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Abstract: Exact meets in a distributive lattice are the meets
∧

i ai such that for
all b, (

∧
i ai) ∨ b =

∧
i(ai ∨ b), strongly exact meets in a frame are preserved by all

frame homomorphisms. Finite meets are, trivially, (strongly) exact; this naturally
leads to the concepts of exact resp. strongly exact filters closed under all exact
resp. strongly exact meets. In [2, 12] it was shown that the subsets of all exacts
resp. strongly exact filters are sublocales of the frame of upsets on a frame, hence
frames themselves, and, somewhat surprisingly, that they are isomorphic to the
useful frame Sc(L) of sublocales join-generated by closed sublocales resp. the dual
of the coframe meet-generated by open sublocales.

In this paper we show that these are special instances of much more general facts.
The latter concerns the free extension of join-semilattices to coframes; each coframe
homomorphism lifting a general join-homomorphism ϕ : S → C (where S is a join-
semilattice and C a coframe) and the associated (adjoint) colocalic maps create a
frame of generalized strongly exact filters (ϕ-precise filters) and a closure operator
on C (and – a minor point – any closure operator on C is thus obtained). The
former case is slightly more involved: here we have an extension of the concept of
exactness (ψ-exactness) connected with the lifts of ψ : S → C with complemented
values in more general distributive complete lattices C creating, again, frames of
ψ-exact filters; as an application we learn that if such a C is join-generated (resp.
meet-generated) by its complemented elements then it is a frame (resp. coframe)
explaining, e.g., the coframe character of the lattice of sublocales, and the (seemingly
paradoxical) embedding of the frame Sc(L) into it.
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Introduction

Exact meets in a distributive lattice L are the meets
∧
i ai such that for all

b ∈ L, (
∧
i ai) ∨ b =

∧
i(ai ∨ b). This concept appeared first in Mac Neille

[10] and was shown to be useful for instance in the study of injective hulls in
[6], or of Cauchy lattices in [1]; see also [3]. In frames L one has a stronger
concept of a strongly exact meet

∧
i ai ([15], see also [11] or [3]) characterized

by stability under all frame homomorphisms h : L → M , that is, for every
such h, h(

∧
ai) =

∧
h(ai) (for another characterization see 1.6 below).

The obvious fact that in particular finite meets are (strongly) exact natu-
rally leads to the concepts of an exact filter resp. of a strongly exact filter,
a filter closed under all exact resp. strongly exact meets. The subsets FiltEx
resp. FiltsEx of all exact resp. strongly exact filters turn out to be sublo-
cales (natural subobjects) of the frame U(L) of all up-sets of L, in fact quite
interesting ones (see [2, 12]). To explain a fairly surprising feature of thus
obtained frames we have to recall a construction from another nook of frame
theory.

The system S(L) of all sublocales of a frame L is (in the natural order
of inclusion) a coframe. The subset Sc(L) of this coframe join-generated by
closed sublocales constitutes a frame (which might be somehow surprising,
but has a natural explanation). The frame Sc(L) is of some interest: e.g.,
for a large class of frames it constitutes a Boolean envelope (playing the role
of the discrete cover), it is a maximal essential extension, or pick up for T1-
spaces the subspace-induced sublocales among the general ones (see [4, 14,
5]). Although its motivation and origin has not even a remote connection
with the concepts of exactness, it turned out recently ([2]) that it is naturally
isomorphic with FiltEx. Similarly, it was proved in [12] that FiltsEx is naturally
isomorphic with the dual of So(L), the subcolocale of S(L) meet-generated
by open sublocales.

In this paper we show that these two isomorphisms are part of a fairly
general phenomena.

The strong exactness case: The coframes U(S) together with the natural
maps γS = (a→↑a) : S → U(S)op constitute a free extension of the category
of join-semilattices into that of coframes; that is, for any coframe C and
any sublocale homomorphism ϕ : S → C we have a coframe homomorphism
→
ϕ : U(S)op → C such that

→
ϕ · γ = ϕ. Each coframe homomorphism is a right
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Galois adjoint; the kernel of the adjunction associated with
→
ϕ is a sublocale

of U(L), and there is a natural concept of strong exactness connected with ϕ,
the ϕ-precision∗, such that this sublocale is constituted by ϕ-precise filters.
The fact above is a special case for the ϕ associating with an element a of a
frame L the respective open sublocale o(a) ∈ S(L).

The exactness is treated with less general ψ’s (only those with comple-
mented ψ(a) seem to make enough sense) and more general targets (dis-
tributive complete lattices). A ψ : S → C now naturally extends to an
adjunction

U(S)

ψl
,,

⊥ C,

ψr

mm

and we have a concept of ψ-exactness identifying ψrψl[U(S)] as the frame of
ψ-exact filters. The fact above is a special case for the ψ associating with an
element a of a frame L the respective closed sublocale c(a) ∈ S(L).

The two cases are linked by pairing the ϕ from the former with ψ = ϕop in
the latter (provided the values of ϕ are complemented).

Also the right hand sides of the adjunction isomorphisms may be of some
interest. In the former case we get some information on closure-type op-
erators on the frame C. In the latter case we learn, in particular, that
a distributive complete lattice join-generated by complemented elements is
necessarily a frame, and if it is meet-generated by complemented elements, it
is a coframe (explaining for instance the seeming discrepancy of the coframe
S(L) naturally containing the frame Sc(L)).

The paper is organized as follows:
After necessary Preliminaries we discuss in Section 2 the property of ϕ-

precision connected with the free co-frame extension of join semilattices; it
turns out to be a generalization of the concept of strong exactness. Next,
Section 3 is devoted to a similar notion of ψ-exactness, extending that of
exactness. Here the generality range is somewhat different, but in a com-
mon context it is weaker than the precision. The facts of these two sections
are associated with specific adjunctions. The right hand sides of the in-
duced isomorphism are discussed in Section 4; in particular we mention a
∗Strong exactness is indeed stronger than exactness, but it turns out that in the context of our

investigation it is the simpler of the two and taking it as derived from the former can be misleading.
Therefore we decided to coin a one-word term.
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consequence of the previous results (which may be known, but we have not
known it before), namely that a distributive complete lattice join-generated
(resp. meet-generated) by complemented elements is always a frame (resp.
coframe).

1. Preliminaries

1.1. We use the standard notation for meets (infima) and joins (suprema)
in posets: a ∧ b,

∧
A or

∧
a∈A a, a ∨ b,

∨
A or

∨
a∈A a.

The least resp. largest element (if it exists) will be denoted by 0 resp. 1.
We write

↑a for {x | x ≥ a} and ↑A = {x | ∃ a ∈ A, x ≥ a}.
The subsets A ⊆ (X,≤) such that ↑A = A will be referred to as up-sets.

1.2. Monotone maps f : X → Y and g : Y → X between posets are (Galois)
adjoint, f to the left and g to the right if

f(x) ≤ y ⇐⇒ x ≤ g(y),

equivalently, if fg ≤ id and gf ≥ id. It is standard that

(1) left adjoints preserve all existing suprema and right adjoints preserve
all existing infima,

(2) and on the other hand, if X, Y are complete lattices then each f : X →
Y preserving all suprema is a left adjoint, and each g : Y → X pre-
serving all infima is a right adjoint.

1.3. A frame (coframe) is a complete lattice L satisfying the distributivity
law (∨

A
)
∧ b =

∨
{a ∧ b | a ∈ A} (frm)((∧

A
)
∨ b =

∧
{a ∨ b | a ∈ A}

)
(cofrm)

for all A ⊆ L and b ∈ L. A frame homomorphism preserves all joins and all
finite meets.

1.3.1. The rule (frm) makes by 1.2 each map (−) ∧ b a left adjoint; conse-
quently a frame has a Heyting structure with → satisfying

a ∧ b ≤ c iff a ≤ b→ c. (hey)

Dually, a coframe has a co-Heyting operator \ satisfying c\b ≤ a iff c ≤ a∨b.
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In particular, in a frame resp. coframe we have the pseudocomplements
x∗ = x→ 0 resp. supplements x# = 1 \ x with the De Morgan laws

(
∨
i

ai)
∗ =

∧
i

a∗i resp. (
∧
i

ai)
# =

∨
i

a#
i .

Recall that a complement of an element x in a distributive lattice, that is,
a y such that x ∨ y = 1 and x ∧ y = 0, is both a pseudocomplement and a
supplement. For this case we will also use the symbol x∗.

1.3.2. The following is a well-known (although seldom explicitly mentioned)
fact.

Proposition. Let b be a complemented element in a distributive lattice L.
Then we have (

∨
A
)
∧b =

∨
{a∧b | a ∈ A} and (

∧
A)∨b =

∧
{a∨b | a ∈ A}

for any A ⊆ L for which the indicated join or meet exists.

Proof immediately follows from the fact that (−) ∧ b has a right adjoint
b∗ ∨ (−), and (−) ∨ b has a left adjoint b∗ ∧ (−). �

1.3.3. A few Heyting rules. By the adjunction (hey) we have

a→ (
∧
i

bi) =
∧
i

(a→ bi) and (
∨
i

ai) =
∧
i

(ai → b).

Further, we ill use the following rules (we present them with proofs; in spite
of their simplicity they are sometimes of surprising help):

(1) a→ b = 1 iff a ≤ b (since a→ b = 1 iff 1 ≤ a→ b).
(2) b ≤ a→ b (since a ∧ b ≤ b).
(3) a ∧ (a→ b) ≤ b (since a→ b ≤ a→ b).
(4) a ∧ (a→ b) = a ∧ b (≤ by (3) and a ∧ b ≤ a ∧ (a→ b) by(2)).
(5) (b ∨ a) ∧ (b → a) = a (we have (b ∨ a) ∧ (b → a) = (b ∧ (b → a)) ∨

(a ∧ (b→ a)) = (a ∧ b) ∨ a by (4) and (2)).
(6) a→ b = a→ c iff a∧ b = a∧ c (⇒ since a∧ (a→ x) = a∧ x, ⇐ since

a→ (a ∧ x) = (a→ a) ∧ (a→ x)).

1.4. A typical frame is the lattice Ω(X) of open sets of a topological space
X, and for continuous maps f : X → Y there are frame homomorphisms
Ω(f) = (U 7→ f−1[U ]) : Ω(Y )→ Ω(X). Thus we have a contravariant functor

Ω: Top→ Frm,

where Top is the category of topological spaces, and Frm that of frames. To
make it covariant one considers the category of locales Frmop, denoted Loc.
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It is of advantage to work with Loc as with a concrete category repre-
senting its morphisms, the localic maps f : M → L opposite to a frame
homomorphism h : L→M as the right Galois adjoints of h.

1.5. Sublocales. The extremal epimorphisms in Frm are precisely the onto
frame homomorphisms, and hence, the extremal monomorphisms in Loc are
the one-to-one localic maps. This leads to the following natural approach to
subobjects of locales.

Sublocales of a frame L, that is, subsets S ⊆ L such that the embedding
maps j : S ⊆ L are localic ones are characterized by the requirements that
(see e.g. [13])

(S1) for every M ⊆ S the meet
∧
M lies in S, and

(S2) for every s ∈ S and every x ∈ L, x→ s lies in S.

The system S(L) of all sublocales of L, ordered by inclusion, is a complete
lattice with a fairly transparent structure:∧

i

Si =
⋂
i

Si and
∨
i

Si = {
∧
M | M ⊆

⋃
i

Si}.

Note that a sublocale S of a frame L is a frame itself, with joins typically
distinct from those in L. The least sublocale

∨
∅ = {1} is designated by O

and referred to as the void sublocale. It is a fundamental fact that

the lattice S(L) is a coframe.

1.5.1. Open and closed sublocales. With each element a ∈ L there is
associated an open sublocale

o(a) = {x | x = a→ x} = {a→ x | x ∈ L}
and a closed sublocale

c(a) =↑a.
In case of a space X (represented as the frame Ω(X)) they precisely corre-
spond to the open and closed subspaces (and to the open and closed parts
from the pioneering article [8]).

One has the following identities:

o(0) = O, o(1) = L, o(a ∧ b) = o(a) ∩ o(b) and o(
∨
i

ai) =
∨
i

o(ai),

c(0) = L, c(1) = O, c(a ∧ b) = c(a) ∨ c(b) and c(
∨
i

ai) =
⋂
i

c(ai).

Thus in particular one has a frame embedding c = (a 7→ c(a)) : L→ S(L)op.
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1.5.2. Nuclei. Sublocales S ⊆ L are associated with the so called nuclei
ν : L → L, monotone mappings satisfying a ≤ ν(a), νν(a) = ν(a) and
ν(a ∧ b) = ν(a) ∧ ν(b). The one-to-one correspondence is given by

S 7→ νS(a) =
∧
{s ∈ S | a ≤ s} and ν 7→ Sν = ν[L].

One has

Proposition. For every s ∈ S and every x ∈ L,

x→ s = νS(x)→ s.

Proof : y ≤ x→ s iff x ≤ y → s iff ν(x) ≤ y → s iff y ≤ ν(x)→ s.

For more about frames and locales see, e.g., [13] or [9].

1.6. Exact and strongly exact meets. A meet
∧
A in a frame L is said

to be exact (see e.g. [10, 6, 1, 3, 2]) if for every b ∈ L,

(
∧
A) ∨ b =

∧
{a ∨ b | a ∈ A}.

This is well-known to be equivalent with the assumption that

the sublocale
∨
a∈A c(a) is closed

(for a short proof see 3.7.2 - 3.7.3 below).

A meet
∧
A is said to be strongly exact ([15], see also [11, 3]) if

the sublocale
∧
a∈A o(a) is open.

1.6.1. Observation. Each strongly exact meet is exact.

(By the coframe De Morgan law in S(L), if
⋂
a∈A o(a) = o(b) then

∨
a∈A c(a) =∨

a∈A o(a)# = (
⋂
a∈A o(a))# = o(b)# = c(b).)

1.6.2. Notes. 1. An interesting characterization of strong exactness (which
we will not need here; for a proof see e.g. [3]) is that the strongly exact meets∧
A in L are precisely those for which h(

∧
A) =

∧
a∈A h(a) for every frame

homomorphism h : L→M .
2. In the context of this paper it turned out that viewing strong exactness

as a stronger modification of exactness is misleading: it is a property in its
own right, in fact somewhat simpler than the weaker one. Therefore we will
use in the sequel for the generalized concept the one-word term “precise”.
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2. ϕ-precision and coframe extension
of semilattices

2.1. For a join-semilattice S consider the up-set frame

U(S) = {A | A ⊆ S,A =↑A}.†

2.1.1. Proposition. The maps

γS = (a 7→↑a) : S → U(S)op

constitute a free extension of ∨SLat in Cofrm. The unique coframe homo-
morphism

→
ϕ lifting a ∨SLat-morphism ϕ : S → C in

U(S)op
→
ϕ

&&
S

γS

OO

ϕ
// C

is defined by
→
ϕ(A) =

∧
{ϕ(a) | a ∈ A}.

Proof : A =
⋃
{↑ a | a ∈ A} =

⋃
{γ(a) | a ∈ A} which is the meet in

U(S)op and hence the
→
ϕ is uniquely determined by the formula mentioned.

Obviously,
→
ϕ preserves all meets. For joins we have

→
ϕ(A) ∨ →ϕ(B) =

∧
{ϕ(a) | a ∈ A} ∨

∧
{ϕ(b) | b ∈ B} =

=
∧
{ϕ(a) ∨ ϕ(b) | a ∈ A, b ∈ B} =

∧
{ϕ(a ∨ b) | a ∈ A, b ∈ B} ≥

≥
∧
{ϕ(c) | c ∈ A ∩B} =

→
ϕ(A ∨B) ≥ →ϕ(A) ∨ →ϕ(B)

(since A ∨B = A ∩B in U(S)op).

2.1.2. Observation. The colocalic map
←
ϕ associated with the frame homo-

morphism
→
ϕ is defined by

←
ϕ(c) = {a | c ≤ ϕ(a)}.

(We have A ⊆ {a | c ≤ ϕ(a)} iff c ≤
∧
{ϕ(a) | a ∈ A}, and the adjoint is

uniquely determined.)

†For join-semilattices with top it is of a technical advantage to consider U(A) as the set of all
non-empty upsets of S. Here the distinction is of no importance.
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2.2. ϕ-precise sets and ϕ-precise filters. Let S be a join-semilattice and
let ϕ : S → C be a join-homomorphism with C a coframe.

A subset M ⊆ S is said to be ϕ-precise if
∧
m∈M ϕ(m) = ϕ(a) for some a.

An up-set A ∈ U(S) is said to be a ϕ-precise filter if for every ϕ-precise
M ⊆ A every a such that

∧
m∈M ϕ(m) = ϕ(a) is in A.

2.2.1. Lemma. Each
←
ϕ
→
ϕ(A) is a ϕ-precise filter.

Proof : Let M ⊆ ←
ϕ
→
ϕ(A). Then for each m ∈ M , ϕ(m) ≥

∧
a∈A ϕ(a); hence∧

m∈M ϕ(m) ≥
∧
a∈A ϕ(a). Now if M is ϕ-precise and

∧
m∈M ϕ(m) = ϕ(b) we

obtain ϕ(b) ≥
∧
a∈A ϕ(a), that is, b ∈ ←ϕ→ϕ(A).

2.2.2. Theorem. A =
←
ϕ
→
ϕ(A) iff A is a ϕ-precise filter.

Proof : In view of 2.1 and the adjunction inclusion it suffices to prove that
for each ϕ-precise filter A,

←
ϕ
→
ϕ(A) ⊆ A. Thus let b ∈ ←ϕ→ϕ(A). Then ϕ(b) ≥∧

a∈A ϕ(a) and hence

ϕ(b) = (
∧
a∈A

ϕ(a)) ∨ ϕ(b) =
∧
a∈A

(ϕ(a) ∨ ϕ(b)) =
∧
a∈A

ϕ(a ∨ b).

Thus, M = {a∨ b | a ∈ A} is ϕ-precise. We have M ⊆ A and
∧
m∈M ϕ(m) =

ϕ(b) and since A is a ϕ-precise filter, b ∈ A.

2.3. The structure of
←
ϕ
→
ϕ[U(A)]. The system

pFiltϕ

of all ϕ-precise filters will be now considered as a subset of the frame U(S).
Thus we will have a (frame homomorphism-localic map) pair

U(S)

→
ϕ

,,
Cop

←
ϕ

mm

2.3.1. Observations. Let h : L → M be a frame homomorphism and let
f : M → L be the associated localic map. Then

1. f [M ] = fh[L] and
2. fh is a nucleus.

(1: ⊇ is trivial and ⊆ follows from f [M ] = fhf [M ]. For 2, a ⊆ fh(a) and
(fh)(fh) = fh follows from the adjunction, and fh(a ∧ b) = fh(a) ∧ fh(b)
since h is a homomorphism and f a right adjoint.)
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From any of the two observations one immediately obtains

2.3.2. Theorem. The set pFiltϕ of all the ϕ-precise filters is a sublocale of
U(S).

2.4. The case of an embedding ϕ, in particular ϕ = o : L → S(L).
The special case of (order) embeddings ϕ, that is, ϕ such that

ϕ(a) ≤ ϕ(b) iff a ≤ b

are of special interest.

2.4.1. Proposition. Let ϕ be an embedding. Then a subset M ⊆ S is ϕ-
precise iff

∧
M exists and ϕ(

∧
M) =

∧
m∈M ϕ(m).

Proof : ⇐ is obvious. Now let M be ϕ-precise, and let
∧
m∈M ϕ(m) = ϕ(a).

Then for all m ∈ M , ϕ(a) ≤ ϕ(m) and hence a ≤ m, and if x ≤ m for all
m ∈M then ϕ(x) ≤ ϕ(m) for all m ∈M and hence ϕ(x) ≤ ϕ(a), and finally
x ≤ a.

2.4.2. Proposition. Let ϕ be an embedding and let a subset M ⊆ S be
ϕ-precise. Then for every b,∧

M ∨ b =
∧

m∈M
(m ∨ b).

Proof : Using the coframe distributivity we obtain∧
m∈M

ϕ(m ∨ b) =
∧

m∈M
(ϕ(m) ∨ ϕ(b)) =

= (
∧

m∈M
ϕ(m)) ∨ ϕ(b) = ϕ(

∧
M) ∨ ϕ(b) = ϕ(

∧
M ∨ b) (∗)

and hence, first {m ∨ b | m ∈M} is ϕ-precise. Next, by 2.4.1,∧
m∈M

ϕ(m ∨ b) = ϕ(
∧

m∈M
(m ∨ b)),

hence ϕ(
∧
M∨b) = ϕ(

∧
m∈M(m∨b)) and finally

∧
M∨b =

∧
m∈M(m∨b).

2.4.3. Remark. Note that the reasoning in (∗) did not need the embedding
property. Thus we have that

for any join-semilattice morphism ϕ, if M is ϕ-precise then so is every
{m ∨ b | m ∈M}.
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2.4.4. Open sublocales and strong exactness. Consider the embedding

ϕ = o = (a 7→ o(a)) : L→ S(L).

Then a set M ⊆ L is ϕ-precise iff the meet
∧
M is strongly exact, and

strongly exact filters are the upsets closed under strongly exact meets and,
since

→
ϕ(A) =

⋂
{o(a) | a ∈ A} and

←
ϕ(S) = {a | S ⊆ o(a)}, we have learned

that (in accordance to the result of [12]) the strongly exact filters are those

up-sets A for which
←
ϕ
→
ϕ(A) = {b |

⋂
{o(a) | a ∈ A} ⊆ o(b)} and that the

strongly exact filters constitute a sublocale of U(L).

3. ψ-exactness in particular ϕop-exactness and
exactness

3.1. For technical reasons, but also for easier comparison with previous
facts, we will change the nature and generality of the determining morphism.
We had join-homomorphisms ϕ : S → C with S a join-semilattice and C a
coframe. Now we will consider meet-homomorphisms

ψ : Sop → C

where S is a join-semilattice again, C (more generally) a distributive complete
lattice, such that

each ψ(a) is complemented.

3.1.1. Notes. 1. Hence (recall 1.3.2)

each ψ(a) distributes over meets and joins.

2. If a ϕ from the previous section happens to be such that every ϕ(a) is
complemented then in particular the

ϕop = (a 7→ ϕ(a)∗) : Sop → C

qualifies as a ψ above.

3.2. ψ-exact sets and ψ-exact filters. A subset M ⊆ S is said to be
ψ-exact if

∨
m∈M ψ(m) = ψ(a) for some a.

An up-set A ∈ U(S) is said to be a ψ-exact filter if for every ψ-exact M ⊆ A
every a such that

∨
m∈M ψ(m) = ψ(a) is in A.



12 M. A. MOSHIER, J. PICADO AND A. PULTR

3.3. An adjunction. Define ψl : U(S)→ C and ψr : C → U(S) by setting

ψl(A) =
∨
{ψ(a) | a ∈ A},

ψr(c) = {b | ψ(b) ≤ c}.
Obviously they are adjoint maps, ψl to the left, ψr to the right.

3.3.1. Note. Again we have here a free lifting, this time to the category of
(distributive)

∨
-lattices,

U(S)
ψl

&&
Sop

γS

OO

ψ
// C

with γS now understood as Sop → U(S), and again the ψr is the morphism
associated with ψl analogously as the co-localic map with the coframe ho-
momorphisms (now in representing the dual of the category of

∨
-lattices).

But we do not see so far any use for this, the ψ being rather special in the
context.

3.4. We have a characteristic of ψ-exact filters quite analogous to that of
ϕ-precise filters in 2.2. But keep in mind that while the Lemma is just the
2.2.1 repeated, the Theorem is based on 1.3.2, not on coframe distributivity.

3.4.1. Lemma. Each ψrψl(A) is a ψ-exact filter.

Proof : Let M ⊆ ψrψl(A) = {b | ψ(b) ≤
∨
{ψ(a) | a ∈ A}}. Then for each

m ∈ M , ψ(m) ≤
∨
a∈A ψ(a); hence

∨
m∈M ψ(m) ≤

∨
a∈A ψ(a). Now if M

is ϕ-exact and
∨
m∈M ψ(m) = ψ(b) we obtain ψ(b) ≤

∨
a∈A ψ(a), that is,

b ∈ ψrψl(A).

3.4.2. Theorem. A = ψrψl(A) iff A is a ψ-exact filter.

Proof : In view of 3.4.1 and the adjunction inclusion it suffices to prove that
for each ψ-exact filter A, ψrψl(A) ⊆ A. Thus let b ∈ ψrψl(A). Then ψ(b) ≤∨
a∈A ψ(a) and hence

ψ(b) = (
∨
a∈A

ψ(a)) ∧ ψ(b) =
∨
a∈A

(ψ(a) ∧ ψ(b) =
∨
a∈A

ψ(a ∨ b).

Thus, M = {a ∨ b | a ∈ A} is ψ-exact. We have M ⊆ A and
∨
m∈M ψ(m) =

ψ(b) and since A is a ψ-exact filter, b ∈ A.
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3.5. Analogously with 2.3, the system

eFiltψ

of all ψ-exact filters constitutes a sublocale of U(L). Now, however, we do
not have a (homomorphism, localic map) pair between U(L) and a frame (C
is only distributive) and hence we have not the immediate consequence of
trivial observations like in 2.3.1.

3.5.1. It is easy to check that the Heyting operation in U(S) is given by

B → C = {x | ∀b ∈ B, b ∨ x ∈ C}.

3.5.2. Lemma. Let M be ψ-exact. Then for any b,

M ∨ b = {m ∨ b | m ∈M}
is ψ-exact with

∨
m∈M ψ(m∨b) = ψ(a∨b) for each a such that

∨
m∈M ψ(m) =

ψ(a).

Proof : Let
∨
m∈M ψ(m) = ψ(a). Then∨

{ψ(m ∨ b) | m ∈M} =
∨
{ψ(m) ∧ ψ(b) | m ∈M} =

= (
∨
{ψ(m) | m ∈M}) ∧ ψ(b) = ψ(a) ∧ ψ(b) = ψ(a ∨ b)

(note that unlike in 2.1 the distributivity was not that of a coframe: we had
to use the complementarity of ψ(b)).

Note. Recall 2.4.3. Unlike there, we have (again) used 1.3.2, not coframe
distributivity.

3.5.3. Theorem. The set eFiltψ of all the ψ-exact filters is a sublocale of
U(S).

Proof : Obviously it is closed under meets. If M ⊆ B → C then for each
m ∈ M and b ∈ B, m ∨ b ∈ C, hence for each b ∈ B, M ∨ b ⊆ C. If M is a
ψ-exact set with

∨
m∈M ψ(m) = ψ(a) then, by 3.5.2, M ∨ b is ψ-exact with∨

m∈M ψ(m∨ b) = ψ(a∨ b). Thus, if C is a ψ-exact filter then for each b ∈ B,
a ∨ b ∈ C and hence a ∈ B → C.

3.6. Observation. Recall 3.1.1. Let ϕ : S → C be a join-homomorphism
into a coframe such that each ϕ(a) is complemented. Then

• each ϕ-precise set M ⊆ S is ϕop-exact, and consequently
• each ϕop-exact filter is a ϕ-precise filter, so that
• the frame eFiltϕop is a sublocale of the frame pFiltϕ.
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(By the coframe De Morgan rule we have
∨
m∈M ϕ(m)# = (

∧
m∈M ϕ(m))#

and hence if
∧
m∈M ϕ(m) = ϕ(a),

∨
m∈M ϕ(m)# = ϕ(a)# = ϕ(a)∗ = ϕop(a).)

3.7. The case of an embedding ψ, in particular ψ = c.

3.7.1. Proposition. Let ψ be an embedding. Then a subset M ⊆ S is ψ-
exact iff

∧
M exists and ψ(

∧
M) =

∨
m∈M ψ(m).

Proof : ⇐ is obvious. Now let M be ψ-precise, and let
∨
m∈M ψ(m) = ψ(a).

Then for all m ∈ M , ψ(a) ≥ ψ(m) and hence a ≤ m. If x ≤ m for all
m ∈M then ψ(x) ≥ ψ(m) for all m ∈M and hence ψ(x) ≥ ψ(a), and finally
x ≤ a.

3.7.2. Proposition. Let ψ be an embedding and let a subset M ⊆ S be
ψ-exact. Then for every b,∧

M ∨ b =
∧

m∈M
(m ∨ b).

Proof : If M is exact then by 3.5.2 also M ∨ b = {m ∨ b | m ∈ M} is exact
and we have

ψ(
∧
M) =

∨
m∈M

ψ(m) and ψ(
∧

m∈M
(m ∨ b)) =

∨
m∈M

ψ(m ∨ b).

Thus, by 1.3.2,

ψ(
∧
M ∨ b) = ψ(

∧
M) ∧ ψ(b) = (

∨
m∈M

ψ(m)) ∧ ψ(b) =

=
∨

m∈M
(ψ(m) ∧ ψ(b)) =

∨
m∈M

ψ(m ∨ b) = ψ(
∧

m∈M
(m ∨ b))

and since ψ is one-to-one,
∧
M ∨ b =

∧
m∈M(m ∨ b).

3.7.3. Theorem. Consider the mapping c = (a 7→ c(a)) : L → S(L). Then
a subset M ⊆ L is c-exact iff

∧
M is an exact meet.

Proof : ⇒ follows from 3.7.2.
⇐: Let

∧
M be exact. We want to prove that S =

∨
m∈M c(m) =

∨
m∈M ↑m

is closed. Obviously,
∧
M is the smallest element of S and S ⊆↑

∧
M . Let

b ≥
∧
M . Then by exactness, b =

∧
M ∨ b =

∧
m∈M(m ∨ b), and since

m ∨ b ∈↑m, b ∈ S.
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4. The right hand sides

4.1. A closure operator. Consider a homomorphism ϕ and the adjunction
from 2.1.2. We have an isomorphism

pFiltϕ
∼= →
ϕ
←
ϕ[C].

For c ∈ C set c̃ =
→
ϕ
←
ϕ(c).

4.1.1. Proposition. 1. c 7→ c̃ is a closure-type operator (that is, a ≤ ã,˜̃a = ã and ã ∨ b = ã ∨ b̃).
2. Every closure operator u on a coframe C is induced by a homomorphism

as in 2.1.

Proof : 1. a ≤ ã, ˜̃a = ã follow immediately from the adjunction, and ã ∨ b =
ã ∨ b̃ since

→
ϕ is a homomorphism and

←
ϕ is a left adjoint.

2. Consider S = {a | a = u(a)} and ϕ = a 7→ u(a) : S → C. Then
→
ϕ
←
ϕ(a) =

∧
{x = u(x) | a ≤ x} = u(a).

4.1.2. From 2.3.2 we immediately obtain

Corollary.
→
ϕ
←
ϕ[C] = {c | c = c̃} is a coframe.

4.1.3. Note. For ϕ = o (recall 2.4), S̃ is the fitting (the “other closure” from
[7]).

4.2. Consider the adjunction from 3.3. Here we have

4.2.1. Proposition. The ψlψr[S] ∼= eFiltψ is the system of all
∨
m∈M ψ(m)

with M ⊆ S. Consequently, by 3.5.3,

{
∨

m∈M
ψ(m) | M ⊆ S}

is a frame.

Proof : First, since a ≤ b implies ψ(a) ≥ ψ(b) we have∨
m∈M

ψ(m) =
∨

m∈↑M
ψ(m),

hence it suffices to consider the joins indexed by up-sets A ∈ U(S).
Next, for every A ∈ U(A),

∨
a∈A ψ(a) = ψl(A) = ψlψrψl(A) ∈ ψlψr[C] and

on the other hand each c ∈ ψlψr[C] is a join of ψ(m)’s.
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4.3. From 4.2.1 we see that

if a distributive complete C is generated by the elements of the form
ψ(m) then it is a frame.

In particular, taking into account the map

(c 7→ c) : {c | c complemented} → C

we obtain

4.3.1. Corollary. If a distributive complete lattice C is join-generated by its
complemented elements then it is a frame.

Taking the opposite order we obtain

4.3.2. Corollary. If a distributive complete lattice C is meet-generated by
its complemented elements then it is a coframe.

4.4. Corollary 4.3.2 suggests a new proof that S(L) is a coframe. It is a
well known fact that it is meet generated by complemented elements (we will
present a proof – and the same about the distributivity below – to show that
the new observation is based on simple facts only).

4.4.1. Theorem. In S(L), S =
⋂
{c(νS(a))∨o(a) | a ∈ L} for every sublocale

S ⊆ L.

Proof : ⊆: If s ∈ S then for each a,

s = (νS(a) ∨ s) ∧ (νs(a)→ s) = (νS(a) ∨ s) ∧ (a→ s) ∈ c(νS(a)) ∨ o(a)

by 1.3.3(5) and 1.6.2.
⊇: If x ∈

⋂
{c(νS(a)) ∨ o(a) | a ∈ L} then in particular x ∈ c(νS(x)) ∨ o(x).

Hence x = u ∧ v with u ≥ νS(x) and x → v = v. Then x ≤ v and
v = x→ v = 1 so that x = u ≥ νS(x), and x ∈ S.

4.4.2. Proposition. S(L) is distributive.

Proof : (A ∨B) ∩ C ⊇ (A ∩ C) ∨ (B ∩ C) is trivial.
⊆: Let a ∈ A, b ∈ B and a ∧ b ∈ C. We have by 1.3.3(4)

(b→ a) ∧ ((b→ a)→ b) = b ∧ (b→ a) = b ∧ a
where

b→ a = (b→ a) ∧ (b→ b) = b→ (a ∧ b) ∈ A ∩B
and (b→ a)→ b ∈ B ∩ C. For the last:

(b→ a) ∧ b = a ∧ b = a ∧ b ∧ a = (b→ a) ∧ (b ∧ a),
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hence (b→ a)→ b = a ∧ b = (b→ a)→ (b ∧ a) by 1.3.3(6).

4.4.3. Remarks. 1. Note that 4.3.1 and 4.3.2 elucidate the seeming discrep-
ancy of the coframe S(L) naturally containing the frame Sc(L).

2. Finitizing the proof of the coframe distributivity from (e.g.) [13] is also
very short:
(A1 ∩ A2) ∨B ⊆ (A1 ∨B) ∩ (A2 ∨B) is trivial.
⊇: Let x = a1 ∧ b1 = a2 ∧ b2 ∈ (A1 ∨B) ∩ (A2 ∨B). Set b = b1 ∧ b2. Then

ai ∧ b ≤ ai ∧ bi = x = x ∧ x = a1 ∧ b1 ∧ a2 ∧ b2 ≤ aj ∧ b,
hence a1∧ b = a2∧ b and hence, by 1.3.3(6), b→ a1 = b→ a2 = a ∈ A1∩A2,
and b ∧ a = b ∧ (b→ a1) = b ∧ a1 = x. �
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