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DEFORMATIONS OF SYMPLECTIC GROUPOIDS

CRISTIAN CAMILO CÁRDENAS, JOÃO NUNO MESTRE AND IVAN STRUCHINER

Abstract: We describe the deformation cohomology of a symplectic groupoid, and
use it to study deformations via Moser path methods, proving a symplectic groupoid
version of the Moser Theorem.

Our construction uses the deformation cohomologies of Lie groupoids and of mul-
tiplicative forms, and we prove that in the symplectic case, deformation cohomology
of both the underlying groupoid and of the symplectic groupoid have de Rham
models in terms of differential forms.

We use the de Rham model, which is intimately connected to the Bott-Shulman-
Stasheff double complex, to compute deformation cohomology in several examples.
We compute it for proper symplectic groupoids using vanishing results; alternatively,
for groupoids satisfying homological 2-connectedness conditions we compute it using
a simple spectral sequence.

Finally, without making assumptions on the topology, we constructed a map
relating differentiable and deformation cohomology of the underlying Lie groupoid
of a symplectic groupoid, and related it to its Lie algebroid counterpart via van Est
maps.
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1. Introduction
In this paper we study deformations of a symplectic groupoid (G, ω), con-

structing the deformation cohomology H•def(G, ω) controlling them. Any defor-
mation of (G, ω) gives rise to a deformation class [η] in the cohomology, which
can be used in Moser path methods. We carry out computations for the co-
homology in examples, comparing it with cohomologies associated to related
objects.
Symplectic groupoids were introduced by Karasëv [47], Weinstein [72] and Za-

krzewski [75], motivated by the search for a quantization procedure for Poisson
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structures. They are first of all Lie groupoids, objects introduced by Ehres-
mann in the 1950’s [36], which generalize Lie groups and which, among other
uses, permit the unified study of differential geometric objects such as folia-
tions or Lie group actions. A Lie groupoid equipped with a compatible, i.e.,
multiplicative symplectic structure, becomes well adapted to the study of Pois-
son structures. Poisson structures are Lie algebra structures on the algebra
of smooth functions on a manifold, which in addition are biderivations of the
associative algebra structure. Although these Lie algebras are infinite dimen-
sional, they are on the infinitesimal side of a rich Lie theory, with symplectic
groupoids (which are finite dimensional!) playing the part of the corresponding
global object.
In analogy with the relation between Lie groups and Lie algebras, any sym-

plectic groupoid G ⇒ M induces a Poisson structure π on its space of units
M , such that the Lie algebroid of G is naturally isomorphic to the cotangent
algebroid (T ∗M)π associated to the Poisson manifold (M,π). Not all Poisson
structures arise in this way, but for the ones which do, called integrable, it was
shown in in [62] that there is always a natural symplectic groupoid structure
on the source 1-connected integration G of (T ∗M)π. The symplectic groupoid
structure on G was also obtained by an infinite dimensional reduction proce-
dure in [15], and the characterization of which Poisson manifolds are integrable
was finally settled in [20].
The survey [73] gives an account of Poisson geometry at the early stages

of development of symplectic groupoids, and already then they feature promi-
nently in the results and the problems presented, some of them now settled,
some still open.
First and foremost (from our specific viewpoint) symplectic groupoids are

useful in the study of the Poisson geometry of the base, both in its local and
global properties. But we should mention that symplectic groupoids have also
feature in a variety of other treatments, for example in geometric quantization
[43], deformation quantization (cf. e.g. [9, 15]), the study of the geometry of va-
rieties appearing in Poisson-Lie theory (for example [53]) and of moduli spaces
of flat connections (e.g. [51, 71]).
Particulary motivating for this work, was the role played by symplectic

groupoids, both in the study of local and of global Poisson geometry, via Moser
path arguments, also known as “the Moser trick”. We mention how it came to
influence our work. Starting with the famous Moser Theorem, the Moser trick
has been used to prove many rigidity and normal form results in symplectic
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geometry, and related topics (see e.g. [11]), by reducing deformation problems
to cohomological conditions. It was first used in the context of Lie groupoids,
to our knowledge, by Weinstein [74], in the pursuit of linearization theorems for
proper Lie groupoids. Next, in the geometric proof of Conn’s Theorem of [21],
a Poisson version of the Moser Theorem was used, together with symplectic
groupoids that solved the cohomological conditions. Further, similar techniques
were used around leaves of a Poisson manifold [27]. These techniques eventu-
ally led to the geometric proof of the linearization of proper groupoids around
orbits [29], and to the development of the deformation cohomology H•def(G) of
an arbitrary Lie groupoid in [25].
Recent developments related to deformation theory for Lie groupoids include

a rigidity result for foliations [32], the study of deformations of vector bundles
over Lie groupoids [49], and of morphisms of Lie groupoids [12]. Specific classes
of deformations of Lie groupoids (deformations to the normal cone) are also of
importance in noncommutative geometry (see e.g. [30, 31]).
Our work brings this new understanding on deformations of Lie groupoids

full circle back to Poisson geometry, as exemplified by a symplectic groupoid
version of the classical Moser Theorem (detailed further in Sections 7 and 8).

Theorem 1.1. Let (G̃, ω) be a deformation of a compact symplectic groupoid
(G, ωG) and let [η] be the deformation class in H2

def(G, ω) associated to it. Then,
the deformation (G̃, ω) is trivial if and only if [η] vanishes smoothly.

This result also leads to local descriptions of moduli spaces of multiplica-
tive symplectic forms on a compact Lie groupoid G, given by an analogue of
a Kodaira-Spencer map (See Theorem 7.8 for a more precise and detailed ver-
sion).

Theorem 1.2. Let (G, ω) be a compact symplectic groupoid, and denote by
S(G) the space of multiplicative symplectic structures on G.
Then there is a neighbourhood U of ω in S(G) and a neighbourhood V of 0

in H2
def(G, ω), such that there is an explicit 1:1 correspondence

κ : U
/
∼ 1:1−→ V ⊂ H2

def(G, ω),

sending the equivalence class of ω to 0. The equivalence relation is such that
ω1 ∼ ω2 if ω1 + ε(ω2 − ω1) is a trivial family of multiplicative forms for all ε.

The key insight in order to construct the deformation cohomologyH2
def(G, ω),

where the cohomological equations of the Moser Theorem naturally live, was
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that the pair of a Lie groupoid and an extra structure on it is more manage-
able when interpreted as a diagram. Then the new tools on deformations of
morphisms of Lie groupoids from [12] could be used.
Moreover, in the specific case where the extra structure is symplectic, there

is a description in terms of differential forms on the nerve G(•) of G, of H•def(G),
and of H•def(G, ω). We call the latter the de Rham model for deformation
cohomology of the symplectic groupoid (G, ω), and we summarize the results
here (see Proposition 4.1 and Theorem 5.3 for more detailed versions).

Theorem 1.3. Let (G, ω) be a symplectic groupoid. Then ωb induces a quasi-
isomorphism

C•def(G) ∼ Ω1(G(•)).

The deformation complex C•def(G, ω) of the symplectic groupoid (G, ω) is iso-
morphic to the mapping cone of the de Rham differential

−ddR : Ω1
def(G(•))→ Ω2

cl(G(•)).

In order to effectively use a symplectic groupoid to study the Poisson struc-
ture on the base, it is desirable to have a good description of the symplectic
groupoid, or at least to know some of its properties. There are conditions to
characterize whether a Poisson manifold is integrable [20] and if it is, there is
an infinite-dimensional reduction procedure for the construction of the source
1-connected integration [15]. Nonetheless, constructing a concrete integration
is often still challenging.
Fortunately, symplectic groupoids for several classes of Poisson manifolds

have been described, usually immediately bringing about new insight about
the Poisson structures they integrate; we mention a few of them. Some of the
simplest cases are symplectic manifolds, the zero Poisson structure and linear
Poisson structures on vector spaces and vector bundles [17]. Even for the zero
Poisson structure, symplectic groupoids may provide rich geometry in the form
of integral affine structures, as shown recently in [23, 24]. Integrations for any
Poisson-Lie group are described in [52, 54], and these and other symplectic
groupoids also have interpretations in terms of moduli spaces of flat connec-
tions, for example in [51, 71]. Integrations of Poisson fibrations are studied
in [4]; integrations of Log-symplectic manifolds are studied using blow-up and
gluing techniques in [42]; a description of the integration of neighborhoods of
Poisson transversal submanifolds is given in [38]; more examples appear in re-
lation to the theory of Poisson-Lie groups - for example, symplectic leaves of
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double Bruhat cells are symplectic groupoids studied in [53]; and this list is far
from complete.
We carried out computations for the deformation cohomology in a few of

these examples. Most computable examples (G, ω) are typically of one of two
kinds: either we assumed some sort of compactness condition, or vanishing
of H1

dR(G) and H2
dR(G). Clearly we cannot ask for both vanishing H2

dR(G)
and compactness, because we deal with symplectic groupoids. In fact, even
examples of compact symplectic groupoids with the more reasonable condition
of having simply connected source fibres are very hard to find [24, 63, 77].
Asking for the symplectic groupoid to be proper (a compactness-type con-

dition), we obtained the following result (See Section 6 for more a detailed
version of it), and applied it for linear Poisson and zero Poisson structures of
proper type.

Proposition 1.4. Let (G, ω) be a proper symplectic groupoid, and let ν denote
the normal distribution to the symplectic leaves. Then there is a 7-term exact
sequence

0→ Ω1
cl(M)G−inv → Γ(ν∗)G−inv → Ω2

cl(M)G−inv → H1
def(G, ω)→

→ Γ(ν)G−inv → H1
def(ω)→ H2

def(G, ω)→ 0

and Hk
def(G, ω) ∼= Hk−1

def (ω) for k > 2.
In particular, expressed in terms of the de Rham model,

H2
def(G, ω) ∼= H1

def(ω)/d(H1
def(G)).

With the help of some simple spectral sequence arguments we also provide
descriptions of the deformation cohomology of an arbitrary symplectic group-
oid. Those descriptions, however, become much simpler in the case of proper
symplectic groupoids, as detailed in Sections 6.5 and 6.6.
If on the other hand we ask for moderately strong topological conditions

- vanishing of first and second de Rham cohomologies, we see a very close
relation between deformation cohomology of (G, ω) and Poisson cohomology
Hπ(M) of the base. Poisson cohomology of (M,π) is computed by the complex
X•(M) of multivector fields on M , with differential dπ = [π, ·]SN , i.e., given
by the Schouten-Nijenhuis bracket with π. It is the cohomology controlling
deformations of the Poisson structure π, and in general it is hard to compute.
We refer to [66] for an account of techniques that can be used to compute it in
different classes of Poisson manifolds, as well as for the very recent developments
in loc. cit.
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Call a Lie groupoid G homologically 2-connected if all the spaces G(n) of its
nerve, as well as its source-fibres, are homologically 2-connected. In this situa-
tion we obtained the following result (Section 9 contains precise and improved
versions).

Proposition 1.5. Let (G, ω) ⇒ (M,π) be a homologically 2-connected sym-
plectic groupoid. Then

H0
def(G, ω) ∼= H0

π(M)/R, H1
def(G, ω) ∼= H1

π(M) H2
def(G, ω) ∼= H2

π(M),

and there is an injective map

H3
def(G, ω)→ H3

π(M).

Although the conditions do sound restrictive, we focus in Section 9 on some
situations in which they are satisfied, for example in the context of linear
Poisson structures, Poisson-Lie groups, and cotangent VB-groupoids.
As a general result without assumptions on topology of (G, ω) other than

connectivity of the source fibres, we construct a map iG : H•(G)→ H•def(G) as
a global counterpart to the map i : H•π(M) → H•def(A) of [26] and prove the
following (more details, and the statement at the level of cochains in Theorem
10.2).

Theorem 1.6. Let (G, ω) be a s-connected symplectic groupoid. Then iG to-
gether with i and the van Est maps for differentiable and deformation coho-
mology form the commutative diagram.

Hk(G) Hk
def(G)

Hk(T ∗M) Hk
def(T

∗M).

�V E

iG

V Edef

i

We would like to make some final remarks. We believe that the description
of the deformation complex of a symplectic groupoid is important by itself,
because this work should serve as prototype. It opens the road to similar
studies for other structures on groupoids, which should shed light on deforma-
tion theoretic properties of objects described by them. We expect that similar
techniques can be used, but revealing different phenomena, for multiplicative
contact, Poisson, complex structures, foliations, etc.
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The theory developed in this paper should have a version for local and formal
symplectic groupoids, likely using the version of the Bott-Shulman-Stasheff for
local Lie groupoids [50]. In this direction, it would be interesting to study
the classes of deformations of formal symplectic groupoids [14] induced by star
products arising from quantization, or pairs of star products, as in the works of
[9] and [45, 46]. We expect that local and formal versions automatically satisfy
many of the topological assumptions we used in computations, bringing the
theory closer to the deformations of the underlying Poisson structures.
Finally, all the work developed in this paper is intimately connected with the

Bott-Shulman-Stasheff double complex [2], therefore lending itself to general-
izations towards twisted presymplectic, and higher (shifted) (pre)symplectic
groupoids.

Outline of the paper. In Section 2 we recall needed background material
about Lie groupoid cohomology and deformations, VB-groupoids, multiplica-
tive forms and symplectic groupoids, and Poisson manifolds.
In Section 3 we introduce deformations and equivalence of deformations of

symplectic groupoids, and provide examples of trivial and non-trivial deforma-
tions.
In Section 4 we explain how the symplectic form of a symplectic groupoid

(G, ω) permits a description of deformation cohomology of G in terms of differ-
ential forms.
In Section 5 we come to the central object of this paper, the deformation

cohomology Hdef(G, ω) of a symplectic groupoid. We explain how to construct
it out of the deformation cohomologies of the G and of ω. We also prove that
there is a de Rham model for it, in which cochains are differential forms, used
for the computations in the rest of the paper.
In Section 6 we carry out the first computations of deformation cohomology,

for symplectic manifolds, and proper symplectic groupoids; we then specialize
to zero Poisson structures of proper type and linear Poisson structures of proper
type. Using simple spectral sequence arguments we present some explicit com-
putations for general symplectic groupoids.
In sections 7 and 8 we use the deformation cohomology to prove symplectic

groupoid versions of the Moser theorem, first for specific (source-constant), and
then for general deformations. We also study consequences moduli spaces of
multiplicative symplectic forms.
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In Section 9 we use another spectral sequence to carry out more computations
of deformation cohomology, this time for symplectic groupoids for which the
nerve has vanishing first and second de Rham cohomology. The relation with
Poisson cohomology is very close in these cases; we include computations for
linear Poisson structures, the zero Poisson structure, Poisson-Lie groups, and
cotangent groupoids.
in Section 10 we study, now without topological assumptions on (G, ω), rela-

tions between the differentiable and deformation cohomology of G, the Poisson
cohomology of the base, and the deformation cohomology of the corresponding
algebroid. We do so by providing a map iG : H•(G) → H•def(G) and proving
that it is related by van Est maps to the map i : H•π(M)→ H•def(A) of [26].
Finally, we collect in an appendix the needed material on double structures,

used to prove the Theorem of Section 10.

Notation and conventions. We denote a Lie groupoid G over a base M by
G ⇒ M , usually having source and target maps denoted by s and t, multipli-
cation denoted by m, inversion map i and unit map u.
We say that a Lie groupoid G is s-connected (respectively s-k-connected) if

all fibres of its source map are connected (respectively k-connected).
We denote the tangent map of a differentiable map f : M → N either by

df or Tf . To avoid confusion with other cohomologies, we denote de Rham
cohomology of a manifold M by H•dR(M).

Acknowledgements. The authors would like to thank Alejandro Cabrera,
Rui Loja Fernandes, Ioan Mărcuţ, Cristián Ortiz, and Luca Vitagliano for
useful discussions related to the work of this paper.

2. Background
We start by recalling some background on Lie groupoids: their cohomology

and deformations, VB-groupoids, and symplectic groupoids. For a general
introduction to Lie groupoids we refer to [22, 59, 65].

2.1. Deformations of Lie groupoids. More details on the notions in this
section can be found in [25], where they are discussed in detail.

Definition 2.1. A family of Lie groupoids over a manifold B consists of
a Lie groupoid G̃⇒M̃ , together with a submersion p : M̃ → B, such that
p ◦ s̃ = p ◦ t̃.
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In other words, a family of Lie groupoids over B consists of a submersive Lie
groupoid map p : (G̃⇒M̃)→ (B⇒B), from G̃ to the unit groupoid of B. We
denote by Gb⇒Mb the fibre of p over b ∈ B, i.e. (p ◦ s̃)−1(b)⇒p−1(b).

Definition 2.2. An equivalence between families G̃ and G̃ ′ over B is given
by a Lie groupoid isomorphism F : G̃ → G̃ ′ such that p′ ◦ F = p. A family is
said to be trivial if it is equivalent to the product family given by

(G̃⇒M̃)× (B⇒B)
p=prB−→ (B⇒B).

Definition 2.3. A deformation of a Lie groupoid G is a family of Lie
groupoids G̃⇒M̃ over an open interval I containing zero, such that G0 is equal
to G.
An equivalence between deformations G̃ and G̃ ′ of G is given by an

equivalence of families F : G̃|J → G̃ ′|J such that F0 := F|G0 = idG0
, where

J ⊂ I ∩ I ′ is an open interval containing zero, and G̃|J denotes the restriction
of the family G̃ to the interval J .

Definition 2.4. A deformation G̃ of a Lie groupoid G for which G̃ = G × I as
smooth manifolds is called a strict deformation.
It is called an s-constant deformation if additionally the source map is left

constant, i.e., sε = s0 for all ε ∈ I.

Remark 2.5. A deformation of a Lie groupoid G determines a collection {Gε}
of Lie groupoids parametrized by ε ∈ I (the fibres of the family), varying
smoothly with respect to ε in the sense that they fit as fibres of a submersion.
If the deformation is strict then the Gε are equal as manifolds, and only the
structural maps change.
Accordingly, we often use denote a deformation of G simply by {Gε}, keeping

in mind that there is a specified family that the members of this family fit into.
Similarly, we often denote an equivalence F : G̃ → G̃ ′ of deformations by the

associated family of maps Fε : Gε → G ′ε.

2.2. The nerve of a Lie groupoid and differentiable cohomology. Let
G⇒M be a Lie groupoid and denote its space of strings of k composable arrows
by

G(k) = {(g1, . . . , gk) : s(gi) = t(gi+1) for all 1 ≤ i ≤ k − 1},
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and let G(0) = M . The nerve of G is the simplicial manifold G(•) for which
the space of k-simplices is G(k), the face maps are di : G(n) → G(n−1) given by

di(g1, . . . , gn) =


(g2, . . . , gn) if i = 0

(g1, . . . , gigi+1, . . . , gn) if 1 ≤ i ≤ n− 1

(g1, . . . , gn−1) if i = n,

and degeneracies si : G(n) → G(n+1) are given by inserting a unit in the i-th
position, si(g1, . . . , gn) = (g1, . . . , gi−1, 1,gi, . . . , gn), for 1 ≤ i ≤ n+ 1.
Smooth functions on the nerve form a cosimplicial space, out of which we can

construct the cochain complex C•diff(G) (also denoted just by C•(G)) computing
the differentiable cohomology of G, denoted by H•diff(G). Explicitly, its
spaces of cochains are Ck

diff(G) = C∞(G(k)), and the differentials are given by

δ =
k+1∑
i=0

(−1)id∗i : Ck
diff(G)→ Ck+1

diff (G).

The subcomplex of normalized cochains consists of those cochains c ∈ C•diff(G)
which vanish on all degeneracies, i.e., s∗i c = 0 for all i; it is quasi-isomorphic
to C•diff(G).
More generally, k-forms on the nerve of G together with a differential δ defined

by the same formula form the cochain complex Ωk(G•). These complexes form
the lines of the Bott-Shulman-Stasheff double complex

(
Ω•(G(•)), δ, d

)
[2]; the horizontal differentials δ : Ωq(G(•)) −→ Ωq(G(•+1)) are determined by
the simplicial structure of the nerve of G, as described above, and vertical
differentials d : Ω•(G(p)) −→ Ω•+1(G(p)) are given by the de Rham differential
of forms.

2.3. The deformation complex of a Lie groupoid. We recall the definition
from [25] of the deformation complex of a Lie groupoid G. To that end, let m̄
denote the division map of G, defined as

m̄(p, q) = pq−1, for all p, q ∈ G such that s(p) = s(q).

Definition 2.6. The deformation complex (C•def(G), δ) of a Lie groupoid G,
whose cohomology is denoted H•def(G), is defined as follows. For k ≥ 1, the
k-cochains c ∈ Ck

def(G) are the smooth maps

c : G(k) −→ TG, (g1, . . . , gk) 7→ c(g1, . . . , gk) ∈ Tg1
G,
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which are s-projectable in the sense that

ds ◦ c(g1, g2, . . . , gk)

does not depend on g1.
The differential of c ∈ Ck

def(G) is defined by

(δc)(g1, . . . , gk+1) =− dm̄(c(g1g2, . . . , gk+1), c(g2, . . . , gk+1))

+
k∑
i=2

(−1)ic(g1, . . . , gigi+1, . . . , gk+1)

+ (−1)k+1c(g1, . . . , gk).

For k = 0, C0
def(G) := Γ(A) and the differential of α ∈ Γ(A) is defined by

δ(α) = −→α +←−α ∈ C1
def(G),

where −→α and ←−α are the right-invariant and the left-invariant vector fields on
G induced by α.

Note that, to interpret the case k = 0, one way to think of a section of A is
as a map c : G(0) = M −→ TG, with c(1x) = cx ∈ T1xG, such that ds◦cx = 0x.

2.4. The deformation class of a deformation of Lie groupoids. We re-
call the definition from [25] of the deformation class associated to a deformation
G̃⇒M p→ I of a Lie groupoid G.
If G̃ is an s-constant deformation, then the expression

ξ(g, h) :=
d

dε

∣∣∣∣
ε=0

m̄ε(gh, h) (1)

defines a 2-cochain in deformation cohomology. It is a cocycle and its cohomol-
ogy class only depends on the equivalence class of the deformation [25, Lemma
5.3]. Moreover, If we let ξ̃ = −δ( ∂∂ε) ∈ C

1
def(G̃), then ξ = ξ̃|G0

[25, Prop. 5.7].
The expression (1) no longer makes sense if the deformation G̃ is not s-

constant, but defining ξ in terms of ξ̃ is still possible. For that, we need an
appropriate analogue for the vector field ∂

∂ε on G̃.

Definition 2.7. Let G̃⇒M p→ I be a deformation of a Lie groupoid G. A
transverse vector field for G̃ is a vector field X̃ ∈ X(G̃) which is s-projectable
to a vector field Ṽ ∈ X(M̃), which is in turn p-projectable to ∂

∂ε ∈ X(I).
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Proposition 2.8 ([25], Prop. 5.12). Let G̃ be a deformation of G. Then
(1) There exist transverse vector fields for G̃;
(2) For X̃ ∈ X(G̃) transverse, the restriction of δX̃ to G0 defines a cocycle

ξ0 ∈ C2
def(G);

(3) The cohomology class of ξ0 does not depend on the choice of X̃.

Definition 2.9. The resulting cohomology class [ξ0] ∈ H2
def(G) is called the

deformation class associated to the deformation G̃ of G.

Again, the deformation class is invariant under equivalence of deformations,
and as remarked in [49], this follows already from the independence of the
chosen transverse vector field.
Note that G̃ can also be seen as a deformation of its other fibres Gε, and for

such, the deformation class will be [ξε] = [δX̃|Gε].

2.5. Deformations of Lie groupoid morphisms and diagrams. We re-
call some background on deformations of Lie groupoid morphisms, which are
studied in detail in [12].

Definition 2.10. Let F : G → H be a morphism of Lie groupoids. A defor-
mation of the morphism F is a smooth map F̃ : G × I → H such that
F̃ (·, 0) = F and for each ε ∈ I, the map Fε : G → H is a morphism.

More generally, and this will be useful in our study, one can at once deform
the whole diagram F : G → H, which for simplicity we denote by F as well.

Definition 2.11. A deformation of the diagram F consists of a triple
(G̃, F̃ , H̃), where G̃ and H̃ are deformations of G and H, and F̃ : G̃ → H̃ is a
Lie groupoid morphism sending Gε to Hε, such that F0 := F̃|G0 = F .

Note that the requirement that F̃ is a morphism implies in particular that
each Fε := F̃|Gε : Gε → Hε is a Lie groupoid morphism as well.
For the purposes of this paper we will be interested in simultaneous de-

formations of the Lie groupoid G and the morphism F , or in other words,
deformations of the diagram F where H is kept fixed.
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2.6. The deformation complex of a Lie groupoid morphism. The de-
formation complex C•def(F ) of a Lie groupoid morphism F : G → H was briefly
described in [25] and further explored in [12]. It has the following description,
similar to that of C•def(G). For k ≥ 1,

Ck
def(F ) =

{
c : G(k) → TH

∣∣∣ c(g1, . . . , ck) ∈ TF (g1)H and c is sH-projectable
}

where c being sH-projectable means that dsH ◦ c(g1, . . . , gk) is independent of
g1.
The differential of c is defined by the same formula as the differential for

C∗def(G) (see Definition 2.6), except using the division dm̄H of TH instead of
the division dm̄ of TG.
In degree 0, we have C0

def(F ) = Γ(F ∗AH), and δα = −→α +←−α ∈ C1
def(F ),

where −→α (g) = dRF (g)(αt(g)) and ←−α (g) = dLF (g)(di(αs(g))).
There is a natural cochain complex map F∗ : C•def(G) → C•def(F ), given by

F∗c(g1, . . . , gk) := dFg1
(c(g1, . . . , gk)).

Analogously, for example, to the cases of deformations of morphisms of asso-
ciative algebras [39], of Lie algebras [37], and of deformations of holomorphic
maps (see [44] and references therein), it is shown in [12] that simultaneous
deformations of G and F are controlled by the mapping cone complex of F∗,

Cone(F∗)n = Cn
def(G)⊕ Cn−1

def (F ), δ(c, Y ) = (δc, F∗c− δY ).

2.7. VB-groupoids. VB-groupoids can be thought of as groupoid objects in
the category of vector bundles. They provide alternative ways to look at the
representation theory and the deformation theory of Lie groupoids (See [25],
[41] and Proposition 2.17 below). We review some basics on VB-groupoids
which will be useful in the following sections. For more details we refer to [59],
[41] and [6].

Definition 2.12. A VB-groupoid (Γ, E,G,M) consists of two Lie groupoids
together with two vector bundle structures as in the diagram

Γ E

G M,

s̃

t̃

q̃ q

s

t

(2)
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where q̃ and q are vector bundles and (Γ ⇒ E), (G ⇒ M) are Lie groupoids
such that the structure maps of the groupoid Γ are vector bundle morphisms
over the corresponding structure maps of the groupoid G.
A morphism of VB-groupoids

(φΓ, φE, φG, φM) : (Γ, E,G,M) −→ (Γ′, E ′,G ′,M ′)

is a Lie groupoid map (φΓ, φE) : Γ ⇒ E → Γ′ ⇒ E ′, such that φΓ and φE
are vector bundle morphisms covering φG : G −→ G ′ and φM : M −→ M ′,
respectively. Restricting φΓ to the zero section, φG turns out to be a Lie
groupoid morphism.

Remark 2.13. The requirement that mΓ : Γ(2) −→ Γ is a vector bundle
morphism, is taken with respect to the vector bundle structure of Γ(2) over
G(2).

Example 2.14. (Tangent VB-groupoid)
Given a Lie groupoid G ⇒ M with source, target and multiplication maps

s, t and m, by applying the tangent functor one gets the tangent groupoid
TG ⇒ TM with structure maps ds, dt, dm and so on. This tangent groupoid
is further a VB-groupoid over G ⇒M (with respect to the tangent projections).

Remark 2.15. Note that in the previous example one has the following short
exact sequences of vector bundles over G,

s∗(AG)
−l◦di−→ TG (dt)!

−→ t∗(TM) (3)

and
t∗(AG)

r−→ TG (ds)!

−→ s∗(TM) (4)
where r and l are the right and left multiplication on vectors tangent to the
s-fibres and t-fibres of G, respectively; (ds)! and (dt)! are the maps induced by
ds and dt with image in the corresponding pullback bundles.

Example 2.16. (Cotangent groupoid) As noticed in [17], the cotangent bundle
of a Lie groupoid G inherits a groupoid structure over the dual of the Lie
algebroid of G,

T ∗G ⇒ A∗G,

with source and target maps induced, respectively, from the dual of the exact
sequences (3) and (4). Explicitly, for αg ∈ T ∗g G and a ∈ Γ(AG),〈

s̃(αg), as(g)

〉
= −〈αg, lg ◦ di(a)〉
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and 〈
t̃(αg), at(g)

〉
= 〈αg, rg(a)〉 .

With multiplication determined by

〈m̃(αg, βh), Tm(vg, wh)〉 = 〈αg, vg〉+ 〈βh, wh〉 ,

for (vg.wh) ∈ (TG)(2).

VB-groupoid cohomology. Let Γ be a VB-groupoid. The differentiable
complex of Γ (as Lie groupoid) has a natural subcomplex C•lin(Γ) given by
the fibrewise linear cochains of Γ.
The VB-groupoid complex C•VB(Γ) of Γ ([41]), is a subcomplex of C•lin(Γ)

which takes into account simultaneously the Lie groupoid and vector bundle
structures of Γ. It consists of the left-projectable elements, that is, those c ∈
C•lin(Γ) for which

(1) c(0g1
, γg2

, ..., γgk) = 0,
(2) c(0g · γg1

, γg2
, ..., γgk) = c(γg1

, γg2
, ..., γgk).

This complex turns out to compute the cohomology of the base groupoid with
coefficients in a representation up to homotopy. For the case of the tangent
VB-groupoid it yields an interpretation of the adjoint representation ([41]). We
will make use of the following fact.

Proposition 2.17 ([41], Prop. 5.5, Thm. 5.6). The deformation complex of a
Lie groupoid G is isomorphic to the VB-groupoid complex of its cotangent VB-
groupoid, C•VB(T ∗G). The isomorphism is given by C•def(G) −→ C•VB(T ∗G),
c 7→ c′ with

c′(ηg1
, ..., ηgk) = 〈ηg1

, c(g1, ..., gk)〉 .

We recall also the following result of Cabrera and Drummond, that will let us
substitute the VB-complex by the complex of linear cochains for most purposes.

Lemma 2.18 ([10], Lemma 3.1). Let (Γ, E,G,M) be a VB-groupoid. The in-
clusion ι : C•VB(Γ) ↪→ C•lin(Γ) induces an isomorphism of right H•(G)-modules
in cohomology.

2.8. Multiplicative forms, symplectic groupoids, and Poisson man-
ifolds. Given a Lie groupoid G, a differential k-form α ∈ Ωk(G) is called
multiplicative if it satisfies

m∗α = pr∗1α + pr∗2α,
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where m is the multiplication of G and pr1, pr2 : G(2) → G are the two projec-
tions. We denote by Ω•mult(G) ⊂ Ω•(G) the subcomplex of multiplicative forms
on G.

Remark 2.19. Multiplicativity can be expressed in yet a few other equivalent
ways, some of which will be useful in this study. By definition, multiplicativity
of α amounts to δα = 0, where δ = pr∗1−m∗+pr∗2 is the horizontal differential
of the first column in the Bott-Shulman-Stasheff double complex (cf. Section
2.2).
Moreover, note that to a k-form α ∈ Ωk(G) one can associate the map

α̂ : ⊕kGTG → R,

given by contraction of α with tangent vectors. The map α̂ is skewsymmetric
and multilinear (with respect to the linear structure of ⊕kGTG over G). We can
now determine multiplicativity of α in terms of α̂.

Lemma 2.20. [5, Lemma 4.1] The form α is multiplicative if and only if the
map α̂ is a groupoid morphism (where the groupoid structure on ⊕kGTG is the
natural extension of the structure of TG, and R is seen as an additive group).

A symplectic groupoid is a pair (G, ω), where G is a Lie groupoid and ω is
a multiplicative symplectic form on G. As seen above it can be interpreted as a
pair of a Lie groupoid G and a symplectic form ω on G for which ω̂ : ⊕2

GTG → R
is a groupoid morphism. This point of view will be useful, because it lets us
draw from the study of deformations of Lie groupoid morphisms [12] in order
to study deformations of symplectic groupoids.
Symplectic groupoids are very closely related to Poisson manifolds. Recall

that a Poisson structure on a manifold M is a Lie bracket

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

which is a derivation in each entry, i.e. it satisfies the Leibniz identity

{f, gh} = {f, g}h+ g{f, h}.

Being a biderivation, it can be seen as a bivector field π ∈ Γ(∧2(TM)). The
pair (M,π) is called a Poisson manifold.
Any Poisson manifold (M,π) gives rise to a Lie algebroid structure on the

bundle T ∗M → M , which is called the cotangent Lie algebroid. The
anchor π] : T ∗M → TM is given by contraction with the Poisson bivector,
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π](α) = π(α, ·), while the Lie bracket on Ω1(M) is defined by

[α, β]π = Lπ](α)β − Lπ](β)α− d(π(α, β)).

Returning to symplectic groupoids, let us recall a few of the many notable
properties they satisfy (see for example [17] for more). Let (G, ω) be a sym-
plectic groupoid over M . Then
(1) The dimension of G is twice the dimension of M .
(2) M (embedded via the unit map) is a Lagrangian submanifold of G. This is

a consequence of the multiplicativity of ω and of the relation between the
dimensions.

(3) Let A be the Lie algebroid of G. There is a natural splitting at the units

TG|M = A⊕ TM,

and since (G, ω) is symplectic, it follows from the dimension relation that
A and TM have the same rank. Moreover, the fact that M is Lagrangian,
together with the splitting TG|M = A⊕TM , implies that ω :

⊕2 TG → R
induces a non-degenerate pairing TM⊕A→ R, and hence an isomorphism
ω[|TM : TM → A∗. Its dual map −ω[|A induces an isomorphism A ∼= T ∗M .

(4) The anchor of A, viewed via the identification above as a map T ∗M → TM ,
is anti-selfadjoint, giving us a bivector π ∈ X2(M). Moreover, π is in
fact Poisson, and the induced algebroid structure on T ∗M is that of the
cotangent algebroid of (M,π).

A Poisson manifold (M,π) is called integrable if there is a symplectic group-
oid (G, ω) over M inducing the Poisson structure on the base. In that case, as
mentioned above, G integrates the cotangent Lie algebroid T ∗M . There is a
converse to this statement.

Theorem 2.21 ([62], Thm. 5.2). Let (M,π) be a Poisson manifold such that
the cotangent Lie algebroid T ∗M is integrable. Then the source 1-connected
integration of T ∗M admits a natural multiplicative symplectic structure, which
induces the Poisson structure π on M .

Let us mention a few examples of integrable Poisson manifolds, and of sym-
plectic groupoids integrating them.

Symplectic manifolds. Any symplectic manifold (M,ω) can be seen as a
Poisson manifold, with the Poisson bivector being given by the inverse of the
symplectic form, π = ω−1. The pair groupoid M ×M ⇒ M , equipped with
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the symplectic form pr∗2ω − pr∗1ω is a symplectic groupoid integrating π. The
source 1-connected symplectic groupoid integrating (M,ω) is the symplectic
fundamental groupoid (Π1(M), s∗ω − t∗ω).
Any other s-connected Lie groupoid G integrating T ∗M lies between these

two extremes, as there are groupoid submersions Π1(M) → G → M × M .
Moreover, G is a symplectic groupoid when equipped with the form s∗ω− t∗ω.

Zero Poisson structure. Let (M, 0) be a manifold equipped with the zero
Poisson structure, meaning that the Poisson bracket of any two functions is
zero. The source 1-connected symplectic groupoid integrating (M, 0) is the
cotangent bundle of M , with the canonical symplectic structure (T ∗M,ωcan).
The source and target maps of T ∗M are equal to the vector bundle projection,
and the groupoid multiplication is the fibrewise addition.

Linear Poisson manifolds. A linear Poisson structure on a vector space V
is one for which the Poisson bracket of linear functions is again linear. This
happens if and only if there is a Lie algebra g such that V = g∗, and the Poisson
bracket is the Kirillov-Konstant-Souriau bracket, which extends the Lie bracket
on g (seen as the space of linear functions on g∗) to all smooth functions on g∗.
We denote the corresponding Poisson bivector by πg. Explicitly,

{f, g}(η) := 〈η, [dηf, dηg]g〉, ∀η ∈ g∗, f, g ∈ C∞(g∗).

The s-connected symplectic groupoids integrating the linear Poisson manifold
g∗ are of the form (T ∗G,ωcan), for any connected Lie group G integrating g.
The groupoid structure of T ∗G is that of the cotangent groupoid of G, as
explained in Example 2.16.
The source 1-connected symplectic groupoid integrating (g∗, πg) is the cotan-

gent groupoid (T ∗G,ωcan) of the 1-connected group G integrating g.
The cotangent groupoid T ∗G is also isomorphic to the action groupoid Gng∗

of the coadjoint action of G on g∗. An isomorphism is given by the trivialization
of the cotangent bundle via right translations, T ∗G ∼= G× g∗.

Cotangent VB-groupoids. Generalizing the previous case, Lie algebroid
structures on a vector bundle A are in 1 : 1 correspondence with Poisson
structures on its dual A∗ which are linear along the fibres [18]. By that we
mean a Poisson structure such that the Poisson bracket of two fibrewise linear
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functions on A∗ is linear, and the bracket of a fibrewise linear function with a
basic function is basic, and the bracket of two basic functions is zero.
Given any Lie groupoid G ⇒M with Lie algebroidA = Lie(G), the cotangent

Lie groupoid T ∗G ⇒ A∗ (Example 2.16) is a symplectic groupoid integrating
A∗. The source 1-connected integration of (A∗, πlin) is the cotangent groupoid
(T ∗G, ωcan) of the source 1-connected groupoid G integrating A.

3. Deformations of symplectic groupoids
We now come to the notion of a deformation of a symplectic groupoid (G, ω).

It naturally consists of an underlying deformation of Lie groupoids of G (Defini-
tion 2.3), with a compatible deformation of the multiplicative symplectic form
ω. For simplicity let us start with strict deformations.

Definition 3.1. (Strict deformations of symplectic groupoids)
Let (G, ω) be a symplectic groupoid, let Gε = (G, m̄ε) be a strict deformation
of G and let ωε ∈ Ω2

cl(G) be a deformation of ω by symplectic forms. The
family (Gε, ωε) is called a strict deformation of (G, ω) if each (Gε, ωε) is a
symplectic groupoid.
Similarly, an s-constant deformation of symplectic groupoids is one

for which the underlying Lie groupoid deformation is s-constant.
An s-constant deformation of (G, ω) such that (m̄ε, ωε) = (m̄, ω) for all ε is

called a constant deformation of (G, ω).

Examples of deformations can be easily constructed (at least) in two simple
ways.

Examples 3.2. Consider (G, ω) a symplectic groupoid with (M,π) the Poisson
structure induced on the base M .

(1) (Diffeomorphisms) Let φε : G −→ G be a smooth family of diffeo-
morphisms with φ0 = idG. For every ε, induce the groupoid structure
Gε := (G, m̄ε) in such a way that φε : Gε −→ G is an isomorphism of
Lie groupoids. Then (Gε, φ∗εω) turns out to be a (strict) deformation of
(G, ω).

(2) (Basic gauge transformations) Let αε ∈ Ω2
cl(M) be a smooth family of

closed 2-forms, with α0 = 0. Denote by Ωαε = ω + s∗αε − t∗αε the
family of multiplicative 2-forms on G induced by αε. Then (G,Ωαε) is
an s-constant deformation of (G, ω) as long as Ωαε stays non-degenerate
for small enough ε (for example, this happens if G is compact). In
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particular, (G,Ωαε) is the symplectic groupoid integrating the gauge
transformation παε of π by αε.

These classes of deformations will be considered trivial, and lead us to the
notion of equivalence of deformations.

Definition 3.3. We say that a deformation (G ′ε, ω′ε) of (G, ω) is equivalent
to another deformation (Gε, ωε) of (G, ω) if there exists a smooth family of
isomorphisms Fε : Gε → G ′ε and a smooth family of closed 2-forms αε on M ,
such that F0 = idG, α0 = 0, and

F ∗ε ω
′
ε = ωε + δε(αε), for every ε ∈ J,

where δε(αε) = s∗ε(αε)− t∗ε(αε), and J ⊂ I ∩ I ′ is an open interval containing
zero. A deformation is said to be trivial if it is equivalent to a constant
deformation.

General deformations of symplectic groupoids, and their equivalences, are
defined similarly, allowing for non-strict deformations of the underlying Lie
groupoid.

Definition 3.4. A deformation of the symplectic groupoid (G, ωG) con-
sists of a deformation G̃ ⇒ M̃

p→ I of G, together with a multiplicative 2-form
ω on G̃ such that, for every ε, the restriction ωε of ω to Gε makes (Gε, ωε) into
a symplectic groupoid, and (G0, ω0) = (G, ωG).

We recall that an equivalence between deformations G̃ and G̃ ′ of a Lie group-
oid G is a Lie groupoid isomorphism F : G̃|J → G̃ ′|J such that p′ ◦ F = p, and
F|G0

= idG0
, where G̃|J ⇒ M̃|J denotes the restriction of the family G̃ ⇒ M̃ to

some open interval J ⊂ I ∩ I ′ containing zero.
Let F and FM denote the foliations of G̃ and M̃ by the fibres of p. Given a

form ω ∈ Ωk(G̃) denote by ωF ∈ Ωk
F(G̃) its corresponding foliated form.

Definition 3.5. An equivalence between deformations (G̃, ω) and (G̃ ′, ω′)
of a symplectic groupoid (G, ωG) is given by an equivalence of deformations of
Lie groupoids F : G̃|J → G̃ ′|J , and a closed foliated 2-form αF ∈ Ω2

FM (M̃|J ) such
that αF vanishes along G0, and

(F ∗ω′)F = ωF + δ(αF),

for some open interval J ⊂ I ∩ I ′ containing zero.
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Example 3.6. Given a strict deformation Gε of a Lie groupoid G there is an
induced deformation of Lie algebroids Aε = Lie(Gε). It in turn induces a defor-
mation of Poisson manifolds (A∗ε, πε) such that each πε is the fibrewise linear
Poisson structure on A∗ε corresponding to the algebroid Aε. Finally, each of
these Poisson manifolds is integrated by the symplectic groupoid (T ∗Gε, ωcan).
Since the deformation of Lie groupoids Gε is strict (in fact, a strict deformation
of VB-groupoids, cf. [49]), (T ∗Gε, ωcan) = (T ∗G, ωcan) as symplectic manifolds,
but the Lie groupoid structure of T ∗Gε can vary.
In short, any strict deformation of Lie groupoids induces deformations of Lie

algebroids, fibrewise linear Poisson manifolds, and symplectic groupoids.

Gε  Aε  (A∗ε, πε) (T ∗Gε, ωcan)

4. The deformation complex of a (symplectic) groupoid,
revisited
We revisit the deformation complex of a Lie groupoid G in the case that

(G, ω) is a symplectic groupoid. We will use the symplectic form ω to identify
C•def(G) with a subcomplex Ω1

def(G(•)) of Ω1(G(•)), the complex of 1-forms on
the nerve of G.

Step 1. Recall that the deformation complex C•def(G) can be identified with the
VB-groupoid complex C•VB(T ∗G) of T ∗G (Prop. 2.17), which is a subcomplex
of C•lin(T ∗G).
Step 2. We use the fact that the vector bundle isomorphism ωb : TG → T ∗G is
actually a VB-groupoid isomorphism, due to the multiplicativity of ω (Lemma
3.6 in [7]). Therefore it determines an isomorphism between C•lin(T ∗G) and
C•lin(TG). We use it to further identify the deformation complex of G with
C•VB(TG) ⊂ C•lin(TG).
Step 3. The inclusion C•VB(TG) ⊂ C•lin(TG) is a quasi-isomorphism (Lemma
3.1 in [10], Lemma 2.18).
Step 4. For each integer k, there is a natural isomorphism (TG)(k) ∼= TG(k).
In this way, the elements of Ck

lin(TG) can be viewed as the fibrewise linear
functions on TG(k), i.e., as elements of C∞lin(TG(k)) ∼= Ω1(G(k)).
Thus, at the level of cochains, we have the following chain of identifications

and quasi-isomorphisms:

Ck
def(G) ∼= Ck

VB(T ∗G)
ωb∼= Ck

VB(TG)
q.i.
↪→ Ck

lin(TG) := C∞lin(TG(k)) ∼= Ω1(G(k)) .
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The last identification of C•lin(TG) with Ω•(G) is compatible with the differen-
tials of the complexes involved. In fact, the two differentials correspond to the
two different ways of considering the alternated sum of pullbacks of 1-forms α by
the face maps di : G(n) → G(n−1) of the nerve of G: as the usual pullback of forms
d∗iα, or as the pullback of functions (Tdi)

∗ : C∞lin(TG(n+1)) −→ C∞lin(TG(n)) by
Tdi.
We summarize now the description of the deformation complex of G obtained

above, in the symplectic case.
Proposition 4.1. Let (G, ω) be a symplectic groupoid. Then ωb induces an
isomorphism between the deformation complex C∗def(G) of G and a subcom-
plex Ω1

def(G(•)) of Ω1(G(•)). Moreover, Ω1
def(G(•)) ↪→ Ω1(G(•)) is a quasi-

isomorphism.
Remark 4.2. The complex Ω1

def(G(•)) obtained under the identification above
can be explicitly described by translating the conditions of the VB-groupoid
complex to conditions on 1-forms on the nerve of G. Namely, a 1-form α on
G(k), with k > 0 will belong to Ω1

def(G(k)) if the following two conditions are
satisfied (when k = 0 there are no conditions imposed).

(1) α ∈ ΓG(k)(T ∗G(k)) comes from a section α̂ of the bundle pr∗1T ∗G → G(k),
where pr1 : G(k) → G is the projection on the first component. That
is, there exists a necessarily unique section α̂ such that the left triangle
below commutes;

T ∗G(k) pr∗1(T ∗G) T ∗G

G(k) G

cG(k)

(d pr1)∗

cG
α̂

α

pr1

(5)

(2) α is left-invariant for the action g · (g1, . . . , gk) 7→ (gg1, . . . , gk) of G on
G(k).

In terms of cochains, the identification of Proposition 4.1 is the composition
of the following maps

Ck
def(G) Ck

lin(T ∗G) Ck
lin(TG) Ω1

def(G(k))

c c′ (ωb)∗c′ ĉ,

(ωb)∗
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where c′(ηg1
, . . . , ηgk) := 〈ηg1

, c(g1, . . . , gk)〉 and, by construction,

ĉ(vg1
, . . . , vgk) = (ωb)∗c′(vg1

, . . . , vgk)

= c′(ωb(vg1
), . . . , ωb(vgk))

= −
〈
ωb(c(g1, . . . , gk)), vg1

〉
= −

[
(dpr1)

∗(ωb(c(g1, . . . , gk)))
]

(vg1
, . . . , vgk).

(6)

In other words, c ∈ Ck
def(G) corresponds to the section −ωb◦c : G(k) → pr∗1T

∗G
of condition (1) above. Condition (2) holds for ĉ as it amounts to the s-
projectability condition of c. In degree zero, this correspondence C0

def(G) =
Γ(A) ∼= Ω1(M) amounts to the identification −ω[|A : A ∼= T ∗M , at the level of
sections.

Remark 4.3. Note that, in the identification above, we only use the multi-
plicativity and non-degeneracy conditions of ω. Then, in particular, such an
identification also holds for twisted symplectic groupoids (cf. [8]).

Remark 4.4. Denote by σ the vector bundle maps (d pr1)
∗ given by the dia-

gram (5) above, for any k. If (Gε, ωε) is an s-constant deformation of (G, ω),
then under the identification above the deformation cocycle ξ0 of Gε corre-
sponds to the 1-form ζ0 = −σ(ω(ξ0, ·)) ∈ Ω1

def(G(2)). And, since σ = Id for
k = 1, it follows that for X ∈ C1

def(G) the corresponding 1-form on G will be
−iXω = −ωb(X).

5. The deformation complex of a symplectic groupoid
Our approach to find the deformation complex of a symplectic groupoid is

to construct it out of the deformation complex of a Lie groupoid [25] (taking
also into account the discussion of Section 4), and the deformation complex for
multiplicative forms, introduced in [12].
In section 7 we will study the resulting complex, looking at cocycles and

coboundaries related to deformations and equivalences, confirming that this
approach leads indeed to the correct complex.

Deformations of symplectic groupoids in terms of morphisms. Let
(Gε, ωε) be a deformation of the symplectic groupoid (G, ω). The first step
is to consider the associated morphism ω̂ :

⊕2 TG → R, described in Re-
mark 2.19. Doing so, (Gε, ωε) can be replaced by the simultaneous deformation
(
⊕2 TGε, ω̂ε) of the Lie groupoid

⊕2 TG and of the morphism ω̂.
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Note that this is a very particular type of simultaneous deformation of a Lie
groupoid and a morphism having that groupoid as domain. The deformation
of
⊕2 TG is of the form

⊕2 T (Gε) and the deformation of ω̂ is by (closed,
non-degenerate) bilinear and skewsymmetric morphisms ω̂ε. Let us then first
examine these separate pieces.

Deformations of multiplicative 2-forms. Let us first describe the defor-
mation complex Ĉ•def(ω) of a multiplicative 2-form ω, defined in [12]. It is
the subcomplex of bilinear and skewsymmetric cochains of the deforma-
tion complex C•def(ω̂) of the associated Lie groupoid morphism ω̂. We remark
that our notation differs from the one in [12], where the deformation complex
Ĉ•def(ω) was denoted simply by C•def(ω). We reserve the latter notation for the
deformation complex of a closed multiplicative form ω.
As shown in [12], it is isomorphic to the complex Ω2(G(•)) of 2-forms on the

nerve of G, and it can also be identified with the subcomplex C•(
⊕2

pG
TG)2−lin, sk

of 2-linear skewsymmetric cochains of the differentiable complex of the groupoid⊕2
pG
TG. As remarked in [12], a deformation ωε of ω induces a family of cocycles

d
dεω̂ε in Ĉ

1
def(ωε).

In our setting, ω is closed and we are interested in deformations of it via
closed multiplicative forms. The deformation complex to consider is then the
subcomplex C•def(ω) ⊂ Ĉ•def(ω), corresponding to closed 2-forms on the nerve
of G.

Tangent lifts of deformation cochains. For any Lie groupoid G, the tan-
gent lift of deformation cochains, described in [49], is the inclusion of cochain
complexes Tdef : C•def(G) → C•def(TG) determined by composing the canonical
involution (also called canonical flip, cf. [64, Section 8.13]) JG : TTG → TTG
and the differential d of a smooth function:

Tdefc := JG ◦ dc.

We also call tangent lift to its natural extension⊕2Tdef : C•def(G)→ C•def(⊕2TG)
defined as ⊕2Tdef(c) := ⊕2(Tdefc), of which we will make use.
As remarked in [12, 49], the tangent lift includes the deformation cocycles of G

into the deformation complex of ⊕2TG, as cocycles associated to deformations
of the form

⊕2 T (Gε).
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The deformation complex. We come back to the idea that deformations of
symplectic groupoids can be seen as particular simultaneous deformations of⊕2 TG, of the form

⊕2 TGε, and of a morphism ω̂, via morphisms associated
to (closed, non-degenerate) multiplicative forms.
In this situation, we can use the idea from [12] of using the mapping cone

construction to control simultaneous deformations. As described in Section 2.6,
ω̂ induces a map ω̂∗ : C•def(

⊕2 TG)→ C•def(ω̂) between deformation complexes.
In fact, the bilinearity and skewsymmetry of ω imply, by direct computation,
that its image is contained in the subcomplex C•def(ω).

Definition 5.1. The deformation complex of the symplectic groupoid
(G, ω), denoted by C•def(G, ω), is the mapping cone complex of the map

ω̂∗ ◦ ⊕2Tdef : C•def(G)→ C•def(ω).

Remark 5.2. Considering deformations of symplectic groupoids as simultane-
ous deformations of a morphism of Lie groupoids and of its domain, the work
of [12], already indicates that the element

ξε −
d

dε
ω̂ε ∈ C2

def(Gε)
⊕

C1
def(ωε)

should be the deformation cocycle associated to the deformation (Gε, ωε). Here
ξε is the deformation class of the underlying deformation of Lie groupoids,
described in Section 2.4. We will reach this same construction explicitly (see
Section 7) using the alternative description of the deformation complex given
by the Theorem 5.3 below.

The next Theorem shows that using identifications given by the symplectic
form ω, the mapping cone complex defined above has a more familiar presen-
tation, given in terms of differential forms.

Theorem 5.3. Let (G, ω) be a symplectic groupoid. Under the correspondence
C•def(G) ∼= Ω1

def(G(•)), induced by the isomorphism ωb (see Prop. 4.1), the map
ω̂∗ ◦ ⊕2Tdef agrees with the de Rham differential ddR : Ω1

def(G(•)) → Ω2
cl(G(•))

up to a sign. That is, the following diagram is commutative.

C•def(G)
ω̂∗◦⊕2Tdef //

−σ◦ωb
��

C•def(ω)

∼=
��

Ω1
def(G(•))

−ddR // Ω2
cl(G(•))

(7)
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Proof : Let us first review the correspondence C•def(G) ∼= Ω1
def(G(•)) of the pre-

vious section in terms of vector fields. Given any splitting τ : t∗TM → TG of
the target map dt : TG → t∗TM of G, any deformation cochain c of Ck

def(G)
induces a vector field Xc ∈ X(G(k)) on G(k). For example, if c ∈ C2

def(G) is a
degree 2 deformation cochain, the vector field Xc is determined by

Xc(g, h) := (c(g, h), τh(ds(c(g, h)))).

Analogously, for a higher degree cochain c, the components of the vector field
Xc are determined by successively s-projecting and τ -lifting the deformation
cochain c. The correspondence C•def(G) ∼= Ω1

def(G(•)) induced by the isomor-
phism ωb can be written as

c 7→ −iXc
(pr∗1ω) ∈ Ω1

def(G(k));

where pr1 : G(k) → G is the 1st-component projection map. Note that even
though Xc depends on τ , the form −iXc

(pr∗1ω) does not.
Therefore, when doing the same for the tangent groupoid TG, we are free

to choose a convenient splitting τ̃ of the target map dt̃ : TTG → t̃∗TTM ,
where t̃ : TG → TM is the target map of TG. We choose τ̃ to be induced by
the tangent lift Tτ of the previous splitting τ . Explicitly, under the canonical
isomorphism of bundles t̃∗T (TM) ∼= T (t∗TM), the splitting τ̃ is defined by

τ̃ := JG ◦ Tτ,

where JG : TTG → TTG is the canonical involution of the double tangent
bundle.
We denote by X̃c̃ the vector field induced by the splitting τ̃ and the defor-

mation cochain c̃ ∈ Ck
def(TG).

A direct computation now shows that there is a compatibility between X̃c̃

and the tangent lift XT
c ∈ X(TG(k)) of the vector field Xc. Precisely, one

obtains

XT
c = X̃Tdefc.

Finally, we are ready to check the commutativity of the diagram (7) above.
Let c ∈ Ck

def(G) and p̃r1 : (TG)(k) → TG be the projection on the first compo-
nent. Then
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ω̂∗ ◦ ⊕2Tdef(c) = dω̂(Tdefc, Tdefc)

= dω̂(dp̃r1X̃Tdefc, dp̃r1X̃Tdefc)

= dω̂(dp̃r1X
T
c , dp̃r1X

T
c ).

Let Fε be the flow of the vector field Xc. Then TFε will be the flow of the
tangent lift XT

c and the expression above becomes

dω̂(dp̃r1X
T
c , dp̃r1X

T
c ) =

d

dε

∣∣∣
ε=0

ω̂(p̃r1TFε, p̃r1TFε)

=
d

dε

∣∣∣
ε=0

F ∗ε (pr1)
∗ω

= LXc
(pr1)

∗ω

= ddR(iXc
pr∗1ω),

which proves the commutativity of the diagram.

Corollary 5.4. The deformation complex C•def(G, ω) of the symplectic groupoid
(G, ω) is isomorphic to the mapping cone of the de Rham differential

−ddR : Ω1
def(G(•))→ Ω2

cl(G(•)).

Explicitly, according to our convention for the mapping cone complex, the dif-
ferential D : Ω1

def(G(•))⊕ Ω2
cl(G(•−1))→ Ω1

def(G(•+1))⊕ Ω2
cl(G(•)) is given by

(ζ, ω) 7→ (δζ,−ddRζ − δω).

We call this complex the de Rham model for deformation cohomology of
the symplectic groupoid (G, ω).

Remark 5.5. Notice that ddR : Ω1(G(•)) → Ω2(G(•)) is a part of the verti-
cal differential of the Bott-Shulman-Stasheff double complex (Ω•(G(•)), δ, ddR).
This allows us to identify the deformation complex C•def(G, ω) with the total
complex of a sub-double complex B•,•(G) ⊂ Ω•(G(•)). This sub-double com-
plex consists of the subset Ω1

def(G(•)) of the second line Ω1(G(•)) and of the
subset Ω2

cl(G(•)) of the third line Ω2(G(•)) of the Bott-Shulman-Stasheff double
complex (and it is zero in all other bidegrees). In fact, the map

ϕ : Ω1
def(G(n))⊕ Ω2

cl(G(n−1))→ Totn+1(B•,•(G))
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defined by
(ζ, ω) 7→ (ζ, (−1)nω)

gives us the isomorphism of the complexes. The shift in degree appears natu-
rally since multiplicative symplectic forms, while being degree two forms, give
rise to degree three cocycles in the Bott-Shulman-Stasheff cohomology. More
generally, a groupoid G equipped with a pair (φ, ω) ∈ Ω2(G)⊕Ω3(M) such that
0⊕ 0⊕ ω⊕ φ ∈ Tot3(Ω•(G(•))) is a cocycle is called a φ-twisted presymplectic
groupoid [8].
Another interpretation for Bott-Shulman-Stasheff cohomology is that it is

the de Rham cohomology of the differentiable stack M//G presented by G.
We note also that degree three cocycles belonging to B•,• i.e. corresponding
to deformation cocycles of (G, ω), and satisfying an integrality condition are
related to S1-central extensions of G [1, Thm. 5.1].

6. Examples and computations
6.1. Deformation cohomology in small degrees. We start by interpreting
cohomology classes in small degrees in a geometric way via direct computations;
but see also the computations of small degrees in terms of a spectral sequence,
in Section 6.5. Using the de Rham model for the deformation cohomology, a
simple computation shows that

H0
def(G, ω) = {α ∈ Ω1

def(M) | dα = 0, δα = 0} = Ω1
cl(M)G−inv,

i.e. the space of closed invariant 1-forms on M .
In degree 1, again using the de Rham model, a deformation cocycle on (G, ω)

is given by a pair (ζ, α) ∈ Ω1
def(G) ⊕ Ω2

cl(M) such that δζ = 0 and dζ = δα.
Using the terminology of [8, 16], this means that ζ is a relatively α-closed
multiplicative 1-form.
Under the isomorphism ω[ : TG → T ∗G, the form ζ corresponds to a vector

field X on G such that −ω[(X) = ζ. Multiplicativity of ζ and of ω mean that
X is multiplicative as well, i.e. X is a Lie groupoid morphism X : G → TG.
Therefore, X is an infinitesimal automorphism of G, its flow preserving the Lie
groupoid structure. However, since ζ is not closed but only relatively α-closed,
the flow φε of X does not preserve the symplectic form ω. Instead, it satisfies
φ∗εω = ω + δ(εα), so it applies a gauge transformation by δ(εα) to ζ. Because
of this we call 1-cocycles twisted infinitesimal automorphisms of (G, ω).
A degree 1 coboundary is a pair of the form (δβ, dβ) ∈ Ω1

def(G) ⊕ Ω2
cl(M).

Adding it to a relatively α-closed multiplicative 1-form ζ we obtain a relatively
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(α + dβ)-closed multiplicative 1-form ζ + δβ. We call these transformations
of the form (ζ, α) 7→ (ζ + δβ, α + dβ) trivial gauge transformations. We
conclude that

H1
def(G, ω) =

Twisted infinitesimal automorphisms of (G, ω)

Trivial gauge transformations
.

In degree two, as mentioned in Remark 5.2, deformations of symplectic
groupoids give rise, after taking a first-order approximation, to cocycles in
C2

def(G, ω); equivalences between deformations provide 1-cochains transgress-
ing the difference between the corresponding deformation cocycles. Thus

H2
def(G, ω) =

Infinitesimal deformations of (G, ω)

Infinitesimal equivalences
.

This is the main use of the deformation cohomology, and we will study it in
detail in Sections 7 and 8.

6.2. The cone exact sequence and proper Lie groupoids. Before we start
analysing the deformation cohomology of a symplectic groupoid in particular
examples, we recall a simple consequence of the definition of the deformation
complex. As the mapping cone of ω̂∗ ◦ ⊕2Tdef : C•def(G)→ C•def(ω), it fits in a
short exact sequence of complexes

0→ C•def(ω)[−1]→ C•def(G, ω)→ C•def(G)→ 0.

This induces the long exact sequence in cohomology

· · · → Hk−1
def (ω)→ Hk

def(G, ω)→ Hk
def(G)

∂→ Hk
def(ω)→ · · · (8)

where the connecting homomorphism ∂ = H(ω̂∗ ◦ ⊕2Tdef) is the map induced
in cohomology by ω̂∗ ◦ ⊕2Tdef .

Example 6.1 (Symplectic manifolds). A Lie groupoid G integrating a con-
nected non-degenerate Poisson manifold (M,ω−1) is transitive. For a transitive
Lie groupoid it holds [25, Prop. 3.1] that H•def(G) ∼= H•(G, g), where G is the
isotropy Lie group at any point of the base, acting on its Lie algebra g via
the adjoint representation. By simple dimension counting we know that the
isotropy groups are discrete, so g = 0.
Thus, for a symplectic groupoid (G, s∗ω − t∗ω) ⇒ (M,ω−1), the long exact

sequence (8) implies that

H•def(G, s∗ω − t∗ω) ∼= H•−1
def (s∗ω − t∗ω).
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For the pair groupoid of M , any multiplicative 2-form is cohomologically
trivial, so H2

def(M ×M, pr∗1ω − pr∗2ω) = 0. This translates to the fact that
deformations of (M ×M, pr∗1ω − pr∗2ω) are given by gauge transformation of
δω = pr∗1ω − pr∗2ω by δωε, where ω + ωε is a deformation of the symplectic
structure on the base.

Another situation in which we can make further use of this long exact se-
quence is for proper symplectic groupoids. A Lie groupoid is called proper if
it is Hausdorff and

(s, t) : G →M ×M
is a proper map. Examples of proper groupoids include compact Lie groupoids,
pair groupoids, and the cotangent Lie groupoid T ∗G of a compact Lie group
G.
Proper symplectic groupoids are the subject of recent extensive work [23, 24,

76], and satisfy many remarkable properties not shared by a general symplectic
groupoid, and much less by non-integrable Poisson manifolds. They generalize
many aspects of the geometry of compact symplectic manifolds and of Lie
algebras of compact type.
Proper symplectic groupoids are also very special among proper Lie groupoids,

in a way which is analogous to how the adjoint action of a compact Lie group
G on its Lie algebra g is special among actions of G (compare for example
[23, 24] with Chapters 2 and 3 of [35]). For example, for an arbitrary Lie
groupoid G ⇒ M the isotropy Lie algebra ix and the normal space νx to the
orbit of G through x ∈ M are the kernel and cokernel of the anchor map of
A = Lie(G) at x. In general there is no further relation between these two
objects, which feature prominently in the study of the geometry of proper Lie
groupoids; when G is a symplectic groupoid, however, νx inherits a linear Pois-
son structure from M by linearization at x, such that its dual Lie algebra ν∗x
is naturally isomorphic to ix.
We recall the following vanishing result for the deformation cohomology of

proper Lie groupoids.

Theorem 6.2 ([25], Thm 6.1). If G is a proper Lie groupoid, then

H0
def(G) ∼= Γ(i)G−inv, H1

def(G) ∼= Γ(ν)G−inv, and Hk
def(G) = 0 for k ≥ 2.

Let us give a brief explanation of the objects in the statement of this result.
The isotropy bundle i is the kernel of the anchor map of the Lie algebroid of G,

i = Ker(ρ : A→ TM).
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Differentiating at the units the conjugation by elements g : x → y induces a
map adg : ix → iy.
Strictly speaking, i is a distribution with possibly varying rank, so it is only

a bundle if G is a regular groupoid. Nonetheless, it makes sense to consider
Γ(i) as the space of smooth sections of A which land in i ⊂ A. Among these,
the space of invariant ones is

Γ(i)G−inv = {α ∈ Γ(i) | adg(αx) = αy}.

It was shown in [25] that in fact H0
def(G) ∼= Γ(i)G−inv for any Lie groupoid, not

only proper ones.
The normal bundle of G is

ν = Coker(ρ) = TM/ρ(A),

and once again it is only a smooth vector bundle for regular G. But once more,
there is a way to make sense of its space of smooth invariant sections Γ(ν)G−inv.
First of all, the space of smooth sections is defined as Γ(ν) := X(M)/ρ(A). A
section [V ] ∈ Γ(ν) is called invariant if there is a vector field X ∈ X(G) which
is both s and t-projectable to V . This condition is independent of the choice
of representative V . In the regular case, this notion recovers the usual notion
of invariant sections of the normal representation of G. We refer to Section 4.4
of [25] for more detail.
For an arbitrary Lie groupoid G, deformation cocycles of degree one are multi-

plicative vector fields on G, i.e., vector fields which are Lie groupoid morphisms
X : G → TG. Any such vector field X is in particular s and t-projectable to a
vector field V on the base. Mapping X to the class of V modulo Im(ρ) induces
a linear map H1

def(G) → Γ(ν)G−inv [25, Lemma 4.7]. Part of Theorem 6.2 is
that for proper Lie groupoids this map becomes an isomorphism.

Proposition 6.3. Let (G, ω) be a proper symplectic groupoid. Then there is a
7-term exact sequence

0→ Ω1
cl(M)G−inv → Γ(ν∗)G−inv → Ω2

cl(M)G−inv → H1
def(G, ω)→

→ Γ(ν)G−inv → H1
def(ω)→ H2

def(G, ω)→ 0

and Hk
def(G, ω) ∼= Hk−1

def (ω) for k > 2.
In particular, in terms of the de Rham model for deformation cohomology,

H2
def(G, ω) ∼=

H1
def(ω)

d(H1
def(G))

∼=
H1

def(ω)

d[Ω1
mult(G)/δ(Ω1(M))]

.
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Proof : Simply use Theorem 6.2 together with the long exact sequence (8), the
discussion of Section 6.1 for deformation cohomology in small degrees, and
recall that ix ∼= ν∗x for symplectic groupoids.

6.3. Zero Poisson structures of proper type. The source 1-connected
integration of the zero Poisson structure on a manifold M is given by the
symplectic groupoid (T ∗M,ωcan), viewed as a bundle of abelian Lie groups over
M , and so it is never proper. However, (M, 0) may still be integrated by a non
simply connected proper symplectic groupoid, having interesting consequences
for the geometry of M . Proper s-connected symplectic integrations of (M, 0)
are in 1:1 correspondence with integral affine structures on M ([23, Prop 4.2],
see also [24, 3.1.6]).
An integral affine structure on M can be described by a Lagrangian smooth

full rank lattice Λ in T ∗M i.e., a subbundle Λ ⊂ T ∗M , whose fibres are full
rank lattices in the fibres of T ∗M , and which is a Lagrangian submanifold of
T ∗M . The proper symplectic integration corresponding to Λ is (T ∗M,ωcan)/Λ.
The Lie groupoid TΛ := T ∗M/Λ is a torus bundle and the form ωcan descends
to a symplectic form ωT on it, so (TΛ, ωT ) is a symplectic torus bundle over
M .
Since (TΛ, ωT ) is a bundle of Lie groups, its source and target maps coincide,

so using the de Rham model for deformation cohomology we see that

H0
def(TΛ, ωT ) = Ω1

cl(M)TΛ−inv = Ω1
cl(M).

Moreover,
H1

def(TΛ) ∼= Ω1
mult(TΛ)/δ(Ω1(M)) = Ω1

mult(TΛ)

and
H1

def(ωT ) = Ω2
cl,mult(TΛ)/δ(Ω2

cl(M)) = Ω2
cl,mult(TΛ).

Therefore, in this case the 7-term sequence from Proposition 6.3 becomes

0→ Ω1
cl(M)→ Ω1(M)

d→ Ω2
cl(M)→ H1

def(TΛ, ωT )→

→ Ω1
mult(TΛ)

d→ Ω2
cl,mult(TΛ)→ H2

def(TΛ, ωT )→ 0

and Hk
def(TΛ, ωT ) ∼= Hk−1

def (ωT ) for k > 2.
In particular,

H2
def(TΛ, ωT ) ∼= H2(Ω•mult(TΛ), ddR),

the second de Rham cohomology of the subcomplex of multiplicative forms on
TΛ.
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6.4. Linear Poisson manifolds of proper type. The Lie groupoid T ∗G ∼=
Gn g∗ integrating the linear Poisson manifold (g∗, πg) is proper if and only if
the Lie group G is compact. In this case, we know from Proposition 6.3 that

H2
def(T

∗G,ωcan) ∼=
H1

def(ωcan)

d[Ω1
mult(T

∗G)/δ(Ω1(g∗))]
.

But since g∗ is contractible, H2
dR(g∗) = 0, so δΩ2

cl(g
∗) = δdΩ1(g∗) = dδΩ1(g∗)

and therefore

H2
def(T

∗G,ωcan) ∼=
Ω2

mult,cl(T
∗G)/δΩ2

cl(g
∗)

d[Ω1
mult(T

∗G)/δ(Ω1(g∗))]
=

Ω2
mult,cl(T

∗G)/dδΩ1(g∗)

d[Ω1
mult(T

∗G)/δ(Ω1(g∗))]
,

which is the same as H2(Ω•mult(T
∗G), ddR).

6.5. Spectral sequence computations for deformation cohomology I.
For computational purposes, it is useful to use the identification of the defor-
mation complex of (G, ω) with the total complex of the very simple double
complex

0 0 0 0

Ω2
cl(M) Ω2

cl(G) Ω2
cl(G(2)) Ω2

cl(G(3)) · · ·

Ω1
def(M) Ω1

def(G) Ω1
def(G(2)) Ω1

def(G(3)) · · ·

δ δ δ

d

δ

d

δ

d

δ

d

as per definition of the mapping cone, and detailed in Remark 5.5. We recall
again that the inclusion Ω1

def(G(•)) ⊂ Ω1(G(•)) is a quasi-isomorphism. As
such, we can also compute deformation cohomology of a symplectic groupoid
using the cone of −ddR : Ω1(G(•)) → Ω2

cl(G(•)) instead of −ddR : Ω1
def(G(•)) →

Ω2
cl(G(•)). For the “rows first” spectral sequence associated to the corresponding

double complex [3, Sec. III.14], the second page E2 is
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1 HdR(Ω2
cl(M)G−inv) HdRHδ(Ω

2
cl(G)) HdRHδ(Ω

2
cl(G(2))) · · ·

0 Ω1
cl(M)G−inv (H1

def(G))cl (H2
def(G))cl · · ·

0 1 2

where (Hn
def(G))cl denotes Ker(d) ⊂ Hδ(Ω

1(G(n))). Let us also use the no-
tation H2

dR(M)G−inv = H2(Ω•(M)G−inv, ddR). Since the double complex was
concentrated in the first two rows, the spectral sequence stabilizes at this page.
Therefore Hk

def(G, ω) ∼= Ek,0
2 ⊕ E

k−1,1
2 as vector spaces, and more explicitly

Ek−1,1
2 =

Ω2
cl(G(k−1))δ−cl

δ(Ω2
cl(G(k−2))) + ddR(Ω1(G(k−1))δ−cl)

. (9)

When we know more about G, it is possible to have a better description of these
pieces. For example, either equation (9) for k = 2 or the same argument used
for linear Poisson manifolds of proper type (Section 6.4) shows the following.

Proposition 6.4. If G ⇒M is a symplectic groupoid and H2
dR(M) = 0, then

H2
def(G, ω) ∼= H2

mult(G)⊕ (H2
def(G))cl.

If additionally G is proper, then

H2
def(G, ω) ∼= H2

mult(G).

By the discussion of this section and of Section 6.1 we can also compute the
cohomology in degrees 0 and 1; for the sake of completeness, we recall that
H0

def(G, ω) = Ω1
cl(M)G−inv and H1

def(G, ω) ∼= H2
dR(M)G−inv ⊕ (H1

def(G))cl.

6.6. Spectral sequence computations for deformation cohomology II.
Let us now use the “columns first” spectral sequence for the double complex
associated to the mapping cone of −ddR : Ω1

def(G(•))→ Ω2
cl(G(•)). Its first page

is
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1 H2
dR(M) Ω2

cl(G)/ddR(Ω1
def(G)) Ω2

cl(G(2))/ddR(Ω1
def(G(2))) · · ·

0 Ω1
def(M)cl Ω1

def(G)cl Ω1
def(G(2))cl · · ·

0 1 2 3

where Ω1
def(G(k))cl denotes the kernel of ddR : Ω1

def(G(k))→ Ω2
cl(G(k)). This spec-

tral sequence stabilizes at the third page, and so Hk
def(G, ω) ∼= Ek,0

3 ⊕ E
k−1,1
3 ,

where
Ek,0

3 = Hk
δdef

(Ω1
def(G•)cl)

and

Ek−1,1
3 = Ker

(
dk−1,1

2 : Hk−1
δ

(
Ω2

cl(G(k−1))

ddR(Ω1
def(G(k−1)))

)
→ Hk+1

δdef
(Ω1

def(G•)cl)

)
.

Again, if we know more about G, these formulas become simpler. If G is
proper, we can make use of the following variation of Theorem 6.2.

Proposition 6.5. If (G, ω) is a proper Lie groupoid, then

Hk
δ (Ωdef(G(•))cl) = 0

for all k ≥ 2.

Proof : We will first rewrite the homotopy operator of C•def(G) in terms of the
de Rham model Ω1

def(G(•)); we then check that it restricts to a homotopy oper-
ator for the subcomplex Ω1

def(G(•))cl. We recall that the homotopy operator is
described in terms of a Haar system and a cut-off function, which exist for any
proper Lie groupoid, and permit integration along the target fibres. We refer
to [25] for details and for the proof of Theorem 6.2 using this operator.
Let k ≥ 2 and let β ∈ Ω1

def(G(k+1))δ−cl. The homotopy operator on the de
Rham model Ω1

def(G(•)) assigns to β the transgression α ∈ Ω1
def(G(k)) defined

by

α(X1
g1
, ..., Xk

gk
) =

∫
s(gk)

β(X1
g1
, ..., Xk

gk
, τh(ds(X

k
gk

)))dh;

where τ : t∗TM → TG is a splitting of the target map of G. Notice that,
since β ∈ Ω1

def(G(k+1)), the expression in the integral actually does not depend
on the value of the tangent vectors at h ∈ G (cf. Remark 4.2). We remark
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that this expression can also be obtained by using the homotopy operator for
VB-cohomology as in [10]. Equivalently, if X ∈ X(G(k)) the homotopy operator
has the form

α(X) :=

∫
t-fibres

β(X(k+1))dµG,

where X(k+1) ∈ X(G(k+1)) is the vector field

X(k+1)(g1, ..., gk+1) := (X(g1, ..., gk), τgk+1
(ds(dprkX(g1, ..., gk))))

induced by X.
We now prove that the transgression α of a closed 1-form β ∈ Ω1

def(G(•)) is a
closed 1-form. Recall that the de Rham differential of 1-forms can be written
as

dα(X, Y ) = −α([X, Y ]) +X(α(Y ))− Y (α(X))

= LXα(Y )− LY α(X)− α(LXY ).

Let β ∈ Ω1
def(G(k+1))δ−cl be such that dβ = 0, and let X, Y ∈ X(G(k)). Then,

(LXα)(Y ) =

(
d

dε

∣∣∣
ε=0

(ϕXε )∗α

)
(Y )

=
d

dε

∣∣∣
ε=0
α((ϕXε )∗Y ) ◦ ϕXε

=

∫
t-fibres

d

dε

∣∣∣
ε=0
β((ϕX

(k+1)

ε )∗Y
(k+1)) ◦ ϕX(k+1)

ε dµG

=

∫
t-fibres

LX(k+1)β(Y (k+1))dµG,

using that β ∈ Ω1
def(G(k+1)) to pass from the second to the third lines. Similarly

we can compute (LY α)(X). And finally,

α([X, Y ]) =

∫
t-fibres

β([X, Y ](k+1))dµG

=

∫
t-fibres

β(LX(k+1)Y (k+1))dµG (because β ∈ Ω1
def(G(k+1))).

Therefore, with these computations we get that

dα(X, Y ) =

∫
t-fibres

dβ(X(k+1), Y (k+1)) = 0,

which proves the claim.
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This result, and the formulas for Ek,0
3 and for Ek−1,1

3 from the beginning of
this section, lead to a simpler description of Hk

def(G, ω) ∼= Ek,0
3 ⊕ E

k−1,1
3 .

Corollary 6.6. Let G be a proper Lie groupoid. Then for k ≥ 2

Hk
def(G, ω) ∼= Hk

δ

(
Ω2

cl(G(k−1))

ddR(Ω1
def(G(k−1)))

)
.

7. The deformation cocycle, and Moser tricks
In this section we describe the deformation cocycle mentioned in remark 5.2

by using the simpler presentation of the deformation complex given by corollary
5.4. We then use such a cocycle to state a result analogous to the classical
Moser Theorem in the context of symplectic groupoids. We first carry out this
work for s-constant deformations, where the deformation cocycles involved are
canonically determined. In the case of general deformations it is only the
deformation cohomology class that will be well-defined. We consider that case
in Section 8.

7.1. The deformation class. Let (Gε, ωε) be a deformation of (G, ω). In
remark 5.2 we associate the cocycle ξε − d

dεωε ∈ C
2
def(G, ω) to the deformation

(Gε, ωε). Alternatively, using corollary 5.4, we can express such a cocycle as an
element ηε of the mapping cone complex of the de Rham differential −ddR :
Ω1(G(•))→ Ω2(G(•)). Explicitly,

ηε = ζε − ω̇ε ∈ Ω1(G(2))⊕ Ω2(G).

As we will show in proposition 7.1 and remark 7.5 below, every ηε is indeed
a 2-cocycle of the deformation complex C•def(Gε, ωε) when viewed in terms of
differential forms as in corollary 5.4. The corresponding cohomology class [ηε]
will be called the deformation class.
We now prove that η0 ∈ C2

def(G, ω) is in fact a cocycle, which will be called the
infinitesimal deformation cocycle associated to the deformation (Gε, ωε).

Proposition 7.1. Let (Gε, ωε) be an s-constant deformation of (G, ω). The
2-cochain η0 = ζ0− ω̇0 ∈ Ω1(G(2))

⊕
Ω2(G), defined above, is a 2-cocycle. The

corresponding cohomology class in H2
def(G, ω) depends only on the equivalence

class of the deformation.

To prove this Proposition we first enunciate two technical lemmas. In what
follows, denote by G [2] the domain of the division map m of G, i.e., the space
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of pairs of arrows with the same source; denote by pi : G [2] −→ G the projec-
tions on G, and denote by pri : G(2) −→ G the projections from the space of
composable arrows to G, for i = 1, 2.

Lemma 7.2. A k-form ω ∈ Ωk(G) is multiplicative if, and only if

m∗ω = p∗1ω − p∗2ω. (10)

Proof : We just need to show that equation (10) is equivalent to the equation

m∗ω = pr∗1ω + pr∗2ω. (11)

This follows from the diffeomorphism ψ : G [2] −→ G(2), (p, q) 7−→ (p, i(q)),
where i : G −→ G is the inversion map of G. Indeed, by applying ψ∗ to
equation (11) and since i∗ω = −ω ([8], Lemma 3.1), we obtain the equation
(10).

Lemma 7.3. Let (G,mε) be an s-constant deformation of G. Define for every
ε ∈ I the diffeomorphism M ε : G [2] −→ G [2], (p, q) 7−→ (mε(p, q), iε(q)) and
the map ψε : G [2] −→ G(2)

ε , (p, q) 7−→ (p, iε(q)). These families of maps satisfy
the following properties:

(1) mε ◦M
−1
ε = p1 = (pr1)ε ◦ ψε;

(2) p1 ◦M
−1
ε = mε ◦ ψε;

(3) p2 ◦M
−1
ε = iε ◦ p2 = (pr2)ε ◦ ψε.

(4) If Vε denotes the time-dependent vector field on G [2] associated to the
smooth family of diffeomorphisms M ε, i.e.,

d

dτ

∣∣∣∣
τ=ε

M τ(p, q) = Vε(M ε(p, q)),

then

Vε(p, q) =

(
ξε(p, iε(q)),

d

dτ

∣∣∣∣
τ=ε

iτ(iε(q))

)
.

Proof : Items (1)-(3) are straightforward to verify from the equalityM−1
ε (p, q) =

(mε(p, iε(q)), iε(q)). For item (4) note that Vε(p, q) = d
dτ

∣∣
τ=ε

(M τ ◦M
−1
ε )(p, q),

so its proof follows from applying d
dτ

∣∣
τ=ε

to

(M τ ◦M
−1
ε )(p, q) = (mτ(mε(p, iε(q)), iε(q)), iτ(iε(q)))
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Proof of proposition 7.1
The proof of the first part follows from differentiating the multiplicativity con-
dition (10) of the family ωε. In fact, by taking derivative with respect to ε and
reordering the terms, we get

d

dε

∣∣∣∣
ε=λ

m̄∗εωε =

(
−m̄∗λ(

d

dε

∣∣∣∣
ε=λ

ωε) + p∗1(
d

dε

∣∣∣∣
ε=λ

ωε)− p∗2(
d

dε

∣∣∣∣
ε=λ

ωε)

)
. (12)

Now, we use Lemma 7.3 and the family of diffeomorphisms M̄ε : G [2] −→ G [2]

defined there. Since M̄ε(p, q) = (m̄ε(p, q), iε(q)), then d
dε

∣∣
ε=λ

m̄∗εωλ is equal
to d

dε

∣∣
ε=λ

M̄ ∗
ε pr

∗
1ωλ, which is equivalent to d

dε

∣∣
ε=λ

M̄ ∗
λ(M̄ε ◦ M̄−1

λ )∗pr∗1ωλ. In
this way, letting ϕε,λ := M̄ε ◦ M̄−1

λ (which, by construction of Vε, is its time-
dependent flow), then we have

d

dε

∣∣∣∣
ε=λ

M̄ ∗
λ(M̄ε ◦ M̄−1

λ )∗p∗1ωλ = M̄ ∗
λ

d

dε

∣∣∣∣
ε=λ

(ϕε,λ)∗p∗1ωλ

= M̄ ∗
λLVλ(p

∗
1ωλ).

That is, by item (1) of Lemma 7.3, equation (12) becomes

LVλ(p
∗
1ωλ) = (M̄−1

λ )∗
(
−m̄∗λ(

d

dε

∣∣∣∣
ε=λ

ωε) + p∗1(
d

dε

∣∣∣∣
ε=λ

ωε)− p∗2(
d

dε

∣∣∣∣
ε=λ

ωε)

)
= −ψ∗λ(pr1)

∗
λ(
d

dε

∣∣∣∣
ε=λ

ωε) + ψ∗λm
∗
λ(
d

dε

∣∣∣∣
ε=λ

ωε)− ψ∗λ(pr2)
∗
λ(
d

dε

∣∣∣∣
ε=λ

ωε)

= −ψ∗λδλ(
d

dε

∣∣∣∣
ε=λ

ωε).

Also, since ωλ is a closed form, by Cartan’s formula we have

(ψ−1
λ )∗LVλ(p

∗
1ωλ) = d

(
(ψ−1

λ )∗(Vλ ⌟ p
∗
1ωλ)

)
= d[(ψλ)∗Vλ ⌟ (ψ−1

λ )∗p∗1ωλ]

= d[(ψλ)∗Vλ ⌟ (pr1)
∗
λωλ]

= −dζλ,

where the last equality follows from identification (6) in Section 4. Namely,
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((ψλ)∗Vλ⌟(pr1)
∗
λωλ)(g,h) =

= (dpr1)
∗
λ|(g,h)

[
ωbλ
∣∣
g

(
d(pr1)λ ◦ (dψλ)(g,iλ(h))(Vλ(g, iλ(h)))

)]
= (dpr1)

∗
λ|(g,h)

[
ωbλ
∣∣
g

(ξλ(g, h))
]

= −ζλ(g, h) (by identification (6)).

Therefore, we conclude that

dζλ = δλ
(
d

dε

∣∣∣∣
ε=λ

ωε

)
.

That is, −dζλ − δλ(− d
dε

∣∣
ε=λ

ωε) = 0. This completes the first part of the
proof by taking λ = 0.
Take now (G ′ε, ω′ε) an equivalent deformation of (G, ω), and denote by η′0 its

infinitesimal cocycle. We will prove that η0 − η′0 is exact. This follows from
taking derivatives at ε = 0 of the equivalence condition F ∗ε ω′ε = ωε + δε(αε)
(recall that α0 = 0). Doing so, we obtain

F ∗0 (diZ0
ω′0 + ω̇′0) = ω̇0 + δ0(α̇0),

where Zε is the time-dependent vector field associated to the family Fε. Hence,

ω̇′0 − ω̇0 = −diZ0
ω′0 + δ0(α̇0).

On the other hand, since Fε : Gε → G ′ε is an isomorphism for every ε, then the
groupoid deformation cocycles ξ0 and ξ′0 satisfy that ξ′0−ξ0 = δdef0 (Z0). In terms
of differential forms, this amounts to ζ ′0 − ζ0 = δ0(−iZ0

ω) (see identification
(6)). Therefore, the equation above becomes

η0 − η′0 = −ω̇0 + ζ0 − (−ω̇′0 + ζ ′0)

= ζ0 − ζ ′0 + (ω̇′0 − ω̇0)

= δ0(iZ0
ω)− ddR(iZ0

ω) + δ0(α̇0)

= D0(iZ0
ω − α̇0).

�

Corollary 7.4. The 2-cocycle associated to the trivial deformation vanishes in
cohomology.
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Remark 7.5. Since a deformation (Gε, ωε) of (G0, ω0) can be seen as the defor-
mation (Gε+λ, ωε+λ) of (Gλ, ωλ) for any λ ∈ I, then the corresponding cochain
ηλ ∈ C2

def(Gλ, ωλ) is also a cocycle. Furthermore, in the case of a trivial
deformation we can say even more: every ηλ is exact. This follows
from noting that the deformation (Gε, ωε) of (G0, ω0) being trivial implies that
(Gε+λ, ωε+λ) is also a trivial deformation of (Gλ, ωλ), for any λ ∈ I.
In the next section we show that, under appropriate regularity and compact-

ness conditions, the converse statement of the previous remark is also true.

7.2.Moser arguments and moduli spaces.

Theorem 7.6. (Moser Theorem for symplectic groupoids)
Let (Gε, ωε) be an s-constant deformation of a compact symplectic groupoid
(G, ω). Then, the deformation (Gε, ωε) is trivial if, and only if, the deformation
class

ηε := ζε − ω̇ε ∈ C2
def(Gε, ωε)

is smoothly exact.

Proof : We will show that the smooth exactness of the deformation class ηε
implies the triviality of the deformation (Gε, ωε). The remark 7.5 above shows
the converse statement. Thus, let us assume that ηε is a smoothly exact family
of cocycles. Then, we get

δτ(−χτ) = ζτ and − ω̇τ = −d(−χτ)− δτ(α̃τ);
where χτ ∈ Ω1(Gτ) and α̃τ ∈ Ω2(M) are smooth families of forms. The
first equation amounts to δτdef(Xτ) = ξτ , where Xτ is the smooth family of
vector fields such that χτ = ιXτ

ωτ for every τ . Let (φε, ϕε) be the flow of
the time-dependent vector field Xε (starting at time zero). Then, by letting
ᾱτ :=

∫ τ
0 (φ∗εα̃ε)dε be the primitive of the curve τ 7→ φ∗τ α̃τ , we obtain

ω̇τ = −d(ιXτ
ωτ) + δτ((ϕ

−1
τ )∗

d

ds
ᾱτ),

which is,

d

dε
|ε=τ [φ∗εωε − δ0(ᾱε)] = 0.

That is,
φ∗εωε − δ0(αε) = ω, for αε = ᾱ0 − ᾱε.

Hence, one concludes that the deformation (Gε, ωε) is trivial.
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As a consequence of this version of the Moser Theorem, then for a compact
symplectic groupoid (G, ω) we can describe a neighbourhood of ω in a moduli
space of multiplicative symplectic structures on G. We say a moduli space and
not the moduli space, because there are a few options of which equivalence
relation to consider. We will use one that is suggested by the equivalence
relation on deformations of symplectic groupoids.
The space of closed multiplicative 2-forms on a Lie groupoid G is the subspace

Ω2
cl,mult(G) ⊂ Ω2(G). It is a linear subspace, being the intersection of the kernel

of the two linear operators ddR and δ. Non-degeneracy is an open condition, so
the space of multiplicative symplectic structures on G is an open neighbourhood
of ω in Ω2

cl,mult(G), which we denote by S(G).

Definition 7.7. Two multiplicative symplectic forms ω1, ω2 ∈ S(G) are said to
be convex gauge-isotopic if the deformation (G, ωε) given by ω1 +ε(ω2−ω1)
is a trivial deformation of symplectic groupoids (in particular ωε is required to
be non-degenerate for all ε ∈ [0, 1]).
Denote by ∼cgi the equivalence relation on S(G) generated by convex gauge-

isotopies.

Theorem 7.8 (Moduli space). Let (G, ω) be a compact symplectic groupoid.
Then there is a neighbourhood U of ω in S(G) and a neighbourhood V of 0
in H2

def(G, ω), such that the map κ : U → H2
def(G, ω), which is defined by

κ(ω1) = [0⊕ (ω1 − ω)], induces a 1:1 correspondence

U
/
∼cgi ←→ V ⊂ H2

def(G, ω),

sending the equivalence class of ω to 0.

Proof : The map κ descends to the quotient: if ω1 and ω2 are convex gauge-
isotopic, then the deformation (G, ω1 + ε(ω2 − ω1)) of (G, ω1) is trivial, so its
deformation class [0 ⊕ (ω2 − ω1)] ∈ H2

def(G, ω1) vanishes. This implies that
[0⊕ (ω2 − ω1)] ∈ H2

def(G, ω) also vanishes. Thus

κ(ω2)− κ(ω1) = [0⊕ (ω2 − ω)]− [0⊕ (ω1 − ω)] = [0⊕ (ω2 − ω1)] = 0.

Let U ′′ be a convex neighbourhood of ω in S(G), and let ω1, ω2 ∈ U ′′ be
such that κ(ω1)− κ(ω2) = 0. By definition, [0⊕ (ω1 − ω2)] = 0 ∈ H2

def(G, ω),
meaning that (ω1 − ω2) is exact in deformation cohomology. We can consider
the s-constant deformation (G, ω2+ε(ω1−ω2)) of (G, ω2) (it is a deformation of
symplectic groupoids because U ′′ is convex). This deformation has a constant
deformation class [0 ⊕ (ω1 − ω2)] = 0 ∈ H2

def(G, ω2) for all ε, which we know
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to be exact. Therefore the deformation classes are smoothly exact and by
Theorem 7.6 we conclude the triviality of the deformation. This implies that
(G, ω1) and (G, ω2) are convex gauge-isotopic. Hence κ descends to an injective
map.
Neighbourhoods U ′ of ω and V ′ of 0 can be chosen such that κ maps U ′ onto
V ′. The reason for this is that by Proposition 6.3 any class in H2

def(G, ω) has a
representative of the form 0⊕ ω1 with ω1 ∈ Ω2

mult(G). Let V ′ be small enough
that for every class in V ′ there is such a representative 0⊕ω1 for which ω+ω1

is non-degenerate, and ω1 belongs to U ′′. By definition κ(ω + ω1) = [0 ⊕ ω1],
so κ : U ′ = κ−1(V ′)→ V ′ becomes surjective. Finally, let U ⊂ U ′ be a convex
neighbourhood of ω, and let V = κ(U).

Remark 7.9 (On the relation with Kodaira-Spencer maps). The map κ plays a
similar role to a Kodaira-Spencer map in the theory of deformations of complex
structures [48, Sec. 4.2]. Allowing for some heuristics, and if we disregard issues
with spaces of infinite dimension, there is a tautological (infinite-dimensional)
family of symplectic groupoids

prS(G) : G = (G × S(G), ω̃) −→ S(G),

where ω̃ is the tautological prS(G)-foliated 2-form on G = G×S(G) with values
ω̃(g, ω) = ω(g). The fibre pr−1

S(G)(ω) of this family over ω ∈ S(G) is equal to
(G, ω).
By analogy with the case of complex manifolds, the Kodaira-Spencer map

of this family is a map KS : TωS(G) → H2
def(G, ω); given a smooth curve

γ : I → S(G), define KS(γ̇(0)) to be the deformation class of the deformation
p : γ∗G→ I. Since S(G) is an open subset of the vector space Ω2

mult,cl(G), there
is a natural identification TωS(G) ∼= Ω2

mult,cl(G). Under this identification, the
Kodaira-Spencer map KS corresponds to κ.
For a compact symplectic groupoid (G, ω), taking the analogy further, a germ

of a neighbourhood of 0 inH2
def(G, ω) plays the role of what is called a Kuranishi

space (cf. [13, Def. 4], see also Corollary 9 in loc. cit.) because infinitesimal
deformations of (G, ω) are unobstructed, as the proof of Theorem 7.8 shows.

Remark 7.10 (Other versions of the Moser theorem). It also makes sense to
study deformations of multiplicative symplectic forms on a fixed Lie groupoid
G, up to a stricter equivalence relation where triviality is given by paths of
symplectic groupoid isomorphisms (i.e., not allowing for cohomologically trivial
gauge transformations as equivalences). In this case, the correct deformation
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complex to consider would be (Ω•mult(G), ddR), and a Moser theorem in that
setting is detailed in [12]. It is similar to Theorem 7.6 in the sense that when G
is compact, deformations will be trivial if and only if their deformation classes in
H2

mult(G) are smoothly exact. This in turn will lead to a similar correspondence
to that of Theorem 7.8, of the form

U/ ∼ ←→ V ⊂ H2
mult(G),

for neighbourhoods U of ω in S(G) and V of 0 in H2
mult(G). Here ∼ denotes

the equivalence relation generated by convex isotopies, where ω0 and ω1 are
convex-isotopic if the form ωε = ω0 + ε(ω1−ω0) is symplectic for all ε ∈ [0, 1],
and there is an isotopy Fε of G such that each Fε is a Lie groupoid isomorphism
satisfying F ∗ε ωε = ω0.

Remark 7.11. Any deformation p : (G̃ ⇒ M̃) → (I ⇒ I) of a compact Lie
groupoid G is a trivial deformation [25, Thm. 7.4, Rem. 7.9]. If moreover p
is proper, then the entire family G̃ is trivial, without the need to restrict to a
smaller interval J ⊂ I. This means that any deformation (Gε, ωε) of a compact
symplectic groupoid is equivalent to one of the form (G, φ∗εωε), and in particular
s-constant, for ε small enough. Thus, by Proposition 7.1, any deformation class
in H2

def(G, ω) is represented by a cocycle of the form 0⊕ω̇0 ∈ C2
def(G)⊕C1

def(ω),
and has also a corresponding cocycle in H2

mult(G).
Therefore, if the space of Lie groupoid structures on a compact manifold G (or

perhaps having an underlying submersion s : G → M as source) were locally
path-connected, then the correspondences of Theorem 7.8 and of Remark 7.10
can be upgraded. They would give local descriptions not only of moduli spaces
of multiplicative symplectic forms on G, but of symplectic groupoids structures
on the manifold G (respectively, with underlying source s : G →M). Although
we do not know if the space of Lie groupoid structures on G is locally path-
connected, in this direction we note that the space of actions of a compact Lie
group on a compact manifold is, indeed, locally path-connected [68].

8. The deformation class of general deformations
In this section we show how general deformations of symplectic groupoids

can also be handled in an infinitesimal way.

8.1. Defining the deformation class. In order to describe the deformation
class of a deformation (G̃, ω) we first reinterpret the definition of the defor-
mation cocycle in the case of s-constant deformations (G̃ = G × I, ωε). The
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deformation cocycle ηε = ζε − ω̇ε can be alternatively expressed as

ηε = σ(ω(δdef(∂/∂ε), ·))|
G(2)
ε

− (L∂/∂εω)|Gε , (13)

where ∂/∂ε is the vector field on G̃ whose flow Fε is (g, λ) 7→ (g, λ+ ε), and

σ : pr∗1T
∗G̃ → T ∗G̃(2)

is the map of vector bundles over G(2) defined on Remark 4.4 by σ = (dpr1)
∗.

Note also that ω is a 2-form on G̃ which restricts to ωε over the fibre G×{ε}.
This alternative description of the deformation cocycle can be extended in such
a way that the deformation class still makes sense for a general deformation.

Proposition 8.1. Let (G̃, ω) be a deformation of (G, ωG), and let X ∈ X(G̃)

be a transverse vector field; that is, a vector field on G̃ which projects by p ◦ s̃
to the vector field ∂/∂ε on I. Then,

ηε := σ(ω(δdefX, ·))|G(2)
ε
− (LXω)|Gε ∈ Ω1

def(G(2)
ε )⊕ Ω2(Gε). (14)

defines a family of cocycles ηε ∈ C2
def(Gε, ωε). Moreover, the cohomology class

[η0] at time zero does not depend on the choice of the transverse vector field
X.

Definition 8.2. The resulting cohomology class [η0] ∈ H2
def(G, ωG) is called

the deformation class associated to the deformation (G̃, ω).

Remark 8.3. Equivalently, the family of cocycles ηε can be viewed as a single
cocycle η on the “foliated version” C•def(G̃, ω)F of C•def(G̃, ω), i.e., the mapping
cone complex of the leafwise de Rham differential dF : Ω1

def(G̃(•))F → Ω2
F(G̃(•)).

Here, to shorten the notation we let F refer to the foliation F (n) on each G̃(n)

with leaves G(n)
ε , induced by the foliation on G̃ previously denoted by F , having

the fibres Gε as leaves. The space Ω1
def(G̃(•))F is the space of the foliated forms

corresponding to forms in Ω1
def(G̃(•)). Explicitly, we have

η = σ(ω(δdefX, ·))|F (2) − (LXω)|F ∈ Ω1
def(G̃(2))F ⊕ Ω2

F(G̃). (15)

Proof of Proposition 8.1
LetM : G̃(2) → G̃(2) be the diffeomorphism defined by

M(g, h) = (M(g, h), i(h)),

where M is the multiplication of G̃.
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On the one hand, notice that

M ∗LXω =M∗pr∗1LXω

=M∗LXpr1pr∗1ω, where Xpr1

(g,h) := (Xg, (i∗X)h) ∈ T(g,h)G̃(2)

= LXMM∗pr∗1ω, where XM
(g,h) := (M−1

∗ X
pr1)(g,h)

= (Xgh · (i∗X)h−1, Xh) ∈ T(g,h)G̃(2)

= LXMM ∗ω

= LXMpr∗1ω + LXMp∗2ω.

That is,

(M ∗LXω)(g,h) =
(
LXMpr∗1ω + LXMp∗2ω

)
(g,h)

= (dιXMpr∗1ω)(g,h) + (d(g,h)pr1)
∗(dω(Xgh · di(Xh),−,−)

)
+ (LXMp∗2ω)(g,h).

On the other hand,

(pr∗1LXω)(g,h) = (pr∗1ιXdω)(g,h) + (d pr∗1ιXω)(g,h)

= (d(g,h)pr1)
∗dω(Xg,−,−) + (d pr∗1ιXω)(g,h)

and
p∗2LXω = LXMp∗2ω.

Therefore,

(pr∗1LXω −M ∗LXω + p∗2LXω)(g,h) =

= (d(g,h)pr1)
∗dω(Xg,−,−) + (d pr∗1ιXω)(g,h) − (dιXMpr∗1ω)(g,h)

− (d(g,h)pr1)
∗(dω(Xgh · di(Xh),−,−)

)
= (d(g,h)pr1)

∗dω(Xg −Xgh · di(Xh),−,−)

+
(
d(pr∗1ιXω − ιXMpr∗1ω)

)
(g,h)

=
(
ι(δdefX,0)pr

∗
1dω
)

(g,h)
+
(
dι(δdefX,0)pr

∗
1ω
)

(g,h)
.

Thus, since (δdefX)(g,h) is tangent to the fibres of Gε of G̃ and each restriction
ωε ≡ ω|Gε is a closed 2-form, then(

ι(δdefX,0)pr
∗
1dω
)∣∣
Gε

= 0,

for all ε, which proves the proposition. �
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Remark 8.4. Alternatively, since the tangent lift map ⊕2Tdef takes transversal
vector fields to transversal vector fields, Proposition 8.1 can also be proved in
terms of deformations of Lie groupoid morphisms by using the results of [12].

8.2. Triviality of deformations with exact class. In this section we gen-
eralize Theorem 7.6 to general deformations of compact symplectic groupoids.

Theorem 8.5. Let (G̃, ω) be a deformation of a compact symplectic groupoid
(G, ωG) and let η = σ(ω(δdefX, ·))|F (2) − (LXω)|F be the deformation cocycle
in the foliated cohomology C•def(G, ω)F , associated to the deformation via a
transverse vector field X on G̃. Then, (G̃, ω) is trivial if and only if η is exact.

The proof of this result will be based on the following lemma.

Lemma 8.6. Let (G̃, ω) be a deformation of (G, ωG) as in the theorem above.
Then, the associated foliated form ωF induces the isomorphism

C•def(G̃)F → Ω1
def(G̃(•))F , ξ 7→ −σ(ω(ξ, ·))F = −σF(ωF(ξ, ·)).

Under this isomorphism, the image Y = −iY ωF of an element Y ∈ C1
def(G̃)F

satisfies
dFY = −(LY ω)F , and δFY = −σ(ω(δdefY, ·))F .

Proof : Checking that ωF induces an isomorphism is done by essentially the
same arguments as those for Proposition 4.1.
Now,

dFY = (−dιY ω)F

= (−dιY ω)F + (−ιY dω)F︸ ︷︷ ︸
=0

= −(LY ω)F ;

where the second equality is due to the fact that ω is dF -closed. Moreover,

δFY = −δF(ιY ωF) = −δF(ιY ω)F = −(διY ω)F

= (δ(ωb)∗(Y ))F

= ((ωb)∗(δdefY ))F

= −σ(ω(δdefY, ·))F .
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Proof of Theorem 8.5
If η is exact, then there exists α⊕ Y ∈ Ω2

F(M̃)⊕ Ω1
def(G̃)F such that

σ(ω(δdefX, ·))|F (2) = δY
and

− (LXω)|F = −δF(α)− dFY . (16)

Since the foliated 2-form ωF induces the isomorphism C∗def(G)F → Ω1
def(G(∗))F

(see previous Lemma), it follows that Y = −iY ωF for some vector field Y on G̃
which is tangent to the fibres Gε of G̃. Therefore, the first equation is equivalent
to

σ(ω(δdefX, ·))|F (2) = −σ(ω(δdefY, ·))|F (2), (17)

and equation (16) becomes

(LX+Y ω)F = δF(α). (18)

Thus, equation (17) says that X+Y is a multiplicative and transverse vector
field on G̃. Let us denote by Fε the flow of X + Y on G̃. Then the equation
(18) is equivalent to

d

dε
F ∗ε ωF = F ∗ε δF (α) .

Denote by (Φε, φε) the family of restricted morphisms Fε|G0
: G0 → Gε. Then,

by restricting the previous equation to the fibre G0 we get

d

dε
Φ∗εωε = Φ∗ε(δGε(αε))

= δG0
(φ∗εαε)

= δG0
(
d

dε
ᾱε)

=
d

dε
δG0

(ᾱε);

where ᾱτ :=
∫ τ

0 (φ∗εαε)dε is the primitive of the curve ε 7→ φ∗εαε. Hence, the
sequence of equalities tells us that the expression Φ∗εωε− δG̃0

(ᾱε) is constant in
ε. Thus,

Φ∗εωε = ω0 + δG̃0
(ᾱε).
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Therefore, if Φ : G × I → G̃ is the isomorphism determined by the family
Φε and ᾱ ∈ Ω2

F(M × I)cl is the closed foliated 2-form which equals ᾱε when
restricted to the fibre Gε, then

(Φ∗ω)F = (pr∗Gω0)F + δF(ᾱ),

where prG : G×I → G is the obvious projection to G. This proves the triviality
of the deformation (G̃, ω). �

Remark 8.7. Alternatively, Theorem 8.5 could be deduced from Theorem 7.6
by first using the Reeb stability theorem for the foliation of G̃ by the fibres
Gε (at least for G̃ Hausdorff) and using the triviality of proper deformations
of compact Lie groupoids [25, Thm. 7.4]. Nonetheless, it seems to us that it
is useful having a direct proof of the general version of the theorem at hand,
without the need to pass through a specific type of deformation. This proof
should also leave more room for generalizations to relative or semi-local versions
for groupoids admitting well adapted tubular neighborhoods, or normal forms,
around submanifolds as for example in [23, Section 8], or [38].

9.More examples and relation with Poisson cohomology
We once more use a spectral sequence in order to compute deformation co-

homology, as done in sections 6.5 and 6.6. This time we turn to the “columns
first” spectral sequence for the double complex associated to the mapping cone
of −ddR : Ω1(G(•))→ Ω2

cl(G(•)). Its first page is

1 H2
dR(M) H2

dR(G) H2
dR(G(2)) H2

dR(G(3))

0 Ω1
cl(M) Ω1

cl(G) Ω1
cl(G(2)) Ω1

cl(G(3))

0 1 2 3

If we assume that M , G and G(2) have vanishing first and second de Rham
cohomology, then this page becomes
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1 0 0 0 H2
dR(G(3))

0 d(C∞(M)) d(C∞(G)) d(C∞(G(2))) Ω1
cl(G(3))

0 1 2 3

In this case the second page is

1 0 0 0 Hδ(H
2
dR(G(3)))

0 Hδ(d(C∞(M))) Hδ(d(C∞(G))) Hδ(d(C∞(G(2)))) Hδ(Ω
1
cl(G(3)))

0 1 2 3

and therefore the deformation cohomology of the symplectic groupoid (G, ω) is
very closely related in degrees up to 3 (the most important ones for deformation
theory) to the differentiable cohomology of G, which is Hδ(C

∞(G(•))).
Recall also that there is a van Est map relating differentiable cohomology of
G with the algebroid cohomology of its Lie algebroid [19], which is naturally
isomorphic to the Poisson cohomology of the base, in the case of a symplectic
groupoid.
We now take a closer look at some (families of) symplectic groupoids sat-

isfying these conditions. We start by illustrating a general strategy with the
following case.

9.1. Linear Poisson structures - Part 2. Let (g∗, πg) be a linear Poisson
structure and let G be the 1-connected Lie group integrating the Lie algebra
g. We recall that the cotangent groupoid (T ∗G,ωcan) is a source 1-connected
integration of (g∗, πg), and that T ∗G ∼= Gn g∗.

Proposition 9.1. Let g be a Lie algebra and let G be the 1-connected Lie
group integrating it. Then there are isomorphisms

H0
def(T

∗G,ωcan) ∼= H0
πg

(g∗)/R, H i
def(T

∗G,ωcan) ∼= H i
πg

(g∗),
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for i = 1, 2, and an injective map

H3
def(T

∗G,ωcan)→ H3
πg

(g∗).

Proof : Using that T ∗G ∼= Gn g∗, we compute the deformation cohomology of
(T ∗G,ωcan) using the “columns first” spectral sequence for the double complex
associated to the mapping cone of d : Ω1((G n g∗)(•)) → Ω2

cl((G × g∗)(•)). Its
first page is

1 H2
dR(g∗) H2

dR(Gn g∗) H2
dR((Gn g∗)(2)) H2

dR((Gn g∗)(3))

0 Ω1
cl(g

∗) Ω1
cl(Gn g∗) Ω1

cl((Gn g∗)(2)) Ω1
cl((Gn g∗)(3))

0 1 2 3

For the action groupoid Gng∗, the nerve is (Gng∗)(n) ∼= Gn×g∗. Because G
is a 1-connected Lie group, and since π2(G) = 0 for any Lie group, we conclude
by Hurewicz’s Theorem that (Gng∗)(n) has vanishing first and second de Rham
cohomology for any n.
Thus, the first line of the page above vanishes, and the de Rham differential

induces a surjective cochain map onto the 0-th line, d : C∞(G• × g∗) →
Ω1

cl(G
• × g∗). The first page becomes

1 0 0 0 0

0 dC∞(g∗) dC∞(Gn g∗) dC∞((Gn g∗)(2)) dC∞((Gn g∗)(3))

0 1 2 3

Since both G and g∗ are connected, the kernel of d consists of constant
functions, forming the complex R 0→ R id→ R 0→ R id→ · · · . Its cohomology
vanishes in all degrees except 0, where it is isomorphic to R. Therefore, the
terms of this spectral sequence stabilize at the second page; on the 0-th line
Hδ(Ω

1
cl(g

∗))) ∼= H0
diff(Gng∗)/R and for i > 0, Hδ(Ω

1
cl(G

i×g∗)) ∼= H i
diff(Gng∗).
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Finally, since the s-fibres of Gng∗ are 2-connected, the van Est map relating
differentiable and algebroid cohomology is an isomorphism up to degree 2, and
injective in degree 3. The statement follows, as the algebroid cohomology of
the algebroid of G n g∗ is naturally isomorphic to the Poisson cohomology of
g∗.

9.2. Groupoids with homologically 2-connected nerve. As is clear from
the proof of Proposition 9.1, a similar situation happens for other symplectic
groupoids (G, ω)⇒ (M,π) with simple enough topology. We will see examples
of them in the rest of this section. First of all, exactly the same arguments as
for the proof of Proposition 9.1 let us prove the following results.

Proposition 9.2. Let (G, ω)⇒ (M,π) be a symplectic groupoid such that for
every n ≥ 0 the space G(n) is homologically 2-connected. Then the de Rham
differential d : C•diff(G)→ Ω1(G(•)) induces isomorphisms

H0
diff(G)/R ∼= H0

def(G, ω), H i
diff(G) ∼= H i

def(G, ω) for i > 0.

Corollary 9.3. Let (G, ω) ⇒ (M,π) be a symplectic groupoid with homologi-
cally k-connected source fibres, and such that G(n) is homologically 2-connected
for each n ≥ 0. Then

H0
def(G, ω) ∼= H0

π(M)/R, H i
def(G, ω) ∼= H i

π(M),

for 1 ≤ i ≤ k, and there is an injective map

Hk+1
def (G, ω)→ Hk+1

π (M).

Remark 9.4. If (G, ω) satisfies the conditions of Corollary 9.3 for k = 2, then
it also satisfies Proposition 6.4. Combining the two, we obtain

H2
π(M) ∼= H2

mult(G)⊕ (H2
def(G))cl.

Note that the maps inducing the isomorphisms in these results are the de
Rham differential d : C•(G) → Ω1(G(•)) and the van Est map V E : H•(G) →
H•π(M). We will revisit them in Theorem 10.2 (see also Remark 10.3) for
arbitrary source connected symplectic groupoids, without further topological
assumptions.
There are several examples of symplectic groupoids satisfying these topologi-

cal conditions. For example, let G ⇒M be a Lie groupoid such that the source
map s is a fibration with k-connected fibres, over a k-connected manifold M .
Then G(n) is k-connected for all n. This can be seen by inductively considering
the long exact sequences in homotopy groups for the source map s : G → M
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and for the fibrations s∗ : G(n) = G ×s tG(n−1) → G(n−1) (the pullback of s along
(t ◦ pr1) : G(n−1) →M).

9.3. Zero Poisson structures. Let us focus on the source 1-connected sym-
plectic groupoid (T ∗M,ωcan) ⇒ (M, 0) integrating the zero Poisson structure
on M . In this case, the nerve is T ∗M (n) = ⊕nT ∗M , so Hk

dR(T ∗M (n)) ∼=
Hk

dR(M), for all k, n ≥ 0. The source fibres are contractible, being vector
spaces. We also note that for the zero Poisson bivector π = 0, the differential
of the Poisson complex vanishes, so H•π(M, 0) = X•(M). Thus, using Corollary
9.3, we come to the following result.

Corollary 9.5. Let M be a homologically 2-connected manifold. Then

H i
def(T

∗M,ωcan) ∼= H i
π(M, 0) ∼= Xi(M)

for i ≥ 1, and H0(T ∗M,ωcan) ∼= C∞(M)/R.

9.4. Poisson-Lie groups. A Poisson-Lie group is a Lie group G equipped
with a Poisson structure πG for which the multiplication m : G × G → G is
a Poisson map, where G× G is equipped with the product Poisson structure.
This amounts to the bivector πG being multiplicative. Multiplicativity of πG
implies that it vanishes at the identity e ∈ G, so its linearization at e induces a
linear Poisson structure on the Lie algebra g. Therefore it induces a Lie algebra
structure on the dual g∗. The dual Lie group of G is then the 1-connected Lie
group integrating the Lie algebra g∗, and is denoted by G∗. It is also a Poisson-
Lie group, which we denote (G∗, πG∗).
For each ξ ∈ g∗, denote by ξl and ξr the left-invariant and the right-invariant

1-forms on G with value ξ at the identity, respectively. The maps

λ, ρ : g∗ → X(G), λ(ξ) = π]G(ξl), ρ(ξ) = −π]G(ξr)

define the left and right infinitesimal dressing actions of g∗ on G, respectively.
We say that a multiplicative Poisson tensor πG on G is complete if each left
(or, equivalently, each right) dressing vector field is complete on G.
In [54], Lu and Weinstein have constructed, for any Poisson-Lie group G,

a symplectic groupoid Γ integrating G, with a second compatible groupoid
structure on Γ making it into a symplectic groupoid integrating G∗. In general
Γ is a submanifold of G×G∗ ×G∗ ×G. In the simplest case, when (G, πG) is
a simply connected complete Poisson-Lie group, Γ is G × G∗, which is in this
case also diffeomorphic to the double group D of G; the groupoid structures
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on D are in fact action Lie groupoid structures, for actions of G and G∗ on
each other obtained by slightly modifying the dressing actions (see [52, Section
4.1]).

Corollary 9.6. Let (G, πG) be a simply connected complete Poisson-Lie group
with dual Lie group G∗ and denote by (D,ω) ⇒ (G, πG) its 1-connected inte-
gration.
Then there are isomorphisms

H0
def(D,ω) ∼= H0

πG
(G)/R, H i

def(D,ω) ∼= H i
πG

(G),

for i = 1, 2, and an injective map

H3
def(D,ω)→ H3

πG
(G).

Proof : Both G and G∗ are 2-connected, and so D ⇒ G has 2-connected base
G and source fibres (diffeomorphic to G∗). The source map of D is a fibration,
since D is an action groupoid. Therefore, D ⇒ G satisfies the conditions of
Corollary 9.3 with k = 2.

Exchanging the roles of G and G∗ and bearing in mind that a Poisson-
Lie group G is complete if and only if G∗ is complete [52, Prop. 2.42], one
obtains an analogous result for the symplectic groupoid structure of D over G∗.
When G is equipped with the zero Poisson structure, then G∗ is g∗ seen as an
abelian group, with the linear Poisson structure, and D = T ∗G; so in this sense
Corollary 9.6 recovers Proposition 9.1 for complete G. Other interesting, and
non-trivial, Poisson-Lie group structures have been constructed, for example
for connected compact semisimple G [55].

9.5. Cotangent VB-groupoids. For any cotangent VB-groupoid T ∗G ⇒ A∗

of a Lie groupoid G, the nerve (T ∗G)(•) is a simplicial vector bundle over the
nerve of G. Moreover, the core exact sequence of T ∗G (dual to sequence (2) in
Remark 2.15) implies that the source fibres of T ∗G are affine bundles over the
source fibres of G. These facts together with Corollary 9.3 lead to the following
result.

Corollary 9.7. Let G be a Lie groupoid such that G(n) is homologically 2-
connected for all n ≥ 0 and such that its source map s has homologically
k-connected fibres. Then there are isomorphisms

H0
def(T

∗G, ωcan) ∼= H0
π(A∗)/R, H i

def(T
∗G, ωcan) ∼= H i

π(A∗),
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for 1 ≤ i ≤ k, and an injective map

Hk+1
def (T ∗G, ωcan)→ Hk+1

π (A∗).

Remark 9.8. The results of this section indicate that at the infinitesimal
level, the deformation theory of a symplectic groupoid (G, ω) ⇒ (M,π) with
homologically 2−connected nerve and source fibres is very closely related with
that of (M,π) itself. And moreover, that this situation occurs in many natural
examples.
Both H2

def(G, ω) and H2
π(M) encode infinitesimal deformations modulo triv-

ial deformations, while H1
def(G, ω) and H1

π(M) encode infinitesimal automor-
phisms modulo trivial ones. The missing piece, from the point of view of
deformation theory, is relating obstructions. On the Poisson side, H3

π(M) en-
codes obstructions to extending an infinitesimal deformation to a formal one.
This interpretation uses the Schouten-Nijenhuis differential graded Lie algebra
(DGLA) structure on X•(M).
There is a well known principle of deformation theory due to Deligne [33] and

Drinfeld [34], and in an equivalent form, to Schlessinger and Stasheff [70], (now
formalized as a theorem in derived deformation theory [56, 69]) and explored
further by many others; it states that every reasonable formal deformation
problem in characteristic zero is controlled by a DGLA g. Equivalence classes
of infinitesimal deformations are given by elements [c] ∈ H2(g); obstructions to
extending an infinitesimal deformation c to a formal deformation are detected
by a squaring map [·, ·] : H2(g) → H3(g) (degrees may vary according to the
index convention for g).
It is not known to date how to describe such a DGLA (nor an L∞-algebra)

structure on the deformation complex of a Lie groupoid G (not even when
G is a Lie group!). The work of [67] points to its existence, although in a
non-constructive way, via an interpretation of deformations of Lie groupoids
as deformations of certain kinds of diagrams of C∞-schemes. Similarly, we do
not know how to describe such a structure for C•def(G, ω). It is our hope that
understanding better the close relation between the deformation complexes of
G and of (G, ω) with known DGLA’s (such as X•(M), as in this section, or the
deformation complex of a Lie algebroid, in the next) may help in eventually
finding an explicit description of the DGLA (or L∞-algebra) structures on these
complexes.
In any case, if H3

def(G, ω) does encode obstructions to extending an infinites-
imal deformation of a symplectic groupoid to a formal one, it is reasonable to
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expect that the map of Proposition 9.1 sends the obstruction for an infinitesi-
mal deformation [η] of (G, ω) to the obstruction of a corresponding infinitesimal
deformation [Λ] of Poisson structures on the base. If that is the case, injectivity
would say that if [Λ] is unobstructed, then so is [η]. On the other hand, if [η]
is the deformation class associated to an actual deformation of (G, ω) then the
corresponding infinitesimal deformation [Λ] of Poisson structures should also
be unobstructed.

10. The map between differentiable and deformation co-
homologies

In the previous section we have explored the relation between deformation
cohomology and Poisson cohomology for symplectic groupoids with somewhat
simple topology. We now turn our attention to what can be said about the
relation between the deformation cohomology of any symplectic groupoid (G, ω)
and other related cohomologies, such as H•(G) and Poisson cohomology of the
base.
Let (M,π) be a Poisson manifold and let (T ∗M)π be its associated Lie al-

gebroid. In the study of deformation of Lie algebroids of [26], the authors
define a map i : H•π(M) −→ H•def ((T ∗M)π) between the Poisson cohomology
of (M,π), which controls deformations of Poisson structures, and the defor-
mation cohomology of the algebroid (T ∗M)π. In this section we construct the
global counterpart iG of the map i.
We collect in the appendix some material, including definitions, on double

vector bundles and VB-algebroids (vector bundle objects in the category of Lie
algebroids), that is of use in the proofs of this section.

10.1. Deformation cohomology of Lie algebroids. We recall the defor-
mation complex of a Lie algebroid A, denoted by (C•def(A), δ) and defined in
[26]; we recall also its interpretation in terms of VB-algebroids.
A derivation on a vector bundle E −→M is a linear operator D : Γ(E) −→

Γ(E) such that there exists a vector field σD ∈ X(M), called the symbol of D,
which satisfies

D(fs) = fD(s) + σD(f)s, for s ∈ Γ(E) and f ∈ C∞(M).

A multiderivation of degree n on E is a multilinear and antisymmetric map

D : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
n+1 times

−→ Γ(E)
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which is a derivation in each entry, i.e., there is a symbol map

σD : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
n times

−→ X(M)

which is C∞(M)-linear in each entry and satisfies

D(s0, s1, ..., fsn) = fD(s0, ..., sn) + σD(s0, ..., sn−1)(f)sn,

for si ∈ Γ(E) and f ∈ C∞(M). The space of multiderivations of degree n is
often denoted by Dern(E). One sets Der−1(E) = Γ(E).
The deformation complex of a Lie algebroid A is the complex for which

the space of k-cochains Ck
def(A) consists of the multiderivations of degree k− 1

on A, i.e., Ck
def(A) = Derk−1(A), with differential given by the ’de Rham type’

formula

δ(D)(α0, ..., αk) = Σi(−1)i[αi, D(α0, ..., α̂i, ..., αk)]+

+ Σi<j(−1)i+jD([αi, αj], α0, ..., α̂i, ..., α̂j, ..., αk).

VB-algebroid complex. For a VB-algebroid D −→ E over A −→ M , the
VB-algebroid complex of D is the subcomplex C•VB(D) = C•lin(D) of C•(D)
(the Chevalley-Eilenberg complex of D) consisting of cochains which are linear
in the following sense: regard the cochains in Ck(D) = Γ(E,ΛkD∗E) as the k-
multilinear and alternating functions ⊕kED −→ R; a k-cochain is called linear
if it is fibrewise linear with respect to the vector bundle structure of ⊕kED over
⊕kMA (cf. [10], see also [26]).

Remark 10.1. As pointed out in ([26], Prop. 7), there is an interpretation of
the deformation complex of the Lie algebroid A in terms of the VB-algebroid
complex of T ∗A∗ −→ A∗ (see example (A.10)). In fact, given any vector bundle
E →M , define the isomorphism ([26], section 4.9)

DE : Xk
lin(E) −→ Derk−1(E∗), DE(X)(s1, ..., sk) := X(ls1

, ..., lsk),

where si ∈ Γ(E∗) and l : Γ(E∗)
∼=−→ C∞lin(E) is the function assigning to a

section s ∈ Γ(E∗) the corresponding (fibrewise) linear function on E. Thus,
if E = A∗, then Xk

lin(A∗) = Ck
VB(T ∗A∗), and DA∗ : X•lin(A∗) −→ C•def(A) is

moreover an isomorphism of differential graded Lie algebras, where on X•lin(A∗)
one considers the Schouten bracket of multivector fields.
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The map i. Let (M,π) be a Poisson manifold. We now revisit the cochain
map i : C•π(M) → C•def(T

∗M) introduced in [26]. It is defined in terms of
cochains by i : Ck

π(M) → Ck
def(T

∗M), X 7→ DX , where DX ∈ Derk−1(T ∗M)
acts on exact forms by

DX(df1, ..., dfk) := d(X(f1, ..., fk)).

An expression for the multiderivation DX acting on arbitrary forms can also
be obtained (see [26], Prop. 3), but the previous formula is enough for our
purposes.
In order to can study the map i in another way, we use the notion of the

tangent lift TX : Xk(M) −→ Xk
lin(TM) ⊂ Xk(TM) of k-multivector fields,

defined as follows. Regard the k-vector fields as the k-multilinear functions

Xk(M) = Γ(
k∧
pM

TM) = {
k⊕
cM

T ∗M
k-multilinear−→ R}.

Thus,

Xk(TM) = Γ(
k∧

pTM

T (TM)) = {
k⊕

cTM

T ∗(TM)
k-multilinear−→ R}.

Then, if X ∈ Xk(M), its tangent lift X̃ is given by

X̃ := TX ◦ ⊕kΘ−1
TM :

k⊕
cTM

T ∗(TM) −→
k⊕

TcM

T (T ∗M) −→ R; (19)

where TX ∈ C∞k−lin(
⊕k

TcM
T (T ∗M)) means the tangent lift, induced by the

differential, of the k-multilinear function corresponding to the vector field X.
Notice further that, in this way, X̃ is (fibrewise) linear with respect to the

vector bundle structure of
⊕k

cTM
T ∗(TM) over

⊕k
cM
T ∗M (TX is (fibrewise)

linear with respect to the bundle projection ⊕kpT ∗M , and ⊕kΘTM is an iso-
morphism of DVBs). That is, X̃ ∈ Xk

lin(TM), i.e., the tangent lift of the
multivector field X ∈ Xk(M) is a linear multivector on TM .

We identify the map i with the tangent lift of multivector fields, through the
isomorphism DTM of multiderivations with linear multivector fields.The map i
is determined by the composition

Xk(M)
TX−→ Xk

lin(TM)
DTM−→ Derk−1(T ∗M). (20)
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For simplicity we will verify the equality in the case k = 2. Let

l : X2(M) −→ C∞2−lin(
2⊕
cM

T ∗M)

be the correspondence assigning to bivector fields on a manifold M the associ-
ated bilinear antisymmetric functions on

⊕2
cM
T ∗M . With this assignment, one

can write the element TX in expression (19) as T (lX) ∈ C∞k−lin(
⊕k

TcM
T (T ∗M)).

Thus, one gets

DTM(X̃)(df1, df2) = X̃(ldf1
, ldf2

)

= lX̃(df̃1, df̃2) (where f̃i := ldfiis the tangent lift of fi)

= T (lX) ◦Θ−1
TM(df̃1, df̃2)

= T (lX)(T (df1), T (df2))

= T (lX(df1, df2))

= d(lX(df1, df2))

= d(X(f1, f2)) (by definition of l)
= i(X)(df1, df2).

where in the fourth equality we use that ΘTM ◦ T (df) = df̃ (see [59] p. 394).

10.2. The map iG and van Est commutativity. We now define the map

iG : H•diff(G) −→ H•def(G)

which will be regarded as the global counterpart of the map i in the sense of
Theorem 10.2 below. As we will see, similarly to what happened for C•def(G, ω)
(Remark 5.5) the map iG can be identified with a piece of the Bott-Shulman-
Stasheff double complex.
Recall from Proposition 2.17 that C•def(G) ∼= C•VB(T ∗G), and moreover, by

Lemma 3.1 in [10], that H•VB(T ∗G) ∼= H•lin(T ∗G).
Thus, we will define the map iG : H•(G) −→ H•def(G) (between cohomolo-

gies!) in terms of a chain map j : C•(G) −→ C•lin(T ∗G); the latter is the
composition

Ck(G)
T−→ Ck

lin(TG)
(ω#)∗−→ Ck

lin(T ∗G),
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where ω# := (ωb)−1 : T ∗G → TG, and T is the natural tangent lift of
groupoid cochains. It is given by T (c) : (vg1

, ..., vgk) 7→ dc(vg1
, ..., vgk), using

the canonical identification (TG)(k) ∼= TG(k).
The main property of the map iG is that for s-connected symplectic groupoids,

it is indeed the global counterpart of the map i of [26].

Theorem 10.2. Let (G, ω) be a symplectic groupoid. If G is s-connected,
the map iG : C•(G)

j→ C•lin(T ∗G)
q.i.∼ C•def(G), defined above, is the global

counterpart of the map i. That is, iG together with i and the van Est maps for
differentiable [19] and deformation cohomology [10, 25] form the commutative
diagram.

Ck(G) C∗lin(T ∗G)
q.i.∼ C∗def(G)

Ck(T ∗M) Ck
def(T

∗M).

�V E

iG

V Edef

i

In the statement of this result, and throughout the rest of this section, we let
C•diff(G), or simply C•(G) (respectively C•VB(Γ) and C•lin(Γ)) denote the sub-
complex of normalized cochains of G (respectively normalized VB-cochains and
linear cochains of Γ), which we recall are those that vanish on all degeneracies.

Remark 10.3. The map iG : H•diff(G) → H•def(G), according to its defini-
tion, can essentially be viewed as the de Rham differential ddR : H•diff(G) →
H•(Ω1(G(∗))). In fact, the two maps are related by the following diagram.

H•def(G)
(ωb)∗

// H•(Ω1(G(∗)))

H•diff(G).
ddR

77

iG

ff

Therefore, just as C•def(G, ω) could be identified with the total complex of a
sub complex of the Bott-Shulman-Stasheff double complex (Remark 5.5), the
map iG appears as the vertical differential between the first two lines of the
double complex.
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Note also that the maps

C•(G).
iG

&&

V E

xx

C•(T ∗M) C•lin(T ∗G)

appearing in the statement were precisely the ones used to relate deformation
cohomology of (G, ω) and Poisson cohomology of the base in Section 9, in cases
with simple topology.

The proof of Theorem 10.2 makes use of the tangent lift of algebroid
cochains, T : C•(A) → C•lin(TA) which is the infinitesimal analogue of the
tangent lift of groupoid cochains, and is defined as follows. A k-cochain c ∈
Ck(A) = Γ(ΛkA∗) can be regarded as a k-linear and skew-symmetric map
c :
⊕k A→ R. Its tangent lift Tc ∈ Ck

lin(TA) is

Tc(v1, ...vk) := dc(v1, ..., vk),

for (v1, ..., vk) ∈
⊕k

TM TA, using the identification T (
⊕k A) ∼=

⊕k
TM TA.

It is shown in Section A.3 of the Appendix that the tangent lift is a map of
cochain complexes, and we detail some of its properties in Lemma A.15.

Remark 10.4. Notice that if A = T ∗M is the Lie algebroid associated to a
Poisson manifold (M,π), then the tangent lift of algebroid cochains agrees with
the tangent lift TX of multilinear elements used in expression (19) to define
the tangent lift of multivector fields on M .

Proof of Theorem 10.2
The proof follows from working on each of the properties of the symplectic

form ω (non-degeneracy, multiplicativity and closedness). On the one hand,
notice first that, from non-degeneracy and multiplicativity, the map j fits into
the following diagram
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Ck(G) Ck
lin(TG) Ck

lin(T ∗G)

Ck
lin(ATG) Ck

lin(AT ∗G)

Ck(A) Ck
Tπ(TA)lin Ck

A∗(T
∗A)lin

(I)V E

T

(II)V E

(ω#)∗

V E

(III)j∗G∼=

(Lieω#)∗

(θ−1
G )∗

T (L(ω)#)∗

(21)

The commutativity of diagram (I) (which we prove in subsection 10.3 be-
low) is a general fact relating the tangent lifts of cochains on Lie groupoids
and Lie algebroids by the van Est map, and it does not involve the symplectic
structure. The commutativity of diagram (II) follows from the naturality of
the van Est map with respect to morphisms of Lie groupoids (Lemma 2.10
[10]). And finally, the commutativity of diagram (III) amounts to regarding
the morphism of Lie algebroids Lie(ωb) : ATG → AT ∗G in terms of the (canoni-
cally) isomorphic Lie algebroids TAG and T ∗AG. We denote such a morphism
by L(ω)b : TAG −→ T ∗AG. Moreover, since this latter morphism is the infini-
tesimal counterpart of a morphism of Lie groupoids induced by a multiplicative
2-form on G, then it also turns out to be induced by a 2-form L(ω) on A (that
fact explains our notation L(ω)b for the morphism). In fact, one can explicitly
describe such a 2-form L(ω) by using the tangent lift ωT ∈ Ω2(TG) of the
form ω ∈ Ω2(G). One obtains L(ω) = ι∗Aω

T , where ιA is the inclusion map
AG ↪→ TG. This last point is developed in ([7], Prop. 3.7).
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Composing the reversal isomorphism T ∗A∗
RA−→ T ∗A (Section A.2) and the iso-

morphism DA∗ (Remark 10.1) with the lower part of diagram (21), we obtain

Hk(G) Hk
lin(T ∗G) Hk

def(G)

Hk(A) Hk
A∗(T

∗A)lin Hk
A∗(T

∗A∗)lin Hk
def(A).

j

V E

∼=

V Elin V Edef

(L(ω)#)∗◦T R∗

∼=
DA∗

∼=

(22)

On the other hand, adding the closedness property of the 2-form ω, we get
both a Poisson structure π onM and, at the infinitesimal level, an isomorphism
of Lie algebroids σ : AG → (T ∗M)π. Thus, having in mind the expression (20)
for the map i, we have the following commutative diagram.

Ck(A) Ck
Tπ(TA)lin Ck

A∗(T ∗A∗)lin Derk−1(A)

Ck
cM

(T ∗M) Ck
TcM

(T (T ∗M))lin Ck
cTM

(T ∗(TM))lin Derk−1(T ∗M),

T

(σ−1)∗

(Θ−1
A∗ )∗

(Tσ−1)∗

DA∗

(σ−1)#

T (Θ−1
TM )∗ DTM

((Tω)∗)#

(23)

where ΘA∗ is the isomorphism of VB-algebroids induced from ΘTM by using
the isomorphism σ : A −→ T ∗M . That is,

ΘA∗ =
(

(Tσ∗)?(σ∗)−1

)−1

◦ΘTM ◦ Tσ : TA −→ T ∗A∗

(see Remark A.7) and for simplicity we write simply ΘA∗ = ((Tσ∗)∗)−1◦ΘTM ◦
Tσ.
Hence, comparing the upper part of diagram (23) and the lower part of

diagram (22), we obtain two VB-algebroid isomorphisms from T ∗A∗ to TA,
L(ω)# ◦ RA and Θ−1

A∗ . We will prove now that these two maps are the same,
which will complete the proof of the theorem (just put together diagrams (22)
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and the diagram induced in cohomology by (23)). In fact,

ΘA∗ = ((Tσ∗)∗)−1 ◦ΘTM ◦ (Tσ)

= ((Tσ∗)∗)−1 ◦ (RTM ◦ ωbcan) ◦ Tσ (Prop. A.11)

= RA∗ ◦ (Tσ)∗ ◦ ωbcan ◦ Tσ (Prop. A.8)

= R−1
A ◦ (σ∗ωcan)b

= R−1
A ◦ L(ω)b;

where the fact that RA∗ = R−1
A is easily verified from a local point of view

and the last step follows from the characterization of the linear 2-forms on AG
coming from multiplicative 2-forms on G ([7], Prop. 4.6). �

Remark 10.5. (IM-2-forms) It is worth to mention that the map σ of the
previous proof is the IM-2-form associated to the multiplicative 2-form ω (cf.
[5, 7, 8, 28]), and it makes sense even when ω is only multiplicative but not
closed.

10.3. Proof of the commutativity of diagram (I). Here we complete the
proof of Theorem 10.2 by proving the commutativity of diagram (I) in (21)
above. We will proceed by using the properties of the tangent lift detailed
in Lemma A.14, and by working on core sections and tangent lift of sections,
which together span all sections of the tangent algebroid (example A.4).
Recall the definition of the van Est map V E : Ck(G) −→ Ck(AG), between

the differentiable cohomology of a Lie groupoid and the algebroid cohomology
of its associated Lie algebroid. Given c ∈ Ck(G), V E(c) is defined (using the
conventions from [10, 19]) by

V E(c)(X1, ..., Xk) =
∑
σ∈Sn

sgn(σ)Rσ(X1) ◦ · · · ◦Rσ(Xk)c; for Xi ∈ Γ(AG),

where if X ∈ Γ(AG), the map RX : Ck(G) −→ Ck−1(G) is given by

RXc(g1, ..., gk−1) =
d

dε

∣∣∣∣
ε=0

c(ψ
~X
ε (t(g1)), g1, ..., gk−1),

ψ
~X
ε being the flow of the right invariant vector field associated to X ∈ Γ(AG).

We prove explicitly the commutativity of (I) for k = 2, commenting along
the way how to extend the proof to the general case. Note that, for c ∈ C2(G),
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by definition of RX we have

(RX1
RX2

c)(x) =
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

c
(
ψ
~X2
ε2

(φV1
ε1

(x)), ψ
~X1
ε1

(x)
)
, (24)

where V1 = ρ(X1) ∈ X(M) is the projection of X1 by the anchor.
In order to use formula (24) for sections of the tangent Lie algebroid, we

study the flow of the appropriate right-invariant vector fields on TG. We then
split the proof in three cases:

Linear sections: (Xi = jG ◦ (Tαi), αi ∈ Γ(AG), i = 1, 2.)

In this case, the flow of ~Xi ∈ X(TG) is the tangent lift of the flow of ~αi ([61],
Thm 7.1), thus for instance,

ψ
~Xι
ε (Tu(wy)) = (Tψ~αiε )(Tu(wy))

= T (ψ~αiε ◦ u)(wy)

=
d

dλ

∣∣∣∣
λ=0

ψ~αiε ◦ u(γ(λ)),

for γ(λ) a curve determining wy. Then,

(RX1
RX2

(Tc))(wx) =

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

dc

(
d

dλ

∣∣∣∣
λ=0

(ψ~α2
ε2

(ψV1
ε1

(γ(λ)))), ψ~α1
ε1

((γ(λ)))

)
=

d

dλ

∣∣∣∣
λ=0

(Rα1
Rα2

c)(γ(λ))

= d(Rα1
Rα2

c)(wx).

Therefore, it follows that V E(Tc)(X1, X2)|wx = d (V E(c)(α1, α2))|wx , which
by item (1) in Lemma A.14 is the same as

j∗G(V E(Tc))(Tα1, Tα2)
∣∣
wx

= T (V E(c)) (Tα1, Tα2)|wx .

The same argument works for any k-cochain (k > 0) if we take only linear
sections.
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One core section case: Let α̂ ∈ Γ(TAG) be the core section associated to
α ∈ Γ(AG), and X := jG ◦ α̂.

In this case, the right-invariant vector field on TG associated toX is ~X = (~α)↑

([61], Thm 7.1), therefore its flow is given by ψ(~α)↑

ε (vg) = vg + ε~αg.
Thus, if X1 := jG ◦ Tα1 and X2 := jG ◦ α̂2, denote by u1 = ρ(α1) ∈ X(M):

(RX1
RX2

(Tc))(wx) =
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc
(
ψ( ~X2)
ε2

(tTG(ψ
~X1
ε1

(wx))), ψ
~X1
ε1

(wx)
)

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc(Tψu1
ε1

(wx)︸ ︷︷ ︸
w′
ψ
u1
ε1

(x)

+ε2 ~α2|ψu1
ε1 (x) , Tψ

~α1
ε1

(wx))

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc(w′ϕu1
ε1 (x), Tψ

~α1
ε1

(wx))︸ ︷︷ ︸
0

+
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

dc
(
ε2 ~α2|ϕu1

ε1 (x) , 0ψ~α1
ε1 (x)

)
=

d

dε1

∣∣∣∣
ε1=0

d

dλ

∣∣∣∣
λ=0

c
(
ψ~α2

λ (ϕu1
ε1

(x)), ψ~α1
ε1

(x)
)

= (Rα1
Rα2

c)(x) ,

where in the third equality we use the linearity of Tc over G(2) (Tc ∈ C2
lin(TG)).



DEFORMATIONS OF SYMPLECTIC GROUPOIDS 67

Similarly, by changing the order,

(RX2
RX1

(Tc))(wx) =

=
d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

Tc

(Tψ ~α1
ε1

)

ϕu
↑
2
ε2

(wx)︸ ︷︷ ︸
wx+ε2(u2)x

 , ψ(~α2)↑

ε2
(wx)︸ ︷︷ ︸

wx+ε2(~α2)x


=

d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

dc
(
(Tψ ~α1

ε1
)(ε2(u2)x), ε2(~α2)x

)
+

d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

dc(Tψ ~α1
ε1

(wx), wx)

=
d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

ε2 dc

(
(Tψ ~α1

ε1
)(
d

dλ

∣∣∣∣
λ=0

ϕu2

λ (x)),
d

dλ

∣∣∣∣
λ=0

ψ~α2

λ (x)

)
=

d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

ε2
d

dλ

∣∣∣∣
λ=0

c
(
ψ ~α1
ε1

(ϕu2

λ (x)), ψ~α2

λ (x)
)

=
d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

c
(
ψ ~α1
ε1

(ϕu2
ε2

(x)), ψ~α2
ε2

(x)
)

= (Rα2
Rα1

c) (x),

where in the second equality we view dc as an element of C2
lin(TG). Hence, it

follows that V E(Tc)(X1, X2)(wx) =
(
V E(c)(α1,α2)

)
(x)
, which by Lemma A.14

is

j∗G(V E(Tc))(Tα1, α̂2)
∣∣
(wx)

= T (V E(c))(Tα1, α̂2)|(wx) ,

as we want.
The main ideas used in the proof of this case are the following. (i) in the

expression ψ
( ~α2)↑

ε (vx) = vx + ε ~α2|x for the flow of the right-invariant vector
field on TG associated to the core section α̂2, the parameter ε only appears
multiplied by ~α2|x; (ii) by the linearity of Tc ∈ C2

lin(TG) and (i), we can form
two vectors of (TG)(2): one multiplied by ε2, the other one independent of
ε2. Using these facts, a completely analogous argument works for k-cochains.
In fact, by skew-symmetry of the elements of Ck(ATG), we can assume that
Xk ∈ Γ(ATG) is the core section in the expression V E(Tc)(X1, ..., Xk), so that
the proof of the equality is just like that above.
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More than one core section case: (Xi := jG ◦ α̂i, αi ∈ Γ(A), i = 1, 2.)

(RX1
RX2

(Tc))(wx) =

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc
(
ψ( ~X2)
ε2

(tTGψ
~X1
ε1

(wx)), ψ
( ~X1)
ε1

(wx)
)

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc
(
tTGψ

(~α1)↑

ε1
(wx) + ε2(~α2)x, wx + ε1(~α1)x

)
=

d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc (wx + ε1(ρ(α1))x + ε2(~α2)x, wx + ε1(~α1)x)

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc (wx + ε1(ρ(α1))x, wx + ε1(~α1)x)

+
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc (ε2(~α2)x, 0x)

= 0.

That is, j∗G [V E(Tc)] (α̂1, α̂2) = 0. Then item (3) in Lemma A.14 completes
the commutativity in this case. Analogously it is shown that the equality holds
for k-cochains if we have more than one core section: it suffices to decompose
the vector in (TG)(k) as a sum of two vectors, one depending only on ε1 and
another depending only on ε2.
This finishes the proof that the van Est maps intertwine tangent lifts of

cochains (of Lie groupoids and Lie algebroids), i.e., of the commutativity of
the diagram (I).

Remark 10.6. Recall that any strict deformation of Lie groupoids induces de-
formations of Lie algebroids, fibrewise linear Poisson manifolds, and symplectic
(VB-)groupoids (Example 3.6).

Gε  Aε  (A∗ε, πε) (T ∗Gε, ωcan)

There are now plenty of relations between these objects at the level of the
corresponding deformation cohomologies. There is a van Est map H•def(G) →
H•def(A) [25, Thm. 10.1]; there is an isomorphism H•def(A) ∼= H•π,lin(A∗) [26,
Prop. 8]; the map i : H•π(A∗) −→ H•def (T ∗A∗) relates infinitesimal deforma-
tions of Poisson structures on A∗ and of Lie algebroids on T ∗A∗. Proposition
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9.7 gives a relation betweenH•π(A∗) andH•def(T
∗G, ωcan). There is also an inclu-

sion induced by the tangent lift of [49], H•def(G) ↪−→ H•def,lin(T ∗G) ⊂ H•def(T
∗G),

a linear version of iT ∗G.

Appendix A.Double structures
A.1. VB-algebroids. The infinitesimal counterpart of VB-groupoids are ob-
jects called VB-algebroids [40, 57], which are vector bundles objects in the
category of Lie algebroids. Similarly to the situation with VB-groupoids, VB-
algebroids provide alternative viewpoints on the deformation cohomology (Rmk
10.1) and on the representation theory of Lie algebroids [40].

Definition A.1. A double vector bundle (D,E,A,M), or just D, is a
diagram

D E

A M,

�qDA

qDE

qE

qA

(25)

such that the rows and columns are vector bundles, and qDE and the addition

map of D
qDE−→ E, +E : D ⊕E D −→ D, are vector bundle morphisms over qA

and the addition of A, +:A⊕M A −→ A, respectively.

In the vertical bundle structure on D with base A, D̃A, we use the nota-
tion 0̃A : A −→ D, a 7−→ 0̃Aa for the zero-section; similarly, in the horizontal
vector bundle structure on D over E, D̃E, we write 0̃E : E −→ D, b 7−→
0̃Eb . The vector bundles A and E over M are called the side bundles of (25);
we denote their zero-sections by 0A and 0E, respectively.

Definition A.2. A morphism of double vector bundles

(φ, φE, φA, φM) : (D,E,A,M) −→ (D′, E ′, A′,M ′)

consists of maps φ : D −→ D′, φE : E −→ E ′, φA : A −→ A′, φM : M −→M ′

such that each of (φ, φE), (φ, φA), (φE, φM) and (φA, φM) are morphisms of
the corresponding vector bundles.
If M = M ′, E = E ′ and φE = idE, one says that φ preserves E. If, further,
A = A′ and φA = idA one says that φ preserves the side bundles.
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The core bundle and core and linear sections. A third vector bundle
over M associated to (D,E,A,M) is the core bundle C, defined as the
intersection of the kernels of qDE and qDA . To avoid confusion, when regarding
c ∈ C as belonging to D, we will denote it by c̄. The core fits into an exact
sequence of vector bundles over A.

0→ q∗AC
τA−→ D̃A

(qDE )!

−→ q∗AE → 0, (26)

where (qDE )! is the induced projection on q∗AE and τA(a, c) = 0̃Aa +E c̄ (which
makes sense because (i) 0̃Aa and c̄ ∈ D are in the same qDE -fibre over 0EqA(a) and
(ii) qDA is a morphism, thus τA(a, c) ∈ D̃A is over a ∈ A). This sequence is
called the core sequence of D over A. Analogously, there is a core sequence
of D over E.
An important aspect of the core sequences is that, for instance in (26), a

section of C induces a section in ΓA(D) of D̃A. In fact, c ∈ Γ(C) defines
cA ∈ ΓA(D) by

cA(a) := τ(a, cqA(a)) = 0̃Aa +E c̄qA(a).

The section cA is called the core section over A corresponding to c. The
space of core sections over A is denoted by Γcore(D,A). Analogously, with the
core sequence over E, one gets core sections over E.
Another special type of sections of D̃A, called the linear sections of D over

A, are those which are vector bundle morphisms from A −→ M to D −→ E.
The space of linear sections is denoted by Γlin(D,A).
An important fact about linear and core sections is that together they span

all sections of D over A [60].

Definition A.3. A VB-algebroid is a DVB as in (25), where D −→ E is a Lie
algebroid with anchor map ρD : D −→ TE being a vector bundle morphism
over A −→ TM and such that the Lie bracket [·, ·]D satisfies the following
conditions:

(1) [Γlin(D,E),Γlin(D,E)]D ⊂ Γlin(D,E),
(2) [Γlin(D,E),Γcore(D,E)]D ⊂ Γcore(D,E),
(3) [Γcore(D,E),Γcore(D,E)]D = 0.

As pointed out in [40], a VB-algebroid D −→ E induces a Lie algebroid
structure on A −→ M and the structure maps (projection, zero section, sum)
of the vertical bundle structures form Lie algebroid morphisms. In this sense, a
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VB-algebroid can be though as a vector bundle in the category of Lie algebroids,
([40], Thm. 3.7).

Example A.4. (Tangent prolongation DVB; Tangent Lie algebroid)
(1) Applying the tangent functor to the structure maps (projection, addi-

tion, zero-section) of the vector bundle E q−→M yields the DVB

TE TM

E M,

�pE

Tq

pM

q

with core E. The core sections over E and TM corresponding to α ∈
Γ(E) are respectively:

α↑ ∈ ΓE(TE), α↑(e) = 0̃Ee +TM α(pE(e)) =
d

dε

∣∣∣∣
ε=0

(e+ εα(pE(e))),

called the vertical lift of α, and

α̂ ∈ ΓTM(TE), α̂(vx) = 0̃TMvx +E α(x) ∈ T0Ex
E.

Note that 0̃TM = T (0E), and α(x) = α↑(0Ex ).
For any X ∈ Γ(E), its tangent prolongation

T (X) := d(X) ∈ Γ(TE, TM)

is a linear section of TE over TM . Linear sections of TE over E are
called linear vector fields on E.

(2) Let F : E −→ E ′ be a vector bundle morphism over f : M −→ M ′.
The tangent prolongation of F induces the morphism of vector bundles
(TF, Tf, F, f) : TE −→ TE ′.

Given a Lie algebroid A π−→M , there is a Lie algebroid structure on TA Tπ−→
TM making it into a VB-algebroid. Denote by X̂i ∈ Γc(TA, TM), i = 1, 2, the
core section corresponding to Xi ∈ Γ(A). It suffices to define the Lie bracket
on core sections and linear sections of the form T (X), X ∈ Γ(A):

[TX1, TX2] = T [X1, X2], [TX1, X̂2] = ˆ[X1, X2], [X̂1, X̂2] = 0. (27)
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The anchor ρT is defined by ρT = J−1 ◦ T (ρ) where

T (TM) T (TM)

TM

J

pTM TpM

is the canonical involution of the double tangent bundle T (TM), called the
canonical flip, determined locally by J(xi, ẋi, δxi, δẋi) = (xi, δxi, ẋi, δẋi), where
for local coordinates (xi) of M , (ẋi) are the coordinates on the fibres of TM
and (δxi, δẋi) are the coordinates on the fibres of T (TM)

pTM−→ TM .

Example A.5. (Dual DVB) By dualizing the core exact sequence over A , we
can induce a double vector bundle

D∗A C∗

A M,

�q∗AA

q∗AC∗

qC∗

qA

(28)

with core E∗, where D∗A denotes the dual over A, and q∗AA : D∗A −→ C∗ comes
from the dual of τA: 〈

q∗AC∗(ηa), c
〉

= 〈ηa, τA(a, c)〉 ,

for ηa : (qDA )−1(a)
linear−→ R and c ∈ CqA(a). The addition +C∗ : D∗A ⊕C∗ D∗A −→

D∗A is defined in such a way that the natural pairing 〈, 〉 : D∗A ⊕ D̃A −→ R is
linear with respect to the vector bundle structure over C∗ ⊕M E, i.e.,

〈ηa +C∗ η
′
a′, da +E d

′
a′〉 = 〈ηa, da〉+ 〈η′a′, d′a′〉 .

Note that ηa+C∗η
′
a is determined by the expression above due to the fact that

any element in (D̃A)a+a′ can be written as the sum of elements d ∈ (D̃A)a and
d′ ∈ (D̃A)a′. It is not hard to see that +C∗ given in this form is well-defined.
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The zero above κ ∈ C∗x, denoted by 0̃∗Aκ : (D̃A)0Ax
=
[
Ker(qDA )!

]
0Ax

linear−→ R, is
defined by 〈

0̃∗Aκ , 0̃
E
e +A c̄

〉
= 〈κ, c〉 , for e ∈ Ex, c ∈ Cx.

Analogously, one can take the dual of the core exact sequence over E, inducing
a DVB (D∗E, E, C

∗,M) with core A∗. See [59] or [58] for further details.

Remark A.6. Similarly to the dual of a morphism of vector bundles over
the same base covering the identity, one defines the dual of a morphism of
DVBs which have one same side bundle. If (φ, φE, idA, φM) : (D,E,A,M) −→
(D′, E ′, A,M) is a DVB morphism preserving A, dualizing φ as a morphism
of vector bundles over A yields (φ∗A, φ

∗
C , idA, φM) : (D′∗A, (C

′)∗, A,M) −→
(D∗A, C

∗, A,M), a DVB morphism preserving A with core morphism φ∗E :
(E ′)∗ −→ E∗.

Isomorphisms of duals of DVBs. As example A.5 shows, there are two
different ways to dualize a DVB: the vertical and the horizontal dualizations,
which are related by mixed iteration. The horizontal dual ((D∗A)∗C∗, C

∗, E,M)
of the dual DVB (28) is a DVB with the same side and core bundles as
(D∗E, E, C

∗,M). One can check that they are isomorphic DVBs. Namely,
ZE : D∗E −→ (D∗A)∗C∗ is the isomorphism induced by a natural pairing | ·, · |
between the vertical and horizontal duals D∗A and D∗E as vector bundles over
C∗. The pairing is defined by

| ηa, θe |= 〈ηa, d〉A − 〈θe, d〉E; (29)

where ηa ∈ D∗A, θe ∈ D∗E with q∗AC∗(ηa) = q∗EC∗ (θe) and d ∈ D is any element
such that the canonical pairings in the RHS make sense.

Of course, this pairing also yields the isomorphism D∗A
ZA∼= (D∗E)∗C∗ which

induces the identity on the cores E∗ and on the side bundles C∗, and is −idA
on the remaining side bundles A ([59], Corollary 9.2.4). Summing up, taking
duals over C∗ interchanges the vertical and horizontal duals of (D,E,A,M).
Or equivalently, mixed iteration of vertical and horizontal duals interchanges
the duals of D (e.g. horizontal dual followed by vertical one is the flip of the
vertical one, where the flip of a DVB (D,E,A,M) is (D,A,E,M)).

A.2. Reversal isomorphism. The reversal isomorphism of DVBs

RA : T ∗A∗ −→ T ∗A
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is a Legendre type map which allows us to relate two cotangent spaces. We
present here some details of its definition.
Examples A.4 and A.5 show us two important ways to get double vector

bundles from usual vector bundles (by tangent prolongation and dualizing). By
considering also dualization of vector bundles, there exists a certain compatibil-
ity between these processes: dualization commutes with tangent prolongation
(up to a canonical isomorphism). Indeed, the tangent lift of the canonical
pairing, 〈, 〉A, between A and A∗ over M induces the tangent pairing 〈〈, 〉〉A
between TA and T (A∗) over TM . For (va∗, wa) ∈ TA∗ ⊕TM TA,

〈〈va∗, wa〉〉A :=
d

dε

∣∣∣∣
ε=0

〈γ(ε), α(ε)〉A ;

where γ(ε) and α(ε) are curves on A∗ and A representing va∗ and wa, respec-
tively, with pA∗(γ(ε)) = pA(α(ε)). This pairing yields the isomorphism

IA : TA∗ −→ (TA)∗TM

which is moreover an isomorphism of DVBs: between the tangent prolongation
of the dual of A and the (horizontal) dual of the tangent prolongation of A.
The isomorphism IA preserves the sides and core bundles, and is often called
the internalization map ([59], Prop. 9.3.2).

TA∗ TM

A∗ M

�pA∗

TqA∗

pM

qA∗

IA−→

(TA)∗TM TM

A∗ M.

�q∗TMA∗

q∗TMTM

pM

qA∗

(30)

Consider now the tangent prolongation DVB of A −→M . The natural pairing
(29) existing between its (horizontal and vertical) duals induces the isomor-
phism

ZA : T ∗A = (TA)∗A −→ ((TA)∗TM)∗A∗.

Composing such an isomorphism with the dual (IA)∗A∗ of IA over A∗, one obtains
the following isomorphism of DVBs

(IA)∗A∗ ◦ ZA : T ∗A −→ T ∗A∗

which (like ZA) induces −idA on the side bundles A and preserves the cores
T ∗M and sides A∗. The reversal isomorphism RA : T ∗A∗ −→ T ∗A is
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then defined by RA := ((IA)∗A∗ ◦ ZA)−1 ◦ (−A∗idT ∗A∗), which will be then an
isomorphism of DVBs preserving the sides and inducing −idT ∗M on the cores.
Alternatively, it is possible to describe this map in a simple way by using

local coordinates. Let (xi, ud) and (xi, ud) be (fibred) local coordinates of the
vector bundles A −→ M and A∗ −→ M . Let then (xi, ud, ẋ

i, u̇d) denote the
tangent coordinates on TA, where (ẋi) are the coordinates of elements in TxM
and (u̇d) the ones of tangent elements to the fibre Ax of A→ M , which iden-
tify with elements of Ax and therefore are also called the core coordinates of
TA. Similarly, the vertical and horizontal duals of TA has a local descrip-
tion. Denote by (xi, ud, δx

i, δud) the cotangent coordinates on T ∗A, and let
(xi, ζd, ẋ

i, ηd) be the coordinates on the dual T •A := (TA)∗TM , where ζd and ηd
are the dual components to ud and u̇d, respectively. In these coordinates, the
dual map (IA)∗A∗ : (T •A)∗A∗ −→ (TA∗)∗A∗ is given by the flip

(xi, αd, βi, ηd) 7→ (xi, ηd, βi, α
d);

analogously, the isomorphism ZA above is determined locally by

(xi, ud, δxi, δud) 7→ (xi,−ud, δxi, δud).

Therefore, since locally the automorphism −A∗idT ∗A∗ only changes the sign on
the third and fourth components, the reversal isomorphism has the form

RA(xi, ud, δxi, δud) = (xi, δud,−δxi, ud). (31)

The following propositions tell us about some naturality properties that the
reversal isomorphism satisfies, and which will be useful for us later on. In
order to state them, we first adopt some convenient notation for the dual of
morphisms of vector bundles and DVBs.

Remark A.7. Consider two vector bundles A −→ M1 and B −→ M2, and
a vector bundle morphism Φ : A −→ B covering the diffeomorphism f :
M1 −→ M2. Notice that the pointwise dual of Φ induces a natural morphism
Φ?
f−1 : B∗ −→ A∗ between the duals of B and A covering the diffeomorphism

f−1.
We remark that such a dual construction can also be made for morphisms of

DVBs which share one of their side bundles. For instance, let f : A −→ B be
an isomorphism, then one has the dual of the DVB morphism Tf : TA −→ TB
(which covers the isomorphism f), denoted by (Tf)?f−1 : T ∗B −→ T ∗A.
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Proposition A.8. Consider two vector bundles A and B overM . If f : A −→
B is an isomorphism covering the identity, the following diagram commutes.

T ∗A∗ T ∗A

T ∗B∗ T ∗B

�((T (f∗))?
(f∗)−1

RA

RB

(Tf)?
f−1 (32)

Proof : The commutativity of this diagram follows directly from the local de-
scription of the reversal isomorphism given in (31).

Remark A.9. The reversal isomorphism RA satisfies some additional proper-
ties related to symplectic geometry: to begin with, it is an anti - symplecto-
morphism with respect to the canonical symplectic structures on the cotangent
bundles T ∗A∗ and T ∗A ([59], Thm 9.5.2)). Another property involving the
canonical symplectic structure on T ∗M is given in Proposition A.11 below.

Example A.10. (Cotangent Lie algebroid) The reversal isomorphism allows
to make sense of the so called cotangent Lie algebroid. It is well known that
a Lie algebroid A −→ M induces a Poisson structure on its dual A∗ −→ M ,
which is linear with respect to the vector bundle structure over M ([18], Thm.
2.1.4). In this way, the cotangent bundle of A,

T ∗A
R−1
A∼= T ∗A∗ −→ A∗

inherits a Lie algebroid structure, which is also a VB-algebroid over A −→M .
Such a VB-algebroid is also often defined as the dual VB-algebroid of TA (see
Section 3 in [40]).

For a Lie groupoid G with Lie algebroid AG, the tangent and cotangent
algebroids of AG are (isomorphic to) the Lie algebroids of the tangent and
cotangent groupoids (section 2.7) of G, respectively. In fact, the canonical flip
JG : T (TG) −→ T (TG) restricts to the isomorphism of Lie algebroids

TAG
jG−→ ATG

over TM ([59], Thm 9.7.5). And the dual of the map JG gives rise to the
isomorphism between the Lie algebroid of T ∗G and the cotangent algebroid.
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Explicitly, the isomorphism

ΘTG := J∗G ◦ ITG : T (T ∗G) −→ (T (TG))∗TM −→ T ∗(TG)

given by the composition of the internalization map and the dual of the invo-
lution induces the isomorphism ([59], p. 463)

AT ∗G
θG−→ T ∗AG.

The map ΘTG is often called the Tulczyjew map, and it is closely related to
the canonical symplectic structure ωcan on the cotangent bundle T ∗G.

Proposition A.11. ([59], Thm 9.6.7) Given a manifoldM , the Tulczyjew and
reversal isomorphisms ΘTM and RTM are related by the following commutative
diagram

T (T ∗M) T ∗(TM)

T ∗(T ∗M),

ωbcan

ΘTM

RTM

where ωcan ∈ Ω2(T ∗M) is the canonical symplectic structure on the cotangent
bundle T ∗M .

Remark A.12. In the case of a Poisson manifold M , the Tulczyjew map of
M ΘTM : T (T ∗M) −→ T ∗(TM) has an additional property: it is an isomor-
phism of VB-algebroids (i.e., it is an isomorphism of DVBs which preserves
the Lie algebroid structures involved), between the tangent algebroid and the
Lie algebroid associated to the linear Poisson structure on TM ([59], Prop.
10.3.13).

A.3. Tangent lift of algebroid cochains. Just as there is a tangent lift of
Lie groupoid cochains, there is an infinitesimal version, allowing to lift algebroid
cochains from a Lie algebroid A to the algebroid TA. Let us recall its definition,
and detail some of its properties.

Definition A.13. Let A → M be a Lie algebroid. The tangent lift of
algebroid cochains is the map

T : C•(A)→ C•lin(TA)
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defined as follows. An algebroid k-cochain c ∈ Ck(A) = Γ(ΛkA∗) can be
regarded as a k-linear and skew-symmetric map c :

⊕k A→ R. We define its
tangent lift Tc ∈ Ck

lin(TA) by

Tc(v1, ...vk) := dc(v1, ..., vk),

where (v1, ..., vk) ∈
⊕k

TM TA, using the identification T (
⊕k A) ∼=

⊕k
TM TA.

Lemma A.14. Let k be a positive integer. The tangent lift of Lie algebroid
cochains T : Ck(A) −→ Ck(TA) satisfies the following conditions:

(1) (Linear sections)

Tc(Tα1, ..., Tαk)|wx = (Tc)wx (Tα1(wx), ..., Tαk(wx)) =

= [T (c(α1, ..., αk))] (wx),

(2) (One core section) Tc(Tα1, ..., α̂k)|wx = c(α1, ..., αk)|x,
(3) (More than one core sections) Tc(Tα1, ..., α̂k−1, α̂k)|wx = 0.

Proof : Part 1 is direct. For simplicity, we prove the parts 2 and 3 for k = 2,
the general case (k 6= 2) being completely analogous.

Tc(Tα1, α̂2)|wx = (Tc)(wx)(Tα1(wx), α̂2(wx))

= (Tc)(wx)

 ∈ Tα1(x)A︷ ︸︸ ︷
Tα1(wx), T0A(wx) +A (α↑2)0Ax


= (Tc)(wx)

(
Tα1(wx), T0A(wx)

)︸ ︷︷ ︸
=0

+

+ (Tc)(0Ax )

(
0̃Aα1(x), (α

↑
2)0Ax

)
(Linearity of Tc over⊕2

M A)

=
d

dλ

∣∣∣∣
λ=0

c(α1(x), λα2(x))

= c(α1, α2)|(x) (Bilinearity of c (over M)),

where in the third equality the first term vanishes by multilinearity of Tc with
respect to the vector bundle TA −→ TM .
Finally, considering more than one core section:
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Tc(α̂1, α̂2)|wx = Tc(T0A(wx) +A (α↑1)0Ax
, T0A(wx) +A (α↑2)0Ax

)

= Tc(T0A(wx), T0A(wx)) + Tc((α↑1)0Ax
, (α↑2)0Ax

)

= 0 +
d

dλ

∣∣∣∣
λ=0

c(λα1(x), λα2(x))

=
d

dλ

∣∣∣∣
λ=0

λ2 · c(α1(x), α2(x))

= 0,

where in the third equality Tc(T0A(wx), T0A(wx)) = 0 by multilinearity of Tc
with respect to the vector bundle TA −→ TM .
To extend the proof to the case k 6= 2, one again uses the linearity of Tc to

get a sum of a vanishing term with a simpler expression in c and sections of
AG.

Lemma A.15. Let A be a Lie algebroid over M . The tangent lift is a cochain
complex map

T : C•(A) −→ C•lin(TA) ⊂ C•(TA).

Proof : We divide this proof in three cases, by evaluating the cochain δ(Tc) on
tangent and core sections of TA → TM , which together span all sections of
the tangent algebroid (example A.4).
First we remark some useful facts about the anchor ρTA of TA and the image

of core and tangent sections by the anchor. Recall that ρTA = JM ◦dρA. Then,
on core sections

ρTA(α̂) = (ρ(α))↑,

where for X ∈ X(M), X↑ ∈ X(TM) denotes the vertical vector field on TM
induced byX. This follows from the facts that the involution map JM identifies
TM(TM) with the vertical bundle V (TM), and it is the identity on VM(TM).
On tangent sections,

ρTA(Tα) = ρA(α)T ,

where for X ∈ X(M), XT ∈ X(TM) is the tangent lift of X. Recall also
the compatibility between the tangent lifts of vector fields and functions: XT

applied to the tangent lift Tf of f ∈ C∞(M) is the tangent lift of the function
X(f).
Let now c ∈ Ck(A) be an algebroid k-cochain.
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• Tangent sections
The compatibility between the tangent lifts of vector fields and functions
allows to check directly that δ(Tc) = T (δc) when applied to k + 1 tangent
sections Tαi of TA.

• One core section
Recall that, by the second statement of Lemma A.14,

Tc(Tα1, ..., α̂k) = pM
∗(c(α1, ..., αk)),

thus on the one hand T (δc)(Tα1, ..., α̂k+1) = pM
∗(c(α1, ..., αk+1)). On the

other hand,

δ(Tc)(Tα1, ..., α̂k+1) = Σi<j(−1)i+j−1pM
∗(c([αi, αj], α1, ..., αk+1))

+ Σk
i (−1)iρTA(Tαi)(pM

∗c(α1, ..., αi−1, αi+1, ..., αk+1))

+ (−1)k+1ρTA( ˆαk+1)(T (c(α1, ...αk))).

Now, since in the second and third row of this equation we have the tangent
and vertical lifts of vector fields of M , we use the expression for their flows
and that will allow us to prove the equality with T (δc)(Tα1, ..., α̂k+1).

• More than one core section
On the one hand, statement (3) of Lemma A.14 says that

T (δc)(α1, ..., α̂k, α̂k+1) = 0.

On the other hand, the same statement (3) implies that

δ(Tc)(α1, ..., α̂k, α̂k+1) = (−1)kρTA(α̂k)Tc(α1, ..., αk−1, α̂k+1)

+ (−1)k+1ρTA(α̂k+1)Tc(α1, ..., α̂k)

= (−1)k(ρA(αk))
↑pM

∗c(α1, ..., αk−1, αk+1)

+ (−1)k+1(ρA(αk+1))
↑pM

∗c(α1, ..., αk)

= 0.
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