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Abstract: Asymptotic expansions for the mean integrated squared errors of two
classes of kernel density estimators for circular data are presented in this paper.
Based on them, explicit expressions for the corresponding asymptotic optimal band-
widths are given, and a Fourier series-based plug-in approach for bandwidth selec-
tion is presented. The proposed bandwidth selectors have a n−1/2 relative conver-
gence rate whenever the underlying density is smooth enough and the simulation
results testify that they present a very good finite sample performance against other
bandwidth selection methods in the literature.
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1. Introduction

Kernel methods for estimating densities of q-dimensional unit spheres, for
q ≥ 2, have been studied in the seminal papers of Hall et al. (1987) and Bai
et al. (1988) where several asymptotic properties of the considered estima-
tors are stated. More recent developments on this topic include the works of
Klemela (2000) and Garćıa-Portugués et al. (2013). Regarding the simplest
univariate case of estimating densities in the unit circle (q=1), some more
recent works that address the important topic of the automatic selection
of the kernel estimator smoothing parameter, usually called the bandwidth,
comprise the papers of Taylor (2008), Di Marzio et al. (2009) and Oliveira
et al. (2012). As for the well studied case of density estimation for linear
data (see Wand and Jones, 1995, Chap. 3), the reference distribution scale
rules or other more sophisticated plug-in methods for selecting the bandwidth
are based on the theoretical expression for the bandwidth that minimises the
main terms of the asymptotic expansion for the mean integrated squared error
of the estimator. Unfortunately, as shown in the present work, the asymp-
totic expansions for the estimator mean integrated squared error considered
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in the previous papers are not correct leading to improper implementations
of the proposed data-dependent bandwidth selectors. In this paper we pro-
pose to fill this gap in the nonparametric density estimation literature for
circular data. Other than permitting the correction of the above mentioned
plug-in selectors, the new theoretical expression for the asymptotic optimal
bandwidth presented in this work lead us to propose a Fourier series-based
plug-in approach for bandwidth selection in kernel estimation for circular
data. These are the two main goals of this paper.
The mean integrated squared error asymptotic expansions derived in this

work are established for a general class of δ-sequence density estimators.
Given an independent and identically distributed sample of anglesX1, . . . , Xn

∈ [0, 2π[, from some absolutely continuous circular random variable X with
unknown probability density function f , a δ-sequence estimator of f takes
the form

f̂n(θ) =
1

n

n
∑

i=1

δn(θ −Xi), (1)

where θ ∈ [0, 2π[ and δn : R → [0,∞[, for n ∈ N, is a sequence of periodic
functions with period 2π, called δ-function sequence, which satisfies a set
of conditions described in Section 2.1. The reader is referred to Watson
and Leadbetter (1964) for the concept of δ-function sequence in the context
of linear data. This general class of estimators includes the class of kernel
estimators considered in Hall et al. (1987) and Bai et al. (1988), defined, for
θ ∈ [0, 2π[, by

f̂HB(θ; h) =
ch(L)

n

n
∑

i=1

L

(

1− cos(θ −Xi)

h2

)

, (2)

where L : [0,∞[→ R is a bounded function satisfying some additional condi-
tions, h = hn is a sequence of positive numbers such that hn → 0, as n→ ∞,
and ch(L), depending on the kernel L and the bandwidth h, is chosen so that

f̂HB(·; h) integrates to unity. If L(t) = e−t then (2) is the density estima-
tor considered in Taylor (2008), Di Marzio et al. (2009) and Oliveira et al.
(2012). In this case the estimator is a combination of circular normal or von
Mises distributions with mean directions Xi and concentration parameters
equal to ν = h−2 as it takes the form
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f̂HB(θ; h) =
1

n

n
∑

i=1

1

(2π)I0(ν)
exp

(

ν cos(θ −Xi)
)

, (3)

where Ir(ν) is, for ν ≥ 0 and r ≥ 0, the modified Bessel function of order r
defined by

Ir(ν) =
1

2π

∫ 2π

0

cos(rθ) exp(ν cos θ)dθ. (4)

The considered class of δ-sequence estimators also comprises an estimator
suggested in Silverman (1986, pp. 31–32), that is closer in spirit to the Parzen-
Rosenblatt estimator for linear data (Rosenblatt, 1956, Parzen, 1962). For
θ ∈ [0, 2π[, it is defined by

f̂PR(θ; g) =
dg(K)

n

n
∑

i=1

Kg(θ −Xi), (5)

where Kg is a real-valued periodic function on R, with period 2π, such that
Kg(θ) = K(θ/g), for θ ∈ [−π, π[, with K : R → R a bounded and symmetric
function, g = gn > 0 is the bandwidth, and dg(K) is a normalising constant
depending on the kernel K and the bandwidth g which is chosen so that
f̂PR(·; g) integrates to unity. Of course, for K(u) = L(u2) and g =

√
2 h

the estimators f̂HB and f̂PR are closely related and it is expected that there
will be no significant differences between them. The results presented in this
paper will support this statement. If L(t) = e−t we get K(u) = e−u2

, in

which case f̂PR is close to a kernel density estimator for linear data based on
the normal or Gaussian kernel.
The rest of this paper is organised as follows. In Section 2 we establish

sufficient conditions on the δ-function sequence which ensure the consistency
of f̂n as estimator of f and we present asymptotic expansions for its bias and
variance. The particular cases of estimators (2), (3) and (5) are discussed in
detail. In Section 3 we present asymptotic expansions for the mean integrated
squared errors of estimators (2) and (5). As in kernel estimation for linear
data, these asymptotic expansions enable us to derive explicit expressions for
the asymptotic optimal bandwidths, to compare estimators (2) and (5), and
also to identify the optimal kernels for each of these classes of estimators.
Additionally, the efficiencies of other kernels with respect to the optimal
ones can be also quantified. As in optimal kernel theory for linear data,
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we conclude that one loses very little when suboptimal kernels are used.
In Section 4 we follow the strategy of Tenreiro (2011) in order to propose
Fourier series-based direct plug-in bandwidth selectors for estimators (2) and
(5) (see also Tenreiro, 2020). They achieve the relative convergence rate n−1/2

whenever the underlying density is smooth enough. In Section 5 the finite-
sample behaviour of the proposed bandwidth selection method is illustrated
by means of a Monte Carlo study, and in Section 6 it is used in two real data
sets. Finally, in Section 7 we draw some overall conclusions, while in Section
8 we gather some of the proofs.
The simulations and plots in this paper were performed using programs

written in the R language (R Development Core Team, 2019) and the R
package ’circular’ (Lund and Agostinelli, 2017).

2. Bias and variance

As X is a circular random variable that takes values on [0, 2π[, the proba-
bility density function f of X is a nonnegative valued function defined on the
interval [0, 2π[ such that

∫ 2π

0 f(θ)dθ = 1. For the sake of simplicity we will
also denote by f the periodic extension of f to R given by f(θ) = f(θ−2kπ),
whenever θ ∈ [2kπ, 2(k + 1)π[, for some k ∈ Z.

2.1. Asymptotic behaviour. Throughout this section we assume that the
δ-function sequence (δn), where the functions δn : R → [0,∞[ are periodic
with period 2π, satisfies the following conditions that will ensure the consis-
tency of f̂n:

(∆.1)

∫ π

−π

δn(y)dy = 1, for all n;

(∆.2) sup
λ<|y|≤π

δn(y) → 0, as n → +∞, for all λ > 0;

(∆.3) α(δn) :=

∫ π

−π

δn(y)
2dy <∞, for all n.

On similar conditions for linear data see Watson and Leadbetter (1964,
p. 102). See also Walter and Blum (1979).

In the case of estimator f̂HB given by (2), these conditions are fulfilled
whenever the smoothing parameter h converges to zero as n tends to infinity,
and the kernel L : [0,∞[→ R, assumed to be nonnegative and bounded,
satisfies the additional conditions:
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(L.1) lim
t→+∞

t1/2L(t) = 0;

(L.2)

∫ ∞

0

t−1/2L(t)dt <∞.

Moreover, if h→ 0, as n→ +∞, we have

α(δn) = h−12−1/2

∫ ∞

0

t−1/2L(t)2dt

(
∫ ∞

0

t−1/2L(t)dt

)−2

(1 + o(1)). (6)

For L(t) = e−t and ν = h−2 we get

α(δn) =
I0(2ν)

2πI0(ν)2
=

√

ν

4π
(1 + o(1)). (7)

Concerning estimator f̂PR given by (5), the previous conditions are fulfilled
whenever the smoothing parameter g converges to zero as n tends to infin-
ity, and the kernel K : R → R, assumed to be nonnegative, bounded and
symmetric, satisfies the conditions:

(K.1) lim
u→+∞

uK(u) = 0;

(K.2)

∫ ∞

−∞
K(u)du <∞.

In this case, if g → 0, as n→ +∞, we have

α(δn) = g−1

∫ ∞

−∞
K(u)2du

(
∫ ∞

−∞
K(u)du

)−2

(1 + o(1)). (8)

Note that the kernel L satisfies conditions (L.1) and (L.2) iff the kernel K
defined by K(u) = L(u2) satisfies conditions (K.1) and (K.2). In this case
the main terms of the asympotic expansions (6) and (8) coincide whenever
g =

√
2h.

Theorem 1. Under assumptions (∆.1)–(∆.3), if f is continuous on [0, 2π]
we have:
a)

sup
θ∈[0,2π[

|Ef̂n(θ)− f(θ)| → 0.

b)

sup
θ∈[0,2π[

∣

∣nα(δn)
−1Varf̂n(θ)− f(θ)

∣

∣ → 0,
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where

α(δn) =

∫ π

−π

δn(y)
2dy → +∞.

Moreover, if nα(δn)
−1 → +∞ we have

sup
θ∈[0,2π[

E
(

f̂n(θ)− f(θ)
)2 → 0.

From Theorem 1 and (6) we conclude that under conditions (L.1) and

(L.2) on L, f̂HB is a consistent estimators of f , for all density f continuous
on [0, 2π], whenever the smoothing parameter satisfy the classical conditions
h → 0, nh → +∞, as n tends to infinity. Taking into account (8) a similar

result holds for estimator f̂PR wheneverK satisfies conditions (K.1) and (K.2)
and g is such that g → 0, ng → +∞, as n→ +∞.

2.2. Asymptotic expansions. From Theorem 1, an uniform asymptotic
expansion for the variance of the estimator f̂n is given by

sup
θ∈[0,2π[

∣

∣Varf̂n(θ)− n−1α(δn)f(θ)
∣

∣ = o
(

n−1α(δn)
)

. (9)

In order to obtain an equally useful asymptotic expansion for the bias of the
estimator, the following additional assumptions on the δ-functions sequence
need to be imposed:

(∆.4)

∫ π

−π

yδn(y)dy = 0, for all n;

(∆.5)

∫ π

−π

|y|2+γδn(y)dy = o
(

β(δn)
)

, for all γ ∈ ]0, 1], where

β(δn) :=

∫ π

−π

y2δn(y)dy.

Taking into account their symmetry, the δ-function sequences associated to
estimators f̂HB and f̂PR trivially fulfill the first of the previous assumptions.
The second condition holds for estimator f̂HB if the kernel L is such that

(L.3)

∫ ∞

0

tL(t) dt <∞.
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In this case we have

β(δn) = 2h2
∫ ∞

0

t1/2L(t)dt

(
∫ ∞

0

t−1/2L(t)dt

)−1

(1 + o(1)). (10)

For L(t) = e−t and ν = h−2 we get

β(δn) =
J2(ν)

I0(ν)
= ν−1 (1 + o(1)) (11)

with

J2(ν) =
1

2π

∫ π

−π

y2 exp(ν cos y)dy. (12)

With respect to estimator f̂PR, condition (∆.5) holds if the kernel K is such
that

(K.3)

∫ ∞

−∞
|u|3K(u)du <∞.

Moreover, we have

β(δn) = g2
∫ ∞

−∞
u2K(u)du

(
∫ ∞

−∞
K(u)du

)−1

(1 + o(1)). (13)

Kernel L fulfills condition (L.3) iff the kernel K defined by K(u) = L(u2)
satisfies condition (K.3), and the sequences (10) and (13) are asymptotically
equivalent whenever g =

√
2h.

Theorem 2. Under assumptions (∆.1)–(∆.5), assume that f is twice differ-
entiable on [0, 2π] and that f ′′ satisfies the Lipschitz condition

∣

∣f ′′(x)− f ′′(y)
∣

∣ ≤ C|x− y|α, x, y ∈ [0, 2π], (14)

for some α ∈ ]0, 1] and C > 0. We have

sup
θ∈[0,2π[

∣

∣Ef̂n(θ)− f(θ)− 1

2
β(δn)f

′′(θ)
∣

∣ = o
(

β(δn)
)

, (15)

where

β(δn) =

∫ π

−π

y2δn(y)dy → 0.

It is possible to improve the asymptotic rate of convergence of f̂n by al-
lowing the δ-functions sequence (δn) to take negative values (cf. Wand and
Jones, 1995, pp. 32–35). Nevertheless, this issue is not pursued here.
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3.MISE expansions and asymptotic optimal bandwidths

The mean integrated squared error defined by

MISE(f ; f̂n, n) = E
(

ISE(f ; f̂n, n)
)

= E

∫ 2π

0

{

f̂n(θ)− f(θ)
}2
dθ,

is a widely used global measure of the performance of a density estimator f̂n.
Under the conditions of Theorem 2 with nα(δn)

−1 → +∞, as n → +∞, the
variance and bias expansions (9) and (15) lead to the following asymptotic
expansion for mean integrated squared error of the δ-sequence estimator (1):

MISE(f ; f̂n, n) = n−1α(δn) +
1

4
β(δn)

2θ2(f) + o
(

n−1α(δn) + β(δn)
2
)

, (16)

where θ2(f) denotes the quadratic funcional

θ2(f) =

∫ 2π

0

f ′′(θ)2dθ.

In this section we discuss some consequences of this general expansion in the
case of kernel estimators f̂HB and f̂PR defined by (2) and (5), respectively.

Theorem 3. Let L be a nonnegative and bounded kernel satisfying conditions
(L.1)–(L.3), and assume that f is under the conditions of Theorem 2. If h
is such that h→ 0 and nh→ +∞, as n→ +∞, we have

MISE(f ; f̂HB, h, n) =
1

nh
c1(L) + h4c2(L) θ2(f) + o

(

1

nh
+ h4

)

,

where

c1(L) = 2−1/2

∫ ∞

0

t−1/2L(t)2dt

(
∫ ∞

0

t−1/2L(t)dt

)−2

and

c2(L) =

(
∫ ∞

0

t1/2L(t)dt

)2(∫ ∞

0

t−1/2L(t)dt

)−2

.

If f is not the circular uniform distribution, the asymptotic optimal band-
width, that is, the bandwidth that minimises the most significant terms of
the mean integrated squared error asymptotic expansion, usually called the
asymptotic mean integrated squared error, is given by

h∗ = c(L)θ2(f)
−1/5n−1/5,
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where

c(L) = 2−1/2

(
∫ ∞

0

t−1/2L(t)2dt

)1/5(∫ ∞

0

t1/2L(t)dt

)−2/5

. (17)

The previous asymptotic expansion for the mean integrated squared error
corrects the corresponding expansions presented in Taylor (2008, p. 3495), Di
Marzio et al. (2009, Theorem 1, p. 2068) and Oliveira et al. (2012, expression
(2), p. 3899). In order to better compare the previous asymptotic expansion
with those appearing in the literature, let us take L(t) = e−t and denote
ν = h−2. In this case, from Theorem 3 the asymptotic mean integrated
squared error of the estimator is given by

AMISE(f ; f̂HB, h, n) =
ν1/2

2nπ1/2
+

1

4ν2
θ2(f). (18)

Assuming that the true density f is a von Mises density with mean direction
µ ∈ [0, 2π[ and concentration parameter κ ≥ 0, we denote by fvM(µ,k), we get

θ2(fvM(µ,k)) =
3κ2I0(2κ)− κI1(2κ)

8πI0(κ)2
, (19)

where the modified Bessel functions I0 and I1 are given by (4). Replacing
θ2(f) by (19) in (18), the previous asymptotic mean integrated squared error
expression can be compared with that one given in Taylor (2008, p. 3495):

AMISE(f ; f̂HB, h, n) =
ν1/2

2nπ1/2
+

3κ2I2(2κ)

32πν2I0(κ)2
.

We see that integrated variance terms agree in both expressions, but the
same does not happen with respect to the integrated squared bias terms.
From (7), (11) and (16) an alternative expression for the asymptotic mean

integrated squared error is

AMISE(f ; f̂HB, h, n) =
I0(2ν)

2nπI0(ν)2
+
J2(ν)

2

4I0(ν)2
θ2(f),

where J2 is given by (12). This expression can be easily compared with
expression (2) in Oliveira et al. (2012, p. 3899):

AMISE(f ; f̂HB, h, n) =
I0(2ν)

2nπI0(ν)2
+

1

16

[

1− I2(ν)

I0(ν)

]2

θ2(f).
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As before, the integrated variance terms agree in both expressions but the
integrated squared bias term of this last expression, taken from Di Marzio et
al. (2009), is not correct.

Theorem 4. Let K be a nonnegative, bounded and symmetric kernel satis-
fying assumptions (K.1)–(K.3), and assume that f is under the conditions
of Theorem 2. If g is such that g → 0 and ng → +∞, as n → +∞, we have

MISE(f ; f̂PR, g, n) =
1

ng
d1(K) +

g4

4
d2(K) θ2(f) + o

(

1

ng
+ g4

)

,

where

d1(K) =

∫ ∞

−∞
K(u)2du

(
∫ ∞

−∞
K(u)du

)−2

and

d2(K) =

(
∫ ∞

−∞
u2K(u)du

)2(∫ ∞

−∞
K(u)du

)−2

.

If f is not the circular uniform distribution, the asymptotic optimal band-
width for estimator f̂PR is given by

g∗ = d(K)θ2(f)
−1/5n−1/5,

where

d(K) = 2−2/5

(
∫ ∞

−∞
K(u)2du

)1/5(∫ ∞

−∞
u2K(u)du

)−2/5

. (20)

The previous formulas agree with the well known formulas for the mean in-
tegrated squared error and the asymptotic optimal bandwidth of the Parzen-
Rosenblatt estimator for linear data (see Wand and Jones, 1995, p. 21).

Moreover, the estimator f̂HB with kernel L and bandwidth h and the estima-
tor f̂PR with kernel K(u) = L(u2) and bandwidth g =

√
2 h share the same

first-order asymptotics for the corresponding mean integrated squared errors
and therefore the same asymptotic optimal bandwidth. This is one more
piece of evidence that supports the previously mentioned close relationship
between these two kernel density estimators.
The special case of the circular uniform distribution, for which θ2(f) = 0,

is not covered by the previous optimal bandwidth asymptotic theory. For
this distribution the bias of the δ-sequence estimator is equal to zero and
its exact mean integrated squared error is simply given by MISE(f ; f̂n, n) =
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1
2πn

(

α(δn) − 1
2π

)

, for every δ-function sequence satisfying conditions (∆.1)

and (∆.3). In the particular case of estimator f̂HB, and under very general

conditions on the kernel L, we have MISE(f ; f̂HB, h, n) = o(1) even when the
smoothing parameter does not converge to zero as n tends to infinity. More
precisely, if h→ λ ∈ [0,+∞], as n→ +∞, the fastest rate of convergence is

obtained when λ = +∞, in which case we get MISE(f ; f̂HB, h, n) = o(n−1).

A similar result is valid for estimator f̂PR.
The asymptotic comparison between estimators f̂HB and f̂PR, or between

two estimators from one of these classes that use different kernel functions,
can be based on the previous asymptotic expansions for the mean integrated
squared error. If deterministic smoothing parameters h = c(L)γ n−1/5 and

g = d(K)γ n−1/5, with γ > 0, are respectively used in estimators f̂HB and

f̂PR, from Theorems 3 and 4 we know that their mean integrated squared
errors are such that

MISE(f ; f̂HB, h, n) = ϕ(f ; γ)φ(L)n−4/5(1 + o(1))

and

MISE(f ; f̂PR, g, n) = ϕ(f ; γ)ψ(K)n−4/5(1 + o(1)),

where

ϕ(f ; γ) =
1

γ
+
γ4

4
θ2(f),

φ(L) =

(
∫ ∞

0

t−1/2L(t)2dt

)4/5(∫ ∞

0

t1/2L(t)dt

)2/5(∫ ∞

0

t−1/2L(t)dt

)−2

and

ψ(K) =

(
∫ ∞

−∞
K(u)2du

)4/5(∫ ∞

−∞
u2K(u)du

)2/5(∫ ∞

−∞
K(u)du

)−2

.

This last functional is well-known in the context of kernel estimation for
linear data. We know that the parabolic kernel K∗(u) = (1− u2)I(|u| ≤ 1)
minimises ψ(K) among all the nonnegative, bounded and symmetric ker-
nels K satisfying conditions (K.1)–(K.3) (see Epanechnikov, 1969, Bosq and
Lecoutre, 1987, pp. 82–83, and Wand and Jones, 1995, p. 30). As ψ(K) =
φ(L) for L(t) = K(

√
t ), we also deduce that the half-triangular kernel

L∗(t) = (1 − t)I(t ≤ 1) minimises the functional φ(L) among all the non-
negative and bounded kernels L satisfying conditions (L.1)–(L.3) (see also
Hall et al., 1987, p. 758). Therefore, the kernels L∗ and K∗ are optimal for
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L(t) K(u) eff(L) = eff(K)

I(t ≤ 1) I(|u| ≤ 1) 0.9295

(1− t)I(0 ≤ t ≤ 1) (1− u2)I(|u| ≤ 1) 1

(1− t)2I(t ≤ 1) (1− u2)2I(|u| ≤ 1) 0.9939

(1− t)3I(t ≤ 1) (1− u2)3I(|u| ≤ 1) 0.9867

e−t e−u2

0.9512

Table 1. Efficiencies of kernels L and K with respect to optimal
kernels L∗ and K∗.

each one of the classes of estimators f̂HB and f̂PR, whenever the considered
bandwidths are, respectively, given by h = c(L)γ n−1/5 and g = d(K)γ n−1/5,
for some positive value γ. The efficiencies of other kernels with respect to
these optimal kernels can be deduced from the previous asymptotic expan-
sions for the mean integrated squared errors. They are given by the ratios

eff(L) :=
(

φ(L∗)
/

φ(L)
)5/4

and eff(K) :=
(

ψ(K∗)
/

ψ(K)
)5/4

(see Wand and
Jones, 1995, p. 31). For some kernels, these efficiencies are reported in Table
1. As in kernel estimation for linear data framework, we see that suboptimal
kernels may be almost as efficient as the optimal ones.

4. A Fourier series-based plug-in bandwidth selector

When a nonnegative and bounded kernel L satisfying conditions (L.1)–
(L.3) is used in (2), or when a nonnegative, symmetric and bounded kernel
K satisfying conditions (K.1)–(K.3) is used in (5), under some smoothness
assumptions on f we have seen that the asymptotic optimal bandwidths for
estimators (2) and (5) are respectively given by

h∗ = c(L) θ2(f)
−1/5n−1/5 and g∗ = d(K) θ2(f)

−1/5n−1/5, (21)

when θ2(f) =
∫ 2π

0 f ′′(θ)2dθ 6= 0, and c(L) and d(K) are given by (17) and
(20), respectively. As the only unknown quantity in (21) is θ2(f), the problem
of providing data-dependent bandwidth selectors through the estimation of
h∗ and g∗, is reduced to that of estimating θ2(f), this being the idea of
the direct plug-in approach to bandwidth selection. For classical references
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on the direct plug-in method the reader is referred to Woodroofe (1970),
Nadaraya (1974) and Deheuvels and Hominal (1980).
In order to define plug-in selectors based on the previous theoretical band-

widths, we follow the approach of Tenreiro (2011) where the Fourier series-
based estimators studied in Laurent (1997) are used to estimate the qua-
dratic functional θ2(f). In order to define these estimators, let us denote by
{pℓ, ℓ ∈ N0} the orthonormal Fourier basis of L2([0, 2π]) given by

p0(x) =
1√
2π

, p2ℓ−1(x) =
1√
π

sin(ℓx), p2ℓ(x) =
1√
π

cos(ℓx),

for ℓ = 1, 2, . . . . The Fourier series-based or projection estimator of θ2(f)
is motivated by the representation θ2(f) =

∑∞
ℓ=1 ℓ

4cℓ, where cℓ = a22ℓ−1+ a22ℓ
with aℓ =

∫ 2π

0 f(x)pℓ(x)dx the ℓ-th Fourier coefficients of f . It is defined by

ˆ̄θ2,m =

m
∑

ℓ=1

ℓ4 ˆ̄cℓ, (22)

where ˆ̄cℓ is the unbiased estimator of cℓ given by

ˆ̄cℓ =
2

n(n− 1)

∑

1≤j<k≤n

{p2ℓ−1(Xj)p2ℓ−1(Xk) + p2ℓ(Xj)p2ℓ(Xk)}, (23)

and m = m(n) is a sequence on integers converging to infinity. As shown
in Laurent (1997), these estimators achieve the n−1/2 rate of convergence,
whenever f is smooth enough and they are efficient. Moreover, when the
n−1/2 rate is not achievable they achieve the optimal rate of convergence. A
closely related alternative positive estimator of θ2(f) is

ˆ̃
θ2,m = θ2(f̃m) =

m
∑

ℓ=1

ℓ4 ˆ̃cℓ, (24)

where f̃m(x) =
∑2m

ℓ=0 âℓpℓ(x) is the Fourier series-based estimator of f studied
in Kronmal and Tarter (1968), âℓ is the unbiased estimator of aℓ given by
âℓ =

1
n

∑n
i=1 pℓ(Xi) and ˆ̃cℓ = â22ℓ−1 + â22ℓ.

The number m of Fourier terms plays the role of smoothing parameter and
makes the trade-off between the variance and the bias of these estimators. A
large value of m implies a small bias but a large variance, whereas a small m
implies a large bias but a small variance. As in practical situations the choice
of m should be based on the observations, this is, m = m̂(X1, . . . , Xn), we
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consider the automatic estimators ˆ̄θ2,m̂ and ˆ̃θ2,m̂ of θ2(f), whose asymptotic
behaviour is established in Tenreiro (2011, Lemma 1, pp. 543–544).
Next we describe the asymptotic behaviour of the relative errors associated

to the plug-in bandwidth selector defined by

ĥ∗m̂ = c(L) θ̂
−1/5
2,m̂ n−1/5, (25)

where θ̂2,m denotes either ˆ̄θ2,m or ˆ̃θ2,m defined by (22) and (24), respectively.
Of course, if K is a nonnegative, bounded and symmetric kernel satisfying
assumptions (K.1)–(K.3), the same asymptotic behaviour can be established
for the relative error associated to the plug-in bandwidth selector defined by

ĝ∗m̂ = d(K) θ̂
−1/5
2,m̂ n−1/5. (26)

Theorem 5. Let L be a nonnegative and bounded kernel satisfying condi-
tions (L.1)–(L.3). For f different from the circular uniform distribution,
and s = p+α > 2, with p ∈ N and α ∈ ]0, 1], let us assume that f is p-times
differentiable on [0, 2π] and that f (p) satisfies the Lipschitz condition

∣

∣f (p)(x)− f (p)(y)
∣

∣ ≤ C|x− y|α, x, y ∈ [0, 2π],

for some α ∈ ]0, 1] and C > 0.

a) Consistency. If m̂ is such that m̂
p−→ +∞ and n−1m̂5 p−→ 0 then

ĥ∗m̂
h∗

p−→ 1.

b) Rates of convergence. If m̂ satisfies

P
(

C1 n
ξ1 ≤ m̂ ≤ C2 n

ξ2
)

→ 1, (27)

where C1, C2, ξ1, ξ2 are strictly positive constants with

0 < ξ1 ≤ ξ2 <
1

5
,

then
ĥ∗m̂
h∗

− 1 = Op

(

n−min{1/2,1−5ξ2,2ξ1(s−2)}
)

.

c) Asymptotic normality. If s > 4 + 1/2 and m̂ satisfies (27) with

1

4(s− 2)
< ξ1 ≤ ξ2 <

1

10
,
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then
√
n

(

ĥ∗m̂
h∗

− 1

)

d−→ N
(

0, σ2(f)
)

,

with

σ2(f) =
4

25

(

E(f (4)(X1)
2)

E2(f (4)(X1))
− 1

)

.

The practical implementation of the proposed plug-in bandwidths depends
on the data-dependent method for selecting m we consider. As in Tenreiro
(2011) we will take m in such a way that f can be well approximated, in the
sense of the mean integrated squared error, by the above mentioned Fourier
series-based estimator f̃m (Kronmal and Tarter, 1968). For a squared inte-
grable density function f with support contained within the interval [0, 2π],

Hart (1985) proves that the mean integrated square error of f̃m can be ex-
pressed as

MISE(f̃m) = H(m) +
∞
∑

ℓ=1

a2ℓ ,

where

H(m) =
m

nπ
− n+ 1

n

m
∑

ℓ=1

(

a22ℓ−1 + a22ℓ
)

,

with H(0) = 0. Therefore, the data-dependent method for selecting m we
consider is defined by the first integer m̂Hγ

satisfying

m̂γ = arg min
m∈Mn

Ĥγ(m), (28)

where

Ĥγ(m) =
m

nπ
− γ

n+ 1

n

m
∑

ℓ=1

ˆ̄cℓ,

and Ĥγ(0) = 0, with Mn = {Ln, Ln + 1, . . . , Un}, Ln < Un are deterministic
sequences of nonnegative integers, 0 < γ ≤ 1 needs to be chosen by the user,
and ˆ̄cℓ is given by (23). The value m̂γ depends on Mn through the sequences
Ln and Un that need also to be chosen by the user. If they are taken equal
to Ln = ⌊C1n

ξ1⌋ + 1 and Un = ⌊C2n
ξ2⌋, where ⌊x⌋ is the integral part of

x and C1, C2, ξ1, ξ2 are strictly positive constants satisfying the conditions
of Theorem 5, we know that the data-dependent bandwidths ĥ∗ and ĝ∗ will
possess good asymptotic properties. Assuming for ease of explanation that
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s ≥ 5 in Theorem 5, we deduce that the best orders of convergence for
the relative errors of each one of the bandwidths ĥ∗ and ĝ∗ will take place
by choosing ξ1 = ξ2 = 1/11. In this case, since the power n1/11 remains
small for very large sample sizes, the sequences Ln and Un are dominated
by the size of the constants C1 and C2. If we want to deal with a wide
set of distributional characteristics of the underlying density function f the
sequences Ln and Un should be chosen such that the set Mn contains very
small and moderately large values of m. This is illustrated in Figure 1 where
we show 30 boxplots describing the empirical the empirical distribution of the
integrated squared error ISE(f ; f̂HB, h, n) =

∫ 2π

0 {f̂HB(θ)−f(θ)}2dθ, based on
500 samples from the circular densities M3 and M19 considered in Oliveira
et al. (2012), where f̂HB is given by (2) with L(t) = e−t and h = ĥ∗m for m ∈
{1, 2, . . . , 30}. We include a polygonal line going through the sample mean
values of these distributions, thus giving an approximation of EISE(m) :=

E
(

ISE(f ; f̂HB, ĥ
∗
m, n)

)

. The solid red circle is used to point out the optimal
value ofm in the sense of minimising the approximation of the EISE function.
The integrals are evaluated numerically by using a grid of equally spaced
1500 points and the composite Simpson’s rule. As for other densities that
present simple distribution features, for the wrapped normal density M3 with
mean direction µ = 0 and mean resultant length ρ = 0.9, a small value of
m seems to be the best choice. A different situation occurs for densities
that present more complex distribution features. This is the case of density
M19 that is a mixture of five von Mises densities with mixture proportions
α =

(

4, 5
36,

5
36,

5
36,

5
36

)

, mean directions µ = (2, 4, 3.5, 4, 4.5), and concentration
parameters κ = (3, 3, 50, 50, 50). For these densities, using a large value of m
seems to be highly advisable. In the following we take C1 = 0.25 and C2 = 25
which leads to Ln = 1 and 30 ≤ Un ≤ 87 for 10 ≤ n ≤ 106. Some simulation
experiments reveal that the previous method for selecting m is quite robust
against the choice of C2 and its performance is not affected if larger values
for C2 are taken.
The inclusion of the correction parameter γ in the previous criterion func-

tion is crucial for the good performance of the method. To the best of our
knowledge, a similar idea was for the first time suggested by Hart (1985) for
selecting the number of terms to be used in a Fourier series-based density
estimator. As the considered set Mn of possible values of m includes large
values of m, some simulation experiments reveal that taking γ = 1, in which
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Figure 1. Empirical distribution of ISE(f ; f̂HB, ĥ
∗
m, n) depend-

ing on m for models M3 and M19 (n = 200) from the Oliveira et
al. (2012) set of circular density models. The number of replica-
tions is 500.

case Ĥγ(m) is an unbiased estimator of H(m), does not prevent us from get-
ting excessively large values of m, which leads to very poor results especially
for densities whose Fourier coefficients converge quickly to zero. In fact, ex-
cessively large values of m might lead to an overestimation of the quadratic
functional θ2, and therefore to an underestimation of the asymptotic opti-
mal bandwidths h∗ or g∗. Taking into account that the function γ 7→ m̂Hγ

is nondecreasing with probability one, we may expect to soften the above
mentioned problems by including a correction parameter strictly less than
one in the considered criterion function. As suggested by this property, the
simulation results support the idea that small values of γ generally improve
Hart’s method for distributions whose Fourier coefficients converge quickly
to zero, and large values of γ are more appropriate for distributions with
Fourier coefficients converging slowly to zero. In order to find a compromise
between these two extreme situations, we decide to follow the suggestion of
Tenreiro (2011) and taking γ = 0.5.

5. Simulation study

We present in this section the results of a simulation study carried out to
analyse the finite sample behaviour of the Fourier series-based direct plug-in
bandwidth selectors introduced in the previous section. However, as the re-
sults obtained by the plug-in bandwidths ĥ∗m̂ and ĝ∗m̂ defined respectively by
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(25) and (26), with m̂ given by (28), were very similar, we will restrict our
attention to the kernel estimator (2) associated to the first of these band-

widths. Moreover, as the estimator ˆ̄θ2,m̂ of θ2 defined by (22) may occasion-
ally produce poor, sometimes negative, estimates of θ2(f) when the size of

the sample is small, and it performs similarly to ˆ̃θ2,m̂ defined by (24) when
the sample size is moderate or large, the data-dependent bandwidth based

on ˆ̄θ2,m̂ is not considered hereafter. Finally, as the estimator (3) is used in
the already mentioned papers of Taylor (2008), Di Marzio et al. (2009) and
Oliveira et al. (2012), that address the automatic selection of the smoothing
parameter, from now on we take the kernel L(t) = e−t, t ≥ 0. Therefore, as
c(L) = (4π)−1/10 for this kernel, the Fourier series-based plug-in bandwidth

we consider henceforth, we denote by ĥFO, is defined by

ĥFO := (4π)−1/10θ̂
−1/5
2,m̂ n−1/5 = (4π)−1/10θ2(f̃m̂)

−1/5n−1/5,

where m̂ = m̂γ is given by (28) with Ln, Un and γ chosen as explained in

the previous section, and f̃m is the above mentioned Fourier series-based
estimator of f (Kronmal and Tarter, 1968).
Two other plug-in bandwidths existing in the literature are included in

this study. The simplest one is considered for the first time in Taylor (2008,
p. 3496), who adapted the method proposed in a kernel density estimation for
linear data context by Deheuvels (1977, p. 36) and Deheuvels and Hominal
(1980, pp. 28–29), and made popular by Silverman (1986, pp. 45–48). The
idea is to estimate θ2(f) by making a parametric hypothesis on f . Assuming
that f is a von Mises density with mean direction µ and concentration param-
eter k, from (19) and (21) we can define the von Mises reference distribution
bandwidth selector by

ĥvM = (4π)−1/10θ2(fvM(µ̂,κ̂))
−1/5n−1/5

= (4π)−1/10

(

3κ̂2I0(2κ̂)− κ̂I1(2κ̂)

8πI0(κ̂)2

)−1/5

n−1/5,

where we take for (µ̂, κ̂) the maximum likelihood estimator of (µ, k) (under
the von Mises model) given by the equations

1

n

n
∑

i=1

sin(Xi − µ̂) = 0,
1

n

n
∑

i=1

cos(Xi − µ̂) =
I1(κ̂)

I0(κ̂)
.
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The previous expression for ĥvM corrects those considered in Taylor (2008,
p. 3495) and Oliveira et al. (2012, p. 3899).
A more flexible reference distribution family is proposed in Oliveira et al.

(2012). These authors assume that f is a mixture of M von Mises distri-

butions, that is, f takes the form fM,α,µ,κ =
∑M

i=1 αifvM(µi,κi), where the

proportions αi are such that
∑M

i=1 αi = 1, and µi and κi denote the mean
directions and the concentration parameters of the different von Mises distri-
butions. For each one of the considered mixtures the associated 3M parame-
ters of the model are estimated by using maximum likelihood estimation via
an EM algorithm and the selection of the number of mixture components
is performed by using Akaike Information Criterion (AIC) (see Oliveira et
al., 2012, p. 3900). Denoting by fM̂,α̂,µ̂,κ̂ the selected reference distribution
density, the associated plug-in bandwidth is given by

ĥmvM = (4π)−1/10θ2(fM̂,α̂,µ̂,κ̂)
−1/5n−1/5.

We adopt the implementation of the method as described in Oliveira et al.
(2012, p. 3903) and given by the function bw.PI of the R package ‘NPCirc’
(Oliveira et al., 2015). The AIC is computed for mixtures of M = 2, 3, 4, 5

von Mises distributions and the selected number of mixtures M̂ for the ref-
erence distribution is the one minimising the AIC. As described in Oliveira
et al. (2012, p. 3906) some computational problems may arrive in practice in
the implementation of the EM algorithm and/or from the numerical approx-
imation of the integral θ2(fM̂,α̂,µ̂,κ̂), which may not be finite. In this situation

one takes M̂ = 1 in which case the bandwidth selected by ĥmvM is the von
Mises reference distribution bandwidth.
Two other data-driven procedures for selection the bandwidth, already

proposed by Hall et al. (1987), are also included in our study. They are the
least-square cross-validation and the Kullback-Leibler or likelihood cross-
validation methods. Denoting by f̂HB,−i the kernel density estimator (3) by
leaving out the i-th observation, the least-square cross-validation bandwidth
ĥLSCV is obtained by minimising the classic least-square cross-validation crite-
rion function given by LSCV(h) =

∫ 2π

0 f̂HB(θ; h)dθ−2n−1
∑n

i=1 f̂HB,−i(Xi, h),

whereas the likelihood cross-validation bandwidth ĥLCV is obtained by max-
imising the likelihood cross-validation criterion function defined by LCV(h) =
∏n

i=1 f̂HB,−i(Xi; h). These methods are implemented by the function bw.CV
from the package ‘NPCirc’ in R (Oliveira et al., 2015).
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The set of 20 circular distributions considered in Oliveira et al. (2012),
which includes the von Mises distribution, the cardioid distribution, various
wrapped distributions and mixtures of them, is used to analyse the effective-
ness of the proposed plug-in bandwidth ĥFO and to compared it with the
data-driven bandwidths ĥvM, ĥmvM, ĥLSCV and ĥLCV. This set of densities
is very rich, containing densities with a wide variety of distribution features
such as multimodality, skewness and/or peakedness. For a careful description
of the different models and the plots of the corresponding circular densities
see Oliveira et al. (2012, pp. 3901, 3902, 3907). Although we have used
self-programmed code written in R and functions from the ‘circular’ pack-
age in R (Lund and Agostinelli, 2017) for generating data from the previous
models, this can also be done by using the function rcircmix from the above
mentioned ‘NPCirc’ package.
For different sample sizes and for each one of the 20 test distributions the

quality of each one of the considered bandwidths is analysed through the
measure of stochastic performance defined by

L2–norm of ISE(f ; f̂HB, ĥ, n)

=

√

Var(ISE(f ; f̂HB, ĥ, n)) + E2(ISE(f ; f̂HB, ĥ, n)).

This performance measure takes into account not only the mean of the
ISE(f ; f̂HB, ĥ, n) distribution, but also its variability. As the least-square
cross-validation bandwidth showed an inferior global performance compared
to the likelihood cross-validation bandwidth, only the results obtained by
the bandwidths ĥFO, ĥvM, ĥmvM and ĥLCV are reported in Figures 2, 3, 4 and
5. In these figures the empirical L2–norm of ISE(f ; f̂HB, ĥ, n), based on 500
replications, is shown for sample sizes n = 25 · 2k, k = 1, . . . , 5.
As we can see from the graphics, the bandwidth ĥvM is suitable when the

underlying density has a distribution structure that is close to a von Mises
distribution. This situation occurs with models 1, 2, 3, 4, 9, 15. However, its
performance is very poor for circular distributions that present more complex
features. Some extreme situations where this poor behaviour is observed for
all sample sizes are models 7, 11, 13, 14, 16, 20. In all these cases the
sampling distribution of the considered concentration parameter estimator
κ̂ is distributed near zero leading to large bandwidths that provide uniform
estimates for the underlying circular density (on this situation, see Oliveira

et al., 2012, pp. 3906). With respect to the bandwidth ĥmvM, we can see
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ĥvM
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Figure 2. Empirical L2–norm of ISE(f ; f̂HB, ĥ, n) associated to

the bandwidths ĥFO, ĥvM, ĥmvM and ĥLCV, for circular density
models 1 to 5. The number of replications is 500.
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Figure 3. Empirical L2–norm of ISE(f ; f̂HB, ĥ, n) associated to

the bandwidths ĥFO, ĥvM, ĥmvM and ĥLCV, for circular density
models 6 to 10. The number of replications is 500.
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ĥvM
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Figure 4. Empirical L2–norm of ISE(f ; f̂HB, ĥ, n) associated to

the bandwidths ĥFO, ĥvM, ĥmvM and ĥLCV, for circular density
models 11 to 15. The number of replications is 500.
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ĥFO
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ĥFO
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Figure 5. Empirical L2–norm of ISE(f ; f̂HB, ĥ, n) associated to

the bandwidths ĥFO, ĥvM, ĥmvM and ĥLCV, for circular density
models 16 to 20. The number of replications is 500.
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that it shows a poor behaviour for almost all the considered test models
when the sample size is small. Its performance improves significantly for
moderate or large sample sizes, and only in this case this bandwidth selector
should be used in practice. With the exceptions of models M5 and M17
whose densities present a single strong peak, the likelihood cross-validation
bandwidth ĥLCV shows a very good behaviour for all the test densities and
sample sizes. However, a better global behaviour is shown by the Fourier
series-based plug-in bandwidth ĥFO. This bandwidth is quite competitive
against the von Mises reference distribution bandwidth selector for simple
distribution models, and, at the same time, presents a good performance for
all the considered circular density models and sample sizes. It is the best or
is among the best of the considered bandwidth selectors for all the considered
models and sample sizes. This analysis suggests that ĥFO is always a good
choice for selecting the bandwidth in kernel density estimation for circular
data.

6. Two real-data examples

In this section we consider two real-data sets analysed in Oliveira et al.
(2012) and available through the R package ‘NPCirc’ (Oliveira et al., 2015).
For each of them, the data-driven bandwidth selectors considered in the
previous section, namely ĥFO, ĥvM, ĥmvM and ĥLSC, are used. For comparison
purposes, after the values obtained for the bandwidths ĥvM and ĥmvM we also
indicate, between square brackets, the bandwidths generated by the functions
(bw.rt)−1/2 and (bw.pi)−1/2 from the ‘NPCirc’ package in R.
The first data set consists of 104 cross-bed measurements from the Hi-

malayan molasse in Pakistan presented in Fisher (1993, Measurements of
Chaudan Zam large bedforms, pp. 250–251). The smoothing parameter

selectors ĥFO = 0.370 and ĥmvM = 0.359 [0.380] (M̂ = 2) yield identical

bandwidths, while larger bandwidths are produced by ĥvM = 0.442 [0.594]

and ĥLSC = 0.508. As we can see from Figure 6 the different smoothing
parameters provide similar density estimates. Other than the main mode
distribution, the linear plot seems to reveal the presence of a second less
important mode distribution in an opposite direction to the main one.
The second data set, presented in Batschelet (1981, p. 23–24), consists of

the orientation of 214 dragonflies with respect to the azimuth of the sun. As
most dragonflies have chosen a direction of approximately 90◦ either to the
right or to the left of the sun’s rays, the underlying circular density should be
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ĥLCV

0 π 2 π 3π 2 2π
0.

0
0.

1
0.

2
0.

3

Figure 6. Kernel density estimates for the cross-bed density by
using the bandwidth selectors ĥFO, ĥvM, ĥmvM and ĥLSC.
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ĥvM
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Figure 7. Kernel density estimates for the dragonflies orienta-
tion density by using the bandwidth selectors ĥFO, ĥvM, ĥmvM and
ĥLSC.

bimodal. As for the previous data set the bandwidth selectors ĥFO = 0.136
and ĥmvM = 0.126 [0.127] (M̂ = 4) yield identical bandwidths. Although a
slightly larger bandwidth is produced by the likelihood cross-validation se-
lector ĥLSC = 0.168, the different kernel density estimates corresponding to
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these three bandwidths are similar, revealing a clear bimodal circular dis-
tribution as shown in Figure 7. A bimodal distribution structure is also
revealed by the larger bandwidth produced by the von Mises reference dis-
tribution bandwidth selector ĥvM = 0.778 [1.479]. However, based on the
simulation results for the circular density with opposite modes M7 obtained
in the previous section (see Figure 3), we expect a poor behaviour for this
last bandwidth selector.

7. Conclusions

The asymptotic expansions for the mean integrated squared error of kernel
density estimators for circular data presented in this paper enabled us to de-
rive explicit expressions for the kernel density estimator asymptotic optimal
bandwidth, and to propose a Fourier series-based plug-in approach for kernel
density bandwidth selection. The theoretical properties established for the
new bandwidth selector method, not shared by other existing methods, but
principally because of the very good finite sample performance it possesses,
provides very strong evidence that it might present a good overall behaviour
for a wide range of circular density features.

8. Proofs

As mentioned at beginning of Section 2, we denote by f not only the
probability density function of the observed circular random variables, but
also its periodic extension to the real line with period 2π. In this section all
the limits are understood to be taken as n→ +∞.

Proof of Theorem 1: From the periodicity of δn and f we have

Ef̂n(θ) =

∫ 2π

0

δn(θ − x)f(x)dx =

∫ π

−π

δn(y)f(θ− y)dy,

for θ ∈ [0, 2π[. The uniform convergence stated in a) follows now from
standard arguments as f is uniformly continuous on R and the sequence
(δn) satisfies conditions (∆.1) and (∆.2) (see Watson and Leadbetter, 1964,
Proof of Lemma 3, p. 104). Similar arguments can be used to establish b).
For that we start by noting that α(δn) → +∞ as the sequence (δn) satisfies
condition (∆.3) (cf. Watson and Leadbetter, 1964, Lemma 1, p. 103). In
order to conclude, it suffices to use the equality

nα(δn)
−1Varf̂n(θ) =

∫ π

−π

ϕn(y)f(θ− y)dy − α(δn)
−1
(

Ef̂n(θ)
)2
,
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where θ ∈ [0, 2π[ and ϕn(y) = δn(y)
2
/ ∫ π

−π δn(y)
2dy, and the fact that (ϕn)

also satisfies conditions (∆.1) and (∆.2). �

Proof of Theorem 2: We start by proving that
∫ π

−π |y|βδn(y)dy → 0, for all
β > 0. In fact, from assumptions (∆.1) and (∆.2), for any 0 < λ < π and n
large enough, we have

∫ π

−π

|y|βδn(y)dy ≤ λβ + 2πβ+1 sup
λ<|y|≤π

δn(y).

Using again assumption (∆.2), we get the stated convergence. Therefore, for
β = 2 we get β(δn) → 0. Using now assumptions (∆.1) and (∆.4), and the
fact that f ′′ satisfies Lipschitz condition (14), from classic arguments we get

sup
θ∈[0,2π[

∣

∣Ef̂n(θ)− f(θ)− 1

2
β(δn)f

′′(θ)
∣

∣ ≤ C

6

∫ π

−π

|y|2+αδn(y)dy.

The stated result follows now from assumption (∆.5). �
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Bosq, D., Lecoutre, J.-P. (1987). Théorie de l’estimation fonctionnelle. Paris:
Economica.

Deheuvels, P. (1977). Estimation non paramétrique de la densité par his-
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