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Abstract: It is known that the right key of a Kashiwara-Nakashima tableau can
be computed using the Lecouvey-Sheats symplectic jeu de taquin. Motivated by
Willis’ direct way of computing type A right keys, we also give a way of computing
symplectic right keys without the use of jeu de taquin.

En type C, la clé droite d’un tableau de Kashiwara-Nakashima peut se calculer en
utilisant le jeu de taquin symplectique de Lecouvey-Sheats. Motivés par la manière
directe de Willis afin de calculer les clés droites du type A, nous proposons également
une méthode de calculer les clés droites symplectiques sans utiliser le jeu de taquin.
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1. Introduction
Symplectic tableaux provide the monomial weight generators for the char-

acters of the symplectic Lie algebra sp(2n,C). Given a partition λ, symplec-
tic Kashiwara-Nakashima tableaux [7], a variation of De Concini tableaux
[5], of shape λ are endowed with a crystal structure Bλ compatible with a
plactic monoid and sliding algorithms, studied by Lecouvey in terms of crys-
tal isomorphisms [10]. Let Wλ be the orbit of λ, where W is the type Cn
Weyl group. Type Cn Demazure characters are indexed by vectors v in Wλ
and can be seen as ”partial” characters. Kashiwara [8] and Littelmann [12]
have shown that they can be obtained by summing the monomial weights
over certain subsets Bv in the crystal Bλ, called Demazure crystals. De-
mazure crystals Bv can be partitioned into Demazure atom crystals, B̂u,
where u ∈ Wλ runs in the Bruhat interval λ ≤ u ≤ v.

In type An−1, Lascoux and Schützenberger characterized key tableaux
tableaux as semistandard Young tableaux (SSYT) with nested columns [9],
and have used the jeu de taquin to define the right key map which sends a
SSYT to a key tableau, called the right key of that SSYT. In each Demazure
atom crystal there exists exactly one key tableau and the right key detects
the Demazure atom crystal that contains a given SSYT [9, Theorem 3.8].
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By direct inspection of a Young tableau, Willis [17] has given an alternative
algorithm to compute the right key tableau that does not require the use of
jeu de taquin. Other methods to compute the type A right key map includes
the alcove path model [11], semi skyline augmented fillings [13], and coloured
vertex models. For a complete overview in type A, see [3] and the references
therein. In type Cn, the symplectic key tableaux are characterized in [2, 14,
15, 6]. Using the Sheats symplectic jeu de taquin, a right key map is given,
in [14, 15, 6], to send a Kashiwara-Nakashima (KN) tableau T to its right
key tableau K+(T ), that detects the Demazure atom crystal which contains
T . They are also computed in the type Cn alcove path model [11], as well as
for reverse King tableau using the colored five vertex model [4].

Jacon and Lecouvey [6] have suggested that Willis’ method should be
adaptable to type Cn. Motivated by Willis’ direct inspection [17], we create
an alternative algorithm, based on the direct inspection of a KN tableau, for
the symplectic right key map, that does not use the symplectic jeu de taquin.
Due to the added technicality of the symplectic jeu de taquin compared to
the one for SSYT, Willis’ earliest weakly increasing subsequence will fail to
predict what gets slid during the Sheats symplectic jeu de taquin. Instead
we need a way to calculate, without the use of jeu de taquin, what would
appear in each column if we were to swap its length with the previous column
length via jeu de taquin. The role of Willis’ sequences will be replaced by
our matchings (see Section 4). In type A, these kind of matches were used
earlier [1].

The paper is organized as follows. In Section 2, we discuss the type C
Kashiwara-Nakashima tableaux and the symplectic jeu de taquin. Section 3
briefly recalls the symplectic key tableaux and right key map via symplectic
jeu de taquin [14]. In Section 4, we give an algorithm for computing the
symplectic right key map that does not require the jeu de taquin, and prove
that it returns the same object as the previous method.

This is an extended abstract of a full paper to appear.

2. Type C Kashiwara-Nakashima tableaux and jeu de
taquin

We recall the symplectic tableaux introduced by Kashiwara and Nakashima
to label the vertices of the type Cn crystal graphs [7]. Fix n ∈ N>0. Define
the sets [n] = {1, . . . , n} and [±n] = {1, . . . , n, n, . . . , 1} where i is just

another way of writing −i, hence i = i. In the second set we will consider
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the following order of its elements: 1 < · · · < n < n < · · · < 1 instead of

the usual order. A vector λ = (λ1, . . . , λn) ∈ Zn is a partition of |λ| =
n∑
i=1

λi

if λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The Young diagram of shape λ, in English
notation, is an array of boxes (or cells), left justified, in which the i-th row,
from top to bottom, has λi boxes. We identify a partition with its Young

diagram. For example, the Young diagram of shape λ = (2, 2, 1) is .

Given µ and ν two partitions with ν ≤ µ entrywise, we write ν ⊆ µ. The
Young diagram of shape µ/ν is obtained after removing the boxes of the
Young diagram of ν from the Young diagram of µ. For example, the Young

diagram of shape µ/ν = (2, 2, 1)/(1, 0, 0) is . Let ν ⊆ µ be two partitions

and A a completely ordered alphabet. A semistandard Young tableau, for
short SSYT, of skew shape µ/ν on the alphabet A is a filling of the diagram
µ/ν with letters from A, such that the entries are strictly increasing, from
top to bottom, in each column and weakly increasing, from left to right,
in each row. When |ν| = 0 then we obtain a SSYT of shape µ. Denote
by SSYT(µ/ν,A) the set of all skew SSYT T of shape µ/ν, with entries
in A. When |v| = 0 we write SSYT(µ,A) and when A = [n] we write
SSYT(µ/ν, n). When considering tableaux with entries in [±n], it is usual
to have some extra conditions besides being semistandard. We will use a
family of tableaux known as Kashiwara-Nakashima tableaux. From now on
we consider tableaux on the alphabet [±n].

A column is a strictly increasing sequence of numbers (or letters) in [±n]
and it is usually displayed vertically. The heigth of a column ifs number of
letters in it. A column is said to be admissible if the following one column
condition (1CC) holds for that column:

Definition 2.1 (1CC). Let C be a column. The 1CC holds for C if for all
pairs i and i in C, where i is in the a-th row counting from the top of the
column, and i in the b-th row counting from the bottom, we have a+ b ≤ i.

If a column C satisfies the 1CC then C has at most n letters. If 1CC
doesn’t hold for C we say that C breaks the 1CC at z, where z is the minimal
such that z and z exist in C and there are more than z numbers in C with

absolute value less or equal than z. For instance, the column
1
2
1

breaks the
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1CC at 1, and
2
3
3

is an admissible column. The following definition states

conditions to when C can be split :

Definition 2.2. Let C be a column and let I = {z1 > · · · > zr} be the set of
unbarred letters z such that the pair (z, z) occurs in C. The column C can be
split when there exists a set of r unbarred letters J = {t1 > · · · > tr} ⊆ [n]
such that:

1. t1 is the greatest letter of [n] satisfying t1 < z1, t1 6∈ C, and t1 6∈ C,
2. for i = 2, . . . , r, we have that ti is the greatest letter of [n] satisfying

ti < min(ti−1, zi), ti 6∈ C, and ti 6∈ C.

The column C is admissible if and only if C can be split [16, Lemma 3.1].
If C can be split then we define right column of C, rC, and the left column
of C, `C, as follows:

1. rC is obtained by changing in C, zi into ti for each zi ∈ I and
reordering,

2. `C is obtained by changing in C, zi into ti for each zi ∈ I and
reordering.

If C is admissible then `C ≤ C ≤ rC by entrywise comparison, where
`C has the same barred part as C and rC the same unbarred part. If C
doesn’t have symmetric entries, then C is admissible and `C = C = rC.
In the next definition we give conditions for a column C to be coadmissible.

Definition 2.3. We say that a column C is coadmissible if for every pair i
and i on C, where i is on the a-th row counting from the top of the column,
and i on the b-th row counting from the top, then b− a ≤ n− i.

Given an admissible column C, consider the map Φ that sends C to the
column Φ(C) of the same size in which the unbarred entries are taken from
`C and the barred entries are taken from rC. The column Φ(C) is coad-
missible and the algorithm to form Φ(C) from C is reversible [10, Section
2.2]. In particular, every column without symmetric entries is simultaneously
admissible and coadmissible.
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Example 2.4. Let n = 4 and C =
2
4
2

be an admissible column. Then

`C =
1
4
2

and rC =
2
4
1

. So Φ(C) =
1
4
1

is coadmissible. C is also

coadmissible and Φ−1(C) =
3
4
3

.

Let T be a skew tableau with all of its columns admissible. The split form
of a skew tableau T , spl(T ), is the skew tableau obtained after replacing
each column C of T by the two columns `C rC. The tableau spl(T ) has
double the amount of columns of T .

A skew SSYT T is a Kashiwara-Nakashima (KN) skew tableau if its split
form is a skew SSYT. We defineKN (µ/ν, n) to be the set of all KN tableaux
of shape µ/ν in the alphabet [±n]. When ν = 0, we obtain KN (µ, n).
The weight of T is a vector whose i-th entry is the number of i’s minus the
number of i.

Example 2.5. The split of the tableau T =
2 2
3 3
3

is the tableau spl(T ) =

1 2 2 2
2 3 3 3
3 1

. Hence T ∈ KN ((2, 2, 1), 3) and weight wtT = (0, 2, 1).

If T is a tableau without symmetric entries in any of its columns, i.e., for
all i ∈ [n] and for all columns C in T , i and i do not appear simultaneously
in the entries of C, then in order to check whether T is a KN tableau it
is enough to check whether T is semistandard in the alphabet [±n]. In
particular SSY T (µ/ν, n) ⊆ KN (µ/ν, n).

2.1. Sheats symplectic jeu de taquin. Sheats symplectic jeu de taquin
(SJDT) [10, 16] is a procedure on KN skew tableaux, compatible with Knuth
equivalence (or plactic equivalence on words over the alphabet [±n]) [10],
that allows us to change the shape of a tableau and to rectify it. To explain
how the SJDT behaves, we need to look how it works on 2-column C1C2

KN skew tableaux. A skew tableau is punctured if one of its box contains
the symbol ∗ called the puncture. A punctured column is admissible if the
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column is admissible when ignoring the puncture. A punctured skew tableau
is admissible if its columns are admissible and the rows of its split form are
weakly increasing ignoring the puncture. Let T be a punctured skew tableau
with two columns C1 and C2 with the puncture in C1. In that case, the
puncture splits into two punctures in spl(T ), and ignoring the punctures,
spl(T ) must be semistandard. Let α be the entry under the puncture of
rC1, and β the entry to the right of the puncture of rC1 (α or β may not

exist): spl(T ) = `C1rC1`C2rC2 =

. . .. . .. . .. . .

∗ ∗ β . . .

. . . α . . .. . .

. . .. . .

.

The elementary steps of SJDT are the following:
A. If α ≤ β or β does not exist, then the puncture of T will change its

position with the cell beneath it. This is a vertical slide.
B. If the slide is not vertical, then it is horizontal. So we have α > β or

α does not exist. Let C′1 and C′2 be the columns obtained after the slide.
We have two subcases, depending on the sign of β:

1. If β is barred, we are moving a barred letter, β, from `C2 to the punc-
tured box of rC1, and the puncture will occupy β’s place in `C2. Note that
`C2 has the same barred part as C2 and that rC1 has the same barred part
as Φ(C1). Looking at T , we will have an horizontal slide of the puncture,
getting C′2 = C2 \ {β} t {∗} and C′1 = Φ−1(Φ(C1) \ ∗ t {β}). In a
sense, β went from C2 to Φ(C1).

2. If β is unbarred, we have a similar story, but this time β will go from
Φ(C2) to C1, hence C′1 = C1 \∗∪{β} and C′2 = Φ−1(Φ(C2)\{β}t∗).
Although in this case it may happen that C′1 is no longer admissible. In this

situation, if the 1CC breaks at i, we erase both i and i from the column and
remove a cell from the bottom and from the top column, and place all the
remaining cells orderly.

Applying successively elementary SJDT steps, eventually, the puncture will
be a cell such that α and β do not exist. Then, we redefine the shape to not
include this cell and SJDT ends. Given an admissible tableau T of shape
µ/ν, a box of the diagram of shape ν such that boxes under it and to the
right are not in that shape is called an inner corner of µ/ν. An outside
corner is a box of µ such that boxes under it and to the right are not in the
shape µ. The rectification of T consists in playing the SJDT until we get a
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tableau of shape λ, for some partition λ. More precisely, apply successively
elementary SJDT steps to T until each cell of ν becomes an outside corner.
At the end, we obtain a KN tableau for some shape λ. The rectification
is independent of the order in which the inner corners of ν are filled [10,
Corollary 6.3.9].

Consider the KN skew tableau T =
2
31
12

. To rectify T via SJDT, one

creates a puncture in a inner corner and split, obtaining
∗ ∗ 2 2
1 1 3 3
2 2 1 1

. So,

the first two slides are vertical, obtaining
1 1 2 2
2 2 3 3
∗ ∗ 1 1

. Finally, we do an

horizontal slide, of type B.1, in which we take 1 from the second column of
T and add it to the coadmissible column of the first column of T , obtaining

the tableau
2 2
3 3
3

. Let T be a skew tableau of shape µ/ν. Consider a

punctured box that can be added to µ, so that µ ∪ {∗} is a valid shape.
The SJDT is reversible, meaning that we can move ∗, the empty cell outside
of µ, to the inner shape ν of the skew tableau T , simultaneously increasing
both the inner and outer shapes of T by one cell. The slides work similarly
to the previous case: the vertical slide means that an empty cell is going
up and an horizontal slide means that an entry goes from Φ(C1) to C2 or
from C1 to Φ(C2), depending on whether the slid entry is barred or not,
respectively. We will also call the reverse jeu de taquin as SJDT. In the next
sections we will be mostly dealing with the reverse jeu de taquin. Consider
the following examples, each containing a tableau and a punctured box that

will be slid to its inner shape:
∗

1 1
2

7→ 1 1
2

; 1 1
2 ∗

7→ 2
2 2

.

If columns C1 and C2 do not have negative entries then the SJDT applied
to C1C2 coincides with the jeu de taquin known for SSYT. Next section,
we use SJDT to swap lengths of consecutive columns in a skew tableau, to
obtain skew tableaux Knuth related to a straight tableau, which is minimal
for the number of cells. Hence, SJDT will not incur in a loss/gain of boxes,
that could happen in the elementary step B.2.
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3. The right key of a tableau - Jeu de taquin approach
A key tableau of shape λ, in type Cn, is a KN tableau in KN (λ, n),

in which the set of elements of each column, right to left, contains the set
of elements of the previous column, if any, and the letters i and i do not
appear simultaneously as entries, for any i ∈ [n]. The split form of a KN
key tableau consists of the duplication of each column.

The setKN (λ, n) is endowed with a symplectic crystal structure, denoted
Bλ [7, 10]. The key tableaux in KN (λ, n) are the unique tableaux in
KN (λ, n) whose weight is αλ, for all elements α in the Weyl group W ,
denoted key(αλ). The orbit of key(λ), the highest weight element of Bλ,
under the action of the Weyl group W , is defined to be O(λ) = {key(αλ) :
α ∈W}. The right key map K+ sends each T ∈ KN (λ, n) to one element
K+(T ) in the orbit O(λ), called the right key tableau of T . The right key of
a KN tableau T is a key tableau of the same shape as T , entrywise ”slightly”
bigger than T . In [14, 15] such tableau is computed using the aforementioned
SJDT.

Lemma 3.1. [14, 15] Given T ∈ KN (λ, n) and a skew shape whose column
lengths are a permutation of the column lengths of T , then there is exactly
one skew tableau with that shape that rectifies to T . Futhermore, the last
column only depends on its length.

Definition 3.2 (Right key map). [14, 15] Given T ∈ KN (λ, n), we consider
the KN skew tableaux with the same number of columns of each length as
T , each one corresponding to a permutation of its column lengths. Then
we replace each column of T with a column of the same size taken from the
right columns of the last columns of all those skew tableaux associated to T .
This tableau is the right key tableau of T , K+(T ). This map restricted to
SSY T (λ, n) recovers the Lascoux-Schützenberger right key map [9].

Given T ∈ KN (λ, n) we apply the SJDT on consecutive columns to
compute all skew tableaux in the conditions the previous definition. For

instance, the tableau T =
1 3 1
3 3
3

gives rise to six KN skew tableaux with

the same number of columns of each length as T , each one corresponding to
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a permutation of its column lengths.

1 3 1
3 3
3

3
3
1 3 1

3

2 2
3
1

1
3

2
1

2
3
3 1

2
1 2 1

3
3

3
31
122

(1)

The right key tableau of T has columns r
3
3
1

, r 3
1

and r 1 . Hence

K+(T ) =
3 3 1
2 1
1

. Lemma 3.1 shows that the column commutation action

defined by the SJDT on two consecutive columns of a straight KN tableau
T of shape λ gives rise to a permutohedron where the vertices are all the
KN skew tableaux in the Knuth class of T whose column length sequence is
a permutation of the column length sequence of T [9]. For instance, (1) is a
permutohedron (hexagon) for S3.

Let T = C1C2 · · ·Ck be a straight KN tableau with columnsC1, C2, . . . , Ck.
Note that, to compute which entries appear in the i-th column of K+(T )
we do not need to look to the first i − 1 columns of T . We only need
the last column of a skew tableau obtained by applying the SJDT to the
columns Ci . . . Ck of T , so that the last column has the length of Ci,
because by Lemma 3.1 all last columns of skew tableaux associated to T
with the same length are equal. Let K1

+(T ) be the map that given a
tableau returns the first column of K+(T ). This is noticeable in 1 where
K+(T ) = K1

+(C1C2C3)K1
+(C2C3)K1

+(C3). In general, K+(T ) =

K1
+(C1 · · ·Ck)K1

+(C2 · · ·Ck) · · ·K1
+(Ck). Based on this observation and

Lemma 3.1, next algorithm refines Definition 3.2 to compute K+
1 (T ) using

SJDT:

Algorithm 3.3. Let T be a straight KN tableau:
1. Let i = 2.
2. If T has exactly one column, return the right column of T . Otherwise,

let Ti := T2 be the tableau formed by the first two columns of T .
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3. If the length of the two columns of Ti is the same, put T ′i := Ti. Else,
play the SJDT on Ti until both column lengths are swapped, obtaining T ′i .

4. If T has more than i columns, redefine i := i + 1, and define Ti to
be the two-columned tableau formed with the rightmost column of T ′i−1 and
the i-th column of T , and go back to 2.. Else, return the right column of
the rightmost column of T ′i .

This algorithm is exemplified on the bottom path of (1).

Corollary 3.4. If T is a rectangular tableau, K+(T ) = rCkrCk . . . rCk
(k times).

Next, we present a way of computing K1
+(T ) that does not require the

SJDT. Willis has done this when T is a SSYT [17]. It is a simplified version
of the algorithm presented here.

4. Right key - a direct way
Let T = C1C2 be a straight KN two column tableau and spl(T ) =

`C1rC1`C2rC2 a straight semistandard tableau. In particular, rC1`C2 is
a semistandard tableau. The matching between rC1 and `C2 is defined as
follows:
• Let β1 < · · · < βm′ be the elements of `C2. Let i go from m′ to 1,

match βi with the biggest, not yet matched, element of rC1 smaller or equal
than βi.

Theorem 4.1 (The direct way algorithm for the right key). Let T be a
straight KN tableau with columns C1, C2, . . . , Ck, and consider its split form
spl(T ). For every right column rC2, . . . , rCk, add empty cells to the bottom
in order to have all columns with the same length as rC1. We will fill all of
these empty cells recursively, proceeding from left to right. The extra numbers
that are written in the column rC2 are found in the following way:
• match rC1 and `C2.
• Let α1 < · · · < αm be the elements of rC1. Let i go from 1 to m.

If αi is not matched with any entry of `C2, write in the new empty cells of
rC2 the smallest element bigger or equal than αi such that neither it or its
symmetric exist in rC2 or in its new cells. Let C′2 be the column defined by
rC2 together with the filled extra cells, after ordering.

To compute the filling of the extra cells of rC3, we do the same thing, with
C′2 and C3. If we do this for all pairs of consecutive columns, we eventually
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obtain a column C′k, consisting of rCk together with extra cells, with the
same length as rC1. We claim that C′k = K1

+(T ).

Example 4.2. Let T = C1C2C3 =
1 3 1
3 3
3

, with split form spl(T ) =

1 1 2 3 1 1
2 3 3 2
3 2

. We match rC1 and `C2, as indicated by the letters a and

b:
1 1a2a 3 1 1
2 3b3

b 2
3 2

. Hence 2 creates a 1 in rC2, completing the right column

rC2:
1 1 2 3 1

a
1

2 3 3 2
3 2 1

a
. Now we match C′2 and `C3, which is already done,

and see what new cells 3 and 2 create in rC3, obtaining
1 1 2 3 1 1
2 3 3 2 3
3 2 1 2

.

Hence K1
+(T ) =

3
2
1

is obtained from C′3 after reordering its entries.

4.1. The proof of Theorem 4.1. It is enough to prove that by the end
of this algorithm, the entries in C′k are the entries on the right column of
the rightmost column of T ′k from Algorithm 3.3. In fact, it is enough to do
this for k = 2. For bigger k note that the entries that are ”slid” into Ck
come from rCk−1, so, to go to the next step on the SJDT algorithm we only
need to know the previous right column, which is exactly what we claim to
compute this way. The next lemma determines which number is added to
rC2 given that we know α, the entry that is horizontally slid:

Lemma 4.3. Suppose that T = C1C2 is a non-rectangular two-column
tableau (if the tableau is rectangular then we have nothing to do). Play the
SJDT on this tableau which ends up moving one cell from the first column to
the second (some entries may change their values). Then,
• Immediately before the horizontal slide of the SJDT, the entry α, on the

left of the puncture, is an unmatched cell of rC1.
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• Call C′1 and C′2 to both columns after the horizontal slide on T . The
new entry in rC′2, compared to rC2, is the smallest element bigger or equal
than α such that neither it or its symmetric exist in rC2.

Example 4.4. Let T =

2 3
3 4
5 5
5
2

. After splitting, and just before the first

horizontal slide, we have T =

1 2 3 3
3 3 4 4
4 5 5 5
5 4 ∗ ∗
2 1

. The new entry in rC2 is 2, as

predicted by the lemma:

1 2 2 3
3 3 3 4
4 4 5 5
∗ ∗ 4 2
2 1

.

Proof : Case 1: α is barred. Then C′2 = C2 ∪ {α}. If α does not exist
neither in C2 nor in Φ(C2), then α will exist in both C′2 and Φ(C′2). If
α does exist in C2, and consequently in Φ(C2) (but α /∈ Φ(C2)), then α
and α will both exist in C′2. Hence, in the construction of the barred part of
Φ(C′2), compared to Φ(C2), there will be a new barred number which is the
smallest number bigger (or equal, but the equality can not happen) than α
such that neither it nor its symmetric exist in the barred part of Φ(C2) or
the unbarred part of C2 (i.e., rC2). If α existed in Φ(C2), then α existed in
Φ(C2). That means that whatever number got sent to α in the construction
of Φ(C2) will be sent to the next available number, meaning that in rC2 will
appear a new number, the smallest number bigger (or equal, but the equality
can not happen because α is already there) than α such that neither it nor
its symmetric exist in rC2.

Case 2: α is unbarred. Then C′2 = Φ−1(Φ(C2) ∪ {α}). If α does not
exist in C2 nor in Φ(C2), then α will exist in both C′2 and Φ(C′2). If α
existed in Φ(C2), and consequently in C2, then both α and α will exist in
Φ(C′2), hence, if we start in the coadmissible column, in the construction
of the unbarred part of C′2, compared to C2, there will be a new unbarred
number which is the smallest number bigger than α such that neither it nor



TYPE C WILLIS’ DIRECT WAY 13

its symmetric exist in rC2. Finally, if α existed in C2, then α also existed
in C2. That means that whatever number got sent to α in the construction
of C2, from Φ(C2), will be sent to the next available number, meaning that
in rC2 will appear a new number, the smallest number bigger than α such
that neither it nor its symmetric exist in rC2.

Proof of Theorem 4.1: Each SJDT in T , a two-column skew tableau, moves
a cell from the first to the second column. We will prove that if we apply
the direct way algorithm after each SJDT, the output C′2 does not change.
The cells on `C2 without cells to its left do not get to be matched. When
we slide horizontally, the columns rC1 and `C2 may change more than the
adding/removal of α, the horizontally slid entry. Since the horizontal slides
happen from top to bottom, we only need to see what changes happen to
bigger entries than the one slid. All entries above α are matched to the entry
in the same row in `C2.

If α is barred then, the remaining barred entries of rC1 and `C2 remain
unchanged, and since all entries above α, including the unbarred ones, are
matched to the entry directly on their right, there is no noteworthy change
and everything runs as expected.

If α is unbarred then, the remaining unbarred entries of rC1 and `C2

remain unchanged. In the barred part of rC1 either nothing happens, or
there is an entry bigger than α, x, that gets replaced by α. Note that
x must be such that for every number between x and α, either it or its
symmetric existed in rC1. In the barred part of `C2, if α ∈ `C2, then α
gets replaced by y, smaller than α, such that for every number between y
and α, either it or its symmetric existed in `C2, and both y and y do not
exist in `C2.

Let’s look to `C2. Let α < p1 < p2 < · · · < pm = y be the numbers
between α and y that does not exist in `C2, right before the horizontal
slide. Then, their symmetric exist in `C2. For all numbers in rC2 between
α and y, exist, in the same row in rC1, a number between α and y. Let
α < p′1 < p′2 < · · · < p′m = y be the missing numbers between α and
y in rC1, then pi ≤ p′i. Note that p1 > p2 > · · · > pm = y exist in
`C2 after the horizontal slide and that the biggest numbers between α and
y (not including α) that can exist in rC1 are p′1 > p′2 > · · · > p′m, and

since pi ≥ p′i, the matching holds for this interval after swapping α by y in
`C2.
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Now let’s look to rC1. Before the slide, call x′ to the biggest unmatched
number of rC1 smaller or equal then x. If no such x′ exists, then everything
in rC1 between α and x is matched, hence swapping x by α will keep all
of them matched, meaning that the algorithm works in this scenario. Let
x′ < q1 < q2 < · · · < qm < α be the numbers between x′ and α
that does not exist in rC1, right before the horizontal slide. Then, their
symmetric exist in rC1. For all numbers in rC1 between x′ and α, exist, in
the same row in `C2, a number between x′ and α, because α is unmatched.
Let x′ < q′1 < q′2 < · · · < q′m < α be the missing numbers between
x′ and α in `C2, then qi ≥ q′i. Note that q1 > q2 > · · · > qm > α

exist in rC1 after the horizontal slide and the numbers between x′ and α
that can exist in `C2 are q′1 > q′2 > · · · > q′m, and since qi ≤ q′i, these
numbers are matching a number bigger or equal then qi in rC1, meaning
that α is unmatched in rC1. Ignoring signs, the numbers that appear in
either rC1 or `C2 are the same. So before playing the SJDT, applying
the direct way algorithm we have that the unmatched numbers in rC1 are
sent to the not used numbers of q′1 > q′2 > · · · > q′m in `C2 (this is a

bijection), and x′ is sent to the smallest available number, bigger or equal
than x′. Now consider rC1 and `C2 after the slide. In rC1 we replace x′

by α and remove α and in `C2 there is α or α. In the direct algorithm,
all unmatched numbers of q1 > q2 > · · · > qm > α are sent to the
not used numbers of q′1 > q′2 > · · · > q′m in `C2, but now we have
more numbers in the first set than in the second, meaning that α will bump
the image of the least unmatched number, which will bump the image of
the second least unmatched number, and so on, meaning that the image of
biggest unmatched will be out of this set. This image will be the smallest
number available, which was the image of x′ before the horizontal slide.

Hence, the outcome of the direct way does not change due to the changes
to the columns when we play the SJDT, meaning that the outcome is what
we intend.

Remark 4.5. It is possible to modify this algorithm in order to compute left
keys.
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