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Abstract: In this work we discuss a new type of factorisation systems for Ord-
enriched categories. We start by defining the new notion of lax weak orthogonality,
which involves the existence of lax diagonal morphisms for lax squares. Using the
usual theory of factorisation systems as a blueprint, we introduce a lax version of
weak and functorial factorisation systems. We provide a characterisation of lax
functorial weak factorisation systems, namely lax weak factorisation systems such
that their factorisations are lax functorial. Then, we present a particular case of such
lax functorial weak factorisation systems which are equipped with additional lax
monad structures. We finally explore some examples of these factorisation systems
for categories of partial maps equipped with natural Ord-enrichments. We will
first construct a particular lax algebraic weak factorisation system for categories
of partial maps that isolates the total datum and the partial domain of a partial
map. Then we will discuss the relation between factorisation systems on the base
category and oplax factorisation systems on the induced category of partial maps.
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Introduction
Our study of lax and oplax factorisation systems stems from the introduc-

tion of a new definition of orthogonality that encompasses diagonal liftings
for lax or oplax squares, based on an Ord-enrichment of our category.

It differs substantially from the lax orthogonal factorisation systems
studied in Ord-enriched categories in [Clementino and López Franco, 2020,
López Franco, 2019], although in both cases the orthogonality condition does
not impose uniqueness of the liftings. On one hand ours impose the existence
of liftings for lax squares, and on the other hand theirs guarantee the exis-
tence of universal liftings.
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In this paper we present a new type of factorisation system for Ord-
categories. This study starts with the introduction of an orthogonal-
ity relation between morphisms that provides diagonal morphisms also
for the broader class of lax squares. On the basis of this new defi-
nition we rebuild the already developed theory for ordinary weak fac-
torisation systems introduced in [Freyd and Kelly, 1972] and described in
[Adámek et al., 2002, Garner, 2009, Riehl, 2011]. Then, we analyse these
classes and the equivalences that constitute their intersection.

We continue in the second section by presenting how these factorisations
can be defined functorially providing the definition of lax functorial factori-
sation systems and pointing out the differences that arise from the ordinary
case.

We follow on to the third section to describe how the former two factorisa-
tion systems interact. We provide a characterisation of those lax functorial
weak factorisation systems. We also give a description of the two classes of
morphisms of the underlying lax weak factorisation systems.

In the fourth section we present the lax case of the algebraic weak factori-
sation systems introduced in [Grandis and Tholen, 2006, Garner, 2009] and
we prove that in this setting they are lax weak and lax functorial as well.

Then we will focus on providing a broad description of the lax and oplax
factorisation systems that arise for partial maps equipped with well-known
definitions of order. The work on categories of partial maps and especially in
their Ord-enrichment is also inspired by the works of Fiore in [Fiore, 2004].

We will first construct a particular lax algebraic weak factorisation system
for categories of partial maps that isolates the total datum of and the partial
domain.

Then we will describe the relation between oplax factorisation systems on
C and oplax factorisation systems on the correspondent category of partial
maps. We will show that one induces the other and vice versa and that or-
dinary functorial weak factorisations transfer also their functorial properties
to oplax factorisations on partial maps.

1. Lax weak orthogonality and lax weak factorisation
systems

In this section we introduce a new notion of orthogonality which will be the
base for the rest of the work. Let C be an Ord-enriched category. We denote
by C 2

lax the category whose objects are morphisms in C and morphisms are
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squares (u, v) : f −→ g of the type

A
u

//

≥f

��

C

g

��

B v
// D.

(1.i)

We will refer to these squares as lax squares. Then we introduce an or-
thogonality relation that provides lax diagonal morphisms also for these lax
squares.

Definition 1. Two morphisms in C 2 are said to be laxly weak orthogonal,
denoted by f ∧| g, if, for every lax square (u, v) : f −→ g, there exists a
morphism d : cod(f) −→ dom(g), such that

A
u

//

≥

f

��

C

g

��

B

d

>>

v
// D

≥

{
u ≤ d · f
g · d ≤ v.

(1.ii)

We first observe that this constitutes a generalisation of weak orthogonality
as described in [Adámek et al., 2002, Riehl, 2011]. In fact, whenever the
partial order in C is discrete, the two definitions coincide. Analogously, for
any class of morphisms H we can define its lax weak orthogonal complements
as the classes containing exactly those morphisms which are laxly weakly
orthogonal to H, to the left (H∧| ) or to the right (∧| H). Lax weak orthogonal
complements are easily shown to be closed under composition.

Definition 2. A lax weak prefactorisation system is a pair (L,R) of classes
of morphisms such that R = L∧| and L = ∧| R. Moreover if any morphism
f ∈ C 2

lax has an (L,R)-factorisation

A
f

//

L3lf
  

B

Wf

rf∈R

>>

(1.iii)

then (L,R) is said to be a lax weak factorisation system ( lwfs).
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We remark that, given a lwfs (L,R), for any lax square (u, v) : f −→ g
there exists a morphism δ as in the diagram

A

≥

u
//

lf

��

C

lg

��

Wf

≥rf

��

δ
// Wg

rg

��

B v
// D.

(1.iv)

The arrow δ is obtained by the lax weak orthogonality relation lf ∧| rg.
The first natural step is to identify those morphisms which are laxly weak

orthogonal with respect to any other morphism in the category. We recall
that two morphisms f : A → B and g : B → A constitute an adjunction
f a g, if we have idA ≤ g · f and f · g ≤ idB.

Proposition 1. For a morphism f ∈ C 2
lax, the following are equivalent:

(1) f ∧| f ;
(2) f is a left adjoint morphism to some f ∗;
(3) f ∧| C 2

lax;
(4) C 2

lax ∧| f .

Proof : 1.⇒2. For a morphism that is orthogonal to itself we may consider the
identity lax square (which is actually commutative) and by self orthogonality
it must admit a lax diagonal filler. It follows that the diagonal morphism
will be the right adjoint and the two 2-cells in the two triangles will define
the adjunction sought.

2.⇒3. Considering a lax square (u, v) : f −→ g it is a mere calculation to
prove that u · f ∗ is a lax diagonal filler for the lax square.

2.⇒4. Analogously for a lax square (u, v) : g −→ f we have that f ∗ · v is
a lax diagonal filler.

3.⇒1. and 4.⇒1. are trivial.

As a consequence of this result, we have that left adjoint morphisms LA (C )
belong to any lax weak orthogonal complement and they constitute the inter-
section between the two classes of morphisms of any lax weak prefactorisation
system.
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We point out that uniqueness of such lax diagonal liftings is not granted in
general. In fact, given a morphism f satisfying the conditions of Proposition
1, we have that in any lax square (u, v) : f −→ f both du = u · f ∗ and
dv = f ∗ · v are suitable lax diagonal morphisms.

As for ordinary factorisation systems, one could easily prove the following
result.

Proposition 2. Given a class of morphisms H ⊆ C 2, then H ⊆ ∧|
(
H∧|
)

and H ⊆
(
∧| H
)∧|

. Moreover
(
∧|
(
H∧|
)

;H∧|
)

and

(
∧| H;

(
∧| H
)∧| )

are lax

prefactorisation systems.

2. Lax functorial factorisations
A natural step forward is to study factorisation systems for lax arrow cat-

egories that are functorial. To do so, we consider the composition functor
applied to lax arrow categories

C 2
lax ×C C 2

lax

π1 //

(−·−) //
π2 //

C 2
lax. (2.i)

We point out that objects in C 2
lax×C C 2

lax are pairs of composable morphisms
and the arrows are triples of morphisms as

A

≥

a
//

f

��

A′

f ′

��

B

≥g

��

b
// B′

g′

��

C
c
// C ′.

Then the following definition becomes a natural translation from the ordi-
nary factorisation systems.

Definition 3. A lax functorial factorisation system is a functor F :
C 2

lax −→ C 2
lax ×C C 2

lax, such that (- · -)F = IdC 2
lax

.

A lax functorial factorisation system is then determined by a section of the
composition functor applied to C 2

lax. When composing such functor F with
the projections π1 and π2 one obtains the usual functors L,R : C 2

lax −→ C 2
lax,

and K : C 2
lax −→ C .
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A lax functorial factorisation system induces also the natural transforma-
tions η : Id ⇒ R and ε : L ⇒ Id. Differently from ordinary factorisation
systems, these transformations are not strict in general, but only oplax. In
fact, considering η, for any lax square (u, v) : f −→ g we have that

A

≥

u
//

f

��

C

g

��

Lg
//

ηg

Kg

Rg

��

B v
// D

idD

// D

≤

A

f

��

Lf
//

ηf

Kf

≥Rf

��

K(u,v)
// Kg

Rg

��

B
idB

// B v
// D,

since Lg · u ≤ K (u, v) · Lf by definition of lax functorial factorisation. This
amounts to have that ηg · (u, v) ≤ R (u, v) · ηf . Similarly one can prove that
ε is an oplax natural transformation as well.

3. Lax functorial weak factorisations
Our goal now is to interlink the two concepts as it already happens in

the traditional setting. An ordinary weak factorisation system (L,R) is said
to underlie a functorial factorisation system (F,L,R,K) if every functorial
factorisation is also an (L,R)-factorisation.

We already know that, if an ordinary wfs (L,R) underlies the functo-
rial factorisation system (F,L,R,K), then (L,R) = (L-coalg, R-alg). This
means that L contains those morphisms whose right component is a split epi-
morphism and R those morphisms whose left component is a split monomor-
phism (see for instance [Riehl, 2011]). On the blueprint of this idea we want
to investigate the conditions under which a lax functorial factorisation system
has an underlying lwfs and to give a description for the latter.

We fix a lax functorial factorisation system with components (F,L,R,K).
We consider the two classes

LF = {f |f ∧| Rf} RF = {f |Lf ∧| f} . (3.i)

Similarly to ordinary functorial wfs, we consider a lax functorial factorisa-
tion system such that for every f , Lf ∈ LF and Rf ∈ RF . More precisely, we
will consider lax factorisation systems such that Lf ∧| RLf and LRf ∧| Rf
for every morphism f ; we will call such lax functorial factorisation systems
predistributive. The reason for this name is that the assumption amounts to
a certain distributivity of the lax functorial factorisation system as depicted
in (3.vii).
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Proposition 3. Let (F,L,R,K) be a lax functorial factorisation system and
f any morphism. If Rf ∈ RF , then f ∈ LF if and only if there exists a lax
diagonal lifting ρf in the square ηf . If Lf ∈ LF , then f ∈ RF if and only
if there exists a lax diagonal lifting λf in the square εf . For any f , we will
denote such lax liftings by

A
Lf

//

≥

f

��

Kf

Rf

��

B

ρf

>>

idB

// B,

≥

A
idA

//

≥

Lf

��

A

f

��

Kf

λf

==

Rf
// B.

≥

(3.ii)

Proof : We prove only the first statement, since the second one follows by
duality.

One direction is trivial since the existence of such a ρf is a direct conse-
quence of f ∧| Rf .

For the non-trivial implication, we need to prove that f ∧| Rf . We consider
a lax square

A
u
//

≥f

��

Kf

Rf

��

B v
// B

7−→

A

≥

u
//

Lf

��

Kf

LRf

��

Kf

≥Rf

��

K(u,v)
// Kg

RRf

��

λRf

__

B

ρf

__

v
// B,

(3.iii)

where ρf is a diagonal morphism of ηf existing by assumption and λRf is a
diagonal morphism of εRf existing since LRf ∧| Rf .

We consider ∆ = λRf ·K (u, v) · ρf . Keeping in mind the definitions of ρf
and λRf as lax diagonal fillers of ηf and εRf , we have that

u ≤ λRf ·LRf ·u ≤ λRf ·K (u, v)·Lf ≤ λRf ·K (u, v)·ρf ·Rf ·Lf = ∆·f (3.iv)

and

Rf ·∆ = RRf ·LRf ·λRf ·K (u, v) ·ρf ≤ RRf ·K (u, v) ·ρf ≤ v ·Rf ·ρf ≤ v.
(3.v)

This yields that ∆ is the diagonal morphism sought and f ∧| Rf .



8 LARIZZA, L.

Remark 1. We recall that, for a lax pointed functor (T, θ), a pair (A, a) is
said to be a lax algebra if idA ≤ a · θA. Then we point out that, for any
morphism f , the existence of a lax diagonal filler for εf is equivalent to have
a lax algebra structure for the lax pointed endofunctor (R, η). In fact the lax
square α = (λf , idB) : Rf −→ f is such that idf ≤ α · ηf . Similarly any
morphism g admits a lax diagonal morphism for εg if and only if it has a lax
coalgebra structure for (L, ε).

Corollary 1. Let (F,L,R,K) be a predistributive lax functorial factorisation
system. Then

LF = {f | ηf has a lax diagonal morphism} = L-coalglax

RF = {f | εf has a lax diagonal morphism} = R-alglax.
(3.vi)

We observe that, given a morphism f that lies in LF ∩RF , then the com-
position λf · ρf is a right adjoint to f .

According to these remarks, the choice of the name predistributive points
to the existence, for any morphism f , of the following diagram

Kf

≥

LRf

��

ρLf
// KLf

RLf

��

KRf
λRf

// Kf

≥

(3.vii)

and it coincides with the assumption that for every morphism f , Rf is a lax
(R, η)-algebra and Lf is a lax (L, ε)-coalgebra.

This diagram resembles the distributivity transformation described in the
next section, even if it carries less structure. In fact, it is not in general a
natural transformation and it does not satisfy any distributivity law as de-
scribed in [Bourke and Garner, 2016, Clementino and López Franco, 2016]
or in [Clementino and López Franco, 2020, Section 4].

Theorem 1. Let (F,L,R,K) be a predistributive lax functorial factorisa-
tion system. Then (LF ,RF ) is a lax weak factorisation system. Moreover,
for any lax functorial weak factorisation system (L,R) with lax functorial
factorisation (F,L,R,K), (L,R) = (LF ,RF ).

Proof : We start by proving that L ∧| R. Let f ∈ L and g ∈ R. We have
that f ∧| Rf and Lg ∧| g, by the existence of the two morphisms ρf and λg.
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We factorise a lax square as

A
u

//

≥f

��

C

g

��

B v
// D

7−→

A

≥

u
//

Lf

��

C

Lg

��

Kf

≥Rf

��

K(u,v)
// Kg

Rg

��

λf

bb

B

ρf

??

v
// D.

(3.viii)

The morphism ∆ = λg ·K (u, v) · ρf is a lax diagonal morphism for the lax
square taken into account. In conclusion this yields that L ∧| R.

Moreover, for any f ∧| R, it follows that f ∧| Rf , since Rf ∈ R by
lax predistributivity, which induces that f ∈ L, namely R∧| ⊆ L. By an
analogous argument L∧| ⊆ R holds.

For the second claim we consider (L,R) a functorial weak factorisation
system. We have have that

f ∈ L ⇔ f ∈∧| R ⇒ f ∧| Rf ⇔ f ∈ LF
f ∈ R ⇔ f ∈ L∧| ⇒ Lf ∧| f ⇔ f ∈ RF

so L ⊆ LF and R ⊆ RF and since inclusion is dual for lax weak orthogonal
classes, this implies that (L,R) = (LF ,RF ).

In conclusion, the last theorem gives us a description of lax fwfs as alge-
bras and coalgebras of the functorial components. Moreover, it states that
if every L-component is a lax coalgebra and every R-component is a lax
algebra, then they form the unique lwfs underlying the given fwfs.

4. Lax algebraic weak factorisations
In this section we will present a class of functorial factorisation systems

which satisfy the condition above and come equipped with a richer structure
close to the one of a monad. This construction parallels in this lax context
that of algebraic weak factorisation systems as in [Grandis and Tholen, 2006,
Garner, 2009, Bourke and Garner, 2016].

We recall the definition of lax monad that we reprise from [Bunge, 1974].
We define here an Ord version of this definition and, although this work
refers to lax natural transformations, we remark that it is actually the same
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type of transformation we call oplax according to what appears to be the
most used choice in literature. The only difference is that we will use a
definition that involves usual functors and not lax functors, since it is the
particularisation that best fits our purposes.

Definition 4. For an Ord-enriched category C , a lax monad is a triple
(T, η, µ), such that

• T : C −→ C is a functor;
• η : Id =⇒ T is an oplax natural transformation;
• µ : RR =⇒ R is an oplax natural transformation;

and such that the following lax monads laws are satisfied

T

idT
  

Tη
//

≤
TT

µ

��

T

idT
~~

ηT
oo

≤

T

TTT

µT

��

Tµ
//

≥

TT

µ

��

TT µ
// T.

(4.i)

We now define the factorisation systems we are interested in.

Definition 5. A lax algebraic weak factorisation system ( lawfs) is a func-
torial factorisation system (F,L,R,K) such that (R, η) is part of a lax monad
(R, η,Θ), (L, ε) is part of a lax comonad (L, ε,Ω), and there exists a distribu-
tivity law ∆ : LR =⇒ RL of the comonad over the monad in the sense that
the following diagram commutes

LRR

LΘ

��

∆R
// RLR

R∆
// RRL

ΘL

��

LR
∆

//

ΩR

��

RL

RΩ

��

LLR
L∆

// LRL
∆L

// RLL.

(4.ii)

As said before, these factorisation systems constitute a subclass of lax
functorial weak factorisation systems as we prove in the following proposition.

Proposition 4. A lawfs (F,L,R,K) is a lax functorial weak factorisation
system.
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Proof : We can prove the statement by showing that (F,L,R,K) is lax pre-
distributive. Let f be any morphism. Then we consider the lax square given
by θf , whose defining 2-cell is Rf · θf ≤ RRf . Then, by the lax monad
law idR ≤ Θ · ηR in (4.i), we can deduce, restricting it to the domains, that
idKf ≤ θf · LRf . Thus we have that θf is a lax diagonal morphism for εRf .
The same argument on the comonad yields that ωf , the codomain morphism
of the comultiplication Ω of the comonad, is the lax diagonal morphism for
ηLf . Now we want to check that Lf ∧| RLf and LRf ∧| Rf . We will prove
only the first one, since the arguments for the second are similar. We consider
any lax square between Lf and RLf and its factorisation

A
u
//

≥Lf

��

KLf

RLf

��

Kf v
// Kf

7−→

A

≥

u
//

LLf

��

KLf

LRLf

��

KLf

≥RLf

��

K(u,v)
// KRLf

RRLf

��

θLf

__

Kf

ωf

??

v
// Kf.

(4.iii)

Then θLf ·K (u, v) ·ωf is a lax diagonal morphism. In fact, due to the rules
of the monad, we have{
u ≤ θLf · LRLf · u ≤ θLf ·K (u, v) · LLf ≤ θLf ·K (u, v) · ωf ·RLf · LLf
RRf · LRLf · θLf ·K (u, v) · ωf ≤ RRLf ·K (u, v) · ωf ≤ v ·RLf · ωf ≤ v.

(4.iv)
This implies that, for every f , we have that Lf ∧| RLf , and similarly
LRf ∧| Rf . Therefore (F,L,R,K) is lax predistributive and hence it is
a lax functorial weak factorisation system.

We remark that in general a lax predistributive functorial factorisation
system does not yield a complete distributivity law, since it is not even true
that the square (3.vii) is a natural transformation, and moreover we do not
have the existence of the 2-cells in the distributivity law (4.ii).

Remark 2. We observe that what we have described for C 2
lax can be expressed

in a dual fashion for C 2
oplax. We can then define orthogonality for oplax

squares and oplax factorisation systems. We remark that the equivalences for
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oplax weak orthogonality are right adjoint morphisms and that, for an oplax
functorial factorisation system, η and ε are lax natural transformations and
the monads involved in oplax awfs will be obviously oplax monads. We have
then an equally powerful dual set of results that can be used for C 2

oplax. We
will denote the oplax weak orthogonality relation by ∨| .

5. Categories of partial maps
This second part of the work is dedicated to the study of lax and oplax

factorisation systems for categories of partial maps. First we recall in
this section some useful definitions, notations and properties of categories
of partial maps. Some of the features that we present may be found in
[Fiore, 2004, Robinson and Rosolini, 1988].

Let C be a category with a good notion of subobjects, i.e. a class of
monomorphisms S that is closed under composition, pullback stable, and that
contains all sections (ri). We consider C , with pullbacks along morphisms
in S. Then a partial map is a span

Df
��

σf

��

ϕf

  

A �

f
// B

with σf in S and ϕf a generic morphism in C . Composition among partial
maps operates via pullback. We will often use hereon the notation D-, σ-

and ϕ- to refer to the partial domain and the partial components of a partial
map.

The category obtained will be denoted by PS (C ) or P (C ), where it cannot
generate any ambiguity. Categories of partial maps have a partial order
between morphisms defined by f � g if f is a domain restriction of g; formally
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if there exists s ∈ S making the following diagram commute:

Df
��

s

��

σf

��

ϕf

��

NDg
��

σg

��

ϕg

  

A
�f //
�
g

// B.

(5.i)

Furthermore if there exists a partial order v among maps in C , then we
can define a partial order on partial maps induced by the one on the base
category. In fact, if C is Ord-enriched and all maps in S are full (a map f
is full if any 2-cell f · u v f · v yields the 2-cell u v v), then we have another
order relation f ≤ g if and only if N in (5.i) is the 2-cell ϕf v ϕg · s. It
is clear that if we consider a discrete Ord-enrichment on C , then the two
partial orders coincide.

Notation 1. We will distinguish the two order relations on a category P (C )
with the symbols used above. Thus � will denote the order induced by equal-
ities, while ≤ will denote an order induced by any Ord-enrichment on C .

Notation 2. Given the 2-cells f ≤ g and f ′ ≤ g′ properly composable, we
will denote by o′ ∗ o the subobject morphism defining the composition 2-cell
f ′ · f ≤ g′ · g. Moreover, we will denote by v ∗ o the subobject morphism
defining the composition 2-cell with an identity 2-cell such as v · f ≤ v · g.

We will now state some facts that we will frequently evoke in the later
discussion. We recall that a partial morphism f is said to be total if its
partial domain Df is the whole domain of f .

Properties 1. Given a partial order on P (C ), we have the following prop-
erties:

• if f is total and f ≤ g, then g is total. Moreover, if the partial order
is induced by the discrete one, then f = g. Hence total maps are
maximal elements in their own Hom-Sets;
• for any composition of partial morphisms g · f , it is true that Dg·f �
Df . Furthermore, if f · g is total, then g is total.
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5.1. Adjunctions between partial maps. Since adjoint morphisms con-
stitute the lax equivalences related to lax factorisation systems, we proceed
giving a description of adjoint morphisms for categories of partial maps.

Proposition 5. Let P (C ) be a category of partial maps with C an Ord-
enriched category. A pair of morphisms in P (C ) constitute an adjunction
f a g if and only if f is total and ϕf = σg · ϕ̃f such that ϕ̃f a ϕg in C .

Proof : First we consider the adjunction f a g in P (C ). By the properties
in 1, the 2-cell idA ≤ g · f yields that g · f is total and therefore f is total.
We write explicitly the 2-cells

A
��

��

idA

��

ϕ̃f

  

idA

��

w
A
��

��

ϕf

  

Dg
��

σg

��

ϕg

  

A �

f
// B �

g
// A.

B

idB

��

idB

��

v

Dg

bb
σg
bb

��

��

ϕg

""

Dg
��

σg

��

ϕg

""

A
��

��

ϕf

""

B �
g

// A �

f
// B.

(5.ii)

The subobject morphism of the left diagram is idA due to the stated totality
of f and g · f . We notice immediately that ϕf = σg · ϕ̃f , where ϕ̃f is the
pullback of ϕf along σg. Furthermore, we have the 2-cells idA v ϕg · ϕ̃f and
σg · ϕ̃f · ϕg = ϕf · ϕg v σg. Since by assumption σg ∈ S is full, we deduce
that ϕ̃f ·ϕg v idB. This yields the existence of the adjunction ϕ̃f a ϕg in C .
The other direction is proved simply by calculation. In fact, due to the rules
of composition among partial maps, one obtains explicitly the diagrams in
(5.ii), henceforth proving f a g in P (C ).

If we consider an ordinary category C , we can state the following corollary.

Corollary 2. Let P (C ) be a category of partial morphisms equipped with the
Ord-enrichment induced by the ordinary category C . A pair of morphisms
in P (C ) constitute an adjunction f a g if and only if f = (idA, σ) and
g = (σ, idA), for some σ ∈ S.

This is due to the fact that pairs of adjoint morphisms in a discrete category
are pairs of inverse morphisms.
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We conclude this discussion on adjoint partial maps with a remark on the
relation between the adjunctions of partial maps and the adjunctions in the
base Ord-category. First we can define a partial order for adjoint pairs in
P (C ) such that (f a g) ≤ (f ′ a g′) if and only if there exists s ∈ S such
that ϕf = s · ϕf ′ and σg = s · σg′. It is straightforward to check that any
pair of adjoint maps in C still constitutes an adjoint pair of total maps in
P (C ). Vice versa, Proposition 5 induces a process to obtain an adjoint pair
in C from any adjoint pair in P (C ) and in particular it preserves adjunction
on total maps. Following the notation of the Proposition it becomes easy to
check that (f a g) ≤ ((idA, ϕ̃f) a (idB, ϕg)). It yields an adjunction between
the partially ordered sets Adj (P (C )) and Adj (C ).

6. Domain-Total factorisation
In this section we will provide a general construction of a lax functorial

weak factorisation system for any category of partial maps equipped with
the most general definition of partial order described above. We consider
and Ord-category C and the category of partial maps P (C ) induced by any
appropriate class of subobject S. Given any partial map f in P (C ) we can
factorise it as

Df
��

σf

��

ϕf

  

A �

f
// B

=

Df
��

σf

��

idDf

  

Df
��

idDf

��

ϕf

  

A �

Lf
// Df

�

Rf
// B.

(6.i)

Our goal now will be to prove that such factorisation is a lax functorial weak
factorisation system. The first step is proving that it is a lax functorial
factorisation, namely that L and R are part of a functorial factorisation
F : P (C )2

lax −→ P (C )2
lax ×P(C ) P (C )2

lax. We consider a lax square (u, v) :
f −→ g and its factorisation through L and R
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A �u //

≥_f

��

C

_ g

��

B �
v

// D

7−→

A

1

u
//

Lf

��

C

Lg

��

Df

2Rf

��

K(u,v)
// Dg

Rg

��

B
v

// D

where K (u, v) is

Dg·u
��

��

��

ϕu=σ∗g(ϕu)

��

Dv·f
��

��

Df
� // Dg.

(6.ii)

In the second diagram the upper square 1 is actually commutative, while it
is a simple calculation that the subobject morphism o : Dg·u� Dv·f defining
g · u ≤ v · f is also a witness that square 2 is a lax square. We consider two
composable lax squares (u, v) : f −→ g and (u′, v′) : g −→ h. We have to
prove that K (u′ · u, v′ · v) = K (u′, v′) ·K (u, v). To prove this equality one
has to apply the composition rules among partial maps while remembering
the definition of K in (6.ii). Then the key argument is that the two arrows

Dh·u′ //
o

//

��

��

Dv′·g
��

��

Du′
""

""

Dg
||

||

A′

depict the same subobject equivalence class of Dh·u′ in A′ and therefore pull-
backs of ϕu along these arrows are equal. This yields our thesis and shows
that L and R constitute a lax functorial factorisation system.

Next we discuss lax predistributivity of (F,L,R,K). We proceed giving in
our setting a particular description of the two classes.

First we show that LF is the class PLA of partial left adjoint morphisms,
namely any morphism f such that ϕf = σ ·ϕf , σ ∈ S and ϕ̃f is a left adjoint
in C . It is clear that if f ∈ PLA, then Rf is a left adjoint morphism and
therefore f ∧| Rf . On the other hand if f ∈ LF , then we have a lax diagonal
morphism δ for the square denoted by ηf . Writing the 2-cells explicitly one
can see easily that ϕf = σδ · ϕf and that ϕf a ϕδ. Hence we have that
LF = PLA.
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As for RF we notice first that it contains all total maps. In fact, if f is
total, then Lf is an identity, therefore Lf ∧| f . If we consider f in RF , again
we have a lax diagonal morphism δ′ for the square denoted by εf , which in
particular yields that idA ≤ δ · Lf . Hence Lf is total. This implies that
RF = Tot.

Using the new characterizations of LF and RF given above, to prove lax
predistributivity it is enough to notice that, for every partial map f , Lf ∈
PLA and Rf ∈ Tot, which is trivially true. This yields that (PLA,Tot)
is a lax weak factorisation system underlying the lax functorial factorisation
system above.

We conclude remarking that, if C is a discrete category, then PLA contains
those morphisms such that ϕf ∈ S. This is due to the fact that the only
adjoint pairs are isomorphisms. We denote such class of morphisms by S.

7. Oplax factorisation systems on partial maps and or-
dinary factorisation systems on total maps

In the following section we will display the close links between factorisa-
tion systems on a category C and oplax factorisation systems. In the first
paragraph we will focus on describing a procedure that produces an oplax
weak factorisation system on P (C ) from a stable oplax weak factorisation
system on C . Then we will analyse how functoriality is transferred to such
factorisation systems. Thereafter we will proceed to study how oplax weak
factorisation systems on partial maps may be restricted to factorisation sys-
tems among total maps.

7.1. Oplax wfss from total maps to partial maps. We consider an
Ord-category C equipped with an oplax wfs (E ,M) such that E is a class
of morphisms stable under pullbacks along morphisms in S. Looking at
P (C ) we can factorise each partial map f as

Df
��

σf

��

ϕf

!!

eϕf
// Mf

mϕf

��

A �

f
// B

=

Df
��

σf

��

eϕf

  

Mf
��

idMf

��

mϕf

  

A �
ef

// Mf
�

mf

// B.

(7.i)
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We consider the following classes of partial morphisms

E = {f |ϕf ∈ E} M = {f |ϕf ∈M} . (7.ii)

We will prove that it constitutes an oplax weak factorisation system. First
we prove that E ∨| M. We consider f ∈ E , g ∈ M and the oplax square
(u, v) : f −→ g. Writing explicitly the oplax square, we have that σ∗v (ϕf) is in
E by the condition of stability under pullbacks. By oplax weak orthogonality
of (E ,M) there exists an oplax diagonal filler d for the oplax square

Dv·f
vE3σ∗v(ϕf )

��

//
o

// Dg·u
σ∗g(ϕu)

// Dg
��

ϕg∈M
��

Dv

∃d

66

ϕv

// D,
v

(7.iii)

where o is the morphism in S involved in the definition of the 2-cell v·f ≤ g·u.
Then it is straightforward to check that

Dv
��

σv

��

σg·d

  

B �

δ
// C

(7.iv)

is an oplax diagonal morphism for the oplax square through the 2-cells in
(7.iii). We remark moreover that, if C is an ordinary category, then the lower
triangle determined by the oplax weak orthogonality is indeed commutative,
i.e. v = g · δ.

Moreover if f ∈∨| M, then f ∨| mf which implies that there exists an
oplax diagonal morphism δ for the commutative square (ef , idB) : f −→ mf .
Such oplax diagonal morphism is total due to the properties mentioned in
1. Writing explicitly the diagrams it is easy to prove that ϕδ is an oplax
diagonal morphism for

(
eϕf

, idB
)

: ϕf −→ mϕf
in C . One can prove by

simple calculations that this yields that ϕf ∨| M. Henceforth f belongs to
E .

In a similar fashion we can prove that for any partial map g ∈∨| E there
exists an oplax diagonal filler δ′ for the square (idA,mg) : eg −→ g. Again
writing explicitly the compositions one can prove that ϕδ′ = σg · ϕ̃δ′ for some
ϕ̃δ′ that is the oplax diagonal of the oplax square

(
idA,mϕg

)
: eϕg

−→ ϕg.

This yields that ϕg lies in M, hence g ∈M.
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In conclusion,
(
E ,M

)
is a lax weak factorisation system.

7.2. Functoriality from total factorisation systems to oplax wfs.
Now we aim to prove that if the Ord-enrichment on C is discrete, then the
property of being functorial is carried from the factorisation system on C to
the one on P (C ).

Proposition 6. Let C be an ordinary category, (F,L,R,K) a functorial
factorisation and (E ,M) a stable wfs underlying it. Then

(
E ,M

)
underlies

an oplax functorial factorisation
(
F ,L,R,K

)
.

Proof : We can rewrite the factorisation (7.i) substituting Lϕf and Rϕf by
mf and ef . We obtain the assignments Lf = (σf , Lϕf), Rf =

(
idKϕf

, Rϕf
)

and Kf = Kϕf . Then our goal is to prove their functoriality. We consider
two composable oplax squares

A �u //

�_f

��

C

_ g

��

�u
′
//

�

E

_ h

��

B �
v

// D �

v′
// G.

(7.v)

We need to prove that K (u′ · u, v′ · v) = K (u′, v′) ·K (u, v).
First we reproduce the process depicted in (7.iii). We choose among the

possible diagonal liftings k = K
(
ϕLg·u · o, ϕv·Rf

)
. This diagonal lifting fills

the following commutative diagram

Dv·f //
o

//

σ∗
v·Rf(ϕLf)

��

Dg·u
ϕLg·u

// Kg

Rϕg

��

Dv·Rf

k

66

ϕv·Rf

// D.

(7.vi)

Then K (u, v) = (Rϕf
∗ (σv) , k). Similarly we have K (u′, v′) =

(Rϕg
∗ (σv′) , k

′), where k′ = K
(
σRh

∗ (ϕLh·u′ · o′) , ϕv′·Rg
)
. Finally we have

that K (u′ · u, v′ · v) =
(
σv′·v·Rf , k

′′). We point out that

σv′·v·Rf = Rϕf
∗ · [(ϕv · σv∗ (Rϕf))

∗ (σv′)] (7.vii)

due to the pullback properties of subsequent composition of partial maps.
Moreover k′′ is the diagonal morphism chosen through K for the square
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Dv′·v·f //
o∗o′

//

σ∗
v′·v·Rf(ϕLf)

��

Dh·u′·u
ϕLh·u′·u

// Kh

Rϕh

��

Dv′·v·Rf

k′′

55

ϕv′·v·Rf

// F.

(7.viii)

We write explicitly the composition K (u′, v′) ·K (u, v)

P
��

k∗(Rϕg
∗(σv′))

��

(Rϕg
∗(σv′))

∗
(k)

##

Dv·Rf
��

Rϕf
∗(σv)

��

k

##

Dv′·Rg
��

Rϕg
∗(σv′)

��

k′

""

Kf �

K(u,v)

// Kg �

K(u′,v′)

// Kh

(7.ix)

From (7.vi) we know that ϕv·Rf = ϕv · σv∗ (Rϕf) = Rϕg · k. Hence we have
the equality of the two domains

Rϕf
∗ (σv) · k∗ (Rϕg

∗ (σv′)) = Rϕf
∗ · [(Rϕg · k)∗ (σv′)]

= Rϕf
∗ · [(ϕv · σv∗ (Rϕf))

∗ (σv′)] .
(7.x)

Thus we can write P = Dv′·v·Rf .
Now we consider the second component of the partial maps. We take the

following diagram

Dv′·v·f

1

//
v′∗o

//

(σv′·v·Rf)
∗
(Lϕf )

��

Dv′·g·u
σv′·g

∗(ϕu)
// Dv′·g

2

//
o′

//

(Rϕg
∗(σv′))

∗
(Lϕg)

��

Dh·u′
ϕLh·u′

// Kh

Rϕh

��

Dv′·v·Rf
(Rϕg

∗(σv′))
∗
(k)

// Dv′·Rg σv′
∗(Rϕg)

// Dv′ ϕv′
// F.

(7.xi)
Due to the properties of pullbacks and the definition of each morphism we

can prove that the diagram and its subsquares are actually commutative. In
particular we have that 2 is the square used to deduce k′. We also point out
that

(
σv′·v·Rf

)∗
(Lϕf) and (Rϕg

∗ (σv′))
∗ (Lϕg) are morphisms in E , therefore
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factorising 1 we obtain

K (σv′·g
∗ (ϕu) · (v′ ∗ o) , (Rϕg∗ (σv′))

∗ (k)) = (Rϕg
∗ (σv′))

∗ (k) . (7.xii)

Examining the definition of the arrows, we can prove that the outer square
is exactly the square that is used to define k′′ as a diagonal filler. Thus, since
k′′ is chosen through K, by functoriality we can conclude that

k′′ = k′ · (Rϕg∗ (σv′))
∗ (k) . (7.xiii)

This was the last information needed to conclude that
(
F ,L,R,K

)
is an

oplax functorial factorisation system.

Remark 3. It is straightforward to verify that for a functorial wfs
(F,L,R,K), if (R, η) and (L, ε) are part of a monad and a comonad, then
their oplax correspondents carry oplax monadic and comonadic structures.
In fact, left and right components work in the same way as for total maps
and satisfy the same axioms. The right component is always total and bears
no difference from the total case. The left component operates similarly and
one only has to take into account partial domains. This applies as well for
the distributivity laws that define awfs.

In conclusion, an awfs (L,R) on C induces an oplax awfs
(
L,R

)
on

P (C ).

Example 1. We consider P (Set). We know that in Setthe two classes Epi
and Mono are stable under pullback. We know as well that (Mono,Epi) is
a stable weak factorisation system. This yields that

(
Mono,Epi

)
is an oplax

weak factorisation system for P (Set). We also have that (Epi,Mono) is a
stable orthogonal factorisation system. This yields that

(
Epi,Mono

)
in an

oplax awfs.

Remark 4. We conclude pointing out that
(
Mono,Epi

)
-factorisations are

not unique. In fact given a partial map f 6= Ø, it can be factorised as

Df
��

σf

��

idDf
×ϕf

&&

Df ×B
��

idDf×B

��

πB

&&

A � // Df ×B � // B,

(7.xiv)
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but it can be also factorised as

Df
��

σf

��

iDf

&&

Df qB
��

idDfqB

��

fqidB

&&

A � // Df qB � // B.

(7.xv)

7.3. From Oplax wfs on partial maps to wfs on total maps. We
consider a category of partial maps P (C ) and (L,R) either a lax or an
oplax weak factorisation system on P (C ). We would like to analyse what
kind of structure it generates on C .

We start by considering whether the orthogonality relations are preserved
through this restriction. If we restrict to total maps, then lax and oplax
squares reduce to commutative ones. We aim to prove that two total maps
that are oplax weakly orthogonal (f ∨| g), then they are also weakly orthogonal
(f � g) in the ordinary sense.

Lemma 1. Let (L,R) be an oplax weak factorisation system. Then
(L ∩Tot) � (R∩Tot).

Proof : We consider a commutative square formed by total maps and such
that l ∈ L and r ∈ R; then there exists a partial map δ that is an (op)lax
diagonal morphism as

A

l

��

u
// C

r

��

B v
//

δ

>>

D.

(7.xvi)

If (L,R) is an oplax weak factorisation system, then we have that v � r · δ
and being v a total map, it is an equality. Moreover r · δ is then total and,
by the rules of composition, δ is total as well. What said yields that the
upper triangle must be commutative as well and therefore the oplax weak
orthogonality relation restricts to a strict weak orthogonal relation among
total maps.

Proposition 7. Any total morphism admits an (L,R)-factorisation com-
posed of total morphisms as well.

Proof : For every partial map f and its (L,R)-factorisation we want to obtain
another factorisation with a total right component, since we already know
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that, if f is total, then its L-component has to be total. We can build the
following diagram for any partial morphism f :

Df
��

σf
��

ϕf

  

A �

f
// B

7−→

Df
��

��

ϕl
  

��

σf

��

ϕf

��

Dl
��

σl
��

ϕl

!!

Dr
��

σr
��

ϕr

  

A �

lf

// K �
rf
// B

7−→

Df
��

idDf
��

ϕl

  

��

σf

��

ϕf

��

Df
��

σf
��

ϕl
  

Dr
��

idDr
��

ϕr

  

A �

lf

// Dr
�

rf
// B.

Now we must understand whether lf ∈ L and rf ∈ R. We first prove this
helpful fact.

Remark 5. We consider the following adjoint morphisms (idDr
, σr) a

(σr, idDr
). We define lf = ν · lf and rf = rf · µ and by the adjunction

2-cells we obtain that {
µ · lf = µ · ν · lf � lf

rf · ν = rf · µ · ν � rf .

By directly computing we actually get that rf = rf · ν. Moreover Dl = Df if
and only if lf = µ · lf .

We consider rf and we prove that it lies in R. We take l ∈ L and an oplax
square (u, v) : l −→ rf . We can build the diagram

C

l

��

u
//

µ·ν
%%

Dr

rf

��

µ
}}

K

rf
��

D v
//

δ

>>

B

where the upper and right triangles are commutative and δ is an oplax di-
agonal morphism lifting l ∈ L against rf ∈ R. We consider a diagonal ν · δ.
Then considering the outer square we have{

ν · δ · l � ν · µ · u = u;

rf · ν · δ = rf · δ � v.

Hence ν · δ is an oplax diagonal morphism for l against rf and in conclusion
rf ∈ R.
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Let us consider lf . For any r ∈ R part of an oplax square as the outer
diagram

A

lf

��

u
//

lf
��

C

r

��

K

δ

==

ν·µ
&&

ν}}

Dr v
// D,

again the lower and left triangles are commutative and δ is a lax/oplax di-
agonal morphism lifting lf ∈ L against r ∈ R. Now the diagonal morphism
for the outer diagram is δ · µ and the proof proceeds analogously. Hence we
have that lf ∈ L.

Remark 6. As for the lax case regarding (7.xvi), we obtain u � δ · l and
r · δ � v, which do not imply in general that δ is total. Hence we cannot
deduce the commutativity of any triangle in the diagram. Nonetheless one
can reproduce the same process of extracting a total factorisation from any
factorisation for total maps. This process in the lax case is in fact successful,
but only for morphisms f such that Dl = Df .

We conclude this section by proving the following proposition.

Proposition 8. Let P (C ) be a category of partial maps and (L,R) an oplax
wfs. Then (LTot,RTot) is a weak factorisation system for C .

Proof : As we have seen above the oplax weak orthogonality relation restricts
to a weak orthogonality relation among total maps, henceforth LTot�RTot. If
f�RTot, then f has a (LTot,RTot)-factorisation f = rf ·lf . The commutative
square (lf , idB) : f −→ rf has a diagonal morphism δ and, in particular,
rf ·δ = idB. Since rf is a coretract and L is closed under coretract composition
to the left, then it is easily proved that f ∈ LTot, thus �RTot = LTot. A dual
argument proves, using retract closure of R, that L�

Tot = RTot. This yields
the thesis.

8. Factorisations for pointed categories of partial maps
Our goal for the following section is to discuss a process to obtain lax and

oplax weak factorisation systems for pointed categories of partial maps. In
the first part we will show how this process is carried out for P (Set), and
then we will try to generalise it for any pointed category of partial maps.
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8.1. Setwith partial maps. In the following section we will consider the
category of partial maps among sets, together with the Ord-enrichment in-
duced by the discrete order in Set. In P (Set) Ø is a zero object. In fact for
every pair of sets A,B we have the zero map

Ø
��

��

  

  

A �

ØA,B

// B.

(8.i)

We define the class of morphisms

O = {ØA,B|A,B ∈ Set} . (8.ii)

We will apply Proposition 2 and its dual to O.

• First we consider an f ∈ ∧| O. There exists a lax diagonal morphism
f ∗ for the lax square (idA, idB) : f −→ ØA,B and hence there exists
the 2-cell idA � f ∗ · f . We notice that the existence of this 2-cell
yields that f is a left adjoint to f ∗, hence the lax factorisation system
is trivial.
• We consider now f ∈ O∧| . We notice that any lax square (u, v) :

Ø −→ f yields that f · u = Ø. It is straightforward to prove that
there exists a lax diagonal lifting if and only if u = Ø. We deduce
that

O∧| = {f |f · u = Ø ⇒ u = Ø} . (8.iii)

This in P (Set) is equivalent to have that f is a total map. In fact,
any total map belongs to O∧| trivially. Moreover if f : A→ B is not
total, then any non-zero map g whose image is a subset of A\Df , is

Ø when composed with f . We conclude that O∧| = Tot. As seen
in Section 6, the factorisation system that is generated is therefore(
S,Tot

)
, since in P (Set) we have that PLA = S.

• Then we consider ∨| O. Similarly to the previous case, we can deduce
that f ∈ ∨| O if and only if for any morphism v, v · f = Ø implies
that v = Ø, and it is equivalent to surjectivity of f . Hence ∨| O =
Epi. As discussed before in Example 1 Epi is part of the oplax awfs(
Epi,Mono

)
.

• Finally we consider f ∈ O∨| . Then in particular there exists an oplax
diagonal lifting f∗ for the oplax square (idA, idB) : Ø −→ f and the



26 LARIZZA, L.

2-cell idA � f ·f∗. Moreover the existence of such morphism and 2-cell
is easily shown to be a sufficient condition that implies f ∈ O∨| , since
f∗ is a tool to build oplax diagonal morphisms for any other oplax
squares. We observe that, in the context of P (Set), this condition is
equivalent to f ∈ Epi. Again we know that Epi is part of the oplax
factorisation system

(
Mono,Epi

)
, as shown in Example 1.

8.2. Factorisations for pointed categories of partial maps. In the
following subsection, we will try to expand the process described for P (Set)
and O and apply it to other categories with similar properties.

Along this section we will assume that the Ord-category C has an initial
object I and that all initial morphisms iX lie in S, implying in particular
that they are monomorphisms. We notice that I is still an initial object in
P (C ) and that for any A,B the partial morphism ι = (iA, iB) is minimal
in C (A,B). In fact for any partial map f , the arrow iDf

shows that ι ≤ f .
On the other hand if f ≤ ι, then there exists s : Df � I, where s is
monomorphic, which yields that f = ι. We can consider now the class of
minimal maps

O = {ι = (iA, iB) : A −→ B|A;B ∈ Ob (C )} . (8.iv)

Remark 7. We observe that in P (C ) the initial object I of C is a zero
object whenever I is either a zero object or a strict initial object.

This is true since the choice for the component ϕ− becomes unique when
the codomain is I under the said assumption. We recall that cartesian closed
categories, such as Set, Cat, any topos, and distributive categories have
strict initial objects.

We remark that the property described in Remark 7 is not always needed.
In fact, we are interested in the property of minimal maps of being left or
right absorbent, meaning that when a minimal map is composed on the left
or on the right with any other composable morphism, then the composition
is a minimal morphism in the corresponding Hom-Set.

Lemma 2. For any P (C ), a minimal map f such that Df = I is right
absorbent. Whenever I is actually a zero-object, then it is both left and right
absorbent.

This is trivial considering that the partial domain of the composition is
a subobject of the partial domain of the first morphism and I admits only
itself as a subobject.
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Henceforth the hypothesis that I is a zero-object in P (C ) is needed only
while discussing the left complements ∧| O and ∨| O.

We will now apply Proposition 2 to the class O; this result will enable us
to reproduce the process in O in two directions for the lax case.

(1) We consider ∧| O. Let f : A −→ B be a partial map laxly weakly
orthogonal to O. Then there is a lax diagonal f ∗ for the lax square
(idA, idB) : f −→ 0. While 0·f ∗ = 0 ≤ idB always exists by minimality
of zero maps, the 2-cell idA ≤ f ∗ · f does not exist in general. This
property of f of having a paired arrow f ∗ such that idA ≤ f ∗ · f is
also a sufficient condition for f to be in ∧| O. In conclusion

U =∧| O = {f | idA ≤ f ∗ · f for some f} . (8.v)

Unfortunately we could not find a general description of U∧| . Still we
present our:

Conjecture 1. The complement U∧| = {f |f · f ∗ ≤ idB for some f ∗},
the intersection U∧| ∩ U being exactly the left adjoint morphisms.

Remark 8. If the partial order on P (C ) is induced by the discrete partial
order on C , then we can refine the description of some complements of O.
In fact, this Ord-enrichment yields that ∧| O is actually the class of coretract
partial morphisms LI, which is the class of left adjoint morphisms. In this
case the factorisation produced is the trivial (LA,All).

2. We now consider O∧| . If (u, v) : 0 −→ f is a lax square, then f ·u = 0,
since zero maps are absorbent and minimal. If f ∈ O∧| , then there
exists a lax diagonal morphism δ as in

A
u

//

≥

0

��

C

f

��

B

δ

>>

v
// D.

≥

(8.vi)

We notice that a necessary and sufficient condition for the existence
of such δ is that u = 0. So we have that

O∧| = DD = {f |f · u = ι =⇒ u = ι} . (8.vii)

The notation DD denotes those maps whose partial domain is maxi-
mal as a proper S-subobject. Inspired by the example of topological
spaces below, we chose to call dense domain partial maps.
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Remark 9. As we proved above, in Setwe have that DD = Tot, and there-

fore
(
∧| DD,DD

)
=
(
S,Tot

)
. In general we know that DD ⊇ Tot, but

the other inclusion is not always true. In fact, we have counterexamples of
partial morphisms which are not total, but have a dense domain:

• in Ab maps such as

Z
��

2

�� ��

Z � // Z

Z
��

i

�� ��

Q � // Z

are not total, but it is easily proved that they have dense domains.
• for the category of topological spaces equipped open maps, we have

that a domain is dense exactly when the domain is a topologically
dense subobject of the domain, so any morphism f such that σf = j :
[0, 1[ −→ [0, 1] is not total and yet it has a dense domain.

Since total maps have always a dense domain, we have that
(
S,Tot

)
≤(

∧| DD,DD
)

.

We briefly state the two counterparts for C 2
oplax that arise in a similar

fashion.

(1) The left oplax complement is

DI =∨| O = {f |v · f = ι =⇒ v = ι} , (8.viii)

where the notation DI refers to dense image maps among partial
maps.

(2) Considering ∨| O one can prove that

V = O∨| = {f |idB ≤ f · f∗ for some f∗} . (8.ix)

We conjecture again:

Conjecture 2. The complement V∨| = {f |f · f∗ ≤ idA for some f∗},
the intersection being exactly the right adjoint morphisms.

Remark 10. We consider now an f ∈ O∨| ; then there exists an oplax di-
agonal morphism δ for the oplax square (idA, idB) : ιA,B −→ f . Since the
identity is total, the lower triangle is indeed commutative, therefore f is a
split epimorphism ( li). On the other hand if f has a right inverse f ′, then
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in any oplax square determined by the cell v · ι ≤ f · v, the morphism f ′ · v is
an oplax diagonal morphism. This yields that O∨| = LI.

Considering the fact that the intersection of the two classes must be the
class of right adjoint morphisms, i.e. f such that ϕf is an isomorphism, we
conjecture the following.

Conjecture 3. The oplax weak orthogonal complement ∨| LI is S.

Remark 11. Looking carefully at the arguments we notice that the process
described does not use specific tools for categories of partial maps. In fact
the main ingredients is to consider an Ord-enriched category such that every
Hom-Set has a minimal element and the class of such minimal elements are
absorbent. The description of the complements is essentially the same as
above and can be carried out for pointed Ord-enriched categories such that
0-maps are minimal in their Hom-Sets.

Even if it has been difficult to give a better description for such com-
plements, we remark that in general these classes appear to be non-trivial.
To reduce to cases where these classes are trivial we actually have to im-
pose strong restrictions on C and S, such as having only split epimorphisms
among the arrows or similar assumptions.

Conclusion
In conclusion we have presented how the introduction of a lax weak or-

thogonality relation induces new notions of factorisation systems that carry
similar facets to their discrete counterparts. We have defined the general no-
tion of lwfs and lffs, showing how they relate to each other and discussed
examples and constructions in categories of partial maps.

Future developments of this study will be expanding the set of examples
and applications of these structures.

Moreover an interesting future direction is to explore the connection be-
tween this work and the characterization of lax orthogonal factorisation sys-
tems presented by John Bourke and Charles Walker in [Walker, 2020], in
particular studying the relations between down factorization systems, that
they introduce, and the lax and oplax factorisation systems that we have
introduced; in particular some of the examples we provide that carry similar
properties to their structures.

Our work on partial morphisms is also connected to the recent
[Cockett et al., 2021], in which some similar constructions are introduced.
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In particular this work focuses as well on the relation between factorisation
systems on a category of partial maps and the stable factorisation systems
on the base category.
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onal factorisations in ordered structures. Theory Appl. Categ., 35(36):1379–1423.

[Cockett et al., 2021] Cockett, R., Cruttwell, G., Gallagher, J., and Pronk, D. (2021). Latent fac-
torization systems for restriction categories. In preparation.

[Fiore, 2004] Fiore, M. P. (2004). Axiomatic domain theory in categories of partial maps, vol-
ume 14. Cambridge University Press.

[Freyd and Kelly, 1972] Freyd, P. J. and Kelly, G. M. (1972). Categories of continuous functors, i.
J. Pure Appl. Algebra, 2(3):169–191.

[Garner, 2009] Garner, R. (2009). Understanding the small object argument. Appl. Categ. Struc-
tures, 17(3):247–285.

[Grandis and Tholen, 2006] Grandis, M. and Tholen, W. (2006). Natural weak factorization sys-
tems. Arch. Math., 42(4):397–408.
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