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DIAMETER OF THE COMMUTATION CLASSES GRAPH OF
A PERMUTATION
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Abstract: We define a statistic on the graph of commutation classes of a permu-
tation of the symmetric group which is used to show that these graphs are equipped
with a ranked poset structure, with a minimum and maximum. This characteri-
zation also allows us to compute the diameter of the commutation graph for any
permutation, from which the results for the longest permutation and for fully com-
mutative permutations are recovered.
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1. Introduction
Given an integer n ≥ 2, we let Sn denote the symmetric group on the alphabet

[n] = {1, . . . , n}, with composition of permutations performed from right to
left. We usually write permutations in one-line notation w = w1w2 · · ·wn,
where wi = w(i).
The symmetric group Sn is an example of the more general concept of a

Coxeter group [2, 4], which are groups G that can be generated by a set S =
{s1, . . . , sm} ⊂ G satisfying relations (sisj)

mij = 1, where mii = 1 and mij ≥ 2
for i 6= j. Any element w ∈ G can be written as a finite product of elements
of S. If w = si1si2 · · · si` with ` minimal, the word i1i2 · · · i` is called a reduced
word (or reduced decomposition) of g. In this case, we define the length of w by
`(w) = `. The set of all reduced words of w is denoted by R(w).
The symmetric group has a Coxeter representation with generators si, the

adjacent transposition interchanging the elements i and i+1, for 1 ≤ i ≤ n−1,
which satisfy the Coxeter relations

sisj = sjsi for |i− j| ≥ 2, (1)
sisi+1s1 = si+1sisi+1 for 1 ≤ i ≤ n− 2, (2)

and s2i = 1, the identity element. The relations (1) are known as commutations
or short braid relations, and the relations (2) are called long braid relations.
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The graph G(w), having vertex set R(w) and a edge connecting two reduced
words if they differ by a single Coxeter relation has been considered by several
authors. Tits [13] showed that G(w) is connected, and Reiner and Roichman
[10] computed the diameter for the particular case of the longest permutation
wo = n · · · 21, using hyperplane arrangements. This result was later obtained
by Assaf [11] using balanced tableaux. The number of reduced words in R(wo)
was first computed algebraically by Stanley [12] using generating functions, and
latter proved bijectively by Edelman and Greene [5], by establishing a bijection
between reduced words for wo and balanced labelings of the Rothe diagram of
wo. Fomin, Greene, Reiner and Shimozono [7] generalized this result, proving
a one to one correspondence between reduced words for w ∈ Sn and standard
balanced labellings of the Rothe diagram of w.
Contracting the commutation edges of G(w) leads to the associated graph

C(w), known as the commutation graph of w, which has also received some
attention. Elnitsky [6] established a bijection between the vertices of C(w) and
rhombic tilings of certain polygons, and proved that C(w) is bipartite. The
diameter of C(wo) has been computed in [9], and a connection to geometric
representation theory was explored in [3].
In this paper, we establish a statistic on the classes of C(w), inducing a rank

poset structure on C(w) with a unique minimal and a unique maximal element.
This allows us to give a precise formula for the diameter of the graph C(w).
We recover, as special cases, the diameter of the commutation graph for the
longest element wo and the characterization of fully commutative permutations
obtained by Billey, Jockusch and Stanley [1].

2. Reduced Words and Balanced Tableaux
The length of a permutation w ∈ Sn can also be given be the number of

inversions of w [2], that is the number of pairs (wj, wi) such that i < j and
wj > wi:

`(w) =
∣∣{(wj, wi) : i < j and wj > wi}

∣∣.
Thus, if w = si1si2 · · · si`(w)

, the word i1i2 · · · i`(w) is a reduced word for w. We
consider adjacent transpositions sij acting on positions ij and ij + 1, and per-
form their composition left to right to mirror the composition of permutations.
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For example, the permutation s1s2 = 231 acts on 123 as

s1s2 = 123 · s1s2
= 213 · s2
= 231.

Another useful notion is the descent set of a permutation, which is defined
as the set

Des(w) = {i : wi > wi+1}.
The elements of the descent set of w are called descents and can be used to
obtain a reduced word for w. Start with w0 = w and construct a sequence of
permutations

w0, w1, . . . , w`(w), (3)
with wj+1 = sij · wj where ij is an element of Des(wj), for j ∈ [n]. Since
ij ∈ Des(wj), we have `(wj+1) = `(wj) − 1, and thus the last permutation
w`(w) in (3) is the identity. Therefore, the sequence si`(w)−1 · · · si1si0 is a reduced
word for w.
There are in general, several possibilities for the index ij ∈ Des(wj) in step

j of the procedure above. We denote by amin (resp. amax) the reduced word
for w obtained by choosing in each step j the smallest (resp. greatest) index
in Des(wj).

Example 2.1. The permutation w = 25431 has length `(w) = 7, corresponding
to the inversions (2, 1), (3, 1), (4, 1), (5, 1), (4, 3), (5, 3) and (5, 4). We construct
the reduced word amax = 4321434 for w using the procedure above, display-
ing the sequence of permutations in Table 1, where the labels on the left are
descents (in this case the largest one) of the permutation in the line above.
The action of each adjacent transposition si, corresponding to descent i, is
illustrated by the numbers in bold.

The Rothe diagram of a permutation w ∈ Sn, denoted by D(w) is the subset
of cells in the first quadrant of the plane defined by

D(w) = {(i, wj) : i < j and wi > wj} ⊆ [n]× [n].

The cells of D(w) correspond to inversions in w, namely (p, q) ∈ D(w) if and
only if (wp, q) is an inversion of w. Therefore, the Rothe diagram of w gives a
graphical representation of the inversion pairs of w. In particular, the number
of cells in D(w) is the length `(w) of w.
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4 2 5 4 3 1 w0

3 2 5 4 1 3 w1

2 2 5 1 4 3 w2

1 2 1 5 4 3 w3

4 1 2 5 4 3 w4

3 1 2 5 3 4 w5

4 1 2 3 5 4 w6

1 2 3 4 5 w7

Table 1. A reduced word for 25431.

The Rothe diagram for w = w1w2...wn can be obtained by writing w verti-
cally along the y-axis, with wi at height i, and writing the positive numbers
along the x-axis. Then, with this numerical arrangement of rows and columns,
place a cell in position (wj, i) whenever this is an inversion pair for w, for each
i, j ∈ n. For instance, the Rothe diagrams for the permutations 25431 and
54321 are given in Figure 1.
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Figure 1. Rothe diagrams for 25431 and 54321.

Note that the Rothe diagram of w have the southwest property: if (z, y) and
(y, x) are cells in D(w), then (z, x) is also in D(w). These three cells form a
hook with end cells (z, y) and (y, x).
A labelling of the cells of the Rothe diagram for a permutation w ∈ Sn with

the positive integers in [`(w)] is called a standard balanced tableaux if for any
entry of the diagram, the number of entries to its right that are greater is equal
to the number of entries above it that are smaller. Figure 2 shows two standard
balanced tableaux on D(25431) and D(54321).
Denote the set of all standard balanced tableaux on D(w) by SBT(w).
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Figure 2. Two standard balanced tableaux.

Let w ∈ Sn be a permutation of length ` and a = a1a2 · · · a` a reduced
decomposition of w. Note that each ai corresponds to a unique inversion in w,
namely the pair of numbers transposed by ai in the product

w = sa1sa2 · · · sa`,

and a is determined uniquely by the order in which these inversions are carried
out. Since (p, q) ∈ D(w) if and only if (p, q) is an inversion of w, we define
the labelling Pa of D(w) by setting Pa(p, q) = i if ai transposes p and q, where
p > q. The tableau Pa is a standard balanced tableau called the canonical
labelling of D(w) induced by a.
S. Fomin et al. [7] proved that the map a 7→ Pa defines a bijection between

R(w) and SBT(w).

Example 2.2. Let w = 4321 ∈ S4 and let a = 213213 ∈ R(w) be a reduced
decomposition of w. The action of each ai is illustrated in following table, from
which we get the standard balanced tableau Da.

1 2 3 4
a1 = 2 1 3 2 4
a2 = 1 3 1 2 4
a3 = 3 3 1 4 2
a4 = 2 3 4 1 2
a5 = 1 4 3 1 2
a6 = 3 4 3 2 1

Pa=
4
2
6

3
1

5
1 2 3 4

4

3

2

1

3. The commutation graph of a permutation
We define a relation ∼ on the set R(w) by setting a ∼ b if and only if a and

b differ by a sequence of commutations. This is an equivalence relation and the
classes it defines are the commutation classes of w, denoted by [a]. We write
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a ∼
S
b (resp. a ∼

L
b) when a and b differ by a single commutation (resp. long

braid relation), and [a] ∼
L

[b] when those classes differ by a single long braid
relation, i.e. when exist a′ ∈ [a] and b′ ∈ [b] such that a′ ∼

L
b′.

Definition 3.1. Let w ∈ Sn. The commutation graph C(w) has vertex set the
commutation classes of R(w), and an edge connecting two classes when they
differ by a long braid relation.

Note that since C(w) can be obtained from G(w) by contracting commuta-
tion edges, the connectivity of G(w) implies the connectivity of C(w). The
distance d([a], [b]) between two commutation classes [a] and [b] on C(w) is the
length of a shortest path joining [a] and [b], that is the number of edges in
such path. The eccentricity of a class [a] is the distance to a farthest commu-
tative class from [a]. The radius and diameter of C(w) are the minimum and
maximum eccentricities, respectively. Figure 3 shows the commutation graph
C(456312), which has diameter 6 and radius 3.
Next, following [11], we define analogs of commutation and braid relations

for balanced tableaux.

Definition 3.2. Given a permutation w and an integer 1 ≤ i < `(w), the map
ci acts on the tableaux in SBT(w) for which the labels i and i + 1 are not in
the same row nor the same column, by interchanging the labels i and i+ 1.

It easy to check that the map ci is a well-defined, since for R ∈ SBT(w), if i
and i+1 are not in the same row nor the same column, then interchanging them
keep the balanced condition true since all other entries compare the same with
i and with i+ 1. Thus, ci(R) ∈ SBT(w). The map ci is clearly an involution.
Let a = paiai+1q be a reduced decompositions of w ∈ Sn with |ai−ai+1| > 1.

Then, ai and ai+1 correspond to inversions on disjoint set of integers, say (y, x)
and (k, z), with x < y and z < k. This means that the cells (y, x) and (k, w)
of tableau Pa are in distinct rows and columns. Swapping the labels i and i+1
of these cells gives the tableau Pa′, where a′ = pa′ia

′
i+1q ∼S a, with a′i = ai+1

and a′i+1 = ai. That is, we have a ∼
S
a′ if and only if ci(Pa) = Pa′.

Definition 3.3. Given a permutation w and an integer 1 < i < `(w), the map
bi acts on the tableaux in SBT(w) having one of the labels i − 1 or i + 1 in
the same column and above i and the other in the same row and right of i, by
interchanging the labels i− 1 and i+ 1.
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[21321432543]

[23212432543]

[32143245434]

[32143254354]

[32143243543] [32134325434]

[32134323543] [23214325434]

[32132432543] [23214323543]

Figure 3. The graph C(456312).

For R ∈ SBT(w), if i ± 1 is in the same row as i, and i ∓ 1 is in the same
column, then swapping them maintains the tableaux balanced since all entries
j /∈ {i− 1, i, i+ i} compares the same with both integers i± 1. Thus, the map
bi is an involution.
Let a = pai−1aiai+1q be a reduced decompositions of w ∈ Sn, with ai−1 =

ai+1 = ai ± 1. Then, ai−1, ai and ai+1 correspond to inversions (y, x), (z, x)
and (z, y), with x < y < z. Interchanging the labels i+ 1 and i− 1 in Pa gives
the tableau Pa′, where a = pa′i−1a

′
ia
′
i+1q with a′i−1 = a′i+1 = ai and a′i = ai+1,

showing that a ∼
L
a′ if and only if bi(Pa) = Pa′.

Figure 4 shows the action of the maps ci and bj on some tableaux in SBT(456312)
for the classes of the bottom three levels of graph C(456312) depicted in Figure
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Figure 4. Examples of the action of maps ci and bj.

3. The tableaux in bold font correspond to the words represented in the graph,
and the dashed lines correspond to maps that can also act in the tableaux.
We end this section with a result that will be useful in the sequel.

Lemma 3.1. Suppose R ∈ SBT(w) has labels i − 1 and i in positions (z, y)
and (z, x), respectively, with x < y < z. Then, R cannot have a label i+ 1 in
position (y′, x) with y 6= y′.

Proof : Let R = Pa, with a = a1 · · · a` a reduced decomposition of w. Then,
the factor ai−1ai of a acts on the factor xyz of a1 · · · ai−2 transforming it into
zxy. It follows that there cannot be a label i + 1 in position (y′x) of Pa with
y 6= y′, since it does not correspond to an inversion of integers in consecutive
positions of the word a1 · · · ai.

4. A statistic on C(w)
In this section we define a statistic on C(w) which allows the computation of

the diameter of the commutation graph of any permutation of the symmetric
group.
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Definition 4.1. Given a permutation w ∈ Sn, define the set of inversion triples

Tw = {(wk, wj, wi) : wi > wj > wk and i < j < k},
form by all triples (x, y, z) in [n] such that (z, y), (z, x) and (y, x) are inversions
for w.

Note that each triple (x, y, z) in Tw corresponds to the endpoints cells (z, y),
(z, x) and (y, x) of a hook in the Rothe diagram of w. For instance, for the
permutation 456312 ∈ S6 we have

T456312 = {(1, 3, 4), (1, 3, 5), (1, 3, 6), (2, 3, 4), (2, 3, 5), (2, 3, 6)},
while the set Two, for the longest permutation wo = n · · · 21 of Sn is formed by
all
(
n
3

)
triples (x, y, z).

Definition 4.2. Given a permutation w ∈ Sn, define the map Γ on the carte-
sian product R(w)× Tw by setting

Γ(a, (x, y, z)) =

{
1, if Pa(y, x) > Pa(z, y)

0, if Pa(y, x) < Pa(z, y)
.

In other words, Γ(a, (x, y, z)) is 0 whenever the inversion of the pair (y, x)
occur before the inversion of the pair (z, y) in the process of transforming the
identity into the permutation w by the action of each adjacent transposition
corresponding to the letters of a = a1a2 · · · a`(w). Note also that since the
subword xyz of the identity is transformed into the subword zyx of w by the
action of the letters of a, we must have Pa(y, x) > Pa(z, x) > Pa(z, y) when
Γ(a, (x, y, z)) = 1, and Pa(z, y) > Pa(z, x) > Pa(y, x) when Γ(a, (x, y, z)) = 0.
For instance, the analysis of the diagram in Example 2.2 for the reduced word
a = 213213 of the longest permutation of S4 shows that Γ(a, (123)) = 1,
Γ(a, (124)) = 1, Γ(a, (134)) = 0 and Γ(a, (234)) = 0.
In [9] it is shown that the map Γ is invariant for the commutation classes of

C(wo). We generalize this result for any permutation w.

Proposition 4.1. Two reduced words a, b ∈ R(w) are in the same com-
mutation class if and only if Γ(a, (x, y, z)) = Γ(b, (x, y, z)), for all triple
(x, y, z) ∈ Tw.

Proof : If a and b are in the same commutation class, we may assume without
loss of generality that there is an integer i ∈ [`(w)− 1] such that ci(Pa) = Pb.
The map ci changes the labels i and i + 1 of two cells that are not in the
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same row nor the same column. If one of these corresponds to a cell of a
triple (x, y, z) ∈ Tw, then the change of the label does not modify the relative
values of the end points of the cells (z, y), (z, x) and (y, x). It follows that
Γ(a, (x, y, z)) = Γ(b, (x, y, z)) for all (x, y, z) ∈ Tw.
Reciprocally, suppose the Γ-value of a and b is the same for all triples in Tw.

Assume all labels 1, . . . , i− 1 are in the same cells in both tableaux Pa and Pb,
and Pa(z, y) = i and Pb(z, y) = i + k for some k ≥ 1. Then, the permutation
associated with a1 · · · ai−1 = b1 · · · bi−1 has the factor yz.
If the label i+k−1 in Pb is in row z, say in cell (z, x), then the permutation

associated with b1 · · · bi+k−1 has the factor yxz. This means that (y, x) is also an
inversion for w, and therefore (x, y, z) is a inversion triple with Γ(a, (x, y, z)) =
1 and Γ(b, (x, y, z)) = 0, contradicting our assumption. The same reasoning
shows that the label i + k − 1 cannot be in column y of Pb, and therefore it
must be in a cell which is not in row z nor in column x. It follows that we
can exchange the labels i + k and i + k − 1 using a commutation. That is
ci+k(Pb) = Pb′, such that all cells 1, . . . , i are in same cells in both Pa and
Pb′. Repeating the argument, there is a sequence of integers i1, . . . , ij such
that ci1 · · · cij(Pb) = Pa, showing that a and b are in the same commutation
class.

Definition 4.3. Given a, b ∈ R(w), let

t(a, b) =
∑

(x,y,z)∈Tw

Γ(a, (x, y, z))⊕2 Γ(b, (x, y, z)),

where ⊕2 represents the sum modulo 2.

The number t(a, b) gives the number of triples in Tw for which the Γ-value of
a and b are distinct. Note that by Proposition 4.1, we have t(a, b) = t(a′, b′) for
any a′ ∈ [a] and b′ ∈ [b]. In particular, if a and b are in the same commutation
class we get t(a, b) = 0.

Proposition 4.2. Let a, b ∈ R(w). Then, d([a], [b]) = 1 if and only if
t([a], [b]) = 1.

Proof : If d([a], [b]) = 1, then we may assume without loss of generality that
a ∼

L
b, which means that bi(Pa) = Pb for some integer i. It follows from

Lemma 3.1 that the only triple having distinct Γ-values for a and b is (x, y, z),
x < y < z, corresponding to the cells (z, y), (z, x) and (y, x) having labels
i− 1, i, and i+ 1, and therefore t([a], [b]) = 1.
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Assume now that t([a], [b]) = 1, and let (x, y, z) ∈ Tw be the only triple
having distinct Γ-values for a and b. Using the same argument of the proof
of Proposition 4.1, we may assume that all cells of Pa and Pb have the same
value, with the exception of cells in positions (z, y), (z, x) and (y, x). Suppose
T (a, (x, y, z)) = 0 and T (b, (x, y, z)) = 1. Then, we must have Pa(y, x) = i,
Pa(z, x) = j and Pa(z, y) = k, with i < j < k, while Pb(y, x) = k, Pb(z, x) = j
and Pb(z, y) = i. We will show that if j > i + 1 we can use commutative
relations to swap the integer j with the integer i+ 1 in Pa.
When j > i+1 the permutation a1 · · · ai−1 has the factor xy since Pa(y, x) =

i, and b1 · · · bi−1 has the factor yz since Pb(z, y) = i. Since these two permu-
tations coincide, we conclude that xyz is a factor in this permutation, with
x < y < z. If j − 1 is in row z of Pa, and also Pb, say in position (z, u), then
the permutation a1 · · · ai · · · aj−1aj implies the inversion of (u, x) and (u, y) by
the action of ai+1 · · · aj−2. But then, we cannot have Pb(z, u) = j − 1, con-
tradicting our assumption. Thus, j − 1 cannot be in row z of Pa. The same
argument shows that j−1 cannot be in column x of Pa. Therefore, we can swap
the integers j and j − 1 using the map bj, corresponding to a commutation
relation in a. Repeating the argument, we may assume that j = i+ 1, and by
Lemma 3.1 we also have k = i+ 2.
Therefore, we may use commutation relations to find reduced words a′, b′ ∈

R(w) such that a ∼
S
a′ and b ∼

S
b′, where all cells of Pa′ and Pb′ have the same

value, with the exception of cells in positions (z, y), (z, x) and (y, x), where
we have Pa′(y, x) = i, Pa′(z, x) = i + 1, Pa′(z, y) = i + 2, and Pb′(y, x) =
i + 2, Pa′(z, x) = i + 1, Pa′(z, y) = i. It follows that bi+1(Pa′) = Pb′, that is
d([a], [b]) = 1.

Proposition 4.2 shows that each triple in Tw where two reduced decomposi-
tions a, b ∈ R(w) have distinct Γ-values only for this triple, corresponds to a
long braid relation between a and b, or equivalently, to a mapping bi of Pa into
Pb. Also, it follows that t([a], [b]) ≤ d([a], [b]) for any a, b ∈ R(w).

Lemma 4.3. The reduced word amin (resp. amax) for w ∈ Sn have Γ-value
equal to 0 (resp. 1), for all triples in Tw.

Proof : We prove the result for amin only. The other case is analogous. Let
(x, y, z), x < y < z, be a triple in Tw and consider cells (y, x), (z, x) and
(z, y) in the tableau Pamin

. Since these cells correspond to inversions in w,
the word zyx is a subword of w. Thus, in the process of construction amin, the
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descent corresponding to the pair (z, y) will appear first, followed by the descent
corresponding to (z, x), and finally (y, x). This means that the labels i, j, k of
cells (y, x), (z, x) and (z, y) satisfy i < j < k, proving that Γ(w, (x, y, z)) =
0.

Definition 4.4. Let w ∈ Sn and a, b ∈ R(w). Denote by sup(a) the set of all
triples t ∈ Tw for which Γ(a, t) = 1.

By Lemma 4.3, we have sup(amin) = ∅ and sup(amax) = Tw. Moreover, we
have |sup(a)| = t(amin, a).

Lemma 4.4. Let a ∈ R(w) such that a /∈ [amin]. Then, there is b ∈ R(w) such
that [b] ∼

L
[a] and sup(b) ⊂ sup(a).

Proof : Assume there is no reduced word b ∈ R(w) such that [b] ∼
L

[a] and
sup(b) ⊂ sup(a). This means that a cannot have a factor (i + 1)i(i + 1).
Therefore, each factor (i+1)i in any word in the class [a] can only be followed by
a letter i+1 if there is a letter i+2 between them. But this implies T (a, t) = 0
for all triple t ∈ Tw. That is, a = amin, contradicting our assumption.

Note that in the condition of the lemma above, we have sup(b) = sup(a)\{t},
for some t ∈ sup(a), and thus d([amin], [b]) = d([amin], [a]) − 1. Therefore, by
successive applications of Lemma 4.4 and Proposition 4.2 it follows that

d([amin], [a]) = t(amin, a) = |sup(a)|. (4)

An analogous result to Lemma 4.4 can be stated for the word amax, that is, if
a /∈ [amax], then there is b ∈ R(w) such that [b] ∼

L
[a] and sup(a) ⊂ sup(b). It

follows that
d([a], [amax]) = t(a, amax) = |Tw| − |sup(a)|. (5)

This result shows that the map t : R(w)→ [|Tw|] defined by t(a) = t(amin, a)
is a rank function for the graph C(w), making it into a ranked partially ordered
set with maximum and minimum. This partial order induces an orientation on
C(w).

Proposition 4.5. Let w ∈ Sn. The partial order defined on the commutation
classes of C(w) given by the transitive closure of covering relations

[a] < [b] if a ∼
L
b and t(b) = t(a) + 1,

makes C(w) into a ranked partially ordered set with a unique minimal element
[amin] and a unique maximal element [amax].



DIAMETER OF THE COMMUTATION CLASSES GRAPH OF A PERMUTATION 13

5. Diameter of commutation graphs
We can now give a formula for the diameter of C(w), for any permutation

w ∈ Sn.

Theorem 5.1. The diameter of C(w) is equal to the cardinality of Tw.

Proof : If Tw is nonempty, then by Lemma 4.3 we have

d([amin], [amax]) = |Tw|.

Let a, b ∈ R(w) such that a /∈ [b]. By equations (4) and (5), we have

d([amin], [a]) + d([a], [amax]) + d([amin], [b]) + d([b], [amax]) = 2|Tw|.

Using the triangle inequality, we conclude that

d([a], [b]) ≤ min{d([amin], [a]) + d([amin], [b]), d([a], [amax]) + d([b], [amax])}
≤ |Tw|,

proving that the distance between any two commutative classes [a] and [b] is
at most |Tw|. Since this number is the largest possible distance between any
two classes in C(w), it is the diameter of the graph.

Let w = w1 · · ·wn ∈ Sn and let p ∈ Sr, for r ≤ n. We say that w contains
the pattern p if there exists a subsequence wi1 · · ·wir whose elements are in the
same relative order as the elements in p. If w does not contain p, then we say
that w avoids p, or that w is p-avoiding.
A permutation having only one commutative class is said to be a fully com-

mutative permutation. If w ∈ Sn is fully commutative, the distance between
any two reduced words for w must be zero, which implies that Tw is the empty
set. That is, there is no triple i < j < k with wi > wj > wk, i.e. w is
321-avoiding. Thus we have recover a result of Billey, Jockusch, and Stanley
[1].

Theorem 5.2. A permutation w ∈ Sn is fully commutative if and only if it is
321-avoiding.

A permutation w = w1 · · ·wn is unimodal if there exists an index i, called
the peak, such that w1 < w2 < · · · < wi > wi+1 > · · · > wn. Unimodal
permutations are characterized as avoiding the patterns 312 and 213, and are
enumerated by 2n−1 [8]. Using Theorem 5.1, we can derive an explicit formula
for the diameter of the commutation classes of unimodal permutations.
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Theorem 5.3. The diameter of the commutation graph of an unimodal per-

mutation w1w2 · · ·wn of Sn with peak i is
(
n− i+ 1

3

)
+

i−1∑
k=1

(
wk − k

2

)
.

Proof : If w is unimodal with peak i, then the set Tw is the union of sets A∪B,
where A is formed by all triples (wj3, wj2, wj1) with i ≤ j1 < j2 < j3 ≤ n,
and B is formed by all triples (wk, wj2, wj3) with k < i < j2 < j3 ≤ n and

wk > wj2. The set A has precisely
(
n− i+ 1

3

)
elements, while in B for each

fixed k there are
(
wk − k

2

)
triples, since there are precisely wk − k letters less

than wk after the peak. The result now follows from Theorem 5.1.

Since the longest permutation wo is the only unimodal permutation with
peak 1, we recover the following result from [9] for the diameter of C(wo). This
is the largest diameter for the commutation graph of a permutation in Sn.

Corollary 5.4. The diameter of the commutation graph for the longest per-

mutation wo of Sn is
(
n

3

)
.

The next proposition will help us to establish the maximal cardinalities that
a graph C(w) can have.

Proposition 5.5. Let ` := `(wo) be the length of the longest permutation of

Sn, δ :=

(
n

3

)
the diameter of C(wo), and w ∈ Sn. If `(w) = `− k, then the

diameter of C(w) belongs to the interval
[
δ − k(n− 2), δ − k(n− 2) +

(
k

2

)]
.

Proof : If `(w) = `−k, then every pair (a, b), with 1 ≤ a < b ≤ n is transposed
by w except for k pairs, (ai, bi), with 1 ≤ i ≤ k. Thus, the set Tw contains
every triple (a, b, c), with 1 ≤ a < b < c ≤ n, except for the ones for which two
of the elements are ai and bi. For each i there are n − 2 triples of this form,
and then, by Theorem 5.1, the diameter of C(w) is at least δ − k(n− 2).
Each two pairs (ai, bi) may have a common element, and if this is the case

for every two pairs then the number of triples in Tw is δ − k(n − 2) +

(
k

2

)
,

which imply that the diameter of C(w) is at most δ − k(n− 2) +

(
k

2

)
.
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When n ≥ 4 the largest possible diameters for a graph C(w), with w ∈ Sn,
are, by decreasing order, δ, δ − n+ 2, δ − 2n+ 5, δ − 2n+ 4, corresponding to
permutations with length `, ` − 1 and ` − 2. The longest permutation wo is
the only permutation whose graph has length δ. The unimodal permutations
(n− 1)n(n− 2) · · · 21 and (n− 2)(n− 1)n(n− 3) · · · 21, of lengths `− 1 and
`−2, are examples of permutations whose graphs have diameters δ−n+2 and
δ − 2n + 5, respectively. Finally, the permutation w = (n − 1)n(n − 2)(n −
3) · · · 4312 has length `− 2 and the graph C(w) has diameter δ − 2n+ 4.
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