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1. Introduction

In the present paper it is shown a study on divided-difference operators
having the fundamental property of leaving a polynomial of degree n — 1
when applied to a polynomial of degree n. Primarily, the focus is on the
geometric interpretation, by analysing the connection between the divided-
difference operators and their relation with a corresponding conic, which,
in turn, gives rise to a corresponding lattice of points that well-defines the
operator (see [11]). Essentially, there are four primary classes of lattices and
related divided-difference operators having the above mentioned property:
(i) the linear lattice, related to the forward difference operator [15, Chapter
2, Section 12]; (ii) the g-linear lattice, related to the g-difference operator
6] ; (iii) the quadratic lattice, related to the Wilson operator [2]; (iv) the
g-quadratic lattice, related to the Askey-Wilson operator [2]. This list gives
a hierarchy of operators, as each of the operators in (i)-(iv) is an extension
of the preceding one, which can be recovered as a special case and/or a limit
case, up to a linear transformation of the variable.

The analysis of divided-difference operators (i)-(iv) is rather sparse in the
literature. For instance, they are a fundamental machinery for the study of
certain special functions appearing in problems from Mathematical-Physics,
e.g., within the general theory of orthogonal polynomials (see [2, 7, 9, 15]).
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Very often, when dealing with applications, final and combined formulae are
given, together with a notation that may lead to a heavy reading for readers
unaware of basic relations in the theory of divided-difference operators. With
this idea in mind, the main goal of the present paper is to give a concise but
detailed study of some basic aspects of the divided-difference operators above
referred, showing details on fundamental formulae that emerge from the geo-
metric interpretation (given in the seminal paper [10]) and its connection
with algebraic aspects of operator calculus. Here, the following topics are
covered: the geometric interpretation - namely, the connection between the
operator and a conic/lattice (cf. Section 2); the classification of operators in
terms of a set of parameters in the given conic (cf. Section 3); the analysis
of coalescences between the operators (cf. Section 4); basic and fundamental
formulae in the divided-difference calculus (cf. Section 5).

2. The conic and the related lattice

We start by following the approach from [10], where it is considered a
divided-difference operator involving the values of a function at two points,
with the property that it leaves a polynomial of degree n — 1 when applied
to a polynomial of degree n. Let us take the divided-difference operator D,
as given in [10, Eq.(1.1)], defined on the space of arbitrary functions, by

y+(z) —y-(2) 7
where, at this stage, y, and y_ are unknown functions. To define them,
one starts by using the property that D, f is a polynomial of degree n — 1

D, f(x) =

whenever f is a polynomial of degree n. Then, applying D, to f(z) = x? and
f(x) = 2®, we obtain, respectively,

y—(z) + y+(x) = polynomial of degree 1, (2)

(y—(2))? + y—(2)ys () + (y(2))? = polynomial of degree 2, (3)

the later condition being equivalent to y_(x)y,(x) = polynomial of degree
less or equal than two. From standard polynomial properties, the conditions
(2)-(3) define y_ and yy as the two y-roots of a quadratic equation, say,

ay? + 2bxy + cx® +2dy +2ex + f=0. a#0. (4)

The conic defined by the equation above plays an essential role in the sequel.
The following identities, to be used later on, follow from the fact that y_, y.
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are the y-roots of (4):
Y (2) + i (&) = —2(b5 + d)/a, (5)
g (@)ys () = (ca® + 2ex + f)fa, (6)
y-(2) = p(x) = (@), ye(z) =plx) + Vr(z), (7)

with p, r polynomials given by

p(x) = —gar — g, r(z) = @ﬁ + 2(bda—2ae)x + (d a_zaf) . (8)

By virtue of (7), the operator D, defined in (1) is given as

flp(z) + Vr(x)) — flp(z) — Vr(z)
2¢/r(x)

Remark . The polynomials p,r will play a fundamental role in the sequel.
Note that, from (7), it follows that

y— () +yp(x) = 2p(x),  (y—(2) — ys(2))? = 4r(z). (10)

Let us now look at the lattices.

Associated to each conic (4) two lattices are determined: the z-lattice and

the y-lattice. The construction is based on the parametric representations of
the conic, as follows (see [11]):
Let {z(s), y(s)} be a parametric representation of the conic (4). For a given
x = z(s) value, the quadratic (4) defines two y-roots, say ys := y(s) and
Ys+1 = y(s + 1), which are the two ordinates associated to the abcissa z(s).
Then one starts from some point {z1 = x(s1), y1 = y(s1)} on the conic, and
one looks for the points {xy = x(s1+ k), yr = y(s1 +k)}, k=1,2,.... This
determines the so-called y-lattice, also known as the dual lattice. Conversely,
if ¢ # 0 in (4), then, for a given y-value, the quadratic (4) defines two -
roots, say s := x(s), Ts+1 := (s + 1), which are consecutive points on the
so-called z-lattice, also known as the direct lattice.

D, f(z) = (9)

Remark . With the above notation, in terms of the operator DD, defined in
(1), we have

Ys = y_(x(s)) y Ys+1 = y+($(8)) :
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2.1. The quadratic class of lattices - explicit parameterizations.
The quadratic class of lattices appears when the conic (4) is such that (b —
ac)(d?> — af) — (bd — ae)? # 0. Two sub-cases hold: the conic is a parabola
- when b* — ac = 0 - this corresponds to the quadratic case; the conic is a
hyperbola or an ellipse - when b* — ac > 0 or b*> — ac < 0, respectively - this
corresponds to the ¢g-quadratic case.

For the quadratic class of lattices there is a parametric representation of
the conic, say {z(s), y(s)}, such that the functions y_ and y, in (1) satisfy
[11, 16, 14]

y-(z(s)) = y(s) = w(s = 1/2),  yi(x(s)) =yls +1) =x(s+1/2). (11)
Hence, the divided-difference operator (1) is given as

Flals +1/2)) — fla(s = 1/2)

Dof(@(s) = = 5172 Za(s = 12) (12)
The parametrization on s is explicit [13], given by
z(8) = Ros® + Ry15 + Ko (13)
where k9 # 0 in the quadratic case, and
2(s) = K1q" + K2q " + K3 (14)

where k1k2 # 0 in the g-quadratic case. Here, the x’s and K’s are appropriate
constants.

The parameterizations of the form (13) and (14) cover the whole set of
canonical forms for the lattices. A formal deduction of formulae (13) and
(14), based on properties of adjoint operators, will be given in Sub-Section
5.1.

Remark . Note that, in the account of (10) and (11), the polynomials p,r in
(9) are then recovered under

(s +1/2)+x(s —1/2) = 2p(x(s)), (x(s+1/2) —x(s — 1/2))° = 4r(z(s)).
Indeed, by writing p(z) = p1x + po, r(x) = rex? + 112 + 1o, we get

pr=1,po=FRo/d, 1o =0, 11 =Ry, 19 = K7 /4 — RaRo (15)



DIVIDED-DIFFERENCE OPERATORS FROM THE GEOMETRIC POINT OF VIEW 5

in the case (13), and

12 4 o—1/2 12 4 o—1/2
p1:i,p0:fi3 1_(q ) : (16)
2 2
12 —1/2)2 12 —1/2\2
ry — (g 4q ) . _Ks(q 2q ) | (a7
o /4;_% 1/2 —1/2)2
ro = (—Kikg + 1 )(q q ') (18)

in the case (14).
A.P. Magnus, in [11, p. 255], gives the following precise parameterizations.

Proposition 1. Consider the conic (4), ay?+2bxy+ca?+2dy+2ex+ f = 0,
with ac # 0. The following assertions hold.
(a) If the conic has a center \ := b*> — ac # 0, then, with the center
coordinates

ae — bd
==

_cd—be
=

Le Le

one has (4) written in the form

a(y — ye)® + 2b(x — x)(y — ye) + ez —z)* + [ =0,
with

d?> — 2bd 2

A

(a.1) [ff:?é 0, then
2(s) = .+ EValg* +q7°), yls) =y + EVc(g" 2 + g~5T1/?)
is a parametric representation of (4), where €2 = f/(4)), and

2b , 40°
q1/2+q_1/2:—— e, q+ql=—-2.

vac’ ac

(a.2) ]ff = 0, then one finds the parametric representation

2(s) = .+ Xvaq*, y(s) = ye + X/eg™*?,
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for arbitrary parameters X.
(b)  If the conic has a center \ := b* — ac = 0, then

( _ d* —af (dvc+eva)
#(s) = va (Qa(d\/E—l— eva) 2 ac ° )

6 = Ve (gt — 2 1)

is a parametric representation of (4).

\

Remark . In the generic case q-quadratic case |q| # 1 the conic gives a
hyperbola. In such a case, the asymptotes are given by y = (c/a)"?¢*' %z,
thus, q 1s precisely the ratio of the slopes of the asymptotes of the conic.

3. Classification

There are four primary classes of lattices and related divided-difference
operators:
(i) the linear lattice, related to the forward difference operator [15, Chapter
2, Section 12];
(ii) the g-linear lattice, related to the ¢-difference operator [6];
(iii) the quadratic lattice, related to the Wilson operator [2];
(iv) the g-quadratic lattice, related to the Askey-Wilson operator [2].

Such a classification can be done according to the two parameters A, 7
defined in terms of the conic (4), ay? + 2bxy + cx* + 2dy + 2ex + f = 0, as
follows:

A=b"—ac, 7= (0"—ac)(d®—af)— (bd—ae)’) /a, (19)
or, using the determinant notation,
a b d
T=det |b c e
d e f
Note that A # 0 allows us to write the polynomial 7 in (8) as
A bd — ae\> T
r(:z:)—g(:r:jL 3 ) +- (20)

A detailed analysis of each case (i)-(iv), showing each of the operators in the
form (9) with the corresponding polynomials p,r, is given in the following
sub-sections.
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3.1. The linear lattice: A\ = 7 =0 in (19). If A = 0 and 7 = 0, then,
from (19), bd — ae = 0, thus, the the polynomial r defined in (8) is constant,

d? —
r(z) = " af. Hence, we have the polynomials p, r defined in (8) given by
b d d? —af
p@)= 2o -2, vy =54

Recalling (7), it follows that

b d d>—a
ya(@) =~z - S V2O

a a a (21)

that is, we have two parallel lines,
y+(x) = me £ by,

with
b d d? —
a a a

Proposition 2. The canonical divided-difference operator related to the lin-
ear lattices is the forward difference operator D, = A,, - the so-called Hahn’s
operator [6], where
r+w)— f(z
Aufle) = LEXDZIEL 0, (22)
for arbitrary functions f. Hence, the operator A, can be written in the form
(9), with the polynomials p,r given by

p(x)szrE, r(x):Z.

Proof: Combining (1) with (21), the operator (22) is recovered through the
specialization

b=—-a c=a, d=—-aw/2, e=aw/2, f=0, (23)
and it follows the assertion on the polynomials p, r. ]
Also, by using the values of (23) into (4), we get the conic with equation
v =2y + 2t —wy+wr =0,

which can be factorized as

(y—2)(y—r—w)=0.
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The linear lattice, obtained via two parallel lines, is illustrated through Fig.
2.d) in [11, pp. 256]).

3.2. The ¢-linear lattice: A #0, 7 =0 in (19). If A #4 0 and 7 = 0, the
polynomials p,r defined in (8) are given by

b d A bd — ae\’
p(r)=—x——, r(x):?<x+ ae) :

a a A

Recalling (7), it follows that

b d VA bd — ae
to) = =52 7 (04755

that is, we have two intersecting lines,

yo(w) =moz+be, y(2)=m a+b

with
b VA b VA
m+:__+_7 m—:____u
a a a a
V) [bd — ae d V) [ bd — ae d
by = — =, b_=-— — =
a A a a A a

Proposition 3. The canonical divided-difference operator related to the q-
linear lattices is the q-linear difference operator, D, = A,,, [6], where

flgz +w) — f(z)
(¢g— Dz +w
for arbitrary functions f. Hence, the operator A, can be written in the

form (9), with the polynomials p,r given by

p(x):<q—;1)x+%, r(:c):(q:ll) <x+L) :

Proof: Combining (1) with (24), the operator (25) is recovered through the
specialization

Aq,wf(:v) - ) q 7é 1 ) (25)

1
g+ )a, c=qa, d:—%a, e:%a, f=0, (26)

and it follows the assertion on the polynomials p, r. ]




DIVIDED-DIFFERENCE OPERATORS FROM THE GEOMETRIC POINT OF VIEW 9
Also, by using the values of (26) into (4), we get the conic with equation
y? — (q+ )y + qv* — wy + wr =0,

which can be factorized as
(y —2)(y — gz —w) =0.

The g¢-linear lattice, obtained via two intersecting lines, is illustrated through
Fig. 2.b) in [11, pp. 256]).

Remark . In [6, pp. 6], it is shown that, whenever q # 1, the constant w in

(25) can be eliminated through a linear transformation: by setting v = az +b
and f(x) = h(z), the operator Ay, can be written as

Db
(q—l)Z+(q )bt w
a
Now, choosing a =1, b= 1L, we get the operator
—q
flgz) — f(z)
D,f(x) = : 27

3.3. The quadratic lattice: A =0, 7# 0 in (19). If A =0 and 7 # 0,
the polynomials p,r defined in (8) are both of degree one, given by
b d bd — ae) d?> — af)

p(x) =—-T—, r(x):2( " e

x+(

Recalling (7), it follows that
b di\/Q(bd—ae)aﬁ+(d2—af)

velo) = =22 =3 a

(28)

Proposition 4. The canonical divided-difference operator related to the qua-
dratic lattices is the Wilson operator [1, 2], D, = W where

_H(E D) - F (W 5)

W) i ,

(29)
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for arbitrary functions f. Hence, the operator VYV can be written in the form
(9), with the polynomials p,r given by
1

p(x)::r:—i, r(z)=—x.

Proof: Combining (1) with (28), the operator (29) is recovered through the
specialization
a a
a Y c a Y € 4 Y f ]_6 ( )
and it follows the assertion on the polynomials p, r. ]
Also, by using the values of (30) into (4), we get the conic with equation

2 2o Y X 1
— 2 “4+—-—4+—=0
Y TY +x +2+2+16 ,

which is a parabola (we have A = 0 and 7 < 0). The corresponding lattice,
obtained via a parabola, is illustrated through Fig. 2.c) in [11, pp. 256]).

3.4. The ¢g-quadratic lattice: A 20, 7#0in (19). If A\ #0 and 7 # 0,
the polynomials p,r defined in (8) are of degree one and two, respectively,
given as

pa) = —2a -2 r(x):r(x):i<x+bd_“€>2+i.

a a a? A al

Recalling (7), it follows that

b d b bd —ae\> T
— 44/ —. 31
Y+ () i \/a2 <x+ ;) >+aA (31)

Under some specializations, by considering the centred and symmetrised
forms of the lattice, one can recover the Askey-Wilson operator [1, 2| (see
also [7, Eq. (12.1.12)]), given by

FG(@ P2+ g7 22 ) = f(5(g P2+ ¢'22)
512 =g V) (2 = 27Y) |

Indeed, let us begin by defining the base ¢ = ¢*" and consider the projec-
tion map from the unit circle {z = ¢, § € [—7, 7[} onto [—1,1] by

D.f(z) = (32)

1
T = §(z+z_1).
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Note that we have

1 ) 1 i
y-(z) = 5(g V24 ¢ 7Y, yi(a) = §(q1/QZ+q Y2 (33)

Proposition 5. The canonical divided-difference operator related to the g-
quadratic lattices, in the symmetrical form, is the Askey- Wilson operator (32)
[1, 2]. The operator (32) can be written in the form (9), with the polynomials
p, T gen by

12 4 g=1/2 /2 _ —1/2
p(x):(q q )33, r(x):(q q )(x2_1)
2 4
Proof: Combining (1) with (33), we have, after basic computations,
y-(2) +y4(2) = 2cos(n)a = (¢ + ¢ )z, (34)
(y-(2) =y (2))* = (@2 = ¢ *)(@* = 1). (35)

In the account of (10), that is, y_(2) +y,(z) = 2p(z) and (y_(z) —y, (x))? =
4r(x), there follow the polynomials p,r as stated.
The operator (32) is recovered through the specialization

a = c, arbitrary and non-zero, b= —acos(n), d=e=0, f= —asin’(n).
|

In the g-quadratic case, the conic is an hyperbola (when A > 0 and 7 < 0),
or an ellipse (when A < 0 and 7 < 0, respectively). The corresponding

lattice, obtained via an hyperbola or an ellipse, is illustrated through Figs.
1 and 2.a) in [11, pp. 256]).

4. Coalescence

The set of lattices previously defined can be classified through specifications
on the constants in the parametrization formulae (13) and (14), that is, in

CI?(S) = /%282 + /%18 + /N‘i()
and
x(s) = K1q" + Kaq " + K3,

respectively. Indeed, depending on the constants x’s and k’s, we recover the
four primary classes for the lattices z(s):
(i) Linear lattices : Ry = 0 and &1 # 0 in (13);
(ii) g-linear lattices : ko = 0 and k3 # 0 in (14);
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(iii) Quadratic lattices : /Ko # 0 in (13);
(iv) ¢-Quadratic lattices : k1k2 # 0 in (14).

The ¢-quadratic lattice, in its general non-symmetrical form, is the most
general case and the other lattices can be found from this by limiting pro-
cesses.

It turns out that each of the operators listed in (i)-(iii) of the previous
section, specified in Sub-Sections 3.1-3.3, can be recovered as a particular
case or as a limit case, up to a linear transformation of the variable, from
one of the operators in the list. Details are given as follows.

Recall the polynomials p,r in (8): by writing p(z) = p1x + po, r(z) =
rox? + 712 + 1o, we have

b d
Pr=—"5 Po=—7, (36)
a a
v’ — ac (bd — ae) d’> — af
o = 22 , T = 2—a2 , To—= 22 . (37)

4.1. From ¢-quadratic to quadratic. Taking limits ¢ — 1 in (16) as well
as in (17) we get p; = 1 and ro = 0. In the account of (37), ro = 0 yields
b — ac = 0. Furthermore, in the account of (37), note that 7 # 0 in (19) if,
and only if, rory — (r1/2)? # 0. As we have ro = 0, then 7 # 0 if, and only
if, 7, £ 0, which must hold upon a suitable choice of k3. Thus, we get the
quadratic case: A =0 and 7 # 0 (cf. Sub-Section 3.3).

4.2. From g-quadratic to ¢-linear. Recalling the remark , let us take the
operator D, defined by (27),

flgz) — f(x)

(¢g—1z
We begin by fixing the parameter ¢ # 1. Taking limits ko — 0, k3 — 0, and
fixing ¢ # 1 in (14) we get 9 # 0, r; =0, 79 = 0 in (17)-(18), that, in the
account of (37), yields b* — ac # 0, bd — ae = 0, d* — af = 0. Thus, we get
the g-linear case: A # 0 and 7 = 0 (cf. Sub-Section 3.2).

Note that, in such a situation, the operator D, obtained via the above
limiting process is given by

D,f(z) =

s+1/2y s—1/2
Duf(ale) = T T ),
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which can be easily written as (27) trough the change of variable z(s) =
s—1/2
R1q .

4.3. From ¢-linear to linear. The linear case follows easily by taking limits
g — 1in (25). Indeed, we get the coefficients of the polynomials p,r as given
in Proposition 2, thus, in the account of (37), we have A = 0 and 7 = 0 (cf.
Sub-Section 3.1).

5. Divided-difference operator calculus

Recall the operator D, in its general form given by (1), together with the
corresponding conic (4) and the polynomials p, r defined in (8). In the sequel
we shall take A, =y, —y_. From (7), there follows

A, =27 (38)

In order to deduce further properties, let us now introduce the operators
Ef and E, (see [10]), acting on arbitrary functions f, as

E*f(2) = f(y=(x)).
With this notation, (1) is also given by
Erf—E.f
D,f(a) = == — =/
/(@) Efr —E x
The companion operator of D is then defined as (see [10])

M, f(z) = 22/ (@) ;E;f(w) |

Note that M, f is a polynomial whenever f is a polynomial. Furthermore, if
deg(f) = n, then deg(M, f) = n.

The operators D, and M, satisfy the product and quotient rules listed
below (see [10]):

(39)

]Dx(fg) = ]D)a:f ng + Ma:f]D)a:ga (40)
D,fM,g —D,g M,
x 22
M, (fg) = M S Myg + 22D, Dyg, (12)
M, (f/g) = 2 Be9t e Bt (43)

2E, gEfg
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Eq. (40) has the equivalent forms:

Dx(gf) - ]D:Cg]E;f + DxfE;g;
Dx(gf) = ]D)xg]ch_f + D, fE,g.
Also, one has two equivalent forms for (41):

ngE;f - ]DxfE:;g

D,(g/f) = Lol e B,
D,gE* f — D, fE
D,(g/f) = 2Ll

The operators D, and M, also satisfy the product rules II (see [5, Eq. 15]
and [4])
A2
D, M, = aM, D, +U; D?, M2 =U;M,D, +04Iy]D>i +1,  (44)

where I is the identity operator, If(z) = f(z), and
r
() = (0~ Do+ (15)

with p; and r; defined in (15) in the quadratic case, or in (16)-(18) in the
g-quadratic case.

5.1. The explicit parameterizations revisited. Let us recall the conic
(4), ay® + 2bxy + ca® + 2dy +2ex + f =0, a # 0, as well as its two y-roots,
satisfying (5) and (6). Assuming ¢ # 0 in (4), then one defines the inverse
functions of y_ and y., denoted by y~! and yfrl, respectively, such that

vy (y-(z) =z, yi'(yc(2)) ==,

together with the corresponding operators

(E) " @) =7 @), (B f@)=f (' @) (40
Let us also define the operators E = (E;)'Ef, E-! = (Ef) 'E, by (see

[10])
Ef(x) = f (v (=" () , E7f(x) = f (y-(y7'(2))) - (47)
In order to deduce the parameterizations of the quadratic and ¢-quadratic

cases, we first present the following lemma. The results are gathered in [10],
but here we detail its proof.
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Lemma 1. Recalling the conic (4) and the operators previously defined, the
following equalities hold:

—2(by~(z) +d)

Ex+z = - , (48)
Elysr — —Q(bylla(l") +d) | (49)
V@) ) = 2O (50
Ex+E 'z = 2(2—b2—1>x+4<b6_6d). (51)

ac ac

Proof: Equations (48) and (49) follow by taking z = y~_*(X) and z = y; (X)),
respectively, in (5), y_(z) + y4(z) = —2(bz + d)/a).

To deduce (50) we start by evaluating (6) at y—'(x) as well as at y'(x),
thus getting

.Iy+(y:1($)) — C(y: (ZL‘))2 +a2€y: (x)+f, (52)
xy_(yfrl(x)) — C(yl (x))2 +a2€y—&_- (.%’) +f. (53)

Subtracting (53) to (52) yields

z (v (v~ (2) — y- (' (2)))

Thus, we have

Ex+z— (El'v+z) = c(y—"(z) +y; ' (z)) +2¢) . (54)

Using (48) and (49) in (54) gives us, after simplifications, equation (50).
Equation (51) follows from the sum of (48) with (49), and using (50). =

Applying E™ to (51) we obtain the difference equation

2?2 be — cd
Ely + B lp =2 (— - 1) E'z + 4 ( S ) . (55)
ac ac
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The solution of the equation (55) leads us to the form of the parameterizations
already discussed in Sub-Section 2.1(see [10, pp. 264] and [13]). Here, it is
given the detailed proof in what follows.

Theorem 1. Let g satisfy
2b*
q+q‘1=2(——1>- (56)
ac

The solution of the difference equation (55) is given by

d—1>
E'w =aq"+ B¢ "+ 5—, i ¢#1 (57)
b — ac
or
2(be — cd
]E”x:&JrﬁnernQ, if q=1. (58)
ac

Proof: Recall that the solution of a difference equation such as (55), say,

be — cd 202
%%4&+&4:(ec>,5=%——0, (59)

ac ac

can be written as X,, = X, , +X,, with X}, ,, the solution of the homogeneous
equation

Xoy1 —EX, +X,-1=0 (60)
and X, a particular solution of the complete equation (59). Also, denoting
by &1, & the two roots of the so-called associated characteristic equation of
(60),

?—¢r+1=0, (61)

the solution of (60) is given by (see [12])

X, _fedrig Gz,
" e+ Bng if6 = 6.

§EVE§ -4
2

£2—4 # 0, we have two different roots of the quadratic equation, which satisfy
indeed ¢q_ = (q+)71, and ¢_ + g, = £&. Thus, we have the parameter ¢, say
q = q4, defined as in (56). If £2 —4 = 0, then £ = 2, which implies the double
root of the quadratic equation being q := ¢q_ = ¢, = 1, thus, also defined as
in (56).

Note that the roots of 22 —x+1 = 0 are ¢, := . Hence, when
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cd — be . :

is a particular solution
b> — ac
of the complete equation (59) in the case of two different roots of (61), and
we get (58) in the account that A := WTLQ is a particular solution of the

complete equation (59) in the case of a double root of (61). u

Finally, we get (57) in the account that A :=

5.2. The divided-difference operators as exact lowering operators.
We now give the analogues of the well-known formulae for the continuous

case —a" = naz" !, as proposed by [16]. Further details are given in the
x

more recent approach [18].

Let {l,(z;a)} 25} be a polynomial basis of L*(w(z)Dz,G), where [, is a
polynomial of exact degree n and the support is G = {E**z : k € 2Z} or, if
finite, G = {xo, ..., Z,, }, and a denotes the set of parameters characterising
the lattice. The general requirements for the polynomial basis are:

(i) I,(z) is of precise degree n in x,

(ii) D, is an exact lowering operator in this basis, that is, D,l,(x) = ¢, l,—1(x),
n > 1, where ¢, = ¢,(a) is a constant with respect to x, depending on a set
of parameters a := {ay, aq, ..., an, }, characterizing the lattice.

A general solution of the above requirements is the polynomial defined by
(see [18, Sec. 2])

where x(a) denotes the so-called basal point, parameterized by @, and g,,(a) #
0.
We have the following.

1. In the ¢-quadratic lattice x(s) = k1¢® + koq™® + K3, with ¢ # 1 and
k1 > 0, k9 > 0, the basis is

n

~got} ~g-st}
zn<x<s>>gn<q w‘”"—1;q> (q m;q) s, (62)

NG

3/2 n
B B “1/ q1/4
gn = gn(K/la K, Q) - - .

with
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The divided-difference operator satisfies D,l,,(x(s)) = cylp_1(z(s)), n > 1,
that is,

bn(2(s +1/2)) = ln(x(s — 1/2))

Dolul2(9)) = = ey —as — 1y b1 (@(9))
with
Cn = Cn(K1, Ko, q) = %2[%.

Here, it is used the Pochhammer symbol, given by

n—1
(a;q)0o=1, (a;q)n = H(l —aq’), n=12,...,
=0
and the number [z], defined by
_or—1
[Z]q - q— 1
2. In the quadratic lattice x(s) = Rys® + K18 + Ko, with & # 0, the basis is
K 1 R 1
lo(z(s)) = 47" (—Fko)" (_% — 25+ §>n (% + 25 + §>n , n>1. (63)

The divided-difference operator satisfies D,l,,(x(s)) = cylp—1(z(s)), n > 1,
that is,
ln(x(s+1/2)) — l(x(s —1/2))

Dalu(@(s) = = T2 —als = 1/2)

= cply—1(x(s))

with

Cpn=".
Here, it is used the Pochhammer symbol (A), = A(A+1)---(A+n—1).
3. In the g¢-linear lattice, the basis is

n—1

l(z) = (ax; q), = H(l —agz), n>1. (64)

The divided-difference operator, taken in its canonical form as the D, ope-
rator given in (27), satisfies Dyl,,(x) = cply—1(z), n > 1, that is,
ln(qr) — ln()

Duln() = (¢ — 1=

= cplp_1()
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with
1 —aq"
Cp = — :
qg—1
4. In the linear lattice, the basis is
n—1
: I'(z+1)
[(x) = —7) = , >1, 65
W =Tl = 5oy (65)

where I'(-) denotes the Gamma function. The divided-difference operator,
taken in its canonical form as the forward difference operator Af(x) = f(z+

1) — f(x), satisfies
Aly(x) =1l (x+ 1) — ly(x) = eplp1(z)

with

Cph="N.

5.3. Integrals. Let the lattice points be denoted by G|x] = {z(s) : s € Z},
with the point xz(0) as the basal point, and let us denote the dual lattice
by G[z] = {z(s +1/2) : s € Z}. The D-integral of a function defined on
the x-lattice, f : G[x] — C with basal point o = x(0), is defined by the
Riemmann sum over the lattice points (see [18, Sec. 2])

f[f](xo)=/Gf(x(S))Dx(8) =D Sy (x(s)) —y-((s))) . (66)

SEL*

Recalling that, in the quadratic case, y,(z(s)) = z(s + 1/2), y_(z(s)) =

x(s — 1/2), and also recalling the notation z := x(s)), then we can write
= > fla)((@(s +1/2) = (2(s = 1/2)) = > f(x)A,
sEL* sEL*

Here, Z* is a finite subset of Z, namely {0, 1,...,ng}, or Z>q, or Z.
Recalling that EX f(z(s)) = f(x(s £1/2)), for x(s) € G[x], the following

properties follow from (66) (see [18]):

1. an analog of the fundamental theorem of calculus:

/< < D, f(x(s))Dx(s) = f(EXwz,,) — f(E, x0). (67)
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2. an analog of integration by parts for two functions f(z), g(x):

/< < F(2(5))Dag(2(s))Da(s) = F(EF 220 )g(Ex2n,) — f(20)g(E o)

_ / _ Duf(Ela(s)g(Ex(s)D (Bl a(s)) - (68)

Remark . The definition (66) reduces to the ususal definition of the difference
integral and the Thomae-Jackson q-integrals in the canonical forms of the
linear and q-linear lattices, respectively [8, 17].
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