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Abstract: In this paper we study ad-nilpotent elements of a semiprime associative
algebra R with involution ∗ whose indices of ad-nilpotence differ on Skew(R, ∗) and
on R. The existence of such an ad-nilpotent element a implies the existence of
a GPI of R, and determines a big part of its structure. When moving to the
symmetric Martindale algebra of quotients Qs

m(R) of R, a remains ad-nilpotent of
the original indices in Skew(Qs

m(R), ∗) and Qs
m(R). There exists an idempotent

e that orthogonally decomposes a = ea + (1 − e)a and either both ea and (1 −
e)a are ad-nilpotent of the same index (in this case the index of ad-nilpotence
of a in Skew(Qs

m(R), ∗) is congruent with 0 modulo 4), or ea and (1 − e)a have
different indices of ad-nilpotence (in this case the index of ad-nilpotence of a in
Skew(Qs

m(R), ∗) is congruent with 3 modulo 4). Furthermore we show that Qs
m(R)

has a finite Z-grading induced by a ∗-complete family of orthogonal idempotents
and that eQs

m(R)e, which contains ea, is isomorphic to an algebra of matrices over
its extended centroid. All this information is used to produce examples of these
types of ad-nilpotent elements for any possible index of ad-nilpotence n.
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gebra, grading.
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1. Introduction
Let R be an associative algebra, and let a ∈ R. The map ada : R → R

defined by ada(x) := ax − xa is called an inner derivation of R. It is a
derivation of the Lie algebra R(−) with bracket product given by [x, y] :=
xy − yx for every x, y ∈ R. An element a ∈ R is ad-nilpotent if the map
ada is nilpotent. Suppose that R is an associative algebra with involution ∗
and let K and H(R, ∗) respectively denote the sets of skew-symmetric and
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of symmetric elements of R. We say that an element a ∈ K is ad-nilpotent
(of K) of index n if adna K = 0 but adn−1

a K 6= 0. Since the seminal work [15]
by Posner, derivations (or some of their generalizations) forcing a prime or
semiprime ring to be PI have been broadly studied (see e.g. [13] or [6]). In
this paper we focus on the ad-nilpotent elements of a semiprime associative
algebra with involution that produce GPIs.

The study of ad-nilpotent elements of the skew-symmetric elements of a
prime ring with involution began in 1991 with the work of Martindale and
Miers [14]. Later on, their result was extended to prime associative superal-
gebras (see [11]) and to semiprime rings with involution (see [2] and [12]).

Martindale and Miers result in the prime setting separates ad-nilpotent
elements of K between those which are ad-nilpotent of R of the same index
(this may occur when n ≡4 1, 3) and those that are nilpotent elements and
produce a GPI in the central closure of R (this may happen if n ≡4 0, 3).
A similar phenomenon occurs when R is semiprime under the right torsion
constraints (see [2, Proposition 3.4 and Theorem 5.6]): for any ad-nilpotent
element a ∈ R there exists a family of orthogonal central idempotents εi
such that R =

⊕
εiR, a =

∑
εia, each εia is ad-nilpotent of index ni in

Ki = Skew(εiR, ∗), and either

(a) εia is ad-nilpotent in the whole εiR of the same index ni, or

(b) εia is nilpotent of index [n+1
2 ] + 1, the ideal generated by a[n+1

2 ] is
essential in εiR and the elements of εiR satisfy certain GPI involving
a[n+1

2 ].

Elements of type (a) occur when ni ≡4 1, 3 and will be called ad-nilpotent
elements of full-index. Elements of type (b) occur when ni ≡4 0, 3 and will
be called elements of skew-index. Notice that ad-nilpotent elements of skew-
index are also ad-nilpotent elements of εiR, but the indices of ad-nilpotence
in Ki and in εiR differ. The goal of this paper is to describe ad-nilpotent
elements of skew-index in semiprime associative algebras and to show how
they determine a big part of their structure.

The smallest possible index for an element of skew-index is n = 3. Ad-
nilpotent elements of skew-index 3 are called Clifford elements because as-
sociated to them there is a Jordan algebra of Clifford type (see [9] and [5]).
Our paper is a natural generalization of the careful study of Clifford elements
carried out in [4] (alternatively, see [8, Section 8.4]): If R is a prime ring with
involution and a ∈ R is a Clifford element then it satisfies a3 = 0, a2 6= 0
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and a2Ka2 = 0, a2 and a are von Neumann regular elements and there is an
element b ∈ H(R, ∗) such that a2ba2 = a2, ba2b = b and b2 = 0 (which also

has a square root
√
b ∈ K,

√
b

2
= b, such that a

√
ba = a,

√
ba
√
b =

√
b,

which is also a Clifford element). The existence of a Clifford element deter-
mines much of the structure of the prime ring: it forces Skew(C(R), ∗) = 0
for the extended centroid C(R), makes R a GPI ring (so R has socle), and
the related ∗-orthogonal idempotents a2b, ba2 induce a 5-grading on R and
a compatible 3-grading on K with a ∈ K1 (and

√
b ∈ K−1) with R−2, R2

being isomorphic to C(R) as vector spaces and K−1, K1 being Clifford inner
ideals of the Lie algebra K (see [3] for details). We generalize these results
to ad-nilpotent elements of skew-index.

Since they produce GPIs and we are working with semiprime associative
algebras with involution, the best setting to study these elements is the sym-
metric Martindale ring of quotients Qs

m(R). Accordingly, we show that these
elements remain ad-nilpotent of the same index in K := Skew(Qs

m(R), ∗) and
produce a ∗-complete family of orthogonal idempotents in Qs

m(R) which in-
duces a grading on Qs

m(R) compatible with the involution. When restricting
the grading to K we obtain a grading with shorter support. We can consider
this result an extension of Smirnov’s description of simple graded algebras
with involution with Supp(K) 6= Supp(R), see [16, Theorem 5.4], which deep-
ens Zelmanov’s classification of simple Lie algebras with a Z-grading carried
out in [17]. Furthermore we show that, given an ad-nilpotent element of
skew-index, there is an associated set of matrix units making a related subal-
gebra isomorphic to a ring of matrices, which produces a clear-cut extension
of the relevant properties of Clifford elements.

Our last section is devoted to constructing matrix examples of ad-nilpotent
elements both of full-index and of skew-index of all possible ad-nilpotence
indices n. We highlight that this section completes the work of Martindale
and Miers in [14]. In [14, §4.Examples] Martindale and Miers constructed
examples of ad-nilpotent elements of skew-index in complex matrices with
the transpose involution, and they claimed that they were giving examples for
both n ≡4 3 and n ≡4 0, covering the possibilities of [14, Main Theorem(2b)],
but, as it turns out, they actually addressed the case n ≡4 3 twice: for
each n ≡4 0 they constructed a skew-symmetric matrix W which, as they
showed, satisfies adnW (K) = 0; but it is easily checked that it also satisfies
adn−1

W (K) = 0, so that its index of ad-nilpotence is actually n − 1, which is
congruent to 3 modulo 4.
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2. Preliminaries
2.1. In this paper we will deal with semiprime associative algebras R with
involution ∗ over a ring of scalars Φ with 1

2 ∈ Φ (λR 6= 0 for every nonzero
λ ∈ Φ). If we define the bracket product as [x, y] := xy − yx for every
x, y ∈ R, R turns into a Lie algebra denoted by R(−). The set of skew-
symmetric elements {x ∈ R | x∗ = −x}, which will be denoted by K, is a
Lie subalgebra of R(−).

Given a Lie algebra L, we say that a ∈ L is ad-nilpotent of L of index
n if adna L = 0 and adn−1

a L 6= 0, where ada denotes the usual adjoint map
ada x := [a, x] for every x ∈ L. In [2], a deep study of ad-nilpotent elements
in semiprime associative algebras with involution was carried out. Following
the classification of ad-nilpotent elements obtained in [2, Proposition 3.4 and
Theorem 5.6], we introduce the following definitions:

2.2. Let R be a semiprime associative algebra with involution ∗. Let a ∈ K.
We say that a is ad-nilpotent of full-index if a is ad-nilpotent of R and of

K of the same index n. By [2, Theorem 5.6], under the adequate torsion
requirements, this occurs when n ≡4 1 or n ≡4 3.

We say that a is ad-nilpotent of skew-index n if it satisfies all the following
conditions:

• a is ad-nilpotent of K of index n with n ≡4 0 or n ≡4 3,
• a is a nilpotent element of index t+ 1 for t :=

[
n+1

2

]
(in particular t is

even and a is an ad-nilpotent of R of index n+ 1 or n+ 2),
• at generates an essential ideal in R,
• and

- if n ≡4 0, atxat = 0 for every x ∈ K.
- if n ≡4 3, atxat−1 − at−1xat = 0 for every x ∈ K.

Notice that under the adequate torsion requirements, this last condition fol-
lows from [2, Theorem 5.6].

2.3. Given an associative algebra R over Φ, we define a permissible map of
R as a pair (I, f) where I is an essential ideal of R and f is a homomorphism
of right R-modules. For permissible maps (I, f) and (J, g) of R, define an
equivalence relation ≡ by (I, f) ≡ (J, g) if there exists an essential ideal M
of R, contained in I ∩ J , such that f(x) = g(x) for all x ∈M . The quotient
set Qr

m(R) will be called the right Martindale algebra of quotients of R.
Suppose from now on that R is semiprime. Then we can define an addition
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and a multiplication in Qr
m(R) coming respectively from the addition and

the composition of homomorphisms (see [1, Chapter 2]):

• [I, f ] + [J, g] := [I ∩ J, f + g],
• [I, f ] · [J, g] := [(I ∩ J)2, f ◦ g].

The map i : R ↪→ Qr
m(R) defined by i(r) := [R,Lr], where Lr : R→ R is the

left multiplication map Lr(x) := rx, is a monomorphism of associative alge-
bras (called the usual embedding of R into Qr

m(R)), i.e., R can be considered
as a subalgebra of its right Martindale algebra of quotients. Moreover, given
any 0 6= q := [I, f ] ∈ Qr

m(R) we have that 0 6= qI ⊆ R. Therefore every
subalgebra S of Qr

m(R) which contains R is semiprime because every nonzero
ideal of S has nonzero intersection with R. We also recall the following useful
property: for every q ∈ Qr

m(R) and every essential ideal J of R, qJ = 0 or
Jq = 0 imply q = 0.

The symmetric Martindale ring of quotients of R is defined as

Qs
m(R) := {q ∈ Qr

m(R)| ∃ an essential ideal I of R such that qI + Iq ⊆ R}.

Since R ⊆ Qs
m(R) ⊆ Qr

m(R), Qs
m(R) is again semiprime. When R has an

involution, the involution is uniquely extended to Qs
m(R) ([1, Proposition

2.5.4]).

2.4. The extended centroid C(R) of a semiprime algebra R is defined as the
center of Qs

m(R). It is commutative and unital von Neumann regular. The
ring of scalars Φ is contained in C(R) under the usual embedding of R into
Qs
m(R).

The central closure of R, denoted by R̂, is defined as the subalgebra of
Qs
m(R) generated by R and C(R), i.e., R̂ := C(R) +C(R)R; so the elements

of R can be identified with elements in its central closure. The algebra R̂ is
semiprime since R ⊆ R̂ ⊆ Qr

m(R), and it is centrally closed, meaning that R̂
coincides with its central closure.

Since the extended centroid C(R) of a semiprime R is von Neumann reg-
ular, given an element λ ∈ C(R) there exists λ′ ∈ C(R) such that λλ′λ = λ
and λ′ = λ′λλ′. Let us define ελ := λλ′. Then ελ is an idempotent of
C(R) such that ελλ = λ. Moreover, if R is semiprime with involution ∗ and
λ ∈ Skew(C(R), ∗), then −λ = λ∗ = (λλ′λ)∗ = λλ′∗λ, which implies that
λ′ can be taken in Skew(C(R), ∗) (replace λ′ by 1

2(λ′ − λ′∗)). In this case
ελ = λλ′ ∈ H(C(R), ∗) is a symmetric idempotent of C(R).
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The following result relates the extended centroid and the center of the
local algebra at an idempotent element, and can be easily deduced from [1,
Corollary 2.3.12].

Lemma 2.5. Let R be a semiprime centrally closed associative algebra and
let e be an idempotent of R such that the ideal generated by e in R is essential.
Then C(R) ∼= Z(eRe).

Proof : The homomorphism ϕ : C(R)→ Z(eRe) defined by ϕ(λ) = λe = eλe
is an isomorphism: by [1, Corollary 2.3.12], ϕ is surjective; moreover, if
ϕ(λ) = 0, then the ideals λR and ReR are orthogonal, which implies that
λ = 0 because ReR is an essential ideal.

The following technical lemma, which collects two results about ∗-identities,
was proved in [2, Lemma 5.1].

Lemma 2.6. Let R be a semiprime associative algebra with involution ∗ over
a ring of scalars Φ with 1

2 ∈ Φ. Let k ∈ K and h ∈ H(R, ∗). Then:

(1) hKh = 0 implies hRh ⊆ H(C(R), ∗)h. Moreover, R satisfies hxhyh =
hyhxh for every x, y ∈ R, and if IdR(h) is essential this identity is a
strict GPI in R and Skew(C(R), ∗) = 0.

(2) hKh = 0 and hKk = 0 imply hRk = 0.
(3) kKk = 0 implies k = 0.

In particular, if there is an element a ∈ R which is ad-nilpotent of skew-index
n, then since t =

[
n+1

2

]
is even we have atKat = 0 with at ∈ H(R, ∗) and

IdR(at) essential, so item (1) applies and shows that Skew(C(R), ∗) = 0 and
that R satisfies a strict GPI (in particular Qr

m(R) is von Neumann regular;
see [1, Section 6.3] for more structural consequences).

3.Main
3.1. Let R be an associative algebra over a ring of scalars Φ with 1

2 ∈ Φ. Let
a ∈ K be a nilpotent element of index t + 1 such that at ∈ H(R, ∗) is von
Neumann regular – as occurs when a is an ad-nilpotent element of skew-index,
see Theorem 3.5 below. In this situation we can associate a ∗-Rus inverse to
a, i.e., an element b ∈ H(R, ∗) satisfying atbat = at, batb = b and basb = 0
for every s < t, see [10, Lemma 2.4] and [7, Lemma 3.2] (which works also
when a ∈ K). Define eij := ai−1bat+1−j, ei := eii for every i, j = 1, . . . , t+ 1,

and e :=
∑t+1

i=1 ei. The element e is a symmetric idempotent which we call a

∗-Rus idempotent associated to a. It satisfies ea = ae =
∑t+1

i=2 ei,i−1, ea
t = at
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and eb = b = be. The set {eij}t+1
i,j=1 is a set of matrix units for eRe. Notice

that e t+2
2
∈ H(R, ∗) and let S := e t+2

2
Re t+2

2
. Then the subalgebra eRe and

Mt+1(S) are ∗-isomorphic under the isomorphism

Ψ :Mt+1(S)→ eRe defined by Ψ((xij)
t+1
i,j=1) :=

t+1∑
i,j=1

ei, t+2
2
xije t+2

2 ,j

where each xij = e t+2
2
xije t+2

2
∈ e t+2

2
Re t+2

2
, and the involution in Mt+1(S) is

given by

A∗ := D−1ĀtrD

for every A =
∑

ij aijeij ∈Mt+1(S), where Ātr :=
∑

ij a
∗
ijeji and

D :=
t+1∑
i=1

(−1)iei,t+2−i = D−1 ∈Mt+1(S).

When considering the following ∗-complete family of orthogonal idempotents

{fi := ei+1, i = 0, . . . , t, i 6= t

2
} ∪ {f t

2
:= 1− e+ e t+2

2
},

which satisfy f ∗i = ft−i for every i, we obtain a grading in R which is com-
patible with the involution:

R = R−t ⊕ · · · ⊕R0 ⊕ · · · ⊕Rt

where Rj :=
∑

k−l=j fkRfl (notice that R∗j = Rj for each j). With respect to
this grading we have

ea ∈ R1, (1− e)a ∈ R0, a
t ∈ Rt and b ∈ R−t.

This grading is called the grading of R induced by a and its ∗-Rus inverse b.
In the above argument, the element a can be replaced by ea without chang-

ing the grading in R: the element b = eb is also a ∗-Rus inverse for ea and
gives rise to the same set of matrix units

eij = ai−1bat+1−j = ai−1ebeat+1−j = (ea)i−1b(ea)t+1−j,

so the grading in R induced by ea and its ∗-Rus inverse b coincides with the
grading of R induced by a and b.

When a is an ad-nilpotent element of K of skew-index, the GPIs satisfied
in R allow a more precise description of this grading, as we will show in the
following theorem.
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Theorem 3.2. Let R be a semiprime associative algebra with involution ∗
over a ring of scalars Φ with 1

2 ∈ Φ, let K := Skew(R, ∗) and let a ∈ K be

an ad-nilpotent element of skew-index n. Let t := [n+1
2 ] and suppose that at

is von Neumann regular. Let us consider the grading in R

R = R−t ⊕ · · · ⊕R0 ⊕ · · · ⊕Rt (?)

induced by a and its ∗-Rus inverse b. Let e be a ∗-Rus idempotent associated
to a. Then:

(1) The grading (?) restricted to K has K−t = 0 = Kt.
(2) S is a semiprime commutative algebra with identity involution. In

particular, the involution in eRe ∼=Mt+1(S) under this isomorphism
is given by

A∗ = D−1AtrD for any A ∈Mt+1(S).

(3) As Φ-modules, both Rt and R−t are isomorphic to S.
(4) If t > 2, both K−(t−1) and Kt−1 are isomorphic to S.

Moreover, if R is centrally closed, S ∼= C(R).

Proof : Since the grading (?) is compatible with the involution, we can restrict
it to K,

K = K−t ⊕K−t+1 ⊕ · · · ⊕K0 ⊕ · · · ⊕Kt−1 ⊕Kt.

(1) Let us show that K−t = 0 = Kt: if x ∈ K−t = R−t ∩K then x = f0kft =
e1ket+1 for some k ∈ K, so x = batkatb ∈ batKatb = 0. Similarly, if x ∈ Kt =
Rt∩K then x = ftkf0 = et+1ke1 for some q ∈ K, so x = atbkbat ∈ atKat = 0.
(2) We claim that S = e t+2

2
Re t+2

2
does not contain skew-symmetric elements:

let k := t+2
2 ; if x = −x∗ ∈ ekRek then x = ekxek = ek,t+1(et+1,kxek,1)e1,k, but

et+1,kxek,1 = et+1et+1,kxek,1e1 is a skew-symmetric element of Rt, so it is zero
by (1). Therefore x = 0, the involution in S is the identity and hence S is
commutative.
(3) Rt = ftRf0 = et+1Re1

∼= S as a Φ-module, and analogously for R−t.
(4) Since t > 2, R−(t−1) =

∑
k−l=−(t−1) fkRfl = e1Ret + e2Ret+1 ⊆ eRe ∼=

Mt+1(S), and under this isomorphism the elements of R−(t−1) are of the form

x = λe1,t + µe2,t+1, λ, µ ∈ S,

whence x = λ+µ
2 u+ λ−µ

2 v for u := e1,t+e2,t+1 ∈ H(R, ∗) and v := e1,t−e2,t+1 ∈
K. Therefore K−(t−1) ⊆ Sv. A similar argument applies to Kt−1.
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Moreover, if R is centrally closed, by Lemma 2.5, since the ideal of R
generated by e t+2

2
is essential because it contains at = a

t
2e t+2

2
a
t
2 , we get S =

e t+2
2
Re t+2

2
= Z(e t+2

2
Re t+2

2
) ∼= C(R) as associative algebras.

The last theorem allows to describe ea ∈ eRe ∼= Mt+1(S) in detail. Now
we show how is a related to ea.

Theorem 3.3. Let R be a semiprime associative algebra with involution ∗
over a ring of scalars Φ with 1

2 ∈ Φ , let K := Skew(R, ∗) and let a ∈ K

be an ad-nilpotent element of skew-index n. Set t := [n+1
2 ] and suppose that

R is free of
(

2t−2
t−1

)
-torsion and at is von Neumann regular. Then for any

∗-Rus-idempotent e ∈ R associated to a, a = ea+ (1− e)a, and

(1) if n ≡4 0:
• ea is nilpotent of index t+ 1 and ad-nilpotent of skew-index n− 1

in K.
• (1−e)a is nilpotent of index t and ad-nilpotent of full-index n−1

in K.
(2) if n ≡4 3:

• ea is nilpotent of index t+ 1 and ad-nilpotent of skew-index n in
K.
• (1 − e)a is nilpotent of index ≤ t − 1 and ad-nilpotent in K of

index ≤ n− 2.
• eat−1 = at−1.

Proof : Let b ∈ H(R, ∗) be a ∗-Rus-inverse of a and let e be the associated
∗-Rus idempotent.
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Suppose that n ≡4 0. Let us see that ea is ad-nilpotent of index n − 1 in
K: for every k ∈ K,

adn−1
ea k = ad2t−1

ea k =

(
n− 1

t− 1

)
(eat−1keat − eatkeat−1) =

=

(
n− 1

t− 1

)
(eat−1kat − atkeat−1) =

=

(
n− 1

t− 1

)
((atbat−1 + at−1bat)kat − atk(atbat−1 + at−1bat)) =

=

(
n− 1

t− 1

)
(at(bat−1k)at − at(kat−1b)at) =

=

(
n− 1

t− 1

)
at((bat−1k)− (bat−1k)∗)at = 0

because (bat−1k)∗ = kat−1b and atKat = 0. Thus ea is nilpotent of index t+1
(since (ea)t = at 6= 0) and ad-nilpotent of index ≤ n− 1. Let us see that its
index of ad-nilpotence is n− 1. Suppose on the contrary that adn−2

ea K = 0.
Then for every k ∈ K,

0 = a · adn−2
ea k =

(
2t− 2

t

)
eat−1kat −

(
2t− 2

t− 1

)
atkeat−1.

Since eat−1 = atbat−1 + at−1bat and atkat = 0 we obtain(
2t− 2

t

)
atbat−1kat −

(
2t− 2

t− 1

)
atkat−1bat = 0,

and since atx∗at = atxat for all x ∈ R and (bat−1k)∗ = kat−1b we get((
2t− 2

t− 1

)
−
(

2t− 2

t

))
atkat−1bat = 0.

Now, again from atkat = 0 and eat−1 = atbat−1 + at−1bat, we find((
2t− 2

t− 1

)
−
(

2t− 2

t

))
(atkat−1bat + atkatbat−1) =

=

((
2t− 2

t− 1

)
−
(

2t− 2

t

))
atkeat−1 = 0.

Since
(

2t−2
t−1

)
−
(

2t−2
t

)
divides

(
2t−2
t−1

)
andR is

(
2t−2
t−1

)
-torsion free we have atKeat−1 =

0, so by Lemma 2.6(2) we get atReat−1 = 0 with at generating an essential
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ideal of R, and thus eat−1 = 0, a contradiction. Thus ea is ad-nilpotent of
index n− 1 in K.

Since eat = at, (1−e)a is nilpotent of index less than or equal to t. Let us see
that its index of nilpotence is t. Suppose on the contrary that eat−1 = at−1.
Then, for every k ∈ K,

adn−1
a k = ad2t−1

a k =

(
2t− 1

t− 1

)
(−1)t(at−1kat − atkat−1) =

=

(
2t− 1

t− 1

)
(−1)t(eat−1kat − atkeat−1) = ad2t−1

ea k = adn−1
ea k = 0

would mean that a has index of ad-nilpotence ≤ n− 1 in K, a contradiction.
Hence (1− e)at−1 6= 0.

Let us see that (1− e)a is ad-nilpotent of index n− 1: since (1− e)at = 0
we get that adn−1

(1−e)aK = ad2t−1
(1−e)aK = 0. In addition, adn−2

(1−e)aK =
(

2t−2
t−1

)
(1−

e)at−1K(1− e)at−1 6= 0 by Lemma 2.6(3). Thus (1− e)a is nilpotent of index
t and ad-nilpotent of index 2t− 1 = n− 1.

Suppose that n ≡4 3. Let us see that in this case eat−1 = at−1: for every
k ∈ K, using that atkat = 0, at−1kat = atkat−1 and atbat = at,

(eat−1 − at−1)kat = (at−1bat + atbat−1 − at−1)kat = atbat−1kat − at−1kat =

= atbatkat−1 − at−1kat = atkat−1 − at−1kat = 0.

Hence (eat−1−at−1)Kat = 0. Since eat−1−at−1 ∈ K, at ∈ H(R, ∗), atKat = 0
and the ideal generated by at is essential in R, we have by Lemma 2.6(2) that
eat−1−at−1 = 0. In particular we get that (1−e)a is nilpotent of index ≤ t−1.
Moreover, since in this case n− 2 = 2t− 2, ad2t−3

(1−e)aK = 0, implying that the

index of ad-nilpotence of (1− e)a in K must be ≤ n− 2.
Let us see that ea is ad-nilpotent of index n: since n = 2t− 1, adneaK = 0

follows as above. In addition, adn−1
ea K =

(
2t−2
t−1

)
eat−1Keat−1 6= 0 by Lemma

2.6(3). So ea is nilpotent of index t+ 1 and ad-nilpotent of index ≤ n.

Remarks 3.4. Let e be a ∗-Rus idempotent associated to the ad-nilpotent
element a of skew-index n with at von Neumann regular (t = [n+1

2 ]), and
consider the grading of K associated to them by Theorem 3.2.

(1) When a is a Clifford element (i.e., n = 3) we have a = ea = a2ba+aba2

by Theorem 3.3(2) (since t− 1 = 1), and a ∈ K1 in the grading.
(2) When n ≡4 3 and R is free of

(
2t−2
t−1

)
-torsion we obtain that at−1 is also

von Neumann regular: by Theorem 3.3(2) we have at−1 = eat−1, so
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at−1 = et,1 + et+1,2 ∈ eRe ∼= Mt+1(S) by Theorem 3.2(2) and we get
at−1 = at−1cat−1, c = cat−1c for c := e1,t + e2,t+1 ∈ K. If t > 2 then
c2 = 0, while when a is Clifford we have n = 3, t = 2 and c = e1,2 +e2,3

satisfies c2 = e1,3 = e1,t+1 = b, so c is a square root of b. In addition c
is also a Clifford element and c ∈ K−1 in the grading.

(3) Suppose R centrally closed. While when t > 2 we have K−(t−1), Kt−1

isomorphic to C(R) as Φ-modules by Theorem 3.2(4), when t = 2 they
may be larger: since t = 2 we have n ∈ {3, 4}; in either case, a′ := ea
is a Clifford element generating the same grading by Theorem 3.3. We
can show that a′Ka′ = C(R)a′ by using a′ = a2ba + aba2, a2Ka2 = 0
and a2xa2 = λxa

2 with λx ∈ C(R) for x ∈ R to show a′Ka′ ⊆ C(R)a′,
and a′ca′ = a′ with c ∈ K to show the equality. Then as a Φ-module
K1 = C(R)a′ ⊕ X with X := {a2k + ka2 | k ∈ K, a′ka′ = 0} and
analogously for K−1 with c in place of a′ (see [4, Proposition 4.4 and
related results] for the details, which can be easily adapted to our
context). The Φ-module X can be 0, for example in the ring of 3× 3
matrices over a field (see [4, Remark 4.6(2)]).

The extra hypothesis of at being von Neumann regular required in The-
orems 3.2 and 3.3 is not too restrictive. When R is a ∗-prime associative
algebra, atKat = 0 implies von Neumann regularity by Lemma 2.6(1). In
general, if R is semiprime we can move to the symmetric Martindale al-
gebra of quotients Qs

m(R) because, as we will show in the following the-
orem, any ad-nilpotent element a of skew-index n is still ad-nilpotent in
K = Skew(Qs

m(R), ∗) of skew-index n with at von Neumann regular inQs
m(R).

Although the liftings of GPIs and ∗-GPIs respectively to the maximal right
ring of quotients and the Martindale symmetric ring of quotients are well
known (see for example [1, Theorems 6.4.1 and 6.4.7]), we will include all the
calculations for the sake of completeness.

Theorem 3.5. Let R be a semiprime associative algebra with involution ∗
over a ring of scalars Φ with 1

2 ∈ Φ. Let a ∈ K be an ad-nilpotent element of

skew-index n. Let t := [n+1
2 ], let Qs

m(R) be the symmetric Martindale ring of
quotients of R and denote K := Skew(Qs

m(R), ∗). Then a is an ad-nilpotent
element of skew-index n of K, and at is von Neumann regular in Qs

m(R).

Proof : Let us see that atKat = 0: let q ∈ K and let I be an essential ideal
of R such that Iq + qI ⊆ R. By Lemma 2.6(1) we know that for any y ∈ I
there exists λy ∈ H(C(R), ∗) with atyat = λya

t. From atKat = 0 we have
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atxat = atx∗at for every x ∈ R. Thus

atyatqat = at(yatq)∗at = −atqaty∗at =

= −atqatyat = −λyatqat = −atyatqat

so 2atyatqat = 0 for every y in the essential ideal I of R, so atqat = 0.
Suppose now that n ≡4 3. In this case we will show that not only atKat = 0

but also atqat−1 = at−1qat for every q ∈ K. Let q ∈ K and let I be an essential
ideal of R such that Iq + qI ⊆ R. From atkat−1 = at−1kat for every k ∈ K
and atKat = 0 we get atqat = atq∗at for every q ∈ Qs

m(R), whence

atyatqat−1 = at(yatq − (yatq)∗)at−1 + at(yatq)∗at−1 =

= at−1(yatq − (yatq)∗)at − atqaty∗at−1 =

= at−1(yatq − (yatq)∗)at = −at−1(yatq)∗at =

= at−1qaty∗at = at−1qatyat.

As we know, for any y ∈ I there is λy ∈ H(C(R), ∗) such that atyat = λya
t.

Therefore, for every x ∈ R, if we multiply atyatqat−1− at−1qatyat = 0 by atx
on the left we obtain

0 = atxatyatqat−1 − atxat−1qatyat = λya
txatqat−1 − λyatxat−1qat =

= atyatxatqat−1 − atyatxat−1qat = atyatx(atqat−1 − at−1qat),

so atqat−1 − at−1qat = 0 because atIat generates an essential ideal of R.
• If n ≡4 0, for any q ∈ K,

adna(q) =
n∑
i=0

(−1)n−i
(
n

i

)
aiqan−i = (−1)t

(
n

t

)
atqat = 0.

• If n ≡4 3, for any q ∈ K,

adna(q) = (−1)t−1

(
n

t− 1

)
atqat−1 + (−1)t

(
n

t

)
at−1qat =

= (−1)t−1

(
n

t− 1

)
(atqat−1 − at−1qat) = 0.

Moreover, since at generates an essential ideal of R, it also generates an
essential ideal of Qs

m(R).
Let us see that at is von Neumann regular in Qs

m(R). Since Qs
m(R) =

Qs
m(R̂) we will suppose in the rest of this proof that R is centrally closed.

As we know, for every x ∈ R there exists λx ∈ H(C(R), ∗) such that
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atxat = λxa
t. Since C(R) is von Neumann regular there exists λ′x ∈ C(R)

such that λxλ
′
xλx = λx and εx := λxλ

′
x is an idempotent of C(R), i.e., for

every x ∈ R we have atλ′xxa
t = εxa

t. Let us consider the family {εx}x∈R of
these idempotents and take a maximal subfamily {εxγ}γ∈∆ of nonzero orthog-
onal idempotents. Note that for every γ ∈ ∆ there exists cxγ := λ′xγxγ ∈ R
such that atcxγa

t = εxγa
t.

Let us prove that I :=
∑

γ∈∆ εxγR is an essential ideal of R: by [2, Proposi-
tion 2.10] there exists an idempotent ε ∈ C(R) such that ε εxγ = εxγ for every
γ ∈ ∆ and AnnR(I) = (1 − ε)R. We claim that ε = 1; otherwise, if ε 6= 1,
we can produce a new orthogonal idempotent that does not belong to ∆,
which contradicts the maximality of ∆: since R is semiprime and the ideal
generated by at is essential, atRatR(1− ε) 6= 0 and for every x ∈ R such that
0 6= atxatR(1− ε) we have 0 6= (1− ε)atxat = (1− ε)εxλxat, i.e., (1− ε)εx is
a new orthogonal idempotent, a contradiction. Therefore ε = 1 and I is an
essential ideal of R.
Define c : I → R by c(

∑
γ εxγyγ) :=

∑
γ cxγyγ. It is clear that c is a homo-

morphism of right R-modules; moreover, for every δ ∈ ∆,

Lεxδc(
∑
γ

εxγyγ) = εxδcxδyδ = Lcxδ (
∑
γ

εxγyγ) ∈ R,

where Lεxδ : R → R and Lcxδ : R → R are the corresponding left multi-
plication maps, so [R,Lεxδ ] · [I, c] = [R,Lcxδ ], and by the usual embedding
of R into Qs

m(R) we obtain Iq ⊆ R for q := [I, c]. Furthermore, since each
εxδ lies in C(R), with the same argument we can prove that qI ⊆ R. Thus
q ∈ Qs

m(R).
Finally, for every γ ∈ ∆ we have εxγ(a

tqat − at) = atcxγa
t − εxγat = 0 which

implies that atqat − at ∈ AnnR(I) = 0, i.e., atqat = at.

4. Examples
In this section we construct examples of ad-nilpotent elements of full-index

and of skew-index for any possible index of ad-nilpotence.

4.1. Let m be a natural number, let F a field of characteristic zero (or
big enough) with involution denoted by α for any α ∈ F , and denote the
simple associative algebra Mm(F ) by R and its standard matrix units by
eij, 1 ≤ i, j ≤ m. We endow R with the involution ∗ : R→ R given by

X∗ := D−1X
tr
D
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where D :=
∑m

i=1(−1)iei,m+1−i ∈ R and X
tr

:= (xji)
m
i,j=1 for X = (xij)

m
i,j=1 ∈

R. As before, we denote the set of skew-symmetric elements of R with respect
to the involution ∗ by K. When m is odd (the only case we actually need)
we have D−1 = D and

e∗ij = (−1)i+jem−j+1,m−i+1,

and thus A = (aij)
m
i,j=1 ∈ K if and only if

aij = (−1)i+j+1am−j+1,m−i+1

for all 1 ≤ i, j ≤ m; in particular ai,m−i+1 = −ai,m−i+1, so ai,m−i+1 ∈
Skew(F,−) for all 1 ≤ i ≤ m.

4.2. Ad-nilpotent elements of full-index: Let R :=Mm(F ) with the involu-
tion ∗ given in 4.1, and let m be odd. As in 4.1, consider

A1 :=
m−1∑
i=1

ei,i+1 ∈ K,

which is a nilpotent element of index m and ad-nilpotent of R of index 2m−1
(see [2, Lemma 4.2]). If the involution − in the field F is not the identity,
for any 0 6= α ∈ Skew(F,−), the element 0 6= αem,1 is skew-symmetric in R,
and

ad2m−2
A1

(αem,1) =

(
2m− 2

m− 1

)
Am−1

1 αem,1A
m−1
1 =

(
2m− 2

m− 1

)
αe1,m 6= 0.

Thus A1 is an ad-nilpotent element of K (and of R) whose index of ad-
nilpotence is n = 2m− 1 ≡4 1.

In the same associative algebra R, take any 1 < t ≤ m−1
2 and consider the

matrix

A2 :=
t−1∑
i=1

(ei,i+1 + em−i,m−i+1) ∈ K,

which is nilpotent of index t. The element A2 is ad-nilpotent of R of index
2t − 1 (see [2, Lemma 4.2]). Moreover, 0 6= B := et,1 + (−1)tem,m−t+1 ∈ K
and ad2t−2

A2
B 6= 0. Therefore A2 is ad-nilpotent of K (and of R) of index

n = 2t− 1. If t is even then n ≡4 3, while if t is odd then n ≡4 1.
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4.3. Ad-nilpotent elements of skew-index: Inspired by Theorem 3.2 we will
construct the examples of ad-nilpotent elements of skew-index in matrix al-
gebras over fields with identity involution.

• n ≡4 3: Let m > 1 be some odd number. Let us consider R = Mm(F )
where F is a field with identity involution and R is an algebra with the
involution ∗ given in 4.1. Take any k such that 2k ≤ m. Let us consider the
element

A1 :=
m−k∑
i=k

ei,i+1 ∈ K

which is nilpotent of index l = m−2k+2 and ad-nilpotent of R of index 2l−1
(see [2, Lemma 4.2]). Nevertheless, its index of ad-nilpotence in K is lower:
Indeed, any B =

∑m
i,j=1 bijeij ∈ K has bk+l−1,k = 0 and bk+l−2,k = bk+l−1,k+1

by 4.1 since Skew(F,−) = 0, so

ad2l−3
A1

B =

(
2l − 3

l − 2

)
(Al−2

1 BAl−1
1 − Al−1

1 BAl−2
1 ) =

=

(
2l − 3

l − 2

)
(ek,k+l−2 + ek+1,k+l−1)Bek,k+l−1−

−
(

2l − 3

l − 2

)
ek,k+l−1B(ek,k+l−2 + ek+1,k+l−1) =

=

(
2l − 3

l − 2

)
(bk+l−2,k − bk+l−1,k+1)ek,k+l−1 = 0.

Furthermore, for C := ek+l−2,k − e∗k+l−2,k = ek+l−2,k + ek+l−1,k+1 ∈ K we have

ad2l−4
A1

C 6= 0, so the index of ad-nilpotence of A1 in K is 2l − 3 ≡4 3. For
any odd l we have built an ad-nilpotent matrix A1 of index n := 2l− 3 ≡4 3.

• n ≡4 0: Take any n ≡4 0. Then n = 2t for some even number t. Let
m := 3t + 3. In the associative algebra R = Mm(F ) where F is a field
with identity involution and R has the involution ∗ given in 4.1, let us define
A := A1 + A2 where

A1 :=
2t+1∑
i=t+2

ei,i+1 and A2 :=
t−1∑
i=1

(ei,i+1 + em−i,m−i+1).

By construction, A1 ∈ K is nilpotent of index t+ 1 and ad-nilpotent of R of
index 2t + 1. Moreover, by taking k = t + 2 this matrix corresponds to the
matrix A1 defined in case n ≡4 3, so it is ad-nilpotent of K of index 2t− 1.
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Similarly, A2 ∈ K is nilpotent of index t, and it is ad-nilpotent of K (and of
R) of index 2t− 1.

The matrix A, which is an orthogonal sum of A1 and A2, is nilpotent of
index t+ 1 and ad-nilpotent of R of index 2t+ 1. Let us see that ad2t

A K = 0:
for any B =

∑
ij bijeij ∈ K we have

ad2t
A B =

(
2t

t

)
AtBAt =

(
2t

t

)
et+2,2t+2Bet+2,2t+2 =

=

(
2t

t

)
b2t+2,t+2et+2,2t+2 = 0

because b2t+2,t+2 ∈ Skew(F,−) = 0. Furthermore, for C := et,t+2 − e∗t,t+2 =

et,t+2 − e2t+2,2t+4 ∈ K we have ad2t−1
A C 6= 0, so A is ad-nilpotent of K of

index n = 2t ≡4 0.
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