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FINITE DIFFERENCES-FINITE ELEMENTS ANALYSIS
AND NUMERICAL SIMULATION OF A

LIGHT-TRIGGERED DRUG DELIVERY MODEL
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Abstract: Light-triggered drug delivery is a promising area of research that has
been deeply investigated in the field of anti-cancer therapy. The main goal is maxi-
mizing drug concentration in the cancer tissue while minimizing drug toxicity. This
technique is based on smart materials that carry the drug to the target site and
release it in response to an external light stimulus.

In this paper, we propose a system of partial differential equations governing
light-triggered drug release from a polymeric platform. To simulate the model,
we study a fully discrete finite difference method (FDM) that in space can be
interpreted as a piecewise linear finite element method (FEM) with quadrature.
We prove that the FDM is second order superconvergent in a discrete H1-norm
in the spatial direction, and first order convergent in a discrete L2-norm in the
temporal direction. Numerical results illustrating the theoretical findings are given.
We also include computational simulations based on a laboratory experiment that
show the relevance of the proposed mathematical model.

Keywords: Finite difference method, Piecewise linear finite element method, Con-
vergence analysis, Superconvergence, Supraconvergence, Stimuli-responsive materi-
als, Light-triggered drug delivery.

Chemotherapeutic drugs administration through the circulatory system is
one of the most conventional approaches to fight cancer. The drugs attack
the tumor cells in different phases of their cell cycle, altering their ability to
grow and/or to proliferate causing their dead. However, the chemical agents
are not selective, interfering also with the cell cycle of non-cancer cells. This
drawback leads to severe side effects and has serious implications in the life
of cancer patients. Other severe disadvantages of traditional chemotherapy
are: high-dose drug requirement, development of multiple drug resistance
and non-specific drug targeting ([15], [18], [20]).

To avoid some of these disadvantages it is crucial to develop techniques that
allow the controlled and localized delivery of drugs at the tumor site. Local-
ized release is crucial to minimize undesirable side effects provoked by drugs
with high toxicity, while controlled release is crucial to maintain the drug
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concentration in its therapeutic window. The therapeutic window impor-
tance is two fold: first, undesirable side effects can occur when the maximum
safety range is surpassed; second, the failure to reach the minimum thera-
peutic range leads to no therapeutic effect and increases the risk of drug’s
resistance by the tumor ([15], [18], [20]).

The development of controlled and localized drug delivery systems had a
burst with the paradigm of nanomedicine based on nanotechnology. Some of
the stimuli-responsive drug nanocarriers being studied include dendrimers,
liposomes, micelles, metal particles, polymeric nanoparticles, carbon nan-
otubes and hydrogels ([12, 10, 23, 29]). To tune the drug release from the
nanocarriers, endogeneous (pH, redox, enzymes) and exogeneous (temper-
ature, ultrasound, light, electric fields, magnetic fields) stimuli are being
explored ([11, 9, 7, 21, 29, 28]).

In this work we focus our discussion on near infrared (NIR) light-triggered
drug delivery from hydrogels. Hydrogels are polymeric materials that can
store large amounts of water or biological fluids, which makes them highly
biocompatible. The physical and chemical properties of hydrogels are also
highly tunable, and properties like temperature and degradation rate can
be controlled by an external stimulus. These properties make hydrogels an
ideal candidate for controlled and localized drug delivery ([12, 25, 13]). In
this context, external stimulus based on NIR light have two appealing char-
acteristics, namely: minimal adverse effects on human tissue and relatively
deep tissue penetration. Light is also easy to operate and several parameters
like intensity, duration and wavelength can be manipulated to fine tune the
drug release rate ([25, 21, 16, 10, 13, 24, 17, 18, 20, 27]). For instance, once
a NIR light-responsive hydrogel is in contact with the target tissue the drug
entrapped in the polymeric matrix can be released by the stimulus of light
radiation. A diffusion type release takes place, and it can be originated by
different factors: temperature rise, hydrogel swelling due to increase osmotic
pressure or disintegration of the polymeric matrix (i.e. photocleavage) ([30]).
Moreover, such processes are reversible, meaning that diffusion is controlled
and regulated over time. The desired release rates are obtained manipulat-
ing light parameters (e.g., intensity and duration) and hydrogel composition
([12, 25, 16, 24]).

An in vivo experiment involving tumor eradication by drug delivery from
a NIR light-responsive hydrogel is discussed in [16]. For the laboratory ex-
periment, tumor-bearing nude mice were divided into two groups: one was
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injected with a drug, and the other was injected with a drug-loaded NIR
light-responsive hydrogel. The group injected with the NIR light-responsive
hydrogel was further divided into two subgroups: one was exposed to suitable
NIR light radiation and the other was not. Over the following 12h period
the group treated with the combination of smart hydrogel plus light radi-
ation exhibited a more significant concentration of drug around the tumor
site than the other groups. That same group also presented a much smaller
tumor after two weeks. Moreover, further analysis did not show significant
damages in the normal tissues of such group. These results suggest that
smart drug delivery systems can become a valuable tool for cancer therapy.

However, as stated by the authors of [16], the translation to human clini-
cal application requires future investigations concerning the design of more
efficient hydrogels. Mathematical modeling and simulation can make a sig-
nificant contribution to this effort. A reliable mathematical simulation tool
is a cheap and fast way to provide new insights into drug delivery by light-
responsive hydrogels. By simulation, light intensity and exposure time, drug
diffusion coefficients and reaction parameters governing the interaction be-
tween hydrogel, bounded drug and light, can be tuned to find the optimal
free drug concentration profile.

Consider a polymeric platform Ω = (a, b)3 where a drug is linked by cleav-
able bonds. The polymeric structure is exposed to NIR light irradiation and
due to the light absorption, the links between the polymeric chains and the
drug particles break. The bound drug is converted in free drug that is allowed
to diffuse according to Fick’s law. To construct a mathematical description
of the physical phenomena involved we need to establish a mathematical law
for the light intensity. For that, we use the Beer-Lambert equation. Consid-
ering that the incidence light direction is orthogonal to the yoz plane, the
Beer-Lambert equation for the NIR light intensity I (W/cm2) takes the form

dI

dx
= −βI, (x, y, z) ∈ Ω,

where β is the absorption coefficient that depends on the polymer molar
concentration and on the specific absorption coefficient. Assuming that, at
the surface x = a, incident light intensity is known, I0, we get

I(x, y, z) = I0 exp(−βx), (x, y, z) ∈ Ω. (1)
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Let cb(x, y, z, t) (g/cm3) and cf(x, y, z, t) (g/cm3) be the bound and free
drug concentrations at (x, y, z) ∈ Ω, t ∈ [0, T ], and let φ (cm2/(Ws)) be the
conversion rate of bound drug to free drug in the presence of NIR light with
intensity I. Then, the behavior of cb is described by

∂cb
∂t

(x, y, z, t) = −φI(x, y, z)cb(x, y, z, t), (2)

for (x, y, z, t) ∈ Ω× (0, T ]. Let D (cm2/s) be the diffusion coefficient of the
free drug through the polymeric structure. Then

∂cf
∂t

(x, y, z, t) = ∇ · (D∇cf(x, y, z, t)) + φI(x, y, z)cb(x, y, z, t), (3)

for (x, y, z, t) ∈ Ω×(0, T ], which is a classical Fick’s diffusion equation with
an additional right-hand-side term that takes into account the unbinding
reaction described by equation (2). To simplify, we assume that the initial
bound drug distribution is known and that no free drug exists at initial time,
that is

cb(x, y, z, 0) = cb,0(x, y, z), cf(x, y, z, 0) = 0, (x, y, z) ∈ Ω. (4)

We also assume that all drug particles that reach the boundary ∂Ω are im-
mediately removed, that is

cf(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω× (0, T ]. (5)

The goal of this work is the finite difference analysis and numerical simula-
tion of system (1)-(5). For the theoretical study we use a stylized version of
(1)-(5), in particular, we drop the light intensity equation (1) and we rewrite
the equations (2),(3) in the following one-dimensional form

∂cf
∂t

=
∂

∂x

(
D(cf)

∂cf
∂x

)
+ F (cf , cb), (6)

∂cb
∂t

= S(cf , cb), (7)

where F, S : IR2 → IR are suitable reaction functions and D : IR → IR is
a diffusion coefficient that is allowed to depend on cf . Here, for simplicity,
we have dropped the dependency on x and t. The equations (6),(7) are
completed with the initial conditions

cb(x, 0) = cb,0(x), cf(x, 0) = cf,0(x), x ∈ Ω, (8)
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and the boundary conditions

cf(a, t) = cf(b, t) = 0, t ∈ (0, T ]. (9)

Some numerical methods have been proposed for problems similar to (6)-
(9), particularly for the semilinear case with nonlinear reaction and lin-
ear diffusion. Fully nonlinear equations/systems were analyzed, e.g., in
[22, 3, 26, 14]. In [22], a coupled reaction-diffusion system was considered in
the context of heat transport. A FDM was proposed and optimal error esti-
mates in discrete L2 and H1 norms were obtained considering uniform grids.
Optimal convergence estimates in the L2-norm were also obtained in [3] for
a general class of nonlinear reaction-diffusion equations discretized by mixed
finite elements. Finite volume schemes with high order of accuracy were de-
veloped in [26] for general nonlinear advection-diffusion-reaction equations.
Stability analysis for discontinuous Galerkin methods applied to the same
class of equations was the subject of [14]. Let us also mention that FDMs
for other type of problems have been previously investigated by some of the
authors of this work ([5, 6, 8]).

Here, we give the convergence analysis of a fully discrete (in space and
time) FDM for system (6)-(9). In space, the FDM can be seen as a piecewise
linear FEM with quadrature. The discretization in time is based on an
implicit-explicit (IMEX) scheme. Our main contributions are:

(1) Supra-superconvergence in space in a discrete H1-norm;
(2) Optimal convergence in time in a discrete L2-norm;
(3) The proof of the convergence results requires lower regularity assump-

tions than those usually considered in the literature;
(4) The numerical simulation and validation of the motivational model

(1)-(5).

The rest of the paper is organized as follows. In Section 2 we introduce
some notation and present the fully discrete FDM. In Section 3 we develop
the convergence analysis of the space discretization and in Section 4 we study
the fully discretization. Section 5 aims to illustrate the convergence results
and to apply the proposed numerical tool in the context of light-triggered
drug delivery. Finally, in Section 6 we present some conclusions.

1. Preliminaries
To discretize the differential system (6)-(9) we start by introducing in Ω a

sequence of nonuniform grids. Let Λ be a sequence of vectors h = (h1, . . . , hN)
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of nonnegative entries such that
∑N

i=1 hi = b− a and hmax = max
i=1,...,N

hi → 0.

For h ∈ Λ, we introduce in Ω the nonuniform grid

Ωh = {a = x0, x1, · · · , xN−1, xN = b}
Let Wh be the space of grid functions defined in Ωh and let Wh,0 denote

the subspace of Wh of the grid functions null on the boundary ∂Ωh. In Wh,0

we introduce the following inner product

(uh, vh)h =
N−1∑
i=1

hi+1/2uh(xi)vh(xi),

with hi+1/2 = hi+hi+1

2 and uh, vh ∈ Wh,0. Let ‖·‖h be the norm induced by
(·, ·)h. We observe that holds the following: for uh ∈ Wh,0 we have

‖uh‖∞ ≤
√
b− a‖D−xuh‖+, (10)

where ‖uh‖∞ = max
i=1,...,N−1

|uh(xi)|. In fact, as uh(xi) =
∑i

j=1 hjD−xuh(xj) for

i = 1, . . . , N, then we obtain

|uh(xi)| ≤
√
b− a‖D−xuh‖+,

that leads to (10).
Let Ph be the piecewise linear interpolation operator and let Qh be the

piecewise linear constant operator defined inWh,0 and Ŵh, respectively, where
the last space includes the grid functions defined in Ωh. Let Phcf,h and Qhcb,h
be the finite element approximations for cf and cb, respectively, defined by
(6)-(9) that satisfy

(
∂Phcf,h
∂t

(t), Phuh) = −(D(Phcf,h(t))
∂Phcf,h
∂x

(t), Phu
′
h)

+ (F (Phcf,h(t), Qhcb,h(t)), Phuh), (11)

(
∂Qhcs,h
∂t

(t), Qhvh) = (S(Phcf,h(t), Qhcb,h(t)), Qhvh), (12)

for uh ∈ Wh,0, vh ∈ Ŵh, t ∈ (0, T ]. System (11),(12) is completed with the
initial conditions

(Phcf,h(0), Phuh) = (PhRhcf,0, Phuh), uh ∈ Wh,0,

(Qhcb,h(0), Qhvh) = (QhRhcb,0, Qhvh), vh ∈ Ŵh.
(13)

In (13), Rh : C(Ω)→ WH denotes the restriction operator.
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To compute a fully discrete (in space) finite difference solution cf,h(t) ∈
Wh,0, cb,h(t) ∈ Ŵh, we introduce the average operator

Mxuh(xi) =
uh(xi) + uh(xi−1)

2
and the finite difference operators

D−xuh(xi) =
uh(xi)− uh(xi−1)

hi
, D∗xuh(xi) =

uh(xi+1)− uh(xi)
hi+1/2

.

We also introduce the notation

(uh, vh)+ =
N∑
i=1

hiuh(xi)vh(xi), uh, vh ∈ Wh,

and ‖uh‖+ =
√

(uh, uh)+, for uh ∈ Wh.
Then we define the fully discrete (in space) approximations cf,h(t) ∈ Wh,0

and cb,h(t) ∈ Ŵh by the following discrete scheme

(c′f,h(t), uh)h = −(D(Mxcf,h(t))D−xcf,h(t), D−xuh)+ + (F (cf,h(t), cb,h(t)), uh)h,
(14)

(c′b,h(t), vh)h = (S(cf,h(t), cb,h(t)), vh)h, (15)

uh ∈ Wh,0, vh ∈ Ŵh, t ∈ (0, T ], with the initial conditions

(cf,h(0), uh)h = (Rhcf,0, uh), (cb,h(0), vh) = (Rhcb,0, vh)h, uh ∈ Wh,0, vh ∈ Ŵh.
(16)

From (14)-(16), it can be shown that cf,h(t) ∈ Wh and cb,h(t) ∈ Ŵh satisfy
the following

c′f,h(t) = D∗x(Mxcf,h(t)D−xcf,h(t)) + F (cf,h(t), cb,h(t)) (17)

c′b,h(t) = S(cf,h(t), cb,h(t)), (18)

in Ωh × (0, T ],

cf,h(0) = Rhcf,0, cb,h(0) = Rhcb,0 (19)

and

cf,h(a, t) = cf,h(b, t) = 0, t ∈ (0, T ]. (20)

To define fully discrete schemes in time and space, we introduce in the time
domain [0, T ] the uniform grid {tm,m = 0, . . . ,M} with t0 = 0, tM = T , and
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tm+1 = tm + ∆t, for m = 0, . . . ,M − 1. We consider the IMEX scheme

D−tc
m
f,h = D∗x

(
D(Mxc

m−1
f,h )D−xc

m
f,h

)
+ F (cm−1

f,h , cm−1
b,h ) (21)

D−tc
m
b,h = S(cm−1

f,h , cm−1
b,h ) (22)

in Ωh and for m = 1, . . . ,M, with the following conditions

c0
f,h = Rhcf,0, c0

b,h = Rhcb,0 in Ωh, (23)

and

cmf,h(x0) = cmf,h(xN) = 0, m = 1, . . . ,M. (24)

In (21), D−t denotes the backward finite difference operator

D−tu
m
h =

umh − um−1
h

∆t
.

Using an explicit discretization for the diffusion coefficient D and the nonlin-
ear terms F and S, we avoid the solution of a nonlinear system of equations
at each time step. IMEX schemes are often considered for nonlinear reaction-
diffusion problems ([19]).

We remark that the initial boundary value problem (IBVP) (21)-(24) can
be rewritten in the following equivalently form

(D−tc
m
f,h, vh)h = −(D(Mxc

m−1
f,h )D−xc

m
f,h, D−xvh)+

+ (F (cm−1
f,h , cm−1

b,h ), vh)h, ∀vh ∈ Wh,0, (25)

(D−tc
m
b,h, wh)h = (S(cm−1

f,h , cm−1
b,h ), wh)h,∀wh ∈ Ŵh, (26)

for m = 1, . . . ,M, with the following conditions

(c0
f,h, vh)h = (Rhcf,0, vh)h, ∀vh ∈ Wh,0,

(c0
b,h, wh)h = (Rhcb,0, wh)h = 0, ∀wh ∈ Ŵh.

(27)

In what follows, we study the stability and convergence properties of the
solutions of the finite difference problems (17)-(20) and (21)-(24) or, equiv-
alently, of the finite element problems (14)-(16) and (25)-(27). We assume
the following smoothness conditions:

(HD0) D(x) ≥ D0 > 0, x ∈ IR,
(HD`) |D(x)−D(x̃)| ≤ CD|x− x̃|, x, x̃ ∈ IR,
(HF) |F (x, y)| ≤ CF |y|, x, y ∈ IR,
(HS) |S(x, y)| ≤ CS|y|, x, y ∈ IR,
(HF`) |F (x, y)− F (x̃, ỹ)| ≤ CF`

|y − ỹ|, x, x̃, y, ỹ,∈ IR,
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(HS`) |S(x, y)− S(x̃, ỹ)| ≤ CS`
|y − ỹ|, x, x̃, y, ỹ,∈ IR.

2. Analysis of the semi-discrete approximation
2.1. Stability. We start by establishing the uniform boundedness of cf,h(t), t ∈
[0, T ], h ∈ Λ.

Proposition 1. Let cf,h(t) ∈ Wh,0, cb,h(t) ∈ Ŵh, t ∈ [0, T ], h ∈ Λ, be defined

by (17)-(20) with initial conditions cf,h(0) ∈ Wh,0, cb,h(0) ∈ Ŵh. If the as-
sumption (HD0), (HF) and (HS) hold, then there exists a positive constant
C, h and t independent, such that

‖cf,h(t)‖2
h + ‖cb,h(t)‖2

h + 2D0

∫ t

0

eC(t−s)‖D−xcf,h(s)‖2
+ds

≤ eCt
(
‖cf,h(0)‖2

h + ‖cb,h(0)‖2
h

)
,

(28)

for t ∈ [0, T ], h ∈ Λ.

Proof: From (14) and (15) with uh = cf,h(t), vh = cb,h(t) and considering
the smoothness assumptions (HD0), (HF) and (HS) we easily get

1

2

d

dt

(
‖cf,h(t)‖2

h + ‖cb,h(t)‖2
h

)
+D0‖D−xcf,h(t)‖2

+

≤ CF
1

2
(‖cf,h(t)‖2

h + ‖cb,h(t)‖2
h) + CS‖cb,h(t)‖2

h

=
1

2
CF‖cf,h(t)‖2

h + (
1

2
CF + CS)‖cb,h(t)‖2

h.

The last inequality leads to (28) with C = CF + 2CS.
As corollary of the last result we conclude the following uniform bounded-

ness result which is consequence of inequality (10).

Corollary 1. Under the conditions of Proposition 1, there exists a positive
constant C, h and t independent, such that∫ t

0

‖cf,h(s)‖2
∞ds ≤ C, t ∈ [0, T ], h ∈ Λ, (29)

provided that ‖cf,h(0)‖2
h + ‖cb,h(0)‖2

h, h ∈ Λ, is bounded.

Proposition 2. Let cf,h(t), c̃f,h(t) ∈ Wh,0, cb,h(t), c̃b,h(t) ∈ Ŵh, t ∈ [0, T ], h ∈
Λ, be defined by (17)-(20) with initial conditions cf,h(0), c̃f,h(0) ∈ Wh,0,
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cb,h(0), c̃b,h(0) ∈ Ŵh. If the assumptions (HD0), (HD`) (HF`) and (HS`) hold,
then, for ωf,h(t) = cf,h(t)− c̃f,h(t) and ωb,h(t) = cb,h(t)− c̃b,h(t) we have

‖ωf,h(t)‖2
h + ‖ωb,h(t)‖2

h +2(D0 − ε2)
∫ t

0

e
∫ t

s
γ(µ)dµ‖D−xωf,h(s)‖2

+ds

≤ e
∫ t

0
γ(s) ds

(
‖ωf,h(0)‖2

h + ‖ωb,h(0)‖2
h

)
,

(30)

for t ∈ [0, T ], h ∈ Λ, where

γ(s) = max{ 1

2ε2
C2
D‖D−xcf,h(s)‖2

∞ + CF`
, CF`

+ 2CS`
} (31)

and ε 6= 0 is an arbitrary constant.

Proof: It can be shown that for ωf,h(t) and ωb,h(t) we have

1
2
d
dt

(
‖ωf,h(t)‖2

h + ‖ωb,h(t)‖2
h

)
+ (D(Mxc̃f,h(t))D−xωf,h(t), D−xωf,h(t))+

≤ ((D(Mxc̃f,h(t))−D(Mxcf,h(t)))D−xcf,h(t), D−xωf,h(t))+

+(F (cf,h(t), cb,h(t))− F (c̃f,h(t), c̃b,h(t)), ωf,h(t))h
+(S(cf,h(t), cb,h(t))− S(c̃f,h(t), c̃b,h(t)), ωb,h(t))h.

(32)
Taking in (32) into account the assumptions (HD0), (HD`), (HF`) and (HS`)
we get

1
2
d
dt

(
‖ωf,h(t)‖2

h + ‖ωb,h(t)‖2
h

)
+D0‖D−xωf,h(t)‖2

+

≤ CD‖D−xcf,h(t)‖∞‖ωf,h(t)‖h‖D−xωf,h(t)‖+

+CF`
‖ωf,h(t)‖h‖ωb,h(t)‖h

+CS`
‖ωb,h(t)‖2

h.
(33)

From inequality (33) we obtain

d
dt

(
‖ωf,h(t)‖2

h + ‖ωb,h(t)‖2
h

)
+2(D0 − ε2)‖D−xωf,h(t)‖2

+

≤ γ(t)
(
‖ωf,h(t)‖2

h + ‖ωb,h(t)‖2
h

)
.

(34)

with γ(t) defined by (31) and ε 6= 0 an arbitrary constant. Inequality (30)
follows from (34).

To conclude stability from (30) we need to impose the boundedness of∫ t

0

γ(s)ds, t ∈ [0, T ], h ∈ Λ, that depends on ‖D−xcf,h(t)‖∞. This result does
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not follows from Proposition 1 neither from existence results for ordinary
differential problems ([4]). These facts limit the stability analysis of the IBVP
(17)-(20). We observe that the spatial truncation error Th(t) associated with
the spatial discretization introduced before is of first order with respect to
the norm ‖.‖∞. Then, the energy method followed in the proof of Proposition
2 with cf,h(t) = Rhcf(t), cb,h(t) = Rhcb(t), where Rh denotes the restriction
operator, allows us to obtain the following estimates for Ef,h(t) = Rhcf(t)−
c̃f,h(t) and Eb,h(t) = Rhcb(t)− c̃b,h(t):

‖Ef,h(t)‖2
h + ‖Eb,h(t)‖2

h +

∫ t

0

e
∫ t

s
γ(µ)dµ‖D−xEf,h(s)‖2

+ds

≤
∫ t

0

e
∫ t

s
γ(µ)dµ‖Tf,h(s)‖2

hds+ e
∫ t

0
γ(µ)dµ

(
‖Ef,h(0)‖2

h + ‖Eb,h(0)‖2
h

)
,

(35)
for t ∈ [0, T ], h ∈ Λ, and with

γ(s) = max{ 1

2ε2
C2
D‖D−xRhcf(s)‖2

∞ + CF`
, CF`

+ 2CS`
} (36)

being ε 6= 0 an arbitrary constant.
As

|D−xc̃f,h(xi, t)|2 ≤ 2
(
|D−xEf,h(xi, t)|2 + |D−xRhcf(xi, t)|2

)
,

and

|D−xEf,h(xi, t)|2 ≤
1

hmin
‖D−xEf,h(t)‖2

+,

then, the uniform boundedness of

∫ t

0

‖D−xc̃f,h(s)‖2
∞ds, for t ∈ [0, T ] and

h ∈ Λ, follows if

‖Ef,h(0)‖2
h + ‖Eb,h(0)‖2

h ≤ Ch2
max, (37)

and if we impose the following condition to the sequence Λ

∃CG > 0 :
h2
max

hmin
≤ CG, h ∈ Λ, with hmax small enough. (38)

From Proposition 2, we conclude the stability of the IBVP (17)-(20) in
c̃f,h(t), c̃b,h(t), t ∈ [0, T ], h ∈ Λ, provided (37) and (38) hold.
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In what follows we establish that

‖Ef,h(t)‖2
h + ‖Eb,h(t)‖2

h +

∫ t

0

‖D−xEf,h(s)‖2
+ds

≤ Ch4
max + C

(
‖Ef,h(0)‖2

h + ‖Eb,h(0)‖2
h

)
,

provided that cf(t) ∈ H3(Ω) ∩H1
0(Ω). Consequently, if

‖Ef,h(0)‖2
h + ‖Eb,h(0)‖2

h ≤ Ch4
max, (39)

condition (38) can be weakened and it can be replaced by the following one

∃CG > 0 :
h4
max

hmin
≤ CG, h ∈ Λ, with hmax small enough. (40)

Then, if cf(t) ∈ H3(Ω)∩H1
0(Ω), the IBVP (17)-(20) is stable in c̃f,h(t), c̃b,h(t), t ∈

[0, T ], h ∈ Λ, provided that (39) and (40) hold.

2.2. Convergence for lower smooth solutions. In this section, we derive
an error bound for the solution of the FDM (17)-(20) avoiding the use of
Taylor formula that requires that cf(t) ∈ C4(Ω). Relying on the Bramble-
Hilbert lemma ([2]), we are able to established our error bound under lower
regularity assumptions on the solution of the continuous problem (6)-(9).

Let Ef,h(t) and Eb,h(t) be the error terms associated with cf(t) and cb(t),
respectively. We use the following notations

(g)h(xi) =
1

hi+1/2

∫ xi+1/2

xi−1/2

g(x)dx, i = 1, . . . , N − 1

and

R̂hg(xi) = g(xi−1/2), i = 1, . . . , N.
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We have successively

((
∂cf
∂t

(t))h, Ef,h(t))h = ((
∂

∂x
(D(cf(t))

∂cf
∂x

(t)) + F (cf(t), cb(t)))h, Ef,h(t))h

= −(D(R̂hcf(t))R̂h
∂cf
∂x

(t), D−xEf,h(t))+

+(D(MxRhcf(t))D−xRhcf(t), D−xEf,h(t))+

−(D(MxRhcf(t))D−xRhcf(t), D−xEf,h(t))+

+((F (cf(t), cb(t)))h − F (Rhcf(t), Rhcb(t)), Ef,h(t))h
+(F (Rhcf(t), Rhcb(t)), Ef,h(t))h

=
2∑
`=1

Th,`(t)− (D(MxRhcf(t))D−xRhcf(t), D−xEf,h(t))+

+(F (Rhcf(t), Rhcb(t)), Ef,h(t))h,

where

Th,1(t) = −(D(R̂hcf(t))R̂h
∂cf
∂x (t), D−xEf,h(t))+

+(D(MxRhcf(t))D−xRhcf(t), D−xEf,h(t))+,
(41)

and

Th,2(t) = ((F (cf(t), cb(t)))h − F (Rhcf(t), Rhcb(t)), Ef,h(t))h. (42)

Then, taking into account (14), we deduce

(E ′f,h(t), Ef,h(t))h = −(D(MxRhcf(t))D−xRhcf(t), D−xEf,h(t))+

+(F (Rhcf(t), Rhcb(t)), Ef,h(t))h

+
3∑
`=1

Th,`(t)− (c′f,h(t), Ef,h(t))h

where

Th,3(t) = (Rh
∂cf
∂t

(t), Ef,h(t))h − ((
∂cf
∂t

(t))h, Ef,h(t))h. (43)

Furthermore, we also have

(E ′f,h(t), Ef,h(t))h = −(D(MxRhcf(t))D−xRhcf(t), D−xEf,h(t))+

+(D(Mxcf,h(t))D−xcf,h(t), D−xEf,h(t))+

+(F (Rhcf(t), Rhcb(t))− F (cf,h(t), cb,h(t)), Ef,h(t))h

+
3∑
`=1

Th,`(t),
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that leads to
1
2
d
dt‖Ef,h(t)‖2

h ≤ −D0‖D−xEf,h(t)‖2
+

+CD`
‖D−xRhcf(t)‖∞‖Ef,h(t)‖h‖D−xEf,h(t)‖+

+CF`
‖Ef,h(t)‖h‖Eb,h(t)‖h

+
3∑
`=1

Th,`(t),

(44)

provided that (HD0), (HD`) and (HF`) hold.
For the error Eb,h(t) we have

(E ′b,h(t), Eb,h(t))h = (S(Rhcf(t), Rhcb(t))− S(cf,h(t), cb,h(t)), Eb,h(t))h,

and taking into account the assumption (HS`)

1

2

d

dt
‖Eb,h(t)‖2

h ≤ CS`
‖Eb,h(t)‖2

h. (45)

In what follows we establish upper bounds for the terms Th,`(t), ` = 1, 2, 3.
The results presented in [1] for elliptic equations have a central role here.

Proposition 3. Let Th,1(t) be defined by (41). If cf(t) ∈ H3(Ω)∩H1
0(Ω) and

(HD`) holds, then there exists a positive constant CT1, h and t independent,
such that

|Th,1(t)| ≤ CT1
1

ε2

(
C2
D‖
∂cf
∂x

(t)‖2
∞+‖D‖2

∞

)
‖cf(t)‖2

H3(Ω)h
4
max+2ε2‖D−xEf,h(t)‖2

+,

(46)
for t ∈ (0, T ] and h ∈ Λ. In (46),ε 6= 0 is an arbitrary constant.

Proof: As

Th,1(t) = −((D(R̂hcf(t))−D(MxRhcf(t)))R̂h
∂cf
∂x (t), D−xEf,h(t))+

+(D(MxRhcf(t))(R̂h
∂cf
∂x (t)−D−xRhcf(t), D−xEf,h(t))+,

we have

|Th,1(t)| ≤ ‖∂cf∂x (t)‖∞CD‖R̂hcf(t)−MxRhcf(t)‖+‖D−xEf,h(t)‖+

+‖D‖∞‖R̂h
∂cf
∂x (t)−D−xRhcf(t)‖+‖D−xEf,h(t)‖+

:= T
(1)
h,1 (t) + T

(2)
h,1 (t),

with

T
(1)
h,1 (t) = ‖∂cf

∂x
(t)‖∞CD‖R̂hcf(t)−MxRhcf(t)‖+‖D−xEf,h(t)‖+
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and

T
(2)
h,1 (t) = ‖D‖∞‖R̂H

∂cf
∂x

(t)−D−xRHcf(t)‖+‖D−xEf,h(t)‖+.

Considering Theorem 1 of [1], it can be shown that there exist two positive
constants C1 and C2, h and t independent, such that

|T (1)
h,1 (t)| ≤ ‖∂cf

∂x
(t)‖∞CDC1

( N∑
i=1

h4
i‖cf(t)‖2

H2(xi−1,xi)

)1/2

‖D−xEf,h(t)‖+ (47)

and

|T (2)
h,1 (t)| ≤ ‖D‖∞C2

( N∑
i=1

h4
i‖cf(t)‖2

H3(xi−1,xi)

)1/2

‖D−xEf,h(t)‖+. (48)

Inequalities (47) and (48) easily lead to (46).

The next two propositions establish estimates for Th,2(t) and Th,3(t). Their
proofs can also be seen in Theorem 1 of [1].

Proposition 4. Let Th,2(t) be defined by (42). If F (cf(t), cb(t)) ∈ H2(Ω),
then there exists a positive constant CT2, h and t independent, such that

|Th,2(t)| ≤ CT2
1

ε2
‖F (cf(t), cb(t))‖2

H2(Ω)h
4
max + ε2‖D−xEf,h(t)‖2

+, (49)

for t ∈ (0, T ], h ∈ Λ. In (49), ε 6= 0 is an arbitrary constant.

Proposition 5. Let Th,3(t) be defined by (43). If c′f(t) ∈ H2(Ω), then there
exists a positive constant CT3, h and t independent, such that

|Th,3(t)| ≤ CT3
1

ε2
‖c′f(t)‖2

H2(Ω)h
4
max + ε2‖D−xEf,h(t)‖2

+, (50)

for t ∈ (0, T ], h ∈ Λ. In (50), ε 6= 0 is an arbitrary constant.

Using the constructed tools we establish now an upper bound for ‖Ef,h(t)‖2
h+

‖Eb,h(t)‖2
h. We start by noting that from (44),(45) and considering the upper
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bound established in Propositions 3-5 we obtain

d

dt

(
‖Ef,h(t)‖2

h + ‖Eb,h(t)‖2
h

)
+ 2(D0 − 5ε2)‖D−xEf,h(t)‖2

+

≤
( 1

2ε2
C2
D‖D−xRhcf(t)‖2

∞ + CF`

)
‖Ef,h(t)‖2

h

+
(
CF`

+ 2CS`

)
‖Eb,h(t)‖2

h + T̂h(t), (51)

where

T̂h(t) = CT̂
1

ε2

((
C2
D‖
∂cf
∂x

(t)‖2
∞ + ‖D‖2

∞

)
‖cf(t)‖2

H3(Ω)

+ ‖F (cf(t), cb(t))‖2
H2(Ω) + ‖c′f(t)‖2

H2(Ω)

)
h4
max, (52)

being CT̂ = 2 max
i=1,2,3

{CTi}.
From (51), we are now in position to establish the main result of this

section.

Theorem 1. Let cf ∈ L2(0, T,H3(Ω)∩H1
0(Ω))∩C1([0, T ], C(Ω))∩H1(0, T,H2(Ω))

and cb ∈ C1([0, T ], C(Ω)) be solution of the IBVP (6)-(9), where D,F and
S satisfy the assumptions (HD0), (HD`), (HF`) and (HS`). For h ∈ Λ, let

cf,h ∈ C1([0, T ],Wh,0), cb,h ∈ C1([0, T ], Ŵh) be solution of the FDM (17)-
(20) or, equivalently, of the FEM (14)-(16). Then, for the errors Ef,h(t) =
Rhcf(t) − cf,h(t), Eb,h(t) = Rhcb(t) − cb,h(t), t ∈ [0, T ], h ∈ Λ, holds the fol-
lowing

‖Ef,h(t)‖2
h + ‖Eb,h(t)‖2

h + 2(D0 − 5ε2)

∫ t

0

e
∫ t

s
γ(µ)dµ‖D−xEf,h(s)‖2

+ ds

≤
∫ t

0

e
∫ t

s
γ(µ)dµT̂h(s) ds,

(53)
for t ∈ [0, T ], h ∈ Λ. In (53), ε 6= 0 is an arbitrary constant, γ is defined by

γ(t) = max{ 1

2ε2
C2
D‖D−xRhcf(t)‖2

∞ + CF`
, CF`

+ 2CS`
} (54)

and T̂h(t) is given by (52).

Choosing in (53) ε conveniently we obtain the following corollary.
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Corollary 2. Under the assumptions of Theorem 1, there exists a positive
constant Ce, h and t independent, such that

‖Ef,h(t)‖2
h + ‖Eb,h(t)‖2

h +

∫ t

0

‖D−xEf,h(s)‖2
+ ds ≤ Ceh

4
max, t ∈ [0, T ], h ∈ Λ.

(55)

3. Fully discrete scheme
3.1. Stability. In this section we intend to establish conditions that guar-
antee the stability of the nonlinear IBVP (21)-(24). From (25),(26) with
vh = cmf,h, wh = cmb,h and considering the assumptions (HD0), (HF) and (HS),
we obtain

‖cmf,h‖2
h ≤ ‖cm−1

f,h ‖2
h − 2∆tD0‖D−xcmf,h‖2

+ + 2∆tCF‖cmf,h‖h‖cm−1
b,h ‖h,

‖cmb,h‖2
h ≤ ‖cm−1

b,h ‖2
h + 2∆tCS‖cmb,h‖h‖cm−1

b,h ‖h,
(56)

for m = 1, . . . ,M. Inequalities (56) allow us to establish

(1−∆tCF )‖cmf,h‖2
h +(1−∆tCS)‖cmb,h‖2

h + 2∆tD0‖D−xcmf,h‖2
+

≤ (1 + ∆t(CF + Cs))
(
‖cm−1

f,h ‖2
h + ‖cm−1

b,h ‖2
h

)
that leads to

‖cmf,h‖2
h + ‖cmb,h‖2

h + 2∆tD0

∑m
`=1 ‖D−xc`f,h‖2

+

≤
(

1+∆t(CF +Cs)
1−∆tmax{CF ,CS}

)m (
‖c0

f,h‖2
h + ‖c0

b,h‖2
h

)
,

provided that
1−∆tmax{CF , CS} > 0.

Then we conclude the following result.

Proposition 6. Let cmf,h ∈ Wh,0, c
m
b,h ∈ Ŵh, m=0,. . . ,M, h ∈ Λ be defined by

(21)-(24) with the initial conditions c0
f,h ∈ Wh,0, c

0
f,h ∈ Ŵh. If (HD0), (HF)

and (HS) hold, then

‖cmf,h‖2
h + ‖cmb,h‖2

h + 2∆tD0

m∑
`=1

‖D−xc`f,h‖2
+ ≤ em∆tθ

(
‖c0

f,h‖2
h + ‖c0

b,h‖2
h

)
, (57)

m = 1, . . . ,M, h ∈ Λ,∆t ∈ (0,∆t0), where

θ =
max{CF , CS}+ CF + CS

1−∆t0 max{CF , CS}
, (58)
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and ∆t0 is such that

1−∆t0 max{CF , CS} > 0. (59)

In what follows we consider c0
f,h ∈ Wh,0 and let cmf,h ∈ Wh,0, c

m
b,h ∈ Ŵh, m =

0, . . . ,M , h ∈ Λ, be defined by (21)-(24). Let c̃mb,h ∈ Ŵh, m = 0, . . . ,M , h ∈ Λ

be other solution defined by (21)-(24) with initial conditions c̃0
f,h ∈ Wh,0. We

would like to establish conditions to guarantee that, for ρε > 0, there exists
a positive ρ0, such that, if ‖ω0

i,h‖h ≤ ρ0, i = f, b, then ‖ωmi,h‖h ≤ ρε, i = b, f,
m = 1, . . . ,M, h ∈ Λ. Here we use the notation ωmi,h = cmi,h− c̃mi,h, i = b, f,m =
0, . . . ,M, h ∈ Λ.

Proposition 7. Let cmf,h, c̃
m
f,h ∈ Wh,0, c

m
b,h, c̃

m
b,h ∈ Ŵh, m=1,. . . ,M, h ∈ Λ,

be defined by (21)-(24) with initial conditions c0
f,h ∈ Wh,0, c

0
b,h ∈ Ŵh. Let

ωmi,h = cmi,h − c̃mi,h, i = b, f,m = 0, . . . ,M, h ∈ Λ. If conditions (HD0), (HD`),
(HF`) and (HS`) hold, then

‖ωmf,h‖2
h + ‖ωmb,h‖2

h + ∆tD0

m∑
j=1

‖D−xωjf,h‖
2
+

≤ e
m∆t max

j=1,...,M
σ(j)(

‖ω0
f,h‖2

h + ‖ω0
b,h‖2

h

)
,

(60)

for m = 1, . . . ,M, h ∈ Λ and ∆t ∈ (0,∆t0], with

1−∆t0 min{CF`
, CS`
} > 0. (61)

σ(j) =
max{ 1

D0
C2
D‖D−xc

j
f,h‖2

∞, CF`
+ CS`

}+ max{CF`
, CS`
}

1−∆t0 max{CF`
, CS`
}

. (62)

Proof: Taking into account the assumptions (HF`), (HS`), it can be shown
that holds the following

‖ωmf,h‖2
h ≤ ‖ωm−1

f,h ‖2
h − 2∆t(D(Mxc

m−1
f,h )D−xc

m
f,h

−D(Mxc̃
m−1
f,h )D−xc̃

m
f,h, D−xω

m
f,h)+ + 2∆tCF`

‖ωmf,h‖h‖ωm−1
b,h ‖h,

‖ωmb,h‖2
h ≤ ‖ωm−1

b,h ‖2
h + 2∆tCS`

‖ωm−1
b,h ‖h‖ωmb,h‖h.

(63)

Considering now the assumptions (HD0) and (HD`), we have successively

−(D(Mxc
m−1
f,h )D−xc

m
f,h −D(Mxc̃

m−1
f,h )D−xc̃

m
f,h, D−xω

m
f,h)+

= −(D(Mxc̃
m−1
f,h )D−xω

m
f,h, D−xω

m
f,h)+

−((D(Mxc
m−1
f,h )−D(Mxc̃

m−1
f,h ))D−xc

m
f,h, D−xω

m
f,h)+

≤ −D0‖D−xωmf,h‖2
+ + CD‖D−xcmf,h‖∞‖ωm−1

f,h ‖h‖D−xωmf,h‖+.
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Inserting the last upper bound in (63) we obtain

(1−∆tCF`
)‖ωmf,h‖2

h + (1−∆tCS`
)‖ωmb,h‖2

h + 2∆t(D0 − ε2)‖D−xωmf,h‖2
+

≤ (1 + ∆t 1
2ε2C

2
D‖D−xcmf,h‖2

∞)‖ωm−1
f,h ‖2

h

+(1 + ∆t(CF`
+ CS`

))‖ωm−1
b,h ‖2

h,

that leads to

‖ωmf,h‖2
h + ‖ωmb,h‖2

h + 2∆t(D0 − ε2)‖D−xωmf,h‖2
+

≤ (1 + ∆tσ(m))
(
‖ωm−1

f,h ‖2
h + ‖ωm−1

b,h ‖2
h

)
,

(64)

provided that

1−∆tmax{CF`
, CS`
} > 0.

In (64), σ(m) is given by

σ(m) =
max{ 1

2ε2C
2
D‖D−xcmf,h‖2

∞, CF`
+ CS`

}+ max{CF`
, CS`
}

1−∆tmax{CF`
, CS`
}

(65)

If we fix ε2 = D0

2 , then from (64) we establish

‖ωmf,h‖2
h+‖ωmb,h‖2

h+∆tD0

m∑
j=1

‖D−xωjf,h‖
2
+ ≤

m−1∏
j=0

(1+∆tσ(j))
(
‖ω0

f,h‖2
h+‖ω0

b,h‖2
h

)
,

where now σ(j) is defined by (62). The last inequality leads to

‖ωmf,h‖2
h + ‖ωmb,h‖2

h + ∆tD0

∑m
j=1 ‖D−xω

j
f,h‖2

+

≤ (1 + ∆tmaxj=1,...,m σ(j))m
(
‖ω0

f,h‖2
h + ‖ω0

b,h‖2
h

)
,

(66)

and, from inequality (66), we easily get (60).
Now we can establish the stability conditions we are looking for. From

Proposition 7, it is sufficient to consider

ρ0 ≤
√

2

2

√
ρεe
−1

2
T max
j=1,...,M

σ(j)
.

It is clear that the last upper bound gives the correct answer if cmf,h ∈ Wh,0,

cmb,h,∈ Ŵh, m = 1, . . . ,M, h ∈ Λ, are defined by (21)-(24) with initial condi-

tions c0
f,h ∈ Wh,0, c

0
b,h,∈ Ŵh, such that

‖D−xcmf,h‖2
∞ ≤ C,m = 1, . . . ,M, (67)

for some positive constant C and h ∈ Λ, with hmax and ∆t small enough.



20 J.A. FERREIRA, H.P. GÓMEZ AND L. PINTO

In the next section we establish that the errors Em
f,h = Rhcf(tm)−cmf,h, Em

b,h =
Rhcb(tm)− cmb,h for cmf,h and cmb,h, respectively, satisfy the following

‖Em
f,h‖2

h + ‖Em
b,h‖2

h + ∆t
m∑
j=1

‖D−xEj
f,h‖

2
+

≤ C1(∆t
2 + h4

max) + C2

(
‖E0

f,h‖2
h + ‖E0

b,h‖2
h

)
,

(68)

for m = 1, . . . ,M, h ∈ Λ, provided that convenient smoothness assumptions
hold for cf and cb. In the next section we specify such smoothness conditions.

The upper bound (68) can be used to conclude that (67) holds. In fact, as

‖D−xcmf,h‖2
∞ ≤ 2

(
‖D−xEm

f,h‖2
∞ + ‖D−xRhcf(tm)‖2

∞

)
and

‖D−xEm
f,h‖2

∞ ≤
1

hmin
‖D−xEm

f,h‖2
+.

To conclude (67) we observe that, taking into account (68), we have succes-
sively

‖D−xEm
f,h‖2

∞ ≤
1

hmin∆t
∆t

m∑
j=1

‖D−xEj
f,h‖

2
+

≤ 1

hmin∆t

(
C1

(
∆t2 + h4

max

)
+ C2

(
‖E0

f,h‖2
h + ‖E0

b,h‖2
h

))
≤ C1

( ∆t

hmin
+

h4
max

hmin∆t

)
+

1

hmin∆t
C2

(
‖E0

f,h‖2
h + ‖E0

b,h‖2
h

)
.

Then, if
‖E0

f,h‖h ≤ Chpmax, ‖E0
b,h‖h ≤ Chpmax, (69)

for p = 1, 2, we conclude (67) provided that the spatial stepsizes sequence Λ
and the time stepsize ∆t satisfy

∆t

hmin
≤ CG,

h2p
max

hmin∆t
≤ CG, (70)

for ∆t and hmax small enough. In (70), CG is a positive constant h and ∆t
independent.

Finally, we can state that under the conditions (70), to have stability in

cmf,h ∈ Wh,0, c
m
b,h,∈ Ŵh, m = 1, . . . ,M, h ∈ Λ, it is enough to fix the initial

data c0
f,h ∈ Wh,0, c

0
b,h,∈ Ŵh, h ∈ Λ, satisfying (69). We observe that for p = 2

we relax the smoothness conditions on the time-space grid but we impose a
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more severe condition on the initial condition. If p = 1, we impose a more
restrictive condition on the time-space grid and we relax the condition for
the initial data.

3.2. Convergence for non smooth solutions. This section is focused in
the convergence analysis of the IMEX scheme (21)-(24). In the main result
of this paper, Theorem 2, we establish an upper bound for the error of the
numerical solution computed with such method.

Theorem 2. Let

cf ∈ C([0, T ], H3(Ω) ∩H1
0(Ω)) ∩ C2([0, T ], C(Ω)) ∩ C1(0, T,H2(Ω))

and cb ∈ C2([0, T ], C(Ω)) be solution of the IBVP (6)-(9), where D,F and
S satisfy the assumptions (HD0), (HD`), (HF`) and (HS`). For h ∈ Λ,

∆t ∈ (0,∆t0], let cmf,h ∈ Wh,0, c
m
b,h ∈ Ŵh, for m = 0, . . . ,M, be defined by

the IMEX scheme (21)-(24) with initial conditions c0
f,h ∈ Wh,0, c

0
b,h ∈ Ŵh.

Then, for the errors Em
f,h = Rhcf(tm)− cmf,h, Em

b,h = Rhcb(tm)− cmb,h, holds the
following

‖Em
f,h‖2

h +‖Em
b,h‖2

h + 2∆t(D0 − 5ε2)
(m−1∑

j=1

m∏
i=j+1

(1 + σ(i))‖D−xEj
f,h‖

2
+

+‖D−xEm
f,h‖2

+

)
≤

m∏
j=1

(1 + ∆tσ(j))
(
‖E0

f,h‖2
h + ‖E0

b,h‖2
h

)
+

∆t

1−∆t0 max{CF`
, 2CS`

}

(m−1∑
j=1

( m∏
i=j+1

(1 + ∆tσ(i))
)
T jh + Tmh

)
,

(71)
for m = 1, . . . ,M, h ∈ Λ and ∆t ∈ (0,∆t0]. In (71), σ(j) is defined by

σ(j) =
max{ 1

ε2C
2
D`
‖D−xRhcf(tj)‖2

∞, CF`
+ CS`

}+ max{CF`
, 2CS`

}
1−∆t0 max{CF`

, 2CS`
}

, (72)

ε 6= 0 is an arbitrary constant, ∆t0 is fixed by

1−∆t0 max{CF`
, 2CS`

} > 0, (73)
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the error term T jh is defined by

T jh = C
1

2ε2

N∑
i=1

h4
i

(
‖∂cf
∂t

(tj)‖2
H2(xi−1,xi)

+ ‖F (cf(tj), cb(tj))‖2
H2(xi−1,xi)

+‖cf(tj)‖2
H3(xi−1,xi)

)
+∆tC

∫ tj

tj−1

( 1

2ε2
‖Rh

∂2cf
∂t2

(s)‖2
h +

1

CS`

‖Rh
∂2cb
∂t2

(s)‖2
h

)
ds,

(74)

for j = 1, · · · ,m. In (74), C is a positive constant h and ∆t independent.

Proof: We start the proof remarking that we have

(D−tE
m
f,h, E

m
f,h)h = ((

∂cf
∂t

(tm))h, E
m
f,h)h − (D−tc

m
f,h, E

m
f,h)h + T

(1)
FD, (75)

where

T
(1)
FD = (D−tRhcf(tm)− (

∂cf
∂t

(tm))h, E
m
f,h)h.

We also have

(
∂cf
∂t

(tm))h, E
m
f,h)h = −((D(R̂hcf(tm))R̂h

∂cf
∂x

(tm), D−xE
m
f,h)+

+((F (Rhcf(tm), Rhcb(tm)))h, E
m
f,h)h

= −((D(Mxcf(tm−1))D−xRhcf(tm), D−xE
m
f,h)+

+(F (Rhcf(tm−1), Rhcb(tm−1)), E
m
f,h)h

+T
(2)
FD + T

(3)
FD,

(76)

where

T
(2)
FD = −(D(R̂hcf(tm))R̂h

∂cf
∂x

(tm), D−xE
m
f,h)+

+((D(Mxcf(tm−1))D−xRhcf(tm), D−xE
m
f,h)+

and

T
(3)
FD = ((F (Rhcf(tm), Rhcb(tm)))h − F (Rhcf(tm−1), Rhcb(tm−1)), E

m
f,h)h.
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Inserting (76) in (75) we obtain

(D−tE
m
f,h, E

m
f,h)h = −((D(Mxcf(tm−1))D−xRhcf(tm), D−xE

m
f,h)+

+((D(Mxc
m−1
f,h )D−xc

m
f,h, D−xE

m
f,h)+

+(F (Rhcf(tm−1), Rhcb(tm−1)), E
m
f,h)h − (F (cm−1

f,h , cm−1
b,h ), Em

f,h)h

+
3∑
`=1

T
(`)
FD.

(77)
From (77), considering the assumption (HD0), (HD`), (HF`), it can be

shown that

(1−∆tCF`
)‖Em

f,h‖2
h +2∆t(D0 − ε2)‖D−xEm

f,h‖2
+

≤ (1 + ∆t
1

2ε2
C2
D`
‖D−xRhcf(tm)‖2

∞)‖Em−1
f,h ‖

2
h

+∆tCF`
‖Em−1

b,h ‖
2
h + 2∆t

3∑
j=1

T
(j)
FD.

(78)

Furthermore, we also have

(1−∆tCS`
)‖Em

b,h‖2
h ≤ (1 + ∆tCS`

)‖Em−1
b,h ‖

2
h + 2∆tT

(4)
FD, (79)

with

T
(4)
FD = (D−tRhcb(tm)−Rh

∂cb
∂t

(tm−1), E
m
b,h)h.

From (78) and (79) we conclude

(1−∆tCF`
)‖Em

f,h‖2
h + (1−∆tCS`

)‖Em
b,h‖2

h + 2∆t(D0 − ε2)‖D−xEm
f,h‖2

+

≤
(

1 + ∆tmax{ 1

2ε2
C2
D`
‖D−xRhcf(tm)‖2

∞, CF`
+ CS`

}
)(

‖Em−1
f,h ‖2

h + |‖Em−1
b,h ‖2

h

)
+2∆t

4∑
j=1

T
(j)
FD.

(80)

In what follows we establish estimates for T
(j)
FD, j = 1, . . . , 4.

1. An estimate for T
(1)
FD : We observe that

D−tRhcf(tm)− (
∂cf
∂t (tm))h = D−tRhcf(tm)−Rh

∂cf
∂t (tm)

+Rh
∂cf
∂t (tm)− (

∂cf
∂t (tm))h,
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where, as in Proposition 3, we have

|(Rh
∂cf
∂t (tm)− (

∂cf
∂t (tm))h, E

m
f,h)h|

≤ C
( N∑

i=1

h4
i‖
∂cf
∂t

(tm)‖2
H2(xi−1,xi)

)1/2

‖D−xEm
f,h‖+,

(81)

for a positive constant C, h and t independent.
The following representation holds

D−tRhcf(xi, tm)− ∂cf
∂t

(xi, tm) =
1

∆t

(
ĝ(1)− ĝ(0)− ĝ′(1)

)
,

with ĝ(ξ) = cf(xi, tm−1 + ξ∆t). Let λ : W 2,1(0, 1)→ IR be defined by

λ(g) = g(1)− g(0)− g′(1), g ∈ W 2,1(0, 1).

As λ ∈ (W 2,1(0, 1))′ and λ(g) = 0 for g = 1, ξ, from Bramble-Hilbert lemma
we guarantee the existence of a positive constant Cλ such that

|λ(g)| ≤ Cλ

∫ 1

0

|g′′(ξ)|dξ, ∀g ∈ W 2,1(0, 1).

Consequently,

|D−tRhcf(xi, tm)− ∂cf
∂t

(xi, tm)| ≤ Cλ

∫ tm

tm−1

|∂
2cf
∂t2

(xi, ξ)|dξ

≤ Cλ
√

∆t
(∫ tm

tm−1

(∂2cf
∂t2

(xi, ξ)
)2
dξ
)1/2

that leads to

|(D−tRhcf(tm)− ∂cf
∂t (tm), Em

f,h)h|

≤ C
√

∆t
∥∥∥‖Rh

∂2cf
∂t2
‖L2((tm−1,tm))

∥∥∥
h
‖D−xEm

f,h‖+,
(82)

where C denotes a positive constant, h and t independent.
Finally, from (81), (82) we conclude

|T (1)
FD| ≤ C

1

4ε2

( N∑
i=1

h4
i‖
∂cf
∂t

(tm)‖2
H2(xi−1,xi)

+ ∆t

∫ tm

tm−1

‖Rh
∂2cf
∂t2

(s)‖2
hds
)

+2ε2‖D−xEm
f,h‖2

+,
(83)

where ε 6= 0 is an arbitrary constant and C is a positive constant, h and t
independent.
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2. An estimate for T
(2)
FD : As in Proposition 3 we have

|T (2)
FD| ≤ C

1

4ε2

N∑
i=1

h4
i‖cf(tm)‖2

H3(xi−1,xi)
+ ε2‖D−xEm

f,h‖2
+, (84)

where ε 6= 0 is an arbitrary constant and C is a positive constant, h and t
independent.

3. An estimate for T
(3)
FD : As in Proposition 4 we have

|T (3)
FD| ≤ C

1

4ε2

N∑
i=1

h4
i‖F (cf(tm), cb(tm))‖2

H2(xi−1,xi)
+ ε2‖D−xEm

f,h‖2
+, (85)

where ε 6= 0 is an arbitrary constant and C is a positive constant, h and t
independent.

4. An estimate for T
(4)
FD : Following the proof of (82) it can be shown that

|(D−tRhcb(tm)− ∂cb
∂t (tm), Em

b,h)h| ≤ C
√

∆t
∥∥∥‖Rh

∂2cb
∂t2
‖L2((tm−1,tm))

∥∥∥
h
‖Em

b,h‖h

≤ C∆t
1

4ε2

∥∥∥‖Rh
∂2cb
∂t2
‖L2((tm−1,tm))

∥∥∥2

h
+ ε2‖Em

b,h‖2
h,

where ε 6= 0 is an arbitrary constant. Fixing in the last upper bound ε2 =
CS`

2
,

we get

|(D−tRhcb(tm)− ∂cb
∂t (tm), Em

b,h)h| ≤ C∆t 1
2CS`

∥∥∥‖Rh
∂2cb
∂t2 ‖L2((tm−1,tm))

∥∥∥2

h

+
CS`

2 ‖E
m
b,h‖2

h,
(86)

where C denotes a positive constant, h and t independent.
Taking into account the upper bounds (83)-(86) in (80) we deduce

‖Em
f,h‖2

h + ‖Em
b,h‖2

h + 2∆t(D0 − 5ε2)‖D−xEm
f,h‖2

+

≤ (1 + ∆tσ(m)
)(
‖Em−1

f,h ‖
2
h + |‖Em−1

b,h ‖
2
h

)
+

∆t

1−∆tmax{CF`
, 2CS`

}
Tmh ,

(87)

with σ(m) and Tmh defined by (72) and (74), respectively. Finally, from (87)
we easily get (71).

Fixing ε and manipulating conveniently the upper bound (71) we obtain
the following corollary.
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Corollary 3. Under the assumptions of Theorem 2, there exist positive con-
stants C1 and C2, h and ∆t independent, such that

‖Em
f,h‖2

h+‖Em
b,h‖2

h+∆t
m∑
j=1

‖D−xEj
f,h‖

2
+ ≤ C1(∆t

2+h4
max)+C2

(
‖E0

f,h‖2
h+‖E0

b,h‖2
h

)
,

for m = 1, . . . ,M, h ∈ Λ and ∆t ∈ (0,∆t0], with ∆t0 fixed by (73).

4. Numerical experiments
In the first example of this section we illustrate our convergence results.

For the experiments we use the the fully discrete IMEX scheme (21)-(24).

Example 1. Let Ω = [0, 1] and t ∈ [0, 1]. We consider problem (6)-(9) with
S(cf , cb) = 2cfc

2
b, F (cf , cb) = c2

fcb, and D(cf) = 1 + c2
f , that is

∂cf
∂t

=
∂

∂x

(
(1 + c2

f)
∂cf
∂x

)
+ c2

fcb + gf

∂cb
∂t

= 2cfc
2
b + gb,

(88)

(89)

The functions gf and gb are defined such that the exact solution of the problem
is cf(x, t) = exp(t)|x− 0.5|α(x2 − x) and cb(x, t) = exp(t) sin(πx).

First we analyze the superconvergence error bound obtained in Corollary
3. To get the numerical rate of convergence in space we consider an initial
random mesh and successively halve the spatial step size. The time step is
chosen small enough (of the order of h2

max) so that the spatial error dominates
the time error. Following Corollary 3, the numerical error is measure by

Error2
h = max

m=1,...,M
‖Em

f,h‖2
h + ‖Em

b,h‖2
h + ∆t

m∑
k=1

‖D−xEm
f,h‖2

+

and the rate of convergence is computed by

Rateh = log2

(
Errorh
Errorh

2

)
.

When α = 3.1 we have cf(t) ∈ H3(Ω)∩H1
0(Ω) and the regularity conditions

of Theorem 2 are satisfied. That is not the case for α = 2.1, for which we
have cf(t) ∈ H2(Ω) ∩H1

0(Ω). The values of Errorh and Rateh given in Table
2 illustrate that the regularity conditions imposed on the continuous solution



FD-FE ANALYSIS OF A LIGHT-TRIGGERED DRUG DELIVERY MODEL 27

are sharp. We have second order convergence for α = 3.1 and only first order
convergence for α = 2.1.

N hmax Errorh Rateh
20 5.5249E-2 4.3243E-3 -
40 2.7625E-2 1.1690E-3 1.8872
80 1.3812E-2 2.9772E-4 1.9732
160 6.9061E-3 7.5112E-5 1.9868
320 3.4531E-3 1.8920E-5 1.9891

N hmax Errorh Rateh
20 5.8156× 10−2 1.4089× 10−2 -
40 2.9078× 10−2 7.9888× 10−3 0.8185
80 1.4539× 10−2 3.8829× 10−3 1.0409
160 7.2695× 10−3 1.8877× 10−3 1.0405
320 3.6347× 10−3 9.0150× 10−4 1.0663

Table 1. Numerical convergence rates in space for Example 1,
on the left α = 3.1 and on the right α = 2.1.

Now we analyze the time error bound obtained in Corollary 3. To get the
numerical rate of convergence in time we fix the spatial mesh (N = 320 and
hmax = 3.5648× 10−3 and successively halve the time step. We measure the
numerical error as

Error2
∆t = max

m=1,...,M
‖Em

f,h‖2
h + ‖Em

b,h‖2
h

and the rate of convergence is computed similarly as before. The results are
given in Table 2, and the first order convergence rate is in accordance with
Corollary 3.

∆t Error∆t Rate∆t

5.0000× 10−1 2.7196× 10−1 -
2.5000× 10−1 1.3394× 10−1 1.0218
1.2500× 10−1 6.6789× 10−2 1.0039
6.2500× 10−2 3.3355× 10−2 1.0017
3.1250× 10−2 1.6607× 10−2 1.0061

Table 2. Numerical convergence rate in time for Example 1
with α = 4.
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In the second example we illustrate the application of the motivational
model (1)-(5) to light-triggered drug delivery.

Example 2. This example is based on an experimental setup describe in
[16]. It consists of a PBS (Phosphate-buffered saline) solution containing
drug loaded light-sensitive hydrogels. To simulate this experiment we consider
the one-dimensional domain illustrated in Figure 1. Let us rewrite the model
equations for light intensity I, bounded drug cb and free drug cf

I(x) = I0 exp(−βx)

∂cf
∂t

=
∂

∂x

(
D
∂cf
∂x

)
+ φIcb

∂cb
∂t

= −φIcb,

in (0, 1)× (0, T ]. For this problem we use no-flux boundary conditions for cf ,

∂cf
∂x

(0, t) =
∂cf
∂x

(1, t) = 0,

and the following initial conditions cf(x, 0) = 0 and cb(x, 0) = 1, for x ≤ 0.25,
cb(x, 0) = 0, for x > 0.25. We denote by I0 the constant incident light inten-
sity, by β the attenuation coefficient, by φ the reaction rate parameter and
by D the free drug diffusion coefficient. For the simulations, the parameters
values were chosen empirically and for simplicity units are omitted. We are
only interested in the qualitative behavior, namely, normalized release rates.
In the following, the values φ = 4× 10−3 and β = 4 are fixed.

Controlled drug release is a key advantage of responsive drug delivery sys-
tem, and mathematical models can be useful to tune parameters in order to
obtain the desire release rate. Drug release rate can be controlled by several
factors, such as light intensity and hydrogel parameters. Here, we conduct
two experiments: in the first one, we fix D = 4× 10−4 and change the light
intensity I0 from 5 to 10 to 15; in the second one, we fix I0 = 10 and change
the drug diffusion coefficient D from 2 × 10−4 to 4 × 10−4 to 8 × 10−4. The
results are given in Figures 2 and 3, respectively. As expected, free drug cf
release rates increase with increasing light intensities I0 (Figure 2) and with
increasing drug diffusivity D (Figure 3).
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Figure 1. Computational 1D domain with bounded drug cb ini-
tial distribution, light source position and hydrogel in the PBS
solution.
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Figure 2. Free drug cf concentration (on the left) and normal-
ized release rate of free drug cf (on the right) for three different
values of incident light intensity I0. The other parameters are
fixed and equal to: D = 4× 10−4, β = 4 and φ = 4× 10−3.

Identical experiments were conducted in [16]: in one, the light intensity was
increased in the same proportion as in our simulation, and in the other, the
percentage of agarose in the hydrogel was changed. Higher agarose percent-
age means that the hydrogel pores are smaller and thus the drug release rate
is slower. In our simulation we change the drug diffusion coefficient D in the
same proportion to simulate the change in agarose content. A comparison
between experimental and simulated results is shown in Table 3. In partic-
ular, we compare the relative change in drug release rates at time t = 60.
We observe that the total average error is 11%, a relatively low value consid-
ering the model simplicity. We conclude that the model is able to describe
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Figure 3. Free drug cf concentration (on the left) and normal-
ized release rate of free drug cf (on the right) for three different
values of the drug diffusion rate D. The other parameters are
fixed and equal to: I0 = 10, β = 4 and φ = 4× 10−3.

cf Release Rate Parameter I0 Parameter D
Relative Change 5 10 15 2× 10−4 4× 10−4 8× 10−4

Experimental - +41% +103% - +57% +120%
Numerical - +61% +99% - +48% +109%

Table 3. Comparison between numerical and simulation results;
the values refer to relative change in drug release rates at time
t = 60. When I0 varies the other parameters are fixed and equal
to: D = 4 × 10−4, β = 4, and φ = 4 × 10−3. When D varies
the other parameters are fixed and equal to: I0 = 10, β = 4 and
φ = 4× 10−3.

important features of the problem and reveals a relatively good qualitative
agreement with experimental results.

5. Conclusion
In this work we consider a system of partial differential equations motivated

by a mathematical model for light-triggered drug delivery. We propose a fully
discrete FDM and we establish convergence estimates.

The first part of the paper is focused on the stability and convergence anal-
ysis of the space approximation. In the main convergence result - Theorem 1
- we establish a supra-superconvergence error bound in a discrete H1-norm.
We call this result a supra-superconvergence result because it can be seen in
the context of finite differences or finite elements. This result allows us to
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conclude the uniform boundedness required to have nonlinear stability of the
numerical solution. The second part of the paper is centered on the stability
and convergence analysis of a time and space fully discrete IMEX scheme.
Like in the semi-discrete case, nonlinear stability of the numerical solution is
conclude from the convergence error estimates established in the main result
of this paper - Theorem 2.

The included numerical experiments corroborate the error estimates and
show the sharpness of the regularity assumptions for the theoretical solu-
tions. Numerical comparisons with a laboratory experiment concerned with
light-triggered drug delivery are also presented. We compare numerical drug
release rates with experimental data for different light and drug parameters.
The results suggest that the model reproduces the qualitative behavior of the
experimental data. Mathematical models that give insight into the relation
between parameters and drug release rates are a valuable tool to optimize
therapeutic strategies.

The proposed light-triggered drug delivery model can be made more com-
plex. For instance, we could take into account the effect of hydrogel erosion
on light intensity attenuation and drug release. Other improvements are the
inclusion of the binding of free drug to the target tissue and the replace-
ment of the Beer-Lambert equation by the more accurate radiative transfer
equation. The analysis of such models is left for future work.
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