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Universidade de Coimbra
Preprint Number 21–07

DIVIDED-DIFFERENCE OPERATORS FROM THE

GEOMETRIC POINT OF VIEW

M.N. REBOCHO

Abstract: It is presented a study of general divided-difference operators having
the fundamental property of leaving a polynomial of degree n− 1 when applied to
a polynomial of degree n.

Keywords: Divided-difference operators; linear lattices; non-uniform lattices; Askey-
Wilson operator.
Math. Subject Classification (2010): 33D45, 39A05, 42C05.

1. Introduction
In the present paper it is shown a study on divided-difference operators

having the fundamental property of leaving a polynomial of degree n − 1
when applied to a polynomial of degree n. Primarily, the focus is on the
geometric interpretation, by analysing the connection between the divided-
difference operators and their relation with a corresponding conic, which,
in turn, gives rise to a corresponding lattice of points that well-defines the
operator (see [11]). Essentially, there are four primary classes of lattices and
related divided-difference operators having the above mentioned property:
(i) the linear lattice, related to the forward difference operator [15, Chapter
2, Section 12] ; (ii) the q-linear lattice, related to the q-difference operator
[6] ; (iii) the quadratic lattice, related to the Wilson operator [2] ; (iv) the
q-quadratic lattice, related to the Askey-Wilson operator [2]. This list gives
a hierarchy of operators, as each of the operators in (i)-(iv) is an extension
of the preceding one, which can be recovered as a special case and/or a limit
case, up to a linear transformation of the variable.

The analysis of divided-difference operators (i)-(iv) is rather sparse in the
literature. For instance, they are a fundamental machinery for the study of
certain special functions appearing in problems from Mathematical-Physics,
e.g., within the general theory of orthogonal polynomials (see [2, 7, 9, 15]).
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Very often, when dealing with applications, final and combined formulae are
given, together with a notation that may lead to a heavy reading for readers
unaware of basic relations in the theory of divided-difference operators. With
this idea in mind, the main goal of the present paper is to give a concise but
detailed study of some basic aspects of the divided-difference operators above
referred, showing details on fundamental formulae that emerge from the geo-
metric interpretation (given in the seminal paper [10]) and its connection
with algebraic aspects of operator calculus. Here, the following topics are
covered: the geometric interpretation - namely, the connection between the
operator and a conic/lattice (cf. Section 2); the classification of operators in
terms of a set of parameters in the given conic (cf. Section 3); the analysis
of coalescences between the operators (cf. Section 4); basic and fundamental
formulae in the divided-difference calculus (cf. Section 5).

2. The conic and the related lattice
We start by following the approach from [10], where it is considered a

divided-difference operator involving the values of a function at two points,
with the property that it leaves a polynomial of degree n − 1 when applied
to a polynomial of degree n. Let us take the divided-difference operator Dx

as given in [10, Eq.(1.1)], defined on the space of arbitrary functions, by

Dxf(x) =
f(y+(x))− f(y−(x))

y+(x)− y−(x)
, (1)

where, at this stage, y+ and y− are unknown functions. To define them,
one starts by using the property that Dxf is a polynomial of degree n − 1
whenever f is a polynomial of degree n. Then, applying Dx to f(x) = x2 and
f(x) = x3, we obtain, respectively,

y−(x) + y+(x) = polynomial of degree 1 , (2)

(y−(x))2 + y−(x)y+(x) + (y+(x))2 = polynomial of degree 2 , (3)

the later condition being equivalent to y−(x)y+(x) = polynomial of degree
less or equal than two. From standard polynomial properties, the conditions
(2)-(3) define y− and y+ as the two y-roots of a quadratic equation, say,

ay2 + 2bxy + cx2 + 2dy + 2ex+ f = 0 . a 6= 0 . (4)

The conic defined by the equation above plays an essential role in the sequel.
The following identities, to be used later on, follow from the fact that y−, y+
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are the y-roots of (4):

y−(x) + y+(x) = −2(bx+ d)/a , (5)

y−(x)y+(x) = (cx2 + 2ex+ f)/a , (6)

y−(x) = p(x)−
√
r(x) , y+(x) = p(x) +

√
r(x) , (7)

with p, r polynomials given by

p(x) = − b
a
x− d

a
, r(x) =

(b2 − ac)
a2

x2 + 2
(bd− ae)

a2
x+

(d2 − af)

a2
. (8)

By virtue of (7), the operator Dx defined in (1) is given as

Dxf(x) =
f(p(x) +

√
r(x))− f(p(x)−

√
r(x))

2
√
r(x)

. (9)

Remark . The polynomials p, r will play a fundamental role in the sequel.
Note that, from (7), it follows that

y−(x) + y+(x) = 2p(x) , (y−(x)− y+(x))2 = 4r(x) . (10)

Let us now look at the lattices.
Associated to each conic (4) two lattices are determined: the x-lattice and

the y-lattice. The construction is based on the parametric representations of
the conic, as follows (see [11]):
Let {x(s), y(s)} be a parametric representation of the conic (4). For a given
x = x(s) value, the quadratic (4) defines two y-roots, say ys := y(s) and
ys+1 := y(s+ 1), which are the two ordinates associated to the abcissa x(s).
Then one starts from some point {x1 = x(s1), y1 = y(s1)} on the conic, and
one looks for the points {xk = x(s1 + k), yk = y(s1 + k)}, k = 1, 2, . . . . This
determines the so-called y-lattice, also known as the dual lattice. Conversely,
if c 6= 0 in (4), then, for a given y-value, the quadratic (4) defines two x-
roots, say xs := x(s), xs+1 := x(s + 1), which are consecutive points on the
so-called x-lattice, also known as the direct lattice.

Remark . With the above notation, in terms of the operator Dx defined in
(1), we have

ys = y−(x(s)) , ys+1 = y+(x(s)) .



4 M.N. REBOCHO

2.1. The quadratic class of lattices - explicit parameterizations.
The quadratic class of lattices appears when the conic (4) is such that (b2 −
ac)(d2 − af) − (bd − ae)2 6= 0. Two sub-cases hold: the conic is a parabola
- when b2 − ac = 0 - this corresponds to the quadratic case; the conic is a
hyperbola or an ellipse - when b2 − ac > 0 or b2 − ac < 0, respectively - this
corresponds to the q-quadratic case.

For the quadratic class of lattices there is a parametric representation of
the conic, say {x(s), y(s)}, such that the functions y− and y+ in (1) satisfy
[11, 16, 14]

y−(x(s)) = y(s) = x(s− 1/2) , y+(x(s)) = y(s+ 1) = x(s+ 1/2) . (11)

Hence, the divided-difference operator (1) is given as

Dxf(x(s)) =
f(x(s+ 1/2))− f(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
. (12)

The parametrization on s is explicit [13], given by

x(s) = κ̃2s
2 + κ̃1s+ κ̃0 (13)

where κ̃2 6= 0 in the quadratic case, and

x(s) = κ1q
s + κ2q

−s + κ3 (14)

where κ1κ2 6= 0 in the q-quadratic case. Here, the κ’s and κ̃’s are appropriate
constants.

The parameterizations of the form (13) and (14) cover the whole set of
canonical forms for the lattices. A formal deduction of formulae (13) and
(14), based on properties of adjoint operators, will be given in Sub-Section
5.1.

Remark . Note that, in the account of (10) and (11), the polynomials p, r in
(9) are then recovered under

x(s+ 1/2) + x(s− 1/2) = 2p(x(s)) , (x(s+ 1/2)− x(s− 1/2))2 = 4r(x(s)) .

Indeed, by writing p(x) = p1x+ p0, r(x) = r2x
2 + r1x+ r0, we get

p1 = 1 , p0 = κ̃2/4 , r2 = 0 , r1 = κ̃2 , r0 = κ̃2
1/4− κ̃2κ̃0 (15)
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in the case (13), and

p1 =
q1/2 + q−1/2

2
, p0 = κ3

(
1− (q1/2 + q−1/2)

2

)
, (16)

r2 =
(q1/2 − q−1/2)2

4
, r1 = −κ3

(q1/2 − q−1/2)2

2
, (17)

r0 = (−κ1κ2 +
κ2

3

4
)(q1/2 − q−1/2)2 (18)

in the case (14).

A.P. Magnus, in [11, p. 255], gives the following precise parameterizations.

Proposition 1. Consider the conic (4), ay2 +2bxy+cx2 +2dy+2ex+f = 0,
with ac 6= 0. The following assertions hold.
(a) If the conic has a center λ := b2 − ac 6= 0, then, with the center
coordinates

xc =
ae− bd
λ

, xc =
cd− be
λ

,

one has (4) written in the form

a(y − yc)2 + 2b(x− xc)(y − yc) + c(x− xc)2 + f̃ = 0 ,

with

f̃ = f − ay2
c − 2bxcyc − cx2

c = f + dyc + exc = f +
cd2 − 2bde+ ae2

λ
.

(a.1) If f̃ 6= 0, then

x(s) = xc + ξ
√
a(qs + q−s) , y(s) = yc + ξ

√
c(qs−1/2 + q−s+1/2) ,

is a parametric representation of (4), where ξ2 = f̃/(4λ), and

q1/2 + q−1/2 = − 2b√
ac
, i.e., q + q−1 =

4b2

ac
− 2 .

(a.2) If f̃ = 0, then one finds the parametric representation

x(s) = xc +X
√
aqs , y(s) = yc +X

√
cqs±1/2 ,



6 M.N. REBOCHO

for arbitrary parameters X.
(b) If the conic has a center λ := b2 − ac = 0, then

x(s) =
√
a

(
d2 − af

2a(d
√
c+ e

√
a)
− 2

(d
√
c+ e

√
a)

ac
s2

)

y(s) =
√
c

(
e2 − cf

2c(d
√
c+ e

√
a)
− 2

(d
√
c+ e

√
a)

ac
(s− 1/2)2

)
is a parametric representation of (4).

Remark . In the generic case q-quadratic case |q| 6= 1 the conic gives a
hyperbola. In such a case, the asymptotes are given by y = (c/a)1/2q±1/2x,
thus, q is precisely the ratio of the slopes of the asymptotes of the conic.

3. Classification
There are four primary classes of lattices and related divided-difference

operators:
(i) the linear lattice, related to the forward difference operator [15, Chapter
2, Section 12] ;
(ii) the q-linear lattice, related to the q-difference operator [6] ;
(iii) the quadratic lattice, related to the Wilson operator [2] ;
(iv) the q-quadratic lattice, related to the Askey-Wilson operator [2].

Such a classification can be done according to the two parameters λ, τ
defined in terms of the conic (4), ay2 + 2bxy + cx2 + 2dy + 2ex + f = 0 , as
follows:

λ = b2 − ac, τ =
(
(b2 − ac)(d2 − af)− (bd− ae)2

)
/a , (19)

or, using the determinant notation,

τ = det

a b d
b c e
d e f

 .

Note that λ 6= 0 allows us to write the polynomial r in (8) as

r(x) =
λ

a2

(
x+

bd− ae
λ

)2

+
τ

aλ
. (20)

A detailed analysis of each case (i)-(iv), showing each of the operators in the
form (9) with the corresponding polynomials p, r, is given in the following
sub-sections.
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3.1. The linear lattice: λ = τ = 0 in (19). If λ = 0 and τ = 0, then,
from (19), bd− ae = 0, thus, the the polynomial r defined in (8) is constant,

r(x) =
d2 − af
a2

. Hence, we have the polynomials p, r defined in (8) given by

p(x) = − b
a
x− d

a
, r(x) =

d2 − af
a2

.

Recalling (7), it follows that

y±(x) = − b
a
x− d

a
±
√
d2 − af
a2

, (21)

that is, we have two parallel lines,

y±(x) = mx± b± ,
with

m = − b
a
, b± = −d

a
±
√
d2 − af
a2

.

Proposition 2. The canonical divided-difference operator related to the lin-
ear lattices is the forward difference operator Dx = ∆w - the so-called Hahn’s
operator [6], where

∆wf(x) =
f(x+ w)− f(x)

w
, w 6= 0 , (22)

for arbitrary functions f . Hence, the operator ∆w can be written in the form
(9), with the polynomials p, r given by

p(x) = x+
w

2
, r(x) =

w2

4
.

Proof : Combining (1) with (21), the operator (22) is recovered through the
specialization

b = −a c = a , d = −aw/2 , e = aw/2 , f = 0 , (23)

and it follows the assertion on the polynomials p, r.

Also, by using the values of (23) into (4), we get the conic with equation

y2 − 2xy + x2 − wy + wx = 0 ,

which can be factorized as

(y − x)(y − x− w) = 0 .
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The linear lattice, obtained via two parallel lines, is illustrated through Fig.
2.d) in [11, pp. 256]).

3.2. The q-linear lattice: λ 6= 0 , τ = 0 in (19). If λ 6= 0 and τ = 0, the
polynomials p, r defined in (8) are given by

p(x) = − b
a
x− d

a
, r(x) =

λ

a2

(
x+

bd− ae
λ

)2

.

Recalling (7), it follows that

y±(x) = − b
a
x− d

a
±
√
λ

a

(
x+

bd− ae
λ

)
, (24)

that is, we have two intersecting lines,

y+(x) = m+x+ b+ , y−(x) = m−x+ b− ,

with

m+ = − b
a

+

√
λ

a
, m− = − b

a
−
√
λ

a
,

b+ =

√
λ

a

(
bd− ae
λ

)
− d

a
, b− = −

√
λ

a

(
bd− ae
λ

)
− d

a
.

Proposition 3. The canonical divided-difference operator related to the q-
linear lattices is the q-linear difference operator, Dx = ∆q,w [6], where

∆q,wf(x) =
f(qx+ w)− f(x)

(q − 1)x+ w
, q 6= 1 , (25)

for arbitrary functions f . Hence, the operator ∆q,w can be written in the
form (9), with the polynomials p, r given by

p(x) =
(q + 1)

2
x+

w

2
, r(x) =

(q − 1)2

4

(
x+

w

q − 1

)2

.

Proof : Combining (1) with (24), the operator (25) is recovered through the
specialization

b = −(q + 1)

2
a , c = qa , d = −w

2
a , e =

w

2
a , f = 0 , (26)

and it follows the assertion on the polynomials p, r.
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Also, by using the values of (26) into (4), we get the conic with equation

y2 − (q + 1)xy + qx2 − wy + wx = 0 ,

which can be factorized as

(y − x)(y − qx− w) = 0 .

The q-linear lattice, obtained via two intersecting lines, is illustrated through
Fig. 2.b) in [11, pp. 256]).

Remark . In [6, pp. 6], it is shown that, whenever q 6= 1, the constant w in

(25) can be eliminated through a linear transformation: by setting x = âz+ b̂
and f(x) = h(z), the operator ∆q,w can be written as

∆q,wf(x) =

h

(
qz +

(q − 1)b̂+ w

â

)
− h(z)

(q − 1)z +
(q − 1)b̂+ w

â

.

Now, choosing â = 1, b̂ =
w

1− q
, we get the operator

Dqf(x) =
f(qx)− f(x)

(q − 1)x
. (27)

3.3. The quadratic lattice: λ = 0 , τ 6= 0 in (19). If λ = 0 and τ 6= 0,
the polynomials p, r defined in (8) are both of degree one, given by

p(x) = − b
a
x− d

a
, r(x) = 2

(bd− ae)
a2

x+
(d2 − af)

a2
.

Recalling (7), it follows that

y±(x) = − b
a
x− d

a
±
√

2(bd− ae)x+ (d2 − af)

a
. (28)

Proposition 4. The canonical divided-difference operator related to the qua-
dratic lattices is the Wilson operator [1, 2], Dx =W where

Wf(x) =
f
(
(
√
x+ i

2)2
)
− f

(
(
√
x− i

2)2
)

2i
√
x

, (29)
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for arbitrary functions f . Hence, the operator W can be written in the form
(9), with the polynomials p, r given by

p(x) = x− 1

4
, r(x) = −x .

Proof : Combining (1) with (28), the operator (29) is recovered through the
specialization

b = −a , c = a , d = e =
a

4
, f =

a

16
. (30)

and it follows the assertion on the polynomials p, r.

Also, by using the values of (30) into (4), we get the conic with equation

y2 − 2xy + x2 +
y

2
+
x

2
+

1

16
= 0 ,

which is a parabola (we have λ = 0 and τ < 0). The corresponding lattice,
obtained via a parabola, is illustrated through Fig. 2.c) in [11, pp. 256]).

3.4. The q-quadratic lattice: λ 6= 0 , τ 6= 0 in (19). If λ 6= 0 and τ 6= 0,
the polynomials p, r defined in (8) are of degree one and two, respectively,
given as

p(x) = − b
a
x− d

a
, r(x) = r(x) =

λ

a2

(
x+

bd− ae
λ

)2

+
τ

aλ
.

Recalling (7), it follows that

y±(x) = − b
a
x− d

a
±

√
λ

a2

(
x+

bd− ae
λ

)2

+
τ

aλ
. (31)

Under some specializations, by considering the centred and symmetrised
forms of the lattice, one can recover the Askey-Wilson operator [1, 2] (see
also [7, Eq. (12.1.12)]), given by

Dxf(x) =
f(1

2(q1/2z + q−1/2z−1))− f(1
2(q−1/2z + q1/2z−1))

1
2(q1/2 − q−1/2)(z − z−1)

. (32)

Indeed, let us begin by defining the base q = e2iη and consider the projec-
tion map from the unit circle {z = eiθ, θ ∈ [−π, π[} onto [−1, 1] by

x =
1

2
(z + z−1) .
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Note that we have

y−(x) =
1

2
(q−1/2z + q1/2z−1) , y+(x) =

1

2
(q1/2z + q−1/2z−1) . (33)

Proposition 5. The canonical divided-difference operator related to the q-
quadratic lattices, in the symmetrical form, is the Askey-Wilson operator (32)
[1, 2]. The operator (32) can be written in the form (9), with the polynomials
p, r given by

p(x) =
(q1/2 + q−1/2)

2
x , r(x) =

(q1/2 − q−1/2)

4
(x2 − 1) .

Proof : Combining (1) with (33), we have, after basic computations,

y−(x) + y+(x) = 2 cos(η)x = (q1/2 + q−1/2)x , (34)

(y−(x)− y+(x))2 = (q1/2 − q−1/2)(x2 − 1) . (35)

In the account of (10), that is, y−(x)+y+(x) = 2p(x) and (y−(x)−y+(x))2 =
4r(x), there follow the polynomials p, r as stated.

The operator (32) is recovered through the specialization

a = c , arbitrary and non-zero, b = −a cos(η) , d = e = 0 , f = −a sin2(η) .

In the q-quadratic case, the conic is an hyperbola (when λ > 0 and τ < 0),
or an ellipse (when λ < 0 and τ < 0, respectively). The corresponding
lattice, obtained via an hyperbola or an ellipse, is illustrated through Figs.
1 and 2.a) in [11, pp. 256]).

4. Coalescence
The set of lattices previously defined can be classified through specifications

on the constants in the parametrization formulae (13) and (14), that is, in

x(s) = κ̃2s
2 + κ̃1s+ κ̃0

and

x(s) = κ1q
s + κ2q

−s + κ3 ,

respectively. Indeed, depending on the constants κ’s and κ̃’s, we recover the
four primary classes for the lattices x(s):
(i) Linear lattices : κ̃2 = 0 and κ̃1 6= 0 in (13);
(ii) q-linear lattices : κ2 = 0 and κ1 6= 0 in (14);
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(iii) Quadratic lattices : κ̃2 6= 0 in (13);
(iv) q-Quadratic lattices : κ1κ2 6= 0 in (14).

The q-quadratic lattice, in its general non-symmetrical form, is the most
general case and the other lattices can be found from this by limiting pro-
cesses.

It turns out that each of the operators listed in (i)-(iii) of the previous
section, specified in Sub-Sections 3.1–3.3, can be recovered as a particular
case or as a limit case, up to a linear transformation of the variable, from
one of the operators in the list. Details are given as follows.

Recall the polynomials p, r in (8): by writing p(x) = p1x + p0, r(x) =
r2x

2 + r1x+ r0, we have

p1 = − b
a
, p0 = −d

a
, (36)

r2 =
b2 − ac
a2

, r1 = 2
(bd− ae)

a2
, r0 =

d2 − af
a2

. (37)

4.1. From q-quadratic to quadratic. Taking limits q → 1 in (16) as well
as in (17) we get p1 = 1 and r2 = 0. In the account of (37), r2 = 0 yields
b2 − ac = 0. Furthermore, in the account of (37), note that τ 6= 0 in (19) if,
and only if, r0r2 − (r1/2)2 6= 0. As we have r2 = 0, then τ 6= 0 if, and only
if, r1 6= 0, which must hold upon a suitable choice of κ3. Thus, we get the
quadratic case: λ = 0 and τ 6= 0 (cf. Sub-Section 3.3).

4.2. From q-quadratic to q-linear. Recalling the remark , let us take the
operator Dq defined by (27),

Dqf(x) =
f(qx)− f(x)

(q − 1)x
.

We begin by fixing the parameter q 6= 1. Taking limits κ2 → 0, κ3 → 0, and
fixing q 6= 1 in (14) we get r2 6= 0, r1 = 0, r0 = 0 in (17)-(18), that, in the
account of (37), yields b2 − ac 6= 0, bd − ae = 0, d2 − af = 0. Thus, we get
the q-linear case: λ 6= 0 and τ = 0 (cf. Sub-Section 3.2).

Note that, in such a situation, the operator Dq obtained via the above
limiting process is given by

Dqf(x(s)) =
f(κ1q

s+1/2)− f(κ1q
s−1/2)

κ1(qs+1/2 − qs−1/2)
,
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which can be easily written as (27) trough the change of variable x(s) =
κ1q

s−1/2.

4.3. From q-linear to linear. The linear case follows easily by taking limits
q → 1 in (25). Indeed, we get the coefficients of the polynomials p, r as given
in Proposition 2, thus, in the account of (37), we have λ = 0 and τ = 0 (cf.
Sub-Section 3.1).

5. Divided-difference operator calculus
Recall the operator Dx in its general form given by (1), together with the

corresponding conic (4) and the polynomials p, r defined in (8). In the sequel
we shall take ∆y = y+ − y−. From (7), there follows

∆y = 2
√
r . (38)

In order to deduce further properties, let us now introduce the operators
E+
x and E−x (see [10]), acting on arbitrary functions f , as

E±f(x) = f(y±(x)) .

With this notation, (1) is also given by

Dxf(x) =
E+
x f − E−x f

E+
x x− E−x x

.

The companion operator of D is then defined as (see [10])

Mxf(x) =
E+
x f(x) + E−x f(x)

2
. (39)

Note that Mxf is a polynomial whenever f is a polynomial. Furthermore, if
deg(f) = n, then deg(Mxf) = n.

The operators Dx and Mx satisfy the product and quotient rules listed
below (see [10]):

Dx(fg) = DxfMxg + Mxf Dxg , (40)

Dx(f/g) =
DxfMxg − DxgMxf

E−x f E+
x f

, (41)

Mx(fg) = MxfMxg +
∆2
y

4
Dxf Dxg , (42)

Mx(f/g) =
E−x f E+

x g + E+
x f E−x g

2E−x g E+
x g

. (43)
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Eq. (40) has the equivalent forms:

Dx(gf) = Dxg E−x f + Dxf E+
x g ,

Dx(gf) = Dxg E+
x f + Dxf E−x g .

Also, one has two equivalent forms for (41):

Dx(g/f) =
Dxg E−x f − Dxf E−x g

E−x f E+
x f

,

Dx(g/f) =
DxgE+

x f − DxfE+
x g

E−x f E+
x f

.

The operators Dx and Mx also satisfy the product rules II (see [5, Eq. 15]
and [4])

DxMx = αMxDx + U1 D2
x , M2

x = U1 MxDx + α
∆2
y

4
D2
x + I , (44)

where I is the identity operator, If(x) = f(x), and

U1(x) = (p2
1 − 1)x+

r1

2
, (45)

with p1 and r1 defined in (15) in the quadratic case, or in (16)-(18) in the
q-quadratic case.

5.1. The explicit parameterizations revisited. Let us recall the conic
(4), ay2 + 2bxy+ cx2 + 2dy+ 2ex+ f = 0 , a 6= 0, as well as its two y-roots,
satisfying (5) and (6). Assuming c 6= 0 in (4), then one defines the inverse
functions of y− and y+, denoted by y−1

− and y−1
+ , respectively, such that

y−1
− (y−(x)) = x , y−1

+ (y+(x)) = x ,

together with the corresponding operators(
E−x
)−1

f(x) = f
(
y−1
− (x)

)
,
(
E+
x

)−1
f(x) = f

(
y−1

+ (x)
)
. (46)

Let us also define the operators E = (E−x )−1 E+
x , E−1 = (E+

x )−1 E−x by (see
[10])

Ef(x) = f
(
y+(y−1

− (x))
)
, E−1f(x) = f

(
y−(y−1

+ (x))
)
. (47)

In order to deduce the parameterizations of the quadratic and q-quadratic
cases, we first present the following lemma. The results are gathered in [10],
but here we detail its proof.
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Lemma 1. Recalling the conic (4) and the operators previously defined, the
following equalities hold:

Ex+ x =
−2(by−1

− (x) + d)

a
, (48)

E−1x+ x =
−2(by−1

+ (x) + d)

a
, (49)

y−1
− (x) + y−1

+ (x) =
−2(bx+ e)

c
, (50)

Ex+ E−1x = 2

(
2b2

ac
− 1

)
x+ 4

(
be− cd
ac

)
. (51)

Proof : Equations (48) and (49) follow by taking x = y−1
− (X) and x = y−1

+ (X),
respectively, in (5), y−(x) + y+(x) = −2(bx+ d)/a).

To deduce (50) we start by evaluating (6) at y−1
− (x) as well as at y−1

+ (x),
thus getting

x y+(y−1
− (x)) =

c(y−1
− (x))2 + 2ey−1

− (x) + f

a
, (52)

x y−(y−1
+ (x)) =

c(y−1
+ (x))2 + 2ey−1

+ (x) + f

a
. (53)

Subtracting (53) to (52) yields

x
(
y+(y−1

− (x))− y−(y−1
+ (x))

)
=
c
(
(y−1
− (x))2 − (y−1

+ (x))2
)

+ 2e
(
y−1
− (x)− y−1

+ (x)
)

a
.

Thus, we have

Ex+ x− (E−1x+ x) =

(
y−1
− (x)− y−1

+ (x)
)

xa

(
c
(
y−1
− (x) + y−1

+ (x)
)

+ 2e
)
. (54)

Using (48) and (49) in (54) gives us, after simplifications, equation (50).
Equation (51) follows from the sum of (48) with (49), and using (50).

Applying En to (51) we obtain the difference equation

En+1x+ En−1x = 2

(
2b2

ac
− 1

)
Enx+ 4

(
be− cd
ac

)
. (55)
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The solution of the equation (55) leads us to the form of the parameterizations
already discussed in Sub-Section 2.1(see [10, pp. 264] and [13]). Here, it is
given the detailed proof in what follows.

Theorem 1. Let q satisfy

q + q−1 = 2

(
2b2

ac
− 1

)
. (56)

The solution of the difference equation (55) is given by

Enx = αqn + βq−n +
cd− be
b2 − ac

, if q 6= 1 (57)

or

Enx = α + βn+
2(be− cd)

ac
n2 , if q = 1 . (58)

Proof : Recall that the solution of a difference equation such as (55), say,

Xn+1 − ξXn +Xn−1 = 4

(
be− cd
ac

)
, ξ = 2

(
2b2

ac
− 1

)
, (59)

can be written as Xn = Xh,n+Xp, with Xh,n the solution of the homogeneous
equation

Xn+1 − ξXn +Xn−1 = 0 (60)

and Xp a particular solution of the complete equation (59). Also, denoting
by ξ1, ξ2 the two roots of the so-called associated characteristic equation of
(60),

x2 − ξx+ 1 = 0 , (61)

the solution of (60) is given by (see [12])

Xh,n =

{
αξn1 + βξn2 if ξ1 6= ξ2 ,

αξn1 + βnξn1 if ξ1 = ξ2 .

Note that the roots of x2−ξx+1 = 0 are q± :=
ξ ±

√
ξ2 − 4

2
. Hence, when

ξ2−4 6= 0, we have two different roots of the quadratic equation, which satisfy
indeed q− = (q+)−1, and q− + q+ = ξ. Thus, we have the parameter q, say
q = q+, defined as in (56). If ξ2−4 = 0, then ξ = 2, which implies the double
root of the quadratic equation being q := q− = q+ = 1, thus, also defined as
in (56).
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Finally, we get (57) in the account that λ :=
cd− be
b2 − ac

is a particular solution

of the complete equation (59) in the case of two different roots of (61), and

we get (58) in the account that λ := 2(be−cd)
ac n2 is a particular solution of the

complete equation (59) in the case of a double root of (61).

5.2. The divided-difference operators as exact lowering operators.
We now give the analogues of the well-known formulae for the continuous

case
d

dx
xn = nxn−1, as proposed by [16]. Further details are given in the

more recent approach [18].
Let {ln(x; a)}+∞

n=0} be a polynomial basis of L2(w(x)Dx,G), where ln is a
polynomial of exact degree n and the support is G = {E+kx : k ∈ 2Z} or, if
finite, G = {x0, . . . , xn0}, and a denotes the set of parameters characterising
the lattice. The general requirements for the polynomial basis are:
(i) ln(x) is of precise degree n in x,
(ii) Dx is an exact lowering operator in this basis, that is, Dxln(x) = cnln−1(x),
n ≥ 1 , where cn = cn(ǎ) is a constant with respect to x, depending on a set
of parameters ǎ := {a1, a2, . . . , am0

}, characterizing the lattice.
A general solution of the above requirements is the polynomial defined by

(see [18, Sec. 2])

ln(x; ǎ) = gn(ǎ)
n−1∏
j=0

(
x−

(
E+
x

)2j
x(ǎ)

)
,

where x(ǎ) denotes the so-called basal point, parameterized by ǎ, and gn(ǎ) 6=
0.

We have the following.

1. In the q-quadratic lattice x(s) = κ1q
s + κ2q

−s + κ3, with q 6= 1 and
κ1 > 0, κ2 > 0, the basis is

ln(x(s)) = gn

(
q−

n
2 +s+ 1

4
√
κ1√

κ2
; q

)
n

(
q−

n
2−s+

1
4
√
κ2√

κ1
; q

)
n

, n ≥ 1 , (62)

with

gn = gn(κ1, κ2, q) =

(
−κ

3/2
1 q1/4

√
κ2

)n

.
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The divided-difference operator satisfies Dxln(x(s)) = cnln−1(x(s)), n ≥ 1,
that is,

Dxln(x(s)) =
ln(x(s+ 1/2))− ln(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
= cnln−1(x(s))

with

cn = cn(κ1, κ2, q) =
κ1q

1−n
2 [n]q
κ2

.

Here, it is used the Pochhammer symbol, given by

(a; q)0 = 1 , (a; q)n =
n−1∏
j=0

(1− aqj) , n = 1, 2, . . . ,

and the number [z]q defined by

[z]q =
qz − 1

q − 1
.

2. In the quadratic lattice x(s) = κ̃2s
2 + κ̃1s+ κ̃0, with κ̃2 6= 0, the basis is

ln(x(s)) = 4−n(−κ̃2)
n

(
−κ̃1

κ̃2
− 2s+

1

2

)
n

(
κ̃1

κ̃2
+ 2s+

1

2

)
n

, n ≥ 1 . (63)

The divided-difference operator satisfies Dxln(x(s)) = cnln−1(x(s)), n ≥ 1,
that is,

Dxln(x(s)) =
ln(x(s+ 1/2))− ln(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
= cnln−1(x(s))

with

cn = n .

Here, it is used the Pochhammer symbol (A)n = A(A+ 1) · · · (A+ n− 1).
3. In the q-linear lattice, the basis is

ln(x) = (ǎx; q)n =
n−1∏
j=0

(1− ǎqjx) , n ≥ 1 . (64)

The divided-difference operator, taken in its canonical form as the Dq ope-
rator given in (27), satisfies Dqln(x) = cnln−1(x), n ≥ 1, that is,

Dqln(x) =
ln(qx)− ln(x)

(q − 1)x
= cnln−1(x)
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with

cn = −1− ǎqn

q − 1
.

4. In the linear lattice, the basis is

ln(x) =
n−1∏
j=0

(x− j) =
Γ(x+ 1)

Γ(x− n+ 1)
, n ≥ 1 , (65)

where Γ(·) denotes the Gamma function. The divided-difference operator,
taken in its canonical form as the forward difference operator ∆f(x) = f(x+
1)− f(x), satisfies

∆ln(x) = ln(x+ 1)− ln(x) = cnln−1(x)

with

cn = n .

5.3. Integrals. Let the lattice points be denoted by G[x] = {x(s) : s ∈ Z},
with the point x(0) as the basal point, and let us denote the dual lattice
by G̃[x] = {x(s + 1/2) : s ∈ Z}. The D-integral of a function defined on
the x-lattice, f : G[x] → C with basal point x0 = x(0), is defined by the
Riemmann sum over the lattice points (see [18, Sec. 2])

I[f ](x0) =

∫
G

f(x(s))Dx(s) :=
∑
s∈Z∗

f(x(s))(y+(x(s))− y−(x(s))) . (66)

Recalling that, in the quadratic case, y+(x(s)) = x(s + 1/2), y−(x(s)) =
x(s− 1/2), and also recalling the notation xs := x(s)), then we can write

I[f ](x0) =
∑
s∈Z∗

f(x(s))((x(s+ 1/2))− (x(s− 1/2))) =
∑
s∈Z∗

f(xs)∆y(xs) .

Here, Z∗ is a finite subset of Z, namely {0, 1, . . . , n0}, or Z≥0, or Z.
Recalling that E±x f(x(s)) = f(x(s ± 1/2)) , for x(s) ∈ G[x], the following

properties follow from (66) (see [18]):
1. an analog of the fundamental theorem of calculus:∫

x0≤xs≤xn0
Dxf(x(s))Dx(s) = f(E+

x xn0)− f(E−x x0) . (67)
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2. an analog of integration by parts for two functions f(x), g(x):∫
x0≤xs≤xn0

f(x(s))Dxg(x(s))Dx(s) = f(E+ 2
x xn0)g(E+

x xn0)− f(x0)g(E−x x0)

−
∫
x0≤xs≤xn0

Dxf(E+
x x(s))g(E+

x x(s))D
(
E+
x x(s)

)
. (68)

Remark . The definition (66) reduces to the ususal definition of the difference
integral and the Thomae-Jackson q-integrals in the canonical forms of the
linear and q-linear lattices, respectively [8, 17].
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