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on closed balls in Rn, some of which related either to the Hadamard product of
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1. Introduction
Interval mathematics, a part of set theory, is involved in the computing par-

adigm of information processing known as granular computing – concerned
with constructing and processing using information granules, to intelligently
comprehend and interact with the world. As stated in [12], the appearance of
electronic computers enhanced the practicality and the interest in calculating
with sets of numbers, also in identifying associated algebraic structures, for
error control purposes.

The works [7], due to Gargantini and Henrici, and [2], by Alefeld and
Herzberger, are devoted to circular complex interval arithmetic which deals
with the so-called circular complex intervals (closed balls in C). More recent
research related to interval mathematics, in the context of granular com-
puting, can be found in [12] and in the journal with the same name as the
context. In addition, an overview of ball arithmetic as a tool for rigorous
algebraic computation with real numbers was presented in [11].

Inspired by [2] and [7], we extend some known results for certain operations
on closed balls in C, which can be identified with R2, to closed balls in Rn.
To begin with, in section 2, we recall definitions and state results related to
closed balls, vector cross products and the Hadamard product of vectors. As
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highlighted in [3], the former products can be found in mathematical models
of physical processes, namely in control theory, and in the description of
spacecraft attitude control. The latter product, as mentioned in [5] and
references therein, appears in applications to: lossy compression algorithms
for JPEG images; machine learning, namely for describing the architecture
of neural networks.

In section 3, we study the properties of certain operations on closed balls
in Rn, some of which related either to the Hadamard product of vectors or
to the 2-fold vector cross product when n ∈ {3, 7}. As a consequence, sev-
eral algebraic structures, with one or two binary operations, are presented.
In particular, recalling a sufficient condition over fields of characteristic 0
given in [1], examples of power associative algebras are exhibited. Inclusion
monotonicity, which according to [2] is the foundation for many applications
of interval arithmetic, is satisfied by some of the mentioned operations. For
other aspects connected with vector cross products and the Hadamard prod-
uct, see, for instance, the references [6], [8] and [9], [13].

2. Preliminaries
Let F be a field of characteristic different from 2. Let V be a d-dimensional

vector space over F , equipped with a nondegenerate symmetric bilinear form
(·|·). A bilinear map × : V × V → V is a 2-fold vector cross product if, for
any u, v ∈ V ,

(1) (u× v|u) = (u× v|v) = 0,

(2) (u× v|u× v) =

∣∣∣∣ (u|u) (u|v)
(v|u) (v|v)

∣∣∣∣.
It is well known that if × is a 2-fold vector cross product on V , then d ∈
{1, 3, 7} and, in particular, d = 1 leads to the trivial case, [4]. In fact, the
restriction on d is a consequence of the generalized Hurwitz Theorem which
asserts that, over a field of characteristic different from 2, if A is a finite
dimensional composition algebra with identity (also called Hurwitz algebra),
then its dimension is equal to 1, 2, 4 or 8. Moreover, A is isomorphic either to
the base field, a separable quadratic extension of the base field, a generalized
quaternion algebra or a generalized octonion algebra, [10].

Throughout the article, we work in the Euclidean vector space Rn and de-
note the Euclidean norm of a vector, the∞-norm of a vector, the Hadamard
(componentwise) product of vectors and, whenever n ∈ {3, 7}, the 2-fold
vector cross product by, respectively, ‖ · ‖, ‖ · ‖∞, ◦ and ×.
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Let a ∈ Rn and let r ∈ R+
0 . We call A = {x ∈ Rn : ‖x− a‖ ≤ r} the closed

ball in Rn with center a and radius r, also written as A = 〈a; r〉. The set of
closed balls in Rn is denoted by B, and by B+ or B0 if, respectively, r ∈ R+

or r = 0.
Let A = 〈a; r1〉, B = 〈b; r2〉 ∈ B. The closed balls A and B are equal

(A = B) if there is set-theoretic equality between them, that is, a = b and
r1 = r2. A is contained in B (A ⊆ B) if set-theoretic inclusion holds, which
is equivalent to the condition established in the subsequent result.

Theorem 2.1. Let A = 〈a; r1〉, B = 〈b; r2〉 ∈ B. Then A ⊆ B if and only if
‖a− b‖ ≤ r2 − r1.

Proof : (⇐) Let x ∈ A. Then ‖x − a‖ ≤ r1. Observe that ‖x − b‖ =
‖x− a + a− b‖ ≤ ‖x− a‖ + ‖a− b‖ ≤ r1 + r2 − r1 = r2. We conclude that
x ∈ B.

(⇒) Suppose that A ⊆ B and, by way of contradiction, that ‖a − b‖ >
r2 − r1. Consider the line passing through a and b. This line intersects the
border of A at a point x such that ‖x−b‖ = ‖a−b‖+‖x−a‖ > r2−r1+r1 = r2.
Hence, x /∈ B – a contradiction.

Corollary 2.2. Let A = 〈a; r1〉, B = 〈a; r2〉 ∈ B. Then A ⊆ B if and only if
r1 ≤ r2.

Proof : A direct consequence of Theorem 2.1 since the closed balls are con-
centric.

3. Operations
3.1. Addition and Subtraction. Consider the binary operation +B : B ×
B → B given by

A+B B = 〈a; r1〉+B 〈b; r2〉 := 〈a+ b; r1 + r2〉.

The subsequent results establish several properties related to the addition
+B.

Theorem 3.1. (B,+B) is a commutative monoid.

Proof : Let A = 〈a; r1〉, B = 〈b; r2〉, C = 〈c; r3〉 ∈ B.
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Owing to the associativity of the addition in Rn and to the associativity of
the addition in R, we obtain

(A+B B) +B C = 〈(a+ b) + c; (r1 + r2) + r3〉
= 〈a+ (b+ c); r1 + (r2 + r3)〉
= A+B (B +B C).

Thus, +B is associative.
Due to the commutativity of the addition in Rn and to the commutativity

of the addition in R, we get

A+B B = 〈a+ b; r1 + r2〉 = 〈b+ a; r2 + r1〉 = B +B A.

Hence, +B is commutative.
Taking into account the commutativity of +B, and the neutral elements of

Rn and R relative to the respective additions, we have

〈a; r1〉+B 〈0; 0〉 = 〈a; r1〉.

Thus, the neutral element of (B,+B) is E = 〈0; 0〉.

Corollary 3.2. The set of elements of B which possess reciprocal relative to
+B is B0.

Proof : Let A = 〈a; r1〉 ∈ B. Suppose that A′ = 〈a′; r′1〉 ∈ B is the reciprocal
of A relative to +B. Then we have

A+B A
′ = E ⇔ 〈a+ a′; r1 + r′1〉 = 〈0; 0〉 ⇔ a+ a′ = 0 ∧ r1 + r′1 = 0.

Hence, a′ = −a and, taking into account the definition of B, r1 = 0. There-
fore, the reciprocal of 〈a; 0〉 relative to +B is 〈−a; 0〉.

Lemma 3.3. Let A = 〈a; r1〉, B = 〈b; r2〉 ∈ B. Then

A+B B = {x+ y : x ∈ A ∧ y ∈ B}.

Proof : (⊇) Let x ∈ A and y ∈ B. Then, ‖x − a‖ ≤ r1, ‖y − b‖ ≤ r2 and
‖x+y−(a+b)‖ ≤ ‖x−a‖+‖y−b‖ ≤ r1 +r2. Consequently, x+y ∈ A+BB.

(⊆) Let u ∈ A +B B. Then ‖u − (a + b)‖ ≤ r1 + r2. If r1 + r2 = 0 then
u = a+ b and the inclusion follows. If r1 + r2 6= 0, then consider u written as
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v+ (u− v) with v = αu+ (1−α)(a+ b)− b, where α = r1
r1+r2

. Then we have

‖v − a‖ = α‖u− (a+ b)‖ ≤ r1

r1 + r2
(r1 + r2) = r1

‖u− v − b‖ = (1− α)‖u− (a+ b)‖ ≤ r2

r1 + r2
(r1 + r2) = r2

Therefore, v ∈ A and u− v ∈ B.

The next result shows that inclusion monotonicity is satisfied by +B.

Theorem 3.4. Let Am, Bm ∈ B,m ∈ {1, 2}. If Am ⊆ Bm, m ∈ {1, 2}, then
A1 +B A2 ⊆ B1 +B B2.

Proof : Let Am, Bm ∈ B such that Am ⊆ Bm, m ∈ {1, 2}. From Lemma 3.3,
we have

A1 +B A2 = {x+ y : x ∈ A1 ∧ y ∈ A2}
⊆ {x+ y : x ∈ B1 ∧ y ∈ B2}
= B1 +B B2.

Taking into account Corollary 3.2, it is not possible to define the subtrac-
tion of elements in B as the addition with the reciprocal relative to +B. In
this sense, we finish the section with an alternative definition. Consider the
binary operation −B : B × B → B given by

A−B B = 〈a; r1〉 −B 〈b; r2〉 := 〈a− b; r1 + r2〉.

Theorem 3.5. (B,−B) is a groupoid with right neutral element.

Proof : Let A = 〈a; r1〉 ∈ B. Then A −B E = 〈a; r1〉 −B 〈0; 0〉 = 〈a; r1〉.
Hence, the right neutral element of (B,−B) is the neutral element E = 〈0; 0〉
of (B,+B).

3.2.Multiplication ×B,r. Consider the binary operation ×B,r : B ×B → B
given by

A×B,r B = 〈a; r1〉 ×B,r 〈b; r2〉 := 〈a× b+ r2a+ r1b; r1r2〉.
Let {ei : i = 1, 2, 3} be the canonical basis of R3. From Theorem 2.1,
〈e1; 1〉 ⊆ 〈e1; 2〉 and 〈e2; 1〉 ⊆ 〈3e2; 3〉. However, by the same result, 〈e1; 1〉×B,r
〈e2; 1〉 = 〈e1 + e2 + e3; 1〉 6⊆ 〈e1; 2〉 ×B,r 〈3e2; 3〉 = 〈3e1 + 6e2 + 3e3; 6〉. Thus,
inclusion monotonicity is not satisfied by ×B,r.
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Despite not satisfying commutativity, anti-commutativity, and associativ-
ity, there are some properties which hold for the multiplication ×B,r.
Theorem 3.6. (B,×B,r) is a groupoid with neutral element.

Proof : Let A = 〈a; r1〉 ∈ B. Then

〈a; r1〉 ×B,r 〈0; 1〉 = 〈a; r1〉 = 〈0; 1〉 ×B,r 〈a; r1〉.
Therefore, the neutral element of (B,×B,r) is 〈0; 1〉.
Corollary 3.7. The set of elements of B which possess reciprocal relative to
×B,r is B+.

Proof : Let A = 〈a; r1〉 ∈ B+. As

〈a; r1〉 ×B,r 〈−
1

r2
1

a;
1

r1
〉 = 〈0; 1〉 = 〈− 1

r2
1

a;
1

r1
〉 ×B,r 〈a; r1〉,

then the reciprocal of A = 〈a; r1〉 relative to ×B,r is A′ = 〈− 1
r21
a; 1

r1
〉.

Taking into account the previous result, now consider the binary operation
:B+,r: B+ × B+ → B+ given by

A :B+,r B := A×B,r B′,
where B′ denotes the reciprocal of B relative to ×B,r.
Corollary 3.8. (B+, :B+,r) is a groupoid with right neutral element.

Proof : As a consequence of Theorem 3.6, by the definition of :B+,r, we con-
clude that the right neutral element of (B+, :B+,r) is 〈0; 1〉.

The following results concern powers. We define the right powers of an
element A ∈ B by A0 = 〈0; 1〉 and Ak = Ak−1 ×B,r A for k ∈ N.

Theorem 3.9. (B,×B,r) is a power associative algebra.

Proof : We want to prove that, for all m, s ∈ N and for all A ∈ B, As ×B,r
Am = As+m. By [1], it suffices to show that A2 ×B,r A = A ×B,r A2 and
(A2 ×B,r A)×B,r A = A2 ×B,r A2.

Let A = 〈a; r1〉 ∈ B. We obtain

A2 ×B,r A = 〈2r1a; r2
1〉 ×B,r 〈a; r1〉

= 〈3r2
1a; r3

1〉
= 〈a; r1〉 ×B,r 〈2r1a; r2

1〉
= A×B,r A2
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and

(A2 ×B,r A)×B,r A = 〈3r2
1a; r3

1〉 ×B,r 〈a; r1〉
= 〈4r3

1a; r4
1〉

= 〈2r1a; r2
1〉 ×B,r 〈2r1a; r2

1〉
= A2 ×B,r A2.

Theorem 3.10. Let A = 〈a; r1〉 ∈ B. For all k ∈ N, Ak = 〈krk−1
1 a; rk1〉.

Proof : Let A = 〈a; r1〉 ∈ B. It is straightforward to see that the base case
holds. As for the induction step, we have

Ak = Ak−1 ×B,r A = 〈(k − 1)rk−2
1 a; rk−1

1 〉 ×B,r 〈a; r1〉 = 〈krk−1
1 a; rk1〉.

Theorem 3.11. Let A = 〈a; r〉 ∈ B+. The square root of A is given by
A1/2 = 〈 1

2r1/2
a; r1/2〉.

Proof : Let A = 〈a; r〉 ∈ B+. Let B = 〈b; s〉 ∈ B such that B2 = A. Hence,
s2 = r and b× b+ 2sb = a, from where the result follows.

We end the section with a result that relates ×B,r to +B.

Theorem 3.12. (B,+B,×B,r) is a ringoid.

Proof : Let A = 〈a; r1〉, B = 〈b; r2〉, C = 〈c; r3〉 ∈ B. As × is bilinear, we have

A×B,r (B +B C) = 〈a; r1〉 ×B,r 〈b+ c; r2 + r3〉
= 〈a× (b+ c) + (r2 + r3)a+ r1(b+ c); r1(r2 + r3)〉
= 〈a× b+ r2a+ r1b+ a× c+ r3a+ r1c; r1r2 + r1r3〉
= A×B,r B +B A×B,r C

An analogous reasoning provides the proof of the right distributivity. Thus,
×B,r is distributive relative to +B.

3.3.Multiplication ×B,c. Consider the binary operation ×B,c : B ×B → B
given by

A×B,c B = 〈a; r1〉 ×B,c 〈b; r2〉 := 〈a× b; r2‖a‖+ r1‖b‖+ r1r2〉.
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Although commutativity, anti-commutativity, associativity, existence of
neutral element and power associativity do not hold, other properties are
satisfied by the multiplication ×B,c.

Theorem 3.13. Let A = 〈0; r〉 ∈ B. The square roots of A are given by

A1/2 = 〈b;−‖b‖+
√
‖b‖2 + r〉, with b ∈ Rn.

Proof : Let A = 〈0; r〉 ∈ B. Let B = 〈b; s〉 ∈ B such that B ×B,c B = A. We

obtain s2 + 2‖b‖s− r = 0 and, as r, s ∈ R+
0 , s = −‖b‖+

√
‖b‖2 + r.

The next result shows that inclusion monotonicity is satisfied by ×B,c.

Theorem 3.14. Let Am, Bm ∈ B,m ∈ {1, 2}. If Am ⊆ Bm, m ∈ {1, 2}, then
A1 ×B,c A2 ⊆ B1 ×B,c B2.

Proof : Let Am = 〈am; rm〉, Bm = 〈bm; sm〉 ∈ B such that Am ⊆ Bm, m ∈
{1, 2}. Then, by Theorem 2.1, ‖am − bm‖ ≤ sm − rm, m ∈ {1, 2}. We also
have

A1 ×B,c A2 = 〈a1 × a2; r2‖a1‖+ r1‖a2‖+ r1r2〉,
B1 ×B,c B2 = 〈b1 × b2; s2‖b1‖+ s1‖b2‖+ s1s2〉.

From

‖a1 × a2 − b1 × b2‖
= ‖ − b2 × (a1 − b1) + b1 × (a2 − b2) + (a1 − b1)× (a2 − b2)‖
≤ ‖b2‖‖a1 − b1‖+ ‖b1‖‖a2 − b2‖+ ‖a1 − b1‖‖a2 − b2‖
≤ ‖b2‖(s1 − r1) + ‖b1‖(s2 − r2) + (s1 − r1)(s2 − r2)

and

−‖bm‖ ≤ −‖am‖+ ‖am − bm‖ ≤ −‖am‖+ sm − rm,m ∈ {1, 2},

we get ‖a1 × a2 − b1 × b2‖ ≤ β − α, where β = s2‖b1‖ + s1‖b2‖ + s1s2 and
α = r2‖a1‖ + r1‖a2‖ + r1r2. Invoking once again Theorem 2.1, the result
follows.

We finish the section with a result that relates ×B,c to +B.

Theorem 3.15. The operation ×B,c is subdistributive with respect to +B.
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Proof : Let A = 〈a; r1〉, B = 〈b; r2〉, C = 〈c; r3〉 ∈ B. Invoking Corollary 2.2,
we have

A×B,c (B +B C) = 〈a; r1〉 ×B,c 〈b+ c; r2 + r3〉
= 〈a× (b+ c); (r2 + r3)‖a‖+ r1‖b+ c‖+ r1(r2 + r3)〉
⊆ 〈a× b+ a× c; r2‖a‖+ r1‖b‖+ r1r2 + r3‖a‖+ r1‖c‖+ r1r3〉
= A×B,c B +B A×B,c C

Hence, left subdistributivity is valid. Through a similar reasoning, the right
subdistributivity also holds.

3.4. Multiplication ◦B,r. Consider the binary operation ◦B,r : B × B → B
given by

A ◦B,r B = 〈a; r1〉 ◦B,r 〈b; r2〉 := 〈a ◦ b+ r2a+ r1b; r1r2〉.
As, by Theorem 2.1, A1 = 〈(0, 1); 1〉 ⊆ B1 = 〈(−2, 1); 3〉, A2 = 〈(1, 0); 1〉 ⊆

B2 = 〈(1,−2); 3〉, but A1 ◦B,r A2 = 〈(1, 1); 1〉 * B1 ◦B,r B2 = 〈(−5,−5); 9〉,
then ◦B,r does not satisfy the inclusion monotonicity. However, the following
properties hold for the multiplication ◦B,r.

Theorem 3.16. (B, ◦B,r) is a commutative monoid.

Proof : Since the Hadamard product ◦ of vectors is associative and com-
mutative on Rn, so is the operation ◦B,r. It is straightforward to verify
that 〈a; r1〉 = 〈a; r1〉 ◦B,r 〈0; 1〉 and, thus, 〈0; 1〉 is the neutral element of
(B, ◦B,r).

Theorem 3.17. The set of elements of B which possess reciprocal relative to
◦B,r is {A = 〈a; r1〉 ∈ B+ : a = (a1, . . . , an) ∈ Rn ∧ ai 6= −r1, i ∈ {1, . . . , n}}.

Proof : Let A=〈a; r1〉 ∈ B+. Let b = (b1, . . . , bn) ∈ Rn such that 〈a; r1〉 ◦B,r
〈b; 1/r1〉 = 〈0; 1〉. Then, from a ◦ b+ 1

r1
a+ r1b = 0 it follows that

aibi +
1

r1
ai + r1bi = 0, i ∈ {1, . . . , n}.

This leads to a linear system of n equations in n unknowns bi, whose unique
solution is b with bi = − ai

r1(ai+r1) , i ∈ {1, . . . , n}.

The subsequent results concern powers. We define the powers of an element
A = 〈a; r1〉 ∈ B by A0 = 〈0; 1〉 and Ak = Ak−1 ◦B,r A for k ∈ N. Analogously,
let us denote (1, . . . , 1) by a◦0 and a◦(k−1) ◦ a by a◦k for k ∈ N.
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Theorem 3.18. (B, ◦B,r) is a power associative algebra.

Proof : Invoking Theorem 3.16, due to the commutativity and to the associa-
tivity of ◦B,r, A2 ◦B,r A = A ◦B,r A2 and (A2 ◦B,r A) ◦B,r A = A2 ◦B,r A2 hold
for all A ∈ B.

Theorem 3.19. Let A = 〈a; r1〉 ∈ B. For all k ∈ N, Ak = 〈
∑k

i=1

(
k
i

)
rk−i1 a◦i; rk1〉.

Proof : We proceed by induction on k. Clearly, the equality is valid for k = 1.
Let us suppose that it is true for k. Then,

Ak+1 = Ak ◦B,r A = 〈
∑k

i=1

(
k
i

)
rk−i1 a◦i; rk1〉 ◦B,r 〈a; r1〉

= 〈
∑k

i=1

(
k
i

)
rk−i1 a◦(i+1) +

∑k
i=1

(
k
i

)
rk+1−i

1 a◦i + rk1a; rk+1
1 〉

= 〈a◦(k+1) +
∑k

i=2

[(
k

i−1

)
+
(
k
i

)]
rk+1−i

1 a◦i + (k + 1)rk1a; rk+1
1 〉

= 〈
∑k+1

i=1

(
k+1
i

)
rk+1−i

1 a◦i; rk+1
1 〉.

Theorem 3.20. Let A = 〈a; r1〉 ∈ B with a = (a1, . . . , an) ∈ Rn. If r1 + ai ∈
R+

0 for i ∈ {1, . . . , n}, then the square roots of A are given by A1/2 = 〈b; r1/2
1 〉,

where b = (b1, . . . , bn) ∈ Rn with bi = −√r1 ±
√
r1 + ai for i ∈ {1, . . . , n}.

Proof : Let B = 〈b; s〉 ∈ B such that A = B2. Then, 〈a; r1〉 = 〈b◦2 + 2sb; s2〉.
So, we have s2 = r1 and b2

i + 2sbi − ai = 0 for i ∈ {1, . . . , n}. Since, for each
i, the discriminant belongs to R+

0 , then bi = −s ±
√
s2 + ai and the result

follows.

The last result of the section shows an algebraic structure which relates
+B to ◦B,r.
Theorem 3.21. (B,+B, ◦B,r) is a commutative semiring.

Proof : Since, from Theorem 3.1 and Theorem 3.16, (B,+B) and (B, ◦B,r) are
commutative monoids, it only remains to prove that ◦B,r is distributive with
respect to +B.

Let A = 〈a; r1〉, B = 〈b; r2〉 and C = 〈c; r3〉, then

A ◦B,r (B +B C) = 〈a; r1〉 ◦B,r (〈b; r2〉+B 〈c; r3〉)
= 〈a ◦ (b+ c) + (r2 + r3)a+ r1(b+ c); r1(r2 + r3)〉
= 〈a ◦ b+ a ◦ c+ r2a+ r3a+ r1b+ r1c; r1r2 + r1r3〉
= 〈a ◦ b+ r2a+ r1b; r1r2〉+B 〈a ◦ c+ r3a+ r1c; r1r3〉
= (A ◦B,r B) +B (A ◦B,r C).
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3.5. Multiplication ◦B,c. Consider the binary operation ◦B,c : B × B → B
given by

A ◦B,c B = 〈a; r1〉 ◦B,c 〈b; r2〉 := 〈a ◦ b; r1‖b‖∞ + r2‖a‖∞ + r1r2〉.
Since ‖a ◦ b‖∞ 6= ‖a‖∞‖b‖∞ for some a, b ∈ Rn, the multiplication ◦B,c is

not associative. Despite this, there are several properties satisfied by ◦B,c.

Theorem 3.22. (B, ◦B,c) is a commutative groupoid with neutral element.

Proof : It is clear that ◦B,c is commutative. Let us denote (1, . . . , 1) ∈ Rn by
1. If A = 〈a; r〉 ∈ B, then

A ◦B,c 〈1; 0〉 = 〈a ◦ 1; r〉 = A.

So, 〈1; 0〉 is the neutral element of (B, ◦B,c).

Theorem 3.23. The set of elements of B which possess reciprocal relative to
◦B,c is {A = 〈a; 0〉 ∈ B0 : a = (a1, . . . , an) ∈ Rn ∧ ai 6= 0, i ∈ {1, . . . , n}}.

Proof : Let A = 〈a; r〉 ∈ B. Suppose that B = 〈b; s〉 is the reciprocal of A
relative to ◦B,c. Then,

A ◦B,c B = 〈a; r〉 ◦B,c 〈b; s〉 = 〈a ◦ b; r‖b‖∞ + s‖a‖∞ + rs〉 = 〈1; 0〉.
So, a◦ b = 1 and bi = a−1

i for 1 ≤ i ≤ n whenever ai 6= 0. On the other hand,
r‖b‖∞+ s‖a‖∞+ rs = 0 with r, s ∈ R+

0 , which implies r = s = 0. The result
follows.

The following results concern powers. We define the powers of an element
A = 〈a; r〉 ∈ B by A0 = 〈1; 0〉 and Ak = Ak−1 ◦B,c A for k ∈ N. As in the
previous section, let us denote (1, . . . , 1) by a◦0 and a◦(k−1) ◦ a by a◦k for
k ∈ N.

Theorem 3.24. (B, ◦B,c) is a power associative algebra.

Proof : Since ◦B,c is commutative by Theorem 3.22, A2◦B,cA = A◦B,cA2 holds
for all A ∈ B. Hence, it suffices to show that (A2 ◦B,c A) ◦B,c A = A2 ◦B,c A2

for all A ∈ B. Let A = 〈a; r〉 ∈ B. Then

A2 ◦B,c A = 〈a◦2; 2r‖a‖∞ + r2〉 ◦B,c 〈a; r〉
= 〈a◦3; r‖a◦2‖∞ + ‖a‖∞(2r‖a‖∞ + r2) + r(2r‖a‖∞ + r2)〉
= 〈a◦3; 3r‖a‖2

∞ + 3r2‖a‖∞ + r3〉
(A2 ◦B,c A) ◦B,c A = 〈a◦3; 3r‖a‖2

∞ + 3r2‖a‖∞ + r3〉 ◦B,c 〈a; r〉
= 〈a◦4; 4r‖a‖3

∞ + 6r2‖a‖2
∞ + 4r3‖a‖∞ + r4〉.
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On the other hand, we have that

A2 ◦B,c A2 = 〈a◦2; 2r‖a‖∞ + r2〉 ◦B,c 〈a◦2; 2r‖a‖∞ + r2〉
= 〈a◦4; 4r‖a‖3

∞ + 6r2‖a‖2
∞ + 4r3‖a‖∞ + r4〉.

Theorem 3.25. Let A ∈ B. For all k ∈ N, Ak = 〈a◦k; (‖a‖∞ + r)k − ‖a‖k∞〉.

Proof : Let us proceed by induction on k. Clearly, the equality is valid for
k = 1. Suppose that it also holds for k. Then

Ak+1 = Ak ◦B,c A
= 〈a◦k;

∑k
i=1

(
k
i

)
ri‖a‖k−i∞ 〉 ◦B,c 〈a; r〉

= 〈a◦(k+1); r‖a◦k‖∞ +
∑k

i=1

(
k
i

)
ri‖a‖k+1−i

∞ +
∑k

i=1

(
k
i

)
ri+1‖a‖k−i∞ 〉

= 〈a◦(k+1); (k + 1)r‖a‖k∞ +
∑k

i=2

[(
k
i

)
+
(

k
i−1

)]
ri‖a‖k+1−i

∞ + rk+1〉
= 〈a◦(k+1);

∑k+1
i=1

(
k+1
i

)
ri‖a‖k+1−i

∞ 〉
= 〈a◦(k+1); (‖a‖∞ + r)k+1 − ‖a‖k+1

∞ 〉.

Theorem 3.26. Let A = 〈a; r〉 ∈ (B, ◦B,c) with a = (a1, . . . , an) ∈ Rn such
that ai ∈ R+

0 for i ∈ {1, . . . , n}. The square roots of A are given by A1/2 =

〈a◦1/2;
√
r + ‖a‖∞ − ‖a‖1/2

∞ 〉, where a◦1/2 = (±a1/2
1 , . . . ,±a1/2

n ).

Proof : Let us suppose that B = 〈b; s〉 ∈ B is such that A = B2. Then, we
obtain 〈a; r〉 = 〈b; s〉 ◦B,c 〈b; s〉 = 〈b◦2; s2 + 2s‖b‖∞〉. So, b = a◦1/2 and s is a

solution of s2 + 2s‖a‖1/2
∞ − r = 0. Since s ∈ R+

0 , s =
√
r + ‖a‖∞−‖a‖1/2

∞ and
the result follows.

The next result shows that inclusion monotonicity is satisfied by ◦B,c.

Theorem 3.27. Let Am, Bm ∈ B,m ∈ {1, 2}. If Am ⊆ Bm, m ∈ {1, 2}, then
A1 ◦B,c A2 ⊆ B1 ◦B,c B2.

Proof : Let Am = 〈am; rm〉, Bm = 〈bm; sm〉 ∈ B such that Am ⊆ Bm, m ∈
{1, 2}. From Theorem 2.1, ‖bm − am‖ ≤ sm − rm, m ∈ {1, 2}, and it suffices
to prove that

‖b1 ◦ b2 − a1 ◦ a2‖ ≤ s1‖b2‖∞ + s2‖b1‖∞ + s1s2 − r1‖a2‖∞ − r2‖a1‖∞ − r1r2.
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On the one hand, we obtain

‖b1 ◦ b2 − a1 ◦ a2‖ = ‖b1 ◦ b2 − b1 ◦ a2 + b1 ◦ a2 − a1 ◦ a2‖
≤ ‖b1 ◦ (b2 − a2)‖+ ‖(b1 − a1) ◦ a2‖
≤ ‖b1‖∞‖b2 − a2‖+ ‖a2‖∞‖b1 − a1‖
≤ ‖b1‖∞(s2 − r2) + ‖a2‖∞(s1 − r1).

On the other hand, we have

s1‖a2‖∞ ≤ s1‖b2‖∞ + s1‖a2 − b2‖∞ ≤ s1‖b2‖∞ + s1(s2 − r2),
−r2‖b1‖∞ ≤ −r2‖a1‖∞ + r2‖a1 − b1‖∞ ≤ −r2‖a1‖∞ + r2(s1 − r1).

Taking into account the former and the latter inequalities, we arrive at the
result.

The final result of the work relates +B to ◦B,c.

Theorem 3.28. The operation ◦B,c is subdistributive with respect to +B.

Proof : Let A = 〈a; r1〉, B = 〈b; r2〉 and C = 〈c; r3〉. Then, by Corollary 2.2,

A ◦B,c (B +B C) =

= 〈a; r1〉 ◦B,c (〈b; r2〉+B 〈c; r3〉)
= 〈a ◦ (b+ c); r1‖b+ c‖∞ + (r2 + r3)‖a‖∞ + r1(r2 + r3)〉
= 〈a ◦ b+ a ◦ c; r2‖a‖∞ + r1r2 + r3‖a‖∞ + r1r3 + r1‖b+ c‖∞〉
⊆ 〈a ◦ b+ a ◦ c; r1‖b‖∞ + r2‖a‖∞ + r1r2 + r1‖c‖∞ + r3‖a‖∞ + r1r3〉
= (A ◦B,c B) +B (A ◦B,c C).
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