x h

voq otop®o((ky)x (sh))
voq otopXo((gk') x (gs))
voq otop®o(gxg)(k xs)
’yoq/otogo,u O(/{:/XS’)
voq ouX oK x )

¥ o TR

K o (v x h),

qou~ o(kxs)(yxh)

~~
=
=

—
*
~—

where we use (iS2) for the second row in the next to last equality. Then (iS2)
follows from Lemma 7.3.

To finish, we just need to prove the equality yo ¢ otog ® ~vo¢q'. Actually,
we prove this equality in C (not in K) and to do so, we use the compatibility

of the first two rows with respect to the imaginary retractions [20, Proposition
5.7]: vip = ¢'P(g;), for i € {1,2}. We have

—~
~

'P(t)0xP(g) = ~qP(t)P*(g9)0x:
= 'yq/P(tP( )) X'
= v¢P(q:1{tP(g),ex))0x,
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where {tP(g), ex+) is the unique morphism making the following diagram com-
mutative

P(X')

(tPlg hex0

Eq( ) T— X'

tP(g) . l— lg

X/T>X'

Using the compatibility mentioned earlier,

v¢' P(t)oxP(g9) = ~vq'P(g1)P({tP(g),ex))ox
= YpP((tP(g),ex))dx
= Y7pP((tP(g),ex))0x
= ¢ P(g2)P({tP(g),ex1))0x
= v¢'P(ex)dx

2 4.

Corollary 7.5. (See [8, Corollary 2.3.6]) Suppose that the values of P are
projective objects in C. Consider the diagram

KHX’%Y’

f/
h
S \4

KHX%

f

?

where the three squares involving, respectively, the split epimorphism, the ker-
nels, and the sections commute. If the top row is an intrinsic Schreier split
extension, then so is the bottom row.

Proof: Take the kernel pairs of the regular epimorphisms 1x, g and h. This
gives a 3 x 3 diagram whose top row is an intrinsic Schreier split extension, since
these extensions are closed under arbitrary pullbacks (see [20, Proposition 6.1]).
Applying Proposition 7.4 to this 3 x 3 diagram, we conclude that (f,s) is an
intrinsic Schreier split extension. ]
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In order to get the validity, in our context, of one of the classical homological
lemmas, namely the 3 x 3-Lemma, we need another stability property of the
class of intrinsic Schreier split epimorphisms. This property was called equi-
consistency in [11]:

Definition 7.6. [11, Definition 6.3] Let . be a pullback-stable class of points.
Consider any commutative diagram

(18)

where (ri,79): R ~— X x X and (s1,82): § — Y x Y are equivalence re-
lations, (f,s) and (f’,s") are split epimorphisms, (f”,s”) is the induced split
epimorphism between the kernels of r; and s, and the diagram is completed
by taking kernels and the induced dotted morphisms. .¥ is equi-consistent
if, whenever the points (f,s), (r1,er) and (f”,s”) belong to .7, (f’,s') is in
<, too.

Proposition 7.7. (See |11, Proposition 6.4]) Suppose that the natural addition
(WX X x X --» X)xec is associative. Then the class of intrinsic Schreier
split extensions is equi-consistent.

Proof: Consider the commutative diagram (18). Suppose that (f,s), (71, er)
and (f”,s”) are intrinsic Schreier split epimorphisms, and denote by ¢, ¢” and
X the imaginary retractions for (f,s), (f”,s”) and (r1,eg), respectively. In
particular, we have

tiwoq" =qoru, i€ {1,2}. (19)
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First, we consider the imaginary morphism a = puf o (s'f'u o x,egk o qo
r1): R --» R. We have

riopfols' fluoy,egkoqor)
= pro(r xm)o(s'fluox,egkogqor)

= ¥ ol0,kogor)
= ¥ ol0,1x)okogon

(2) k 0Cqgormr

and
oo S uo ek o go )

5015 (1 x 1) o (5 P yoenk o 0

(S) IuX o) <Sf7“2u oX, kogo 701>;
thus

X
koqorl/ -7 -
. 20

Second, we consider the imaginary morphism 3 = pfo{egkogorsoa, s'f'uo
X): R --+ R. We have

riopflolegkoqoryoa,s fluoy)
=" p¥o(rixr)oderkogoroa,s fluoy)

= pXolkogoryoa,0)
= p¥ollx,0)0kogoroa

= kogoryou«
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and

ry o ufolegkoqgoryoa, s fluox)
) o (rg x ry) olegkoqoryoa,s fluox)
Yolkogout olsfrauox,koqor,sfrauox)
= X olkogonXo(s x ) o(frauox,qom),sfruox)
= prolkogop® o(sxk)o{frauox,qory, sty o(fraucx,qor))
Yolkogop®o(sxk),smy)ofrauox,qory)

(ISZG) MXO(S X k)o<f7~2uox’q07°1>
= uXo<sz2uOX,kOqO7“1>§

thus

2 X
o<sfr2uox,koqor1) / T
RE::: ——————— ZR% R (21)
——__ . l/rz
kogorqoa™ = = _ _
TR XL

Third, we consider the imaginary morphism v = pff o (uk” o ¢" o x, egk o q o
rooay: R --» R. We have

riopufoluk” oq"ox,egkoqgoryoa)

D o ri x i) o uk”oq" o x,egkogoryon
!

= pu¥ol0,kogoryoa)
= ,uXo<(),1X>okoqor20a

= kogoryou«
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and
ryo o (uk o g X, exk 0 gors o a)
0 X o (ry x ry) o (uk” o ¢" o x,egrk o qoryoa)
(18),(20)

=7yt olktawoq" ox,koqopuXolsfraucx,kogor))

=  pro(kxk)oltawoq ox,qopu* olsfroucx,kogory))

B ¥ o (k x k) o(goruoy,go i olsfrauox, kogor))

C kouf o (Tx x (qop)) o lgoruo x,(sfrauo x,kogor))

= kopfo(lg x (gop*))o

(gom o{rauox,T1),{sfm orauc X, T1), koqgomo{ruox,T)))
= koufo(lg x (qop™))olqom,(sfm,koqom)yo{ryuoyx,r)

(i87) kogqgouXodryuox, )

— kqu/LXO<T2UOX7TQO€er>

— koqoluXo(T’gXT2)0<UOX76RT1>
(1:4) kOQOTgOMRO<UOXa€RT1>

(iS1)

= ko qorTy,

where the last (iS1) is with respect to the intrinsic Schreier extension (ry, er);
thus

X
kogorgoa_ - 7
e 1
-~
-
RZ--1-- - R (22)
>~ ~
~ - o
kogory ~ ~
A
X.

Next we use the fact that R is transitive together with (20), (21) and (22)
to deduce the existence of an imaginary morphism ¢6: R --+ R such that the
following diagram commutes

X
Z
koqor/l// -
-~
s
RZ--=-- >R
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We are now able to define the imaginary retraction ¢’ for (f',s):

R-—___ 5

[ =~

Note that s;f" 0§ = friod = fkoqgor; = 0,4 € {1,2}, from which we get
flod=0.

To finish we must prove (iS1) and (iS2) for (f’,s’). To obtain the equality
for (iS1)

koq s f'
REC R« R

N

> R

I

|

|

v
R,

T\
R \A

we prove that r; o uff o (k' o¢/,s'f'y = rio1g =7, i € {1,2}, by using (iS1)
for (f,s).
To obtain the equality for (iS2)
k'xs'

Kxs s pyRr_F.LR

~
~
~

(N
~ _ Lq

\4
PN
K,

—_— ~
Tt ~

~

we prove that 7,0 k' o ¢’ o ufto (K' x 8') = r; o k' o7, i € {1, 2}, which uses
(iS2) for (f,s). _

We say that a morphism f: X — Y is an intrinsic Schreier special

morphism if the split epimorphism (f1,es) (or, equivalently, the split epi-
f2

morphism (fs, €f)) is intrinsic Schreier, where Eq(f) <¢/= X is the kernel pair
hi

of f. If this intrinsic Schreier special morphism is a regular epimorphism, then

it is automatically the cokernel of its kernel, thus it gives rise to an extension

(Proposition 5.6 in [11]). Thanks to the stability properties we proved in this



30 ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN

section, we can apply Proposition 6.2 and Theorem 6.7 in [11] and get the
following version of the 3 x 3-Lemma:

Theorem 7.8. Consider the commutative diagram

"

k//

K" X Y
Y Y Y
w’ ' v’
K » / X/ m— y!
k f
w m v

v v
K X,

where the three columns and the middle row are intrinsic Schreier special ex-
tensions. The upper row is an intrinsic Schreier special extension if and only
if the lower one is.

We conclude this section by proving the stronger version of the Split Short
Five Lemma we mentioned in Section 5.

Proposition 7.9. (See [8, Proposition 2.3.10]) Suppose that the values of P
are projective objects in C. Consider the diagram

!

K/;—q——X/%Y/
k/ f/
Ki-"-s XY
; 7

where both rows are intrinsic Schreier split extensions and the three squares
involving, respectively, the split epimorphism, the kernels, and the sections
commute. Then
(a) g is a regular epimorphism if and only if v and h are regular epimorph-
1SMS;
(b) g is a monomorphism if and only if v and h are monomorphisms.

Proof: (a) If g is a regular epimorphism, then so is A, from the commutativity
of the diagram. Moreover, the compatibility for the imaginary retractions gives
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v¢ = qP(g). Then ~ is a regular epimorphism since so are ¢ and P(g) (by
(iS2) and Remark 2.7).

Conversely, suppose that v and h are regular epimorphisms. We take the (reg-
ular epimorphisms, monomorphism) factorisation g = me, and prove that m is
an isomorphism. Since the bottom row is an intrinsic Schreier split extension,
we know that (k, s) is an jointly extremal-epimorphic pair (see Subsection 5.4).
Since ¢ and hey are regular epimorphisms, then (kq, shey) is also a jointly
extremal-epimorphic pair. In C, it is easy to check the commutativity of

M

EMP(ek’)aPW I W(es’)

P(X) —— X < P(Y"),

kq shey

where o is a splitting of the split epimorphism P() (Remark 2.7). Thus, m is
an isomorphism and ¢ is a regular epimorphism.

(b) If g is a monomorphism, then so are v and h, from the commutativity of
the diagram. For the converse, suppose that a,b: U — X’ are morphisms such
that ga = gb. Then, fga = fgb, from which we get f'a = f'b (since fg = hf’
and h is a monomorphism). On the other hand, we deduce kqP(g)P(a) =
kqP(g)P(b) and kvyq' P(a) = kvyq' P(b), from the compatibility for imaginary
retractions (|20, Proposition 5.7]). This gives ¢'P(a) = ¢'P(b), since kv is a
monomorphism. Thus ¢’ o a = ¢’ 0 b, as imaginary morphisms. Then

a = 1lx/oa
BN ol o g ) o
= p* olkodoa,sfa)
= ok oq ob,s [y
= ¥ ol oq sf)ob
(121) 1_X/O b
b.

8. Intrinsic Schreier special objects

Let C be a pointed and finitely complete category and .# a class of points in C
which is stable under pullbacks along arbitrary morphisms. Recall from [10]
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that an object Y is called an .-special object when the split epimorphism

(y,ly)
Y o Y xY=—=Y (23)

(or, equivalently, the split epimorphism (71, {1y, 1y))) belongs to the class .7.
If C is an .-protomodular category, then the full subcategory formed by the
& -special objects is protomodular ([10], Proposition 6.2), and it is called the
protomodular core of C with respect to the class .. When C is the category
of monoids, and . is either the class of Schreier split epimorphisms or the one of
left homogeneous split epimorphisms, the protomodular core is the category of
groups. More generally, when V is a Jonsson—Tarski variety, an algebra in Vis a
Schreier special object if and only if it has a right loop structure [20, Proposition
7.5] (see Subsection 8.1 for the right loop axioms). Similarly, an algebra in V
is special with respect to the class of left homogeneous split epimorphisms (see
Remark 5.2) if and only if it has a left loop structure (see Subsection 8.1 for
the left loop axioms).

Now we want to study what happens in the intrinsic Schreier setting. So,
let C be a regular unital category with binary coproducts, comonadic covers and
a natural imaginary splitting . An object is an intrinsic Schreier special
object when the split epimorphism (23) is an intrinsic Schreier split epimorph-
ism. This means that there exists an imaginary morphism ¢g: ¥ x Y --» Y
such that:

(iSs1) the diagram

V xY _<_<lf’9>o_q’flf’1_yzm—>> Y XY xY xY
-~ _ _ : NYXY
ly xy =~ v

Y xY

comiutes;
(iSs2) the diagram

Y xY Y xYxYxY--—-—-——-—- >Y xY

commutes.
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In this context, we also have:

(153) V22V x Y = L2, e, ¢P((1y,0) = v

—

qo<1y,0>=§
(i8s4) ¥ Y x ¥ = L2V, e, gP((ly, 1y)) = 0.

—

qo<1y71y>=6

So, if Y is an intrinsic Schreier special object, then the identities (iSs3) and
(iSs4) make ¢: Y x Y --» Y an imaginary subtraction. Indeed, the iden-
tities (iSs3) and (iSs4) correspond to the varietal axioms for a subtraction,
1.e.,

q(z,0) = z, q(z,z) = 0.

8.1. Imaginary (one-sided) loops. Consider an intrinsic Schreier special
object Y. We now show that the imaginary addition given in (11) and the
imaginary subtraction ¢: Y x Y --» Y satisfy the axioms of a (one-sided) loop
(like those of a right loop or a left loop). We say then that Y has the structure
of an imaginary one-sided loop.

We must prove the following right loop or left loop axioms

{(x—y)+y=x o {fc+(—x+y)=y
(z+y)—y=x —r+(x+y) =y

in the imaginary context; we consider the left-hand side axioms. Table 2 gives
the right loop axioms and their corresponding “imaginary” commutative dia-
grams. The only difference in the diagrams is that u¥ and ¢ are swapped, just
as “4” and “—" are swapped in the right loop axioms.

The commutativity of (iL1) follows from composing (iSs1) with 7;. From
(14) we know that 7 o u¥*¥ = p¥ o (m; x m;). Then, we just have to prove
that (m x m1) o{((1y,0)0q, {1y, ly)me) = {q,T3). In fact, (m x m)o{{1ly,0)o0
q,{ly, 1y ymy) corresponds to the real morphism

(m1 x )1y, 0)q, 1y, Iy )mey«y) = {q, meyxy) = {q, Ta)-

The commutativity of (iL2) follows from (iSs2). In this case we must show
that ¥ Y o ((1y,0) x {1y, 1y)) = (u¥, 7). The imaginary morphism p¥ Y o
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right loop axiom “imaginary” commutative diagram
(z—y)+y=2x (iLl)YxY—Sq’TZZ>Y><Y
~. !
™o R \4
Y
v
(x+y) —y==x (iL2) Y><Y—<f—m3>>Y><Y
~ !

RN | q

TABLE 2. The right loop axioms and their corresponding diagrams

({1y,0) x {1y, 1y)) corresponds to the real morphism

~—~
~—

(lyxy lyxy)tyxvyxy P((ly,0) x (1y,1y)) = ([(1y,0) {1y, 1y))tyy
Iy 1y), (0 1y )tyy

</uY7 7TQ‘(':Y><Y>
(" 7).

(1

—_
~—
—~

8)

)

The converse is also true. Indeed, suppose the object Y has the structure of
an imaginary one-sided loop, in the sense that it is equipped with an imaginary
morphism ¢q: Y xY --» Y which satisfies, together with the imaginary addition
pY, (iL1) and (iL2). Then q is the imaginary Schreier retraction for the split
epimorphism (23). To show this, we need to show that (iSsl) and (iSs2)
hold. (iSs2) follows immediately from (iL2), because, as we already observed,
p Y o ((y,0) x {1y, 1y)) = (u¥, 7). In order to prove (iSsl), we use the
previous equality (71 x m1) o ({1y,0) 0 q,{1y, 1y )me) = {q,T2) to get

mop Y ol(ly,000q, (y, Iy)ym) = p* ol
(L1) __
LD —

= T olyxy;
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also
my oY o1y, 0y 0 ¢, (1y, 1y )ma)
=" ¥ o (my x m) o1y, 0y 0 q, {1y, ly)ma)
= ¥ olm(ly,0) 0 q,m(ly, ly)m)
= p 00,7
= po{0,1ly)om

:77_2

79 O 1y><y.

Combining these two equalities we get (iSs1). Hence

Theorem 8.2. In a reqular unital category with binary coproducts, comonadic
covers and a natural imaginary splitting, an object is an intrinsic Schreier
special object if and only if its canonical imaginary magma structure is a one-
sided loop structure.

9. A non-varietal example

In this section we give an example of a non-varietal category for which there
exists a natural imaginary splitting, and we analyse what are the intrinsic
Schreier split epimorphisms and the intrinsic Schreier special objects in that
context.

Take C = Set.?, which is a semi-abelian category [14, 4, 1], so it is a regu-

lar unital category with binary coproducts. We consider the powerset monad
(P, d,¢) in Set,, where:

P(X,x0) = (P(X) = {Ac X [ z9 € A}, {20}),
5(X,$0)<x) = {l‘,ﬂ?o},
5()(7%0)({14@'}1‘6]) = UAi,Where each Az € P(X)
1€l
The monad (P, d,¢) may be seen as a comonad in Set,’. Moreover, it is easy

to check that each P(X, ) is projective in Set(P, so that Set(’ is equipped

with comonadic projective covers; we are in the conditions of Subsection 4.3.
A natural imaginary splitting in Set’? corresponds to a natural transformation
t: (1) x ()= P((-)+ (-)) in Set,. We define, for any pair of pointed sets (A, =)
and (B, =),

tap: (Ax B, (%) = (P(A+ B){+}): (a,b) — {a,b, +} (24)
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It is easy to check that ¢ is a natural transformation and that it satisfies the
opposite of equality (5), for all pointed sets (A, =) and (B, *)

(P(A+ B),{+})

ta B
€A+B

(A x B, (*, *)) TO] (A + B, *)

An intrinsic Schreier split epimorphism in Set(? corresponds to a split mono-
morphism in Set,. The following diagram represents a split monomorphism,
given by an injection f, and its cokernel in Set,

(K, *) — (AX7 *) (f_) »(K *),
where K = X\Y u {+}, k(y) = =, forall y e Y and k(x) = z, for all z € X\Y.
It is an intrinsic Schreier split monomorphism if there exists a morphism of
pointed sets ¢: (K, *) — (P(X), {}) such that the opposite of equalities (iS1)
and (iS2) hold. Note that q(z) € P(X), i.e., x€ q(z) € X, for all x € X\Y".
The opposite of (iS1) is given by the commutativity of the following diagram
(we omit the fixed points to make it easier to read)

Px) 28 ppex) + P(X)) L9979 prx) x P(X)

5Xl/ T<qk75st>

P(X) X.

EX

The commutativity of the diagram above always holds for any element y € Y.
For any element z € X\Y, we get

(1 1) P(X) P(X)

{ale) {Fs(x). o} {=}) < {qw). TFs(@). o). () ©22 (), { (), +))

5XJ/ T<qk,exfs>

q(x) v {fs(x),«} = {z, ~} z.

EX

From the equality ¢(x) u {fs(x),*} = {z, =}, and the fact that s(z) € Y and
x € X\Y, we deduce that s(x) = * and ¢(z) = {z,=}. As a consequence the
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split monomorphism is isomorphic to the binary coproduct

S

(XY U {+}, %) (X, #) (Y, #)
| A
! (0 1y)
(XY U {+}, %) 5 (XY © {#}) + Yox) == (Y. %)

It is easy to see that the opposite of equality (iS2) always holds.

We have just proved that in Set(’, with respect to the natural imaginary
splitting (24), the only intrinsic Schreier split epimorphisms correspond to bin-
ary product projections. Moreover, a pointed set (Y] *) is an intrinsic Schreier
special object if and only if (23) is a product projection, i.e., if and only if it is
the zero object.

Note that we could also apply the same approach to the finite powerset monad

in Set,.

10. Intrinsic Schreier special objects vs. protomodular ob-
jects

Recall from [19] that an object Y in a finitely complete category is called a
protomodular object when all points over it (f: X — Y,s: Y — X) are
stably strong. More precisely, for any pullback

xy X —— X

]
el

Z— Y

the pair ({0,k),{1z,sg)), where k is the kernel of f, is a jointly extremal-
epimorphic pair. If the point (f, s) is stably strong, then it is strong, i.e., (k, s)
is a jointly extremal-epimorphic pair.

In the category Mon of monoids the notion of a Schreier special object and
the notion of a protomodular object both coincide with that of a group: a
monoid is a Schreier special object if and only if it is a group [10] if and only
if it is a protomodular object [19].

The question of understanding under which conditions these two notions
coincide arises naturally. In general, neither of these notions implies the other,
as we showed in [20]. Indeed, the variety HSLat of Heyting semilattices provides
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an example of a category where all objects are protomodular, but not every
object is Schreier special (|20], Example 7.7).

On the other hand, the cyclic group Cy = ({0, 1}, +) gives an example of a
Schreier special object in the Jonsson-Tarski variety of unitary magmas Mag,
because it is a right loop. However, we gave an example of a point X < (5
which is not strong. Consequently, C5 is not a protomodular object ([20],
Example 7.4). Of key importance here is that the unitary magma (X, +) is
non-associative. As we shall prove next in Corollary 10.4, the presence of the
associativity axiom (Section 6) gives a link between intrinsic Schreier special
objects and protomodular objects: then

FEvery intrinsic Schreier special object is a protomodular object.

The proof of this statement follows the same proof for monoids, i.e., that
a Schreier special monoid Y is necessarily a group; the inverse of an element
y € Y is given by ¢(0,y), where ¢ is the imaginary retraction for (23) (see
Proposition 3.1.6 of [8]). Also, that all points over a group are necessarily
Schreier split epimorphisms (see Corollary 3.1.7 of [8]).

Lemma 10.1. If (23) satisfies (iSs1), then p¥ o {qo{0,1y),1y) = 0:

y @Oy

(25)

< N

Proof: In Subsection 8.1 we saw that (iL1) follows from (iSs1). If we precom-
pose (iL1) with (0,1y): Y - Y x Y, we get
pY 0{q,m)00,1y) =71 040, 1y)
< p'o(qo(0,1y),Iy)=0
m

Lemma 10.2. Suppose that the natural addition (uX: X x X --+ X)xec is
associative. If Y s an intrinsic Schreier special object, then

Yy (dy,qo0.1y >>> V xY

v (26)

MY © <E7 qo° <O7 1Y>> = 6
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Proof: In Subsection 8.1 we saw that (iL2) follows from (iSs2). If we precom-
pose (iL2) with (u¥ o (1y,q0{0,1y)),1y): Y --» Y x Y, we obtain

qolu" ol o(Ty,qo(0,1y)), Iy) = o{u" o (dy,q00,1y)), Iy),

which is equivalent to
golp" o ody,qo0,1y)), Ty), Iy) = p" o (Iy,q 00, 1y))
< qolu oIy, p" 0qo0,1y), Ty)), Ty) = p¥ o (TIy,q0 0, 1y))

= qolu oy, 0),Ty) = p¥ oIy, q 00, 1y))

< qolu’ olly,0),Ty) = ¥ o (Iy,q 00, 1y))
2) o —
= q0<1y,1y> = ,UYO<1Y7qO<O7 1Y>>
= q0<1y,1y> = MYO<E>QO<07 1Y>>
iS — _—
B 0= 1 o Tyqe 00, 1y)). .

Proposition 10.3. Suppose that the natural addition (1~ : X x X --+ X)xcc
15 assoctative. If 'Y is an intrinsic Schreier special object, then any split epi-
morphism (16) satisfies (iS1).

—~~
—_

~—

Proof: We define an imaginary morphism p: X --» K through the universal
property of the kernel

p e o1y xs)o(lx x (g0, 1y )))ollx. f)

X
Indeed,

fouto(lx xs)o(lx x (g0, 1y))) o{lx, f)

= p'o(f x f)o(Ix,s0q0o0,1y)f)
_ ILLYO<f_7qO<O’]’Y>f>

= IuYO<1y,qO<071Y>>Of

9 3.
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Now we must check (iS1) for (16):
prolkopsf)y = p*olu¥ollx,s0qo(0,1v)f), sf)

- MXO<E7:LLXO<SOQO<07 1Y>fn§>>
Y o Ty o s x 5) 0 g o 0 1y Ty f)

= oy sopt 0lgol0,1y), Iyyo f)
%)X o (Tx.0)
MXO<1x,0>

= 1x.
]

Corollary 10.4. Suppose that the natural addition (u~: X x X -+ X)xec
is associative. Then every intrinsic Schreier special object is a protomodular
object.

Proof: This follows from Proposition 10.3 and Proposition 5.8 in [20], which
states that any split epimorphism satisfying (iS1) is stably strong. |

Remark 10.5. Even if the natural addition (u*: X x X --» X)xcc is associ-
ative, the converse of Corollary 10.4 may be false. As mentioned above, the
variety HSLat of Heyting semilattices provides an example of a category where
all objects are protomodular, but not all are Schreier special objects. The
natural addition for HSLat, given by the meet, is associative.

Remark 10.6. The variety Loop of (left and right) loops gives an example where
the natural addition is non-associative. All loops are intrinsic Schreier special
objects (see Section 8) and they are also all protomodular objects (because
Loop is a semi-abelian category, thus a protomodular category). So, the fact
that all intrinsic Schreier special objects are protomodular objects does not
imply that the natural addition is associative.

From the remark above, in Gp all objects are intrinsic Schreier special with
respect to its usual group operation. Also, all objects are protomodular since
Gp is a protomodular category. So the two notions coincide in Gp, just as in the
case of Mon. However, in Mon there are only two possible choices of imaginary
splittings (see Subsection 4.3). In Gp there are countably many possibilities.
Given groups X and Y, a natural imaginary splitting ¢t: P(X xY) > X +Y
may be defined by making ¢([(x,y)]) equal to any combination of alternating
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products of z or 71, and of ¥ or ¥ !, for which the products of the 2’s gives

x and the products of the y's gives y. For example z~'y2? or zyz 'y ~'a7.

Although these notions are independent in general, as we have already ob-
served, there are special properties of the category of groups that make the
notions coincide. From Corollary 10.4, we know that the associativity of the
group operation implies that all intrinsic Schreier special objects are proto-
modular objects. This associativity is not enough to guarantee that every
protomodular object is intrinsic Schreier special (Remark 10.6). This leads us
to the following question:

What property of Gp guarantees that all protomodular objects are
intrinsic Schreier special ones?

We cannot answer this question now, but we can see that groups lack a certain
homogeneity, in the sense that the concept of an intrinsic Schreier special object
strongly depends on the chosen natural imaginary splitting. We can eliminate
this discrepancy by considering groups which satisfy the property with respect
to all natural imaginary splittings. Then we find:

11. The variety of 2-Engel groups

Recall that a 2-Engel group is a group E that satisfies the commutator iden-
tity [[z,y],y] = 1 for all x, y € E. The aim of this section is to show that
2-Engel groups are intrinsic Schreier special objects with respect to all natural
imaginary splittings: Proposition 11.10.

We begin by recalling the definition and main properties of 2-Engel groups
needed in the sequel, which can be found in [12, 13, 16].

Here we denote the conjugation of an element x by an element y as Yo =
yry~ ! and we write [z,y] for zyz~ly~!, so that [xy,z2] = “[y, z][z, 2] and
[2,yz] = [z, y]Y[x, 2]. Note also that [z,y]™! = [y, z].

Definition 11.1. A group F is called a 2-Engel group if it satisfies any of
the following equivalent conditions, for all elements x, y € E,

L [z, y], 2] = 1;

2. [z,ylyl = 15

3. [z, y7] = [, y] 7

4 [27hy] = [,y

5. [x,9%] = [z, y]F, for all k € Z;
6. [2%,y] = [z, y]*, for all k € Z.

Example 11.2. 1. Any abelian group is obviously a 2-Engel group.



42 ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN

2. The group of quaternions (Jg is a 2-Engel group which is not abelian.

3. The smallest non 2-Engel (thus non-abelian) group is the symmetric
group S3 (which is isomorphic to the dihedral group D).

4. The dihedral group Ds is 2-Engel, but the Dihedral group Dy is not (see
Example 11.6).

Lemma 11.3. Let E be a 2-Engel group. Then:

L [zy, z] = “(ly, z][x, 2]), for all x, y, z € E;
2. [z,yz] = Y([x, y][x, 2]), for all z, y, z € E.

Proof: 1. [zy, z] = *ly, ][z, 2] = x|y, z]x~ [1x112] "2y, 2[e, 2]

2. [z,y2] =[x, y]’[z, 2] = [z, ylylz, 2]y =" ylo, ylle, 2]y~

It is known (and in fact not hard to see) that the free object on two generators
in the variety Eng,(Gp) of 2-Engel groups is 2-nilpotent. This allows us to prove
the following result.

Lemma 11.4. In a 2-Engel group E, let a, b and ¢ be products of given ele-
ments x, y of E, or their inverses. Then:

L [la,b],c] = 1;

2. [ab, c] = [b,c][a, c] and [a,bc] = [a,b][a, c|;
3. [a 0] = [a,b]7" = [a, b7'];

4. [a ] = |a, b]k = [a,b"], for all k € 7Z.

Proof: 1. Follows from the fact that the free 2-Engel group on two generators
x and y is necessarily 2-nilpotent.

2. [ab, ¢] = b, c][a,c] = a[b, cla [a, c] = [b,c][a, c]. The proof of the second
claim is similar.

3. [a1,b][a,b] & [aa~,b] = [1,b] = 1. The proof of the second claim is
similar.

4. Is just a particular case of 11.1.5 and 11.1.6. |

We now look at a specific natural imaginary splitting in Gp: the one defined
by the function

txy: X xY -=» X +Y: (z,y) =z 'ga?, (27)

for any pair of groups X and Y. It is easy to see that this ¢ is indeed a natural
imaginary splitting. When X =Y, we write

Txy = ,uY(:U,y) = Vy(tyy(z,y)) = xya’,
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It is easy to check that x+1 = 2 = 1+ 2 and that v+ 27! =1 = 271« x;

however = is not associative.

A group Y is an intrinsic Schreier special object with respect to (27) if there
exists an imaginary retraction ¢: Y x Y --» Y such that (iSs1) and (iSs2)
hold. In this case

(iSs1) means that g(z,y) * y
(iSs2) means that g(z =y, y)

x, for all xz, y e Y, and
x,forall z, yeY

—see Section 8.

Proposition 11.5. If Y s a 2-Engel group, then Y s an intrinsic Schreier
special object with respect to the natural imaginary splitting (27).

Proof: We define the imaginary retraction by q(x,y) = x * y 1. Then, for all
xz,y €Y, (iSsl) holds:

gz, y) =y = (z=y )xy

2

As for (iSs2), the equality g(z = y,y) = (z = y) * y~! = 2 holds by swapping y
and y~1 in (iSs1). |

Example 11.6. The Dihedral group D is generated by elements a and b such
that a® = 1, b> = 1 and abab = 1. We have

Dyg = {1,a,a* a®, a* b, ab, a’b, a’b, a*b},

where the elements b, ..., ab are all inverses to themselves. We have

— Dyg is not a 2-Engel group: [a, ablab = a?, while abla, ab] = ab.

— Dy is an intrinsic Schreier special object with respect to the natural
imaginary splitting (27). It suffices to build the Cayley table for the
product = and observe that it gives a Latin square. The fact that it is a
Latin square guarantees the existence of a unique element, which is equal
to q(x,y), satisfying the equality (iSsl) ¢(z,y) * y = x. The equality
(iSs2) follows from the uniqueness of each ¢(zx,y).
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— D1 is not an intrinsic Schreier special object with respect to the natural
imaginary splitting which gives rise to x #' y = [z, y]?zy. For example,
q(1,b) should be the unique element of Dy such that ¢(1,b) ' b = 1.
However, all of the elements b, ..., a*b satisfy this equality.

This example shows that the converse of Proposition 11.5 is false. However,
we may claim the following:

Proposition 11.7. If a group Y is an intrinsic Schreier special object with
respect to the natural imaginary splitting (27) and such that q(z,y) = x =y,
then Y is a 2-Engel group.

Proof: Tt suffices we use (iSs1)
ey ) ey =z
to see that Y is in Eng,(Gp). Indeed, this is equivalent to
r = (z7ly12?) v y = o 2yayry eyl
— o 2yayr Yy ey a2,
which may be rewritten as

1 =z 2yzys ty toy .

SO
1 = oz tyzyaty toyt.
This gives
y layrTh = ayr Ty
or, equivalently, [y, z] = [x,y] = [y, 2] L. |

Next we aim to prove the that a 2-Engel group Y is an intrinsic Schreier
special object with respect to all natural imaginary splittings . So, we need
to extend Proposition 11.5 to all ¢.

Lemma 11.8. Ift is a natural imaginary splitting in Gp, then for each pair
of groups X, Y and all x € X, y € Y we have that txy(x,y) € X +Y may be
written as a product

zklyll e £k7rzgl'rn’
for some me N and ky, ..., kn, l1, ..., L, € Z such that

Yoki=1= > I

1<i<im 1<i<m
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Proof: It X =Y = Z, then tz z(k,l) € Z+Z must be of the form QE : k_mm,
for some m € N and ky, ..., ky, 1, ..., I, € Z such that >,k = k and
Dicicm li = 1, for all (k,1) € Z x Z (see Subsection 4.3). Consider the group
homomorphisms f: Z — X:1— z and g: Z — Y : 1 — y. The naturality of
t gives the commutative diagram (see (6))

AN

fxgl lfﬂ/

XxY-->X+Y,
txy

from which we conclude that txy(z,y) = txy(f x g)(1,1) = (f +9)tz, Z(l 1).
Suppose that tz7(1,1) = kili - kmlm, where >y, ki =1= >, ;. We
get txy(x,y) = aFgh - gPnyyln | as desired. |

Proposition 11.9. If Y is a 2-Engel group and t is a natural imaginary split-
ting in Gp, then the induced operation x =y = p¥ (z,y) = Vy(tyy(z,y)) may
be written as

xxy =[x,y zy

for some k € 7Z.

Proof: Lemma 11.8 tells us that

zwy = gyl ghmgin
for some m € N and ky, ..., Ky, i, ..., I, € Z such that >, _,_ ki =1=
D i<i<m li- We rewrite the expression above as

Em, (lm—1)

zxy = (2hyh . ghmym ey )y,

where the product in brackets is such that the sums of the exponents of the
x’s and y’s are zero. Hence this expression is a commutator word in x and y:
it is a product of (nested) commutators. By Lemma 11.4, all higher-order
commutators in this product vanish; furthermore, the expression is equal to a
product of commutators of the form [z,y] or [y, z] = [z,y]~'. Hence it is of
the form [z, y]* for some integer k. m

Proposition 11.10. If Y is a 2-Engel group, then Y 1is intrinsic Schreier
special with respect to all natural imaginary splittings in Gp.
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Proof: The proof is similar to that of Proposition 11.5. We define the imaginary
retraction by q(x,y) = x+y~! = [z,y 1]*2y~! (Proposition 11.9). We use the
properties in Definition 11.1 and Lemma 11.4 to prove that (iSs1) holds:

(xry ) ry =[x, ] ey

(
[z, ,y] [,y 2y y
([, ]k [z, y] "2

( [2,y]7", ka [z, y] "
<< ) (9 1+, 1))

= [z,y]" [w y] g

=X.

As for (iSs2), the equality q(z = y,y) = (z *y) =y~ = x follows from (iSs1)

by replacing y with y~!. ]

[t remains an open question whether or not the converse of Proposition 11.10
holds; we are currently working on this question. Essentially the same result
holds for Lie algebras, as we shall explain now.

12. Lie algebras

Let K be a field, and consider the variety Liex of K-Lie algebras. Recall that
a 2-Engel Lie algebra is a Lie algebra ¢ that satisfies the commutator identity
[[,y],y] = 1 for all z, y € e. The aim of this section is to relate the variety
Eng,(Liex) of 2-Engel Lie algebras over K to the Schreier special objects with
respect to all natural imaginary splittings: Theorem 12.1. We can actually
just follow the pattern of the previous section; since furthermore things are
somewhat simpler here, we will only sketch the basic idea.

We may proceed as in Proposition 11.5, now taking the natural imaginary
splitting in Liex defined by

tey: EX D -=>r+9: (z,9) >z +7+ [2,7]
Recall that the free Lie algebra over K on a single generator is K itself, equipped

with the trivial bracket. Mimicking the proof of Lemma 11.8, we see that for
any pair of K-Lie algebras r and y and any z € r, y € 1, necessarily

tF,U<$7 y) = + g + Qb(% y)7
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where ¢(z,7) is an expression in terms of Lie brackets of z’s and 7’s. Now
using essentially the same proof as in groups, we see that if y is 2-Engel, all
higher-order brackets vanish, and we deduce that

tey(z,y) = 2+ 7 + k|2, 7]

for some k € K. As in Proposition 11.9, it follows that x «y = x + y + k[z, y].
It is then again easy to check that (iSs1) and (iSs2) hold.

Proposition 12.1. Any 2-Engel K-Lie algebra is intrinsic Schreier special,
with respect to all natural itmaginary splittings in Liek. |
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