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A NEW DIAGONAL SEPARATION AND

ITS RELATIONS WITH THE HAUSDORFF PROPERTY

IGOR ARRIETA, JORGE PICADO AND ALEŠ PULTR

Abstract: Let P be a property of subobjects relevant in a category C. An object
X ∈ C is P-separated if the diagonal in X ×X has P; thus e.g. closedness in the
category of topological spaces (resp. locales) induces the Hausdorff (resp. strong
Hausdorff) axiom. In this paper we study the locales (frames) in which the diagonal
is fitted (i.e., an intersection of open sublocales – we speak about F-separated
locales). Recall that a locale is fit if each of its sublocales is fitted. Since this
property is inherited by products and sublocales, fitness implies (Fsep) which is
shown to be strictly weaker (one of the results of this paper). We show that (Fsep)
is in a parallel with the strong Hausdorff axiom (sH):

(1) it is characterized by a Dowker-Strauss type property of the combinatorial
structure of the systems of frame homomorphisms L → M (and therefore, in par-
ticular, it implies (TU ) for analogous reasons like (sH) does), and

(2) in a certain duality with (sH) it is characterized in L by all almost homo-
morphisms (frame homomorphisms with slightly relaxed join-requirement) L→M
being frame homomorphisms (while one has such a characteristic of (sH) with weak
homomorphisms, where meet-requirement is relaxed).

Keywords: Frame, locale, sublocale, preframe, preframe homomorphism, weak
homomorphism, binary coproduct of frames, diagonal map, strongly Hausdorff
frame, fit frame, TU -frame, simple extension.
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Introduction

Recall that the Hausdorff property of a topological space X is characterized
by closedness of the diagonal in X×X. This is a general phenomenon, the so
called P-separation (see [14, 3, 5], and also [18]): Given a property relevant
in the category in question (typically of a topological nature), an object X
is P-separated if the diagonal in X × X has the property P . Besides the
Hausdorff property in classical spaces, relevant examples for P are e.g. the
strong Hausdorff axiom in the category of locales (introduced by Isbell [9]),
or the Boolean property in the same category (see [13, 18]). For a general
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treatment of separation on categories with closure operator see [4] and the
references there.

In the context of locales (frames) there is an important property of fittedness.
A sublocale (generalized subspace) of a locale is fitted if it is an intersection of
open ones. Since the intersection S◦ =

⋂
{T |S ⊆ T, T open} is an operation

of closure type (see [6]), it is natural to ask about fitted diagonals; we will
speak of the property (Fsep) or of the F -separated locales (frames). The
study of this property is the main topic of this paper.

A well-known (and relatively well-understood) property of a locale (frame)
is the fitness ([9]). A locale is fit if each of its sublocales is fitted. Taking
into account the fact that fitness is preserved under products and sublocales,
we have an immediate observation that (fit) implies (Fsep). Hence the first
question one may ask is whether this implication can be reversed (it cannot;
(Fsep) is strictly weaker than fitness, which is one of the results we present).

There are two pleasant parallels of F (“diagonal is fitted”) and the strong
Hausdorff property (sH) (“diagonal is closed”). Dowker and Strauss proved
in [7] that (sH) of a frame L can be characterized as the fact that a certain
equivalence ∼0 of frame homomorphisms h, k : L → M is trivial for any
M (and, interestingly, ∼0 has nothing to do with products). We prove that,
similarly, there is an equivalence h ∼q k of homomorphisms (again, unrelated
to products) such that L is F -separated iff for all frame homomorphisms
h, k : L → M , h ∼q k only if h = k. Since both ∼0 and ∼q are (trivially)
implied by h ≤ k we obtain as a consequence that both (sH) and (Fsep)
imply the standard axiom TU (a fact well-known for (sH), of course).

Another parallel concerns relaxed forms of frame homomorphisms. A weak
homomorphism preserves all joins and zero meets (x ∧ y = 0) and an almost
homomorphism preserves finite meets, directed joins and covers (

∨
xi = 1).

It is known that a frame L is (sH) iff it is TU and each weak homomorphism
L → M is a frame homomorphism ([2, 17]). Here we prove that a frame
L is (Fsep) iff it is TU and each almost homomorphism L → M is a frame
homomorphism.

The paper is organized as follows. After Preliminaries (divided into two
sections, the first containing general notions and terminology, the second
discussing some more specific facts) we prove, in Section 3, a technical char-
acterization of (Fsep). In the next section we prove the Dowker-Strauss type
characterization, and Section 5 is devoted to the characterization by almost
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homomorphisms. In the last section we prove that (Fsep) is strictly weaker
than fitness, and that it does not coincide with any of the three standard
axioms weaker than fitness: subfitness, weak subfitness and prefitness.

1. Preliminaries I: General

1.1. We will use the standard notation for posets; in particular we will write
for subsets A ⊆ (X,≤)

↓A = {x | ∃a ∈ A, x ≤ a}, ↓a = ↓{a},

↑A = {x | ∃a ∈ A, x ≥ a}, ↑a = ↑{a},
and speak of the A with ↓A = A resp. ↑A = A as of down-sets resp. up-
sets. Our posets will be typically complete lattices; the suprema (joins) of
subsets will be denoted by

∨
A,
∨
i∈J ai, a ∨ b etc., and infima (meets) by∧

A,
∧
i∈J ai, a ∧ b etc.

1.2. Adjoint maps. Recall that monotone maps f : X → Y , g : Y → X are
(Galois) adjoint, f to the left and g to the right, if f(x) ≤ y iff x ≤ g(y).
We write f a g, g = f∗, f = g∗.

If f a g then f (resp. g) preserves all the existing suprema (resp. infima)
and on the other hand,

1.2.1. if X, Y are complete lattices then an f : X → Y preserving all
suprema (a g : Y → X preserving all infima) has a right (left) adjoint.

1.3. Heyting algebras. A bounded lattice L is called a Heyting algebra if
there is a binary operation x → y (the Heyting operation) such that for all
a, b, c in L,

a ∧ b ≤ c iff a ≤ b→ c. (Hey)

Thus

(H1) for every b ∈ L the mapping b → (−) : L → L is a right adjoint to
(−) ∧ b : L→ L

and hence → , if it exists, is uniquely determined. From 1.2 it immediately
follows that

(H2) in a complete Heyting algebra one has (
∨
A)∧b =

∨
a∈A(a∧b) for any

A ⊆ L, b→ (
∧
A) =

∧
a∈A(b→ a), and (

∨
A)→ b =

∧
a∈A(a→ b).
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1.3.1. From (Hey) we immediately obtain

(1) a ≤ b→ a, (2) 1→ a = a, (3) a→ b = 1 iff a ≤ b,
(4) a ∧ (a→ b) ≤ b and consequently (using (1)) a ∧ (a→ b) = a ∧ b,
(5) a ≤ b→ c iff b ≤ a→ c.
And also the three further useful rules are very simple.
(6) a→ (b→ c) = (a ∧ b)→ c = b→ (a→ c)
(we have x ≤ a→ (b→ c) iff x∧a ≤ b→ c iff x∧a∧b→ c iff x ≤ (a∧b)→ c).
(7) a→ b = a→ c iff a ∧ b = a ∧ c
(⇒ by (4), ⇐: By (3) and (H2), a→ b = (a→ a)∧ (a→ b) = a→ (a∧ b) =
a→ (a ∧ c) = a→ c).
(8) x = (x ∨ a) ∧ (a→ x)
(by (H1), (4) and (1), (x∨ a)∧ (a→ x) = (a∧ (a→ x))∨ (x∧ (a→ x)) ≤ x;
by (1), x ≤ (x ∨ a) ∧ (a→ x)).

1.4. Frames and preframes. A frame is a complete lattice L satisfying
the distributivity law

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A} (frm)

for all A ⊆ L and b ∈ L (hence a complete Heyting algebra); a frame
homomorphism preserves all joins and all finite meets. In a preframe only
directed joins are required, and the distributivity (frm) is assumed on those;
preframe homomorphisms preserve all directed joins and all finite meets.

The lattice Ω(X) of all open subsets of a topological space X is an example
of a frame, and if f : X → Y is continuous we obtain a frame homomorphism
Ω(f) : Ω(Y ) → Ω(X) by setting Ω(f)(U) = f−1[U ]. Thus we have a con-
travariant functor

Ω: Top→ Frm

from the category of topological spaces into that of frames.
Since frames are complete, the equality (frm) makes by 1.2.1 every frame

a Heyting algebra.

Note. In this paper we will work almost exclusively with frames, but pre-
frame homomorphisms between frames will play a crucial role.

1.5. The concrete category of locales. The functor Ω from 1.4 is on a
very substantial subcategory of Top (that of sober spaces∗) a contravariant

∗A space is sober if every completely prime filter F in Ω(X) (that is, an F such that
⋃

i∈J Ui ∈ F
only if Uj ∈ F for some j ∈ J) is {U |x ∈ U} for some x ∈ X – in other words, if every system of
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full embedding. This justifies to view the dual category Loc = Frmop as an
extended category of spaces; one speaks of the category of locales.

It is of advantage to view it as a concrete category representing frame
homomorphisms h : M → L by their right adjoints f = h∗ : L → M (recall
1.2.1). In this context we often speak of frames as of locales and of the meet
preserving maps f : L→M adjoint to frame homomorphisms as of the localic
maps.

1.5.1. Here is a useful characterization (the so called Frobenius equality):

a meet preserving f : L→M is a localic map iff f(a) = 1 only
for a = 1, and f(f ∗(a)→ b) = a→ f(b).

1.5.2. Sublocales. The sublocales, subobjects of L in Loc, are the S ⊆ L
such that

(S1) for every M ⊆ S,
∧
M ∈ S, and

(S2) for every x ∈ L and every s ∈ S, x→ s ∈ S
(they are precisely the subsets constituting locales with the embedding maps
extremal monomorphisms in Loc). The nucleus associated with a sublocale
S is the mapping νS : L→ L defined by νS(a) =

∧
{s ∈ S | a ≤ s}.

Any intersection of sublocales is a sublocale so that we have a complete
lattice S(L) of sublocales of L with the join given by the formula

∨
i∈J Si =

{
∧
M |M ⊆

⋃
i∈J Si}. One has that

S(L) is a coframe,

that is, a complete lattice with the distributivity dual to (frm) above.

Each element a ∈ L is associated with a closed sublocale c(a) and an open
sublocale o(a),

c(a) = ↑a and o(a) = {x ∈ L | a→ x = x} = {a→ x |x ∈ a}

(the equivalence of the two expressions for o(a) immediately follows from
1.3.1(6)). These special sublocales extend the concepts of open and closed
subspaces, and behave as they should: in Ω(X) they precisely correspond
to the homonymous subspaces, they are complements of each other, all joins
and finite meets of open sublocales are open, and similarly with finite joins
and general meets of closed sublocales.

open sets that looks like a neighborhood system is really a neighborhood system of a point. For
instance every Hausdorff space is sober.
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1.5.3. Other special sublocales we will be concerned with are

the fitted ones, the intersections of open ones.

Recall that a frame L is said to be fit if each sublocale of L is fitted ([9]).

1.6. Images and preimages. If f : L→M is a localic map and if S ⊆ L is
a sublocale then the standard set-theoretical image f [S] is also a sublocale.
The set preimage f−1[T ] of a sublocale T ⊆M is generally not one, but it is
a subset closed under meets and hence (recall the formula for

∨
i Si in S(L)

above) we have the sublocale

f−1[T ] =
∨
{S |S ∈ S(L), S ⊆ f−1[T ]},

the localic preimage of T under f . One has the adjunction

f [S] ⊆ T iff S ⊆ f−1[T ],

and f−1[−] : S(M)→ S(L) is a coframe homomorphism.

1.6.1. (Localic) preimages of open resp. closed sublocales are open resp.
closed and one has

f−1[o(a)] = o(f ∗(a)) and f−1[c(a)] = f−1[c(a)] = c(f ∗(a)).

1.7. Binary coproduct in Frm. We will need the following facts.

• In the category of bounded semilattices the cartesian product with
the injections and projections as in

Li
ι′i // L1 × L2

((a1,a2)7→aj)
// Lj ,

with ι′1 = (a 7→ (a, 1)) and ι′2 = (a 7→ (1, a)), constitutes a biproduct
(easy to check).
• A quotient of a frame L by a (congruence induced by a) relation R

can be obtained as L/R = {s ∈ L | s is R-saturated} where s is R-
saturated if for all a, b, c, aRb ⇒ (a ∧ c ≤ s iff b ∧ c ≤ s), and that
a homomorphism h : L→ M such that aRb⇒ h(a) = h(b) factorizes
to h : L/R→M by taking the restriction (see e.g. [15, III.11]).

1.7.1. The down-set frame. For a bounded meet semilattice L consider

D(L) = ({U | ∅ 6= U = ↓U, U ⊆ L},⊆)

with λL = (a 7→ ↓a) : L→ D(L). Obviously,

D(L) is a frame, and λ is a semilattice homomorphism.

One has
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Proposition. For each semilattice homomorphism h : L → M into a frame
M there is precisely one frame homomorphism h̃ : D(L) → M such that

h̃ · λ = h. It is given by the formula h̃(U) =
∨
{h(a) | a ∈ U}.

1.7.2. The coproduct L1 ⊕ L2 of frames L1, L2 can now be obtained as
D(L1 × L2)/R with injections

ιi = Li
ι′i // L1 × L2

λ // D(L1 × L2) // D(L1 × L2)/R = L1 ⊕ L2

where the relation R is

R = {(
⋃
i∈J
↓(ai, b), ↓(

∨
i∈J

ai, b)) | ai ∈ L1, b ∈ L2} ∪

∪ {(
⋃
i∈J
↓(a, bi), ↓(a,

∨
i∈J

bi)) | a ∈ L1, bi ∈ L2}

so that R-saturated U ∈ D(L1 × L2) are precisely the down-sets such that
for any (ai, b), i ∈ J , in U we have (

∨
i ai, b) ∈ U , and for any (a, bi), i ∈ J ,

in U also (a,
∨
i bi) ∈ U .

In particular there are the R-saturated

a⊕ b = ↓(a, b) ∪ {(x, y) |x = 0 or y = 0}.

In this notation obviously ι1(a) = a⊕1, ι2(b) = 1⊕b, U =
∨
{a⊕b | a⊕b ⊆ U}

for all U ∈ L1⊕L2, and if a, b 6= 0 and a⊕ b ⊆ a′⊕ b′ then a ≤ a′ and b ≤ b′.

1.7.3. Thus, the codiagonal frame homomorphism δL : L⊕ L→ L satisfies
δ(a⊕ b) = δ(a⊕ 1) ∧ δ(1⊕ b) = a ∧ b and hence

δ(U) =
∨
{a ∧ b | a⊕ b ⊆ U} =

∨
{a ∧ b | (a, b) ∈ U}.

Consequently, the adjoint localic diagonal map (δL)∗ : L → L ⊕ L and the
diagonal sublocale are given by

δ∗(a) = {(u, v) |u ∧ v ≤ a}, DL = δ∗[L].

2. Preliminaries II: Some more special facts

2.1. The coproduct as tensor product. 1. In the category
∨

Lat of
complete lattices with join-preserving mappings one has a tensor product
L ⊗M coinciding for L,M frames with the coproduct L ⊕M ([13], for a
pedestrian description see the appendix [17]). For our purposes we will just
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need the fact that if Li, Mi, i = 1, 2, are frames and fi : Li → Mi are join
preserving maps then there is precisely one join-preserving

f1 ⊕ f2 : L1 ⊕ L2 →M1 ⊕M2

determined by

(f1 ⊕ f2)(a1 ⊕ a2) = f1(a1)⊕ f2(a2).

2. Similarly in the category of preframes and preframe homomorphisms
([12, 19]) there is a tensor product L

&

M generated by a

&

b that can be
represented for L,M frames as the coproduct L⊕M setting

a

&

b = (a⊕ 1) ∨ (1⊕ b) (2.1.1)

which can be easily seen to be reversed as

a⊕ b = (a

&

0) ∧ (0

&

b) [12, 19]. (2.1.2)

For our purposes we will just need the fact that if Li, Mi, i = 1, 2, are frames
and fi : Li → Mi are preframe homomorphisms then there is precisely one
preframe homomorphism

f1

&

f2 : L1

&

L2 →M1

&

M2

determined by

(f1

&

f2)(a1

&

a2) = f1(a1)

&

f2(a2).

2.2. P-separation. Let P be a property of monomorphisms in a category C
with pullbacks and binary products. Recall that we speak of P being pullback
stable if in every pullback

P

m′

��

f ′
// C

m

��

A
f

// B

with m a P-monomorphism, m′ is a P-monomorphism.
If the diagonal ∆B : B → B × B has the property P we say that B is
P-separated (according to [5]).
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2.2.1. In the category Loc the pullback along the diagonal appears in this
context as

f−1[DM ]

g

��

j=⊆
// L

f

��

DM
⊆

// M ⊕M

and one checks easily that f−1[DM ] = equ(f1, f2) where pif = fi in M ⊕M
viewed as product (see [18]).

2.2.2. (P)-separatedness in Loc appeared as the (strong) Hausdorff prop-
erty (sH) introduced by Isbell in [9], requiring closed diagonals; in [13] the
case of Boolean ones was discussed (also see an analysis of such facts in [18]).
In this paper we are concerned with the case of fitted diagonals; we will speak
of

property F , and F-separated frames (locales).

As mentioned in [18, 2.4], it follows from the properties of preimage that
fittedness is a pullback stable property. As a consequence, the full subcat-
egory of F -separated locales has good categorical behaviour. Indeed, from
general categorical results for P-separatedness ([5, Cor. 4.3]) (or alterna-
tively from Theorem 4.5 below) it follows that property F is closed under all
monomorphisms and limits.

2.3. Simple extensions. For a space Y and a subspace X ⊆ Y one defines

E = EX,Y

changing the topology of Y to {(U∩X)∪M |U ∈ Ω(Y ),M ⊆ Y rX,M ⊆ U}.

2.3.1. In [1] it was proved a. o. that

if Y is a regular space and both X and Y rX are dense in Y
then EX,Y is strongly Hausdorff but not fit.

(For (sH) and fitness recall 2.2.2 and 1.5.3; for more details see [17].)
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3. A technical characterization of (Fsep)

3.1. Recall from 1.7.3 the diagonal localic map in Loc adjoint to the diag-
onal homomorphism

δL = (U 7→
∨

(a,b)∈U
a ∧ b) : L⊕ L→ L

in Frm, and the diagonal sublocale

DL = (δL)∗[L].

For f1, f2 : M → L in Loc denote by 〈f1, f2〉 : M → L ⊕ L the localic map
defined by pi〈f1, f2〉 = fi. Thus, in Frm,

〈f1, f2〉∗ιi = f ∗i and hence 〈f1, f2〉∗(U) =
∨
{f ∗1 (a) ∧ f ∗2 (b) | (a, b) ∈ U}.

We immediately obtain

3.2. Observations. 1. If fi ≤ gi then 〈g1, g2〉∗(U) ≤ 〈f1, f2〉∗(U).
2. 〈p1, p2〉∗(U) = U .
3. 〈f1g, f2g〉∗(U) = g∗〈f1, f2〉∗(U),
4. o(〈f, g〉∗(U)) = 〈f, g〉−1[o(U)].
5. o(〈f, f〉∗(U)) = f ∗(δL(U)).

3.3. Since one has (recall 2.2.1)

equ(f, g) = 〈f, g〉−1[DL]

we have in an F -separated L

equ(f, g) =
⋂
{o(〈f, g〉∗(U)) |DL ⊆ o(U)}.

3.3.1. Observation. For a localic f : M → L one has f [M ] ⊆ o(a) iff
f ∗(a) = 1. (Indeed, f [M ] ⊆ o(a) iff M ⊆ f−1[o(a)] = o(f ∗(a)) iff f ∗(a) = 1.)

In particular, one has

DL ⊆ o(U) iff δL(U) = 1. (3.3.1)

3.4. As is well known (see e.g. [5, 4.3]), P-separatedness is equivalent to
the fact that every equalizer is closed (for the closure operator induced by
property P). By the formula in 3.3, the closure of the equalizer is the identity,
hence

Theorem. A frame L is F-separated iff

〈f, g〉∗(U) = 1 for all U with DL ⊆ o(U) ⇒ f = g.
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3.4.1. Note. This result also follows directly from 3.3 and Observation 3.3.1
above. Clearly, if L is F -separated and 〈f, g〉∗(U) = 1 for all U such that
DL ⊆ o(U), then equ(f, g) =

⋂
{o(〈f, g〉∗(U)) |DL ⊆ o(U)} = o(1). For the

converse, it suffices to check that the condition makes

j :
⋂
{o(U) |DL ⊆ o(U)} ⊆ L⊕ L

the equalizer of p1, p2. We have by 3.2, 〈p1j, p2j〉∗(U) = j∗〈p1, p2〉∗(U) =
j∗(U) for all U . If o(U) ⊇ DL we have j[

⋂
{o(V ) |DL ⊆ o(V )}] ⊆ o(U)

and hence, by 3.3.1, 〈p1j, p2j〉∗(U) = j∗(U) = 1, Thus, p1j = p2j. Now if
p1f = p2f and DL ⊆ o(U) we have by (2), (3) and (5) in 3.2 and (3.3.1),
f ∗(U) = 〈p1f, p2f〉∗(U) = (p1f)∗(δL(U)) = 1 and hence f [M ] ⊆ o(U) for any
such U , and finally f [M ] ⊆

⋂
{o(V ) |DL ⊆ o(V )}.

4. A Dowker-Strauss type characterization

4.1. A frame L satisfies TU (TU for totally unordered [11]; in [10] one speaks
of unordered locales) if for any M and any frame homomorphisms h, k : L→
M ,

h ≤ k ⇒ h = k. (TU)

4.1.1. Frame homomorphisms h, k : L→M are connected if there is a frame
homomorphism h′ such that

h ≥ h′ ≤ k.

We have a trivial

4.1.2. Observation. A frame L satisfies (TU) if and only if no distinct
frame homomorphisms h, k : L→M are connected.

4.2. Frame homomorphisms h, k : L → M are said to respect covers if for
every cover C of L, ∨

c∈C
h(c) ∧ k(c) = 1.

We have an obvious

4.2.1. Observation. If frame homomorphisms are connected then they re-
spect covers.

4.3. Lemma. 1. For a U ∈ L⊕ L set Û = {a ∧ b | (a, b) ∈ U}. Then

〈f, g〉∗(U) ≥
∨
{f ∗(c) ∧ g∗(c) | c ∈ Û}.
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2. For a subset C ⊆ L define C̃ =
∨
{a⊕ a | a ∈ C}. Then

〈f, g〉∗(C̃) =
∨
{f ∗(a) ∧ g∗(a) | a ∈ C}.

Proof : 1 is trivial.
2: If (x, y) ∈ C̃, that is, x⊕ y ≤ C̃ we have

f ∗(x) ∧ g∗(y) = δM((f ∗ ⊕ g∗)(x⊕ y)) ≤ δM((f ∗ ⊕ g∗)(
∨
{a⊕ a | a ∈ C})) =

=
∨
{δM((f ∗ ⊕ g∗)(a⊕ a)) | a ∈ C} =

∨
{f ∗(a) ∧ g∗(a) | a ∈ C},

hence 〈f, g〉∗(C̃) ≤
∨
{f ∗(a) ∧ g∗(a) | a ∈ C}. The inequality ≥ is trivial.

4.4. Lemma. 〈f, g〉∗(U) = 1 for all U with DL ⊆ o(U) iff f ∗ and g∗ respect
covers.

Proof : ⇒: If C is a cover then obviously δL(C̃) = 1, hence o(C̃) ⊇ DL and∨
{f ∗(a) ∧ g∗(a) | a ∈ C} = 〈f, g〉∗(C̃) = 1 by 4.3.2.

⇐: If DL ⊆ o(U) then δL(U) = 1, that is, Û is a cover, hence
∨
{f ∗(c) ∧

g∗(c) | c ∈ Û} = 1, and 〈f, g〉∗(U) = 1 by 4.3.1.

As an immediate consequence we obtain

4.5. Theorem. A frame satisfies (Fsep) if and only if no distinct frame
homomorphisms h, k : L→M respect covers.

From 4.1.1 and 4.2.1 we now obtain an immediate

4.5.1. Corollary. Every F-separated frame satisfies (TU).

4.6. Notes. In [7], Dowker and Strauss proved the following characterization
of the strong Hausdorff property.

4.6.1. Theorem. A frame satisfies (sH) if and only if no distinct frame
homomorphisms h, k : L→M satisfy the implication

x ∧ y = 0 ⇒ h(x) ∧ k(y) = 0. (DSeq)

Note that

• (DSeq) immediately follows from h ≤ k and hence (sH) implies (TU),
• and that, although the definitions of (sH) and (Fsep) are based on co-

product in Frm, the characterizations in 4.5 and 4.6.1 do not concern
coproduct at all.
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In the next section we will present another parallel characterizations of (sH)
and (Fsep) concerning relaxed homomorphisms between frames combined
with (TU).

5. Another parallel with (sH):
relaxed homomorphisms

5.1. Almost homomorphisms and the property (A). A mapping
h : L→M between frames is an almost homomorphism if

(1) it is a preframe homomorphism,
(2) h(0) = 0, and
(3) if

∨
C = 1 in L then

∨
h[C] = 1.

We say that a frame L satisfies (A) if every almost homomorphism h : L→M
is a frame homomorphism.

Note. There is a similar (already established [2]) property (W) from with
which it will be in a certain parallel.

5.2. Proposition. For frames satisfying (A), h, k are connected iff they re-
spect covers.

Proof : Let h, k : L→M respect covers. Consider the mapping

h ∧ k = (a 7→ h(a) ∧ k(a)) : L→M.

It obviously preserves 0 and finite meets. Next, if A ⊆ L is directed then

(h∧k)(
∨
A) =

∨
{h(a)∧k(b) | a, b ∈ A} =

∨
{(h∧k)(c) = h(c)∧k(c) | c ∈ A}

because for any two a, b ∈ A there is a c ∈ A with c ≥ a, b. Thus, h ∧
k is a preframe homomorphism preserving 0. Since h, k respect covers it
satisfies (3) in 5.1, hence it is an almost homomorphism, and by (A) a frame
homomorphism. As h ≥ h ∧ k ≤ k, h and k are connected.

5.3. Recall from Section 2 the role of the frame coproduct as a tensor
product in the category of preframes (as in [12, 19]). We will be using the

f

&

f : L

&

L→M

&

M

determined by a preframe homomorphism f : L→M between frames L,M .



14 I. ARRIETA, J. PICADO AND A. PULTR

5.4. Lemma. Define κL : L⊕ L→ L⊕ L by setting

κL(U) =
∨
{V → U |DL ⊆ o(V )}.

Then
1. κL is a prenucleus with κL(U) = U iff U ∈

⋂
{o(V ) |DL ⊆ o(V )}, and

2. if a preframe homomorphism φ : L⊕L→M⊕M satisfies the implication

DL ⊆ o(V ) ⇒ DM ⊆ o(φ(V ))

then

φκL ≤ κMφ.

Proof : 1. Obviously κL is monotone and by the standard Heyting fact that
U ≤ V → U , U ≤ κL(U), and U = κL(U) iff for all V with DL ⊆ o(V ) we
have U = V → U , that is, U ∈ o(V ).

2. The join
∨
{V → U |DL ⊆ o(V )} is obviously directed and hence

φκL(U) = φ(
∨

DL⊆o(V )

(V → U)) =
∨

DL⊆o(V )

φ(V → U) ≤

(∗)
≤

∨
DL⊆o(V )

(φ(V )→ φ(U)) ≤
∨

DM⊆o(W )

(W → φ(U)) = κMφ(U)

where the inequality (∗) holds by (4) in 1.3.1 and because φ preserves finite
meets.

5.5. Lemma. Let f : L→M be an almost homomorphism. Then

DL ⊆ o(V ) ⇒ DM ⊆ o((f

&

f)(V )).

Proof : By (3.3.1) we have to prove that if {a∧ b | (a, b) ∈ V } is a cover of L,
then {u ∧ v | (u, v) ∈ (f

&

f)(V )} is a cover of M .
We have by (2.1.2)

(f

&

f)(a⊕ b) = (f

&

f)((a

&

0)∧ (0

&

b)) = (f(a)

&

0)∧ (0

&

f(b)) = f(a)⊕ f(b)

and hence for every (a, b) ∈ V (that is, a ⊕ b ⊆ V ) we have f(a) ⊕ f(b) =
(f

&

f)(a⊕ b) ⊆ (f

&

f)(V ), that is, (f(a), f(b)) ∈ (f

&

f)(V ). Thus,∨
{u ∧ v | (u, v) ∈ (f

&

f)(V )} ≥
∨
{f(a) ∧ f(b) | (a, b) ∈ V } =

=
∨
{f(a ∧ b) | (a, b) ∈ V } =

∨
f [{a ∧ b | (a, b) ∈ V }] = 1

since f preserves covers.



A NEW DIAGONAL SEPARATION PROPERTY 15

5.6. Lemma. Let ν resp. µ be the nuclei associated with
⋂
DL⊆o(V ) o(V ) resp.⋂

DM⊆o(V ) o(V ). If f : L→M is an almost homomorphism then

µ(f

&

f)ν = µ(f

&

f).

Proof : By 5.4.2 we have (f

&

f)κL ≤ κM(f

&

f). By 5.4.1, κL resp. κM are
prenuclei generating ν resp. µ. Recall 5.4: by transfinite induction (using
(κK)α+1(U) = κK(κK)α(U) and (κK)α(U) =

∨
β<α(κK)β(U) for limit α) we

get (f

&

f)ν ≤ µ(f

&

f). Finally

µ(f

&

f)ν ≤ µµ(f

&

f) = µ(f

&

f) ≤ µ(f

&

f)ν.

5.7. Lemma. If L is F-separated then ν(a

&

b) = ν((a ∨ b)

&

0).

Proof : If L is F -separated then
⋂
DL⊆o(V ) o(V ) = DL, hence ν = αδL for an

isomorphism α, and hence it suffices to prove that δ(a

&

b) = δ((a∨b)

&

0). By
(2.1.1) we have δ(a

&

b) = δ((a⊕1)∨(1⊕b)) = a∨b = δ(((a∨b)⊕1)∨(1⊕0)) =
δ((a ∨ b)

&

0).

5.8. Proposition. If L is F-separated then each almost homomorphism
f : L→M is a frame homomorphism.

Proof : We will prove that f preserves finite joins.
DM is a sublocale of

⋂
DM⊆o(V ) o(V ) = DL so that there is a frame homo-

morphism β such that δM = βµ. From 5.6 and 5.7 we now obtain

f(a) ∨ f(b) = δM((f(a)⊕ 1) ∨ (1⊕ f(b)) = βµ(f(a)

&

f(b)) =

= βµ(f

&

f)(a

&

b) = βµ(f

&

f)ν(a

&

b) = βµ(f

&

f)ν((a ∨ b)

&

0) =

= βµ(f

&

f)((a ∨ b)

&

0) = δM(f(a ∨ b)

&

f(0)) =

= δM((f(a ∨ b)⊕ 1) ∨ (1⊕ 0)) = f(a ∨ b).

5.9. Theorem. L is F-separated if and only if it is TU and each almost
homomorphism f : L→M is a frame homomorphism.

Proof : ⇒ is in 5.8 and 3.4.
⇐ follows from 5.2 and 3.4: if h, k respect covers then by 5.2 they are

connected and by (TU), h = k.

Note. It follows in particular from 5.9 that every fit frame has property
(A). It might be worth showing that the proof of the corresponding fact for
regular frames is much easier. Recall that a frame L is regular whenever
a =

∨
{b ∈ L | b ≺ a} for any a ∈ L (where b ≺ a ≡ b∗ ∨ a = 1). Let
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h : L→M be an almost homomorphism. Since any join can be computed as
a directed join of finite joins and h(0) = 0, it suffices to check that h preserves
binary joins. Let a, b ∈ L and x, y ∈ L such that x ≺ a and y ≺ b. Then
h(x∨y) ≤ h(a)∨h(b). Indeed, for any c, d ∈ L such that c∧x = 0, c∨a = 1,
d∧ y = 0 and d∨ y = 1, we have (c∧ d)∨ (a∨ b) ≥ (c∨ a)∧ (d∨ b) = 1 thus
h(c ∧ d) ∨ h(a) ∨ h(b) = 1 (since h preserves that kind of joins). Hence

h(x ∨ y) = h(x ∨ y) ∧ (h(c ∧ d) ∨ h(a) ∨ h(b))

= (h(x ∨ y) ∧ h(c ∧ d)) ∨ (h(x ∨ y) ∧ (h(a) ∨ h(b)))

≤ h(0) ∨ h(a) ∨ h(b) = h(a) ∨ h(b).

Finally, since {x∨ y | x ≺ a, y ≺ b} is a directed set and a∨ b = (
∨
x≺a x)∨

(
∨
y≺b b) =

∨
{x ∨ y | x ≺ a, y ≺ b} (by regularity), we get

h(a ∨ b) =
∨
{h(x ∨ y) | x ≺ a, y ≺ b} ≤ h(a) ∨ h(b).

5.10. Weak homomorphisms. Let L,M be frames. A weak homomor-
phism ([2]) h : L→M is a mapping such that

(1) h(
∨
A) =

∨
h[A] for all A ⊆ L, and

(2) x ∧ y = 0 implies h(x) ∧ h(y) = 0, h(1) = 1.

A frame L satisfies (W) if

every weak homomorphism h : L → M is a frame homomor-
phism.

In [2] there was proved (implicitly, see also [17]), this time using the fact that
L ⊕M is a tensor product in the category of

∨
-lattices (recall [13], see 2.1

above) that

Theorem. L is strongly Hausdorff if and only if it is TU and each weak
homomorphism f : L→M is a frame homomorphism.

5.10.1. Note. The parallel of ((Fsep)≡ (A)&(TU)) and ((sH)≡ (W)&(TU)),
and also a certain complementarity of (W) relaxing the meet part of frame
homomorphism while (A) relaxing the join one is in fact deeper.

The crucial lemma for 5.9 was that

ν◦(a

&

b) = ν◦((a ∨ b)

&

0)

(the role of the subscript ◦ will be apparent shortly) and it was instrumental
for proving that h preserved binary joins. In [2] the crucial lemma was that
(a⊕ b) ∨ dL = ((a ∧ b)⊕ 1) ∨ dL where dL =

∧
DL, instrumental for proving
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that h preserved binary meets. Now realize that (−) ∨ dL is the nucleus ν−
associated with the closure DL that is, with the intersection of all closed
sublocales containing DL, hence it amounted to

ν−(a⊕ b) = ν−((a ∧ b)⊕ 1).

In the equality above we have the nucleus associated with the “other closure”
(DL)◦ (see [6]), the intersection of all open sublocales containing DL, another
link between the two results.

There are, of course, differences necessarily preventing something like full
duality between the facts: The whole situation is non-symmetric (biased in
the direction of joins, the two closures are both intersections, albeit of dually
connected entities, and the two tensor products are also not quite so closely
linked (⊗ follows the construction generating ⊕ everywhere, and a ⊗ b are
quite like a ⊕ b,

&

coincides with ⊕ for frames, and has to be specially
represented).

6. (Fsep) is strictly weaker than fitness

6.1. Recall that elements a, b of a distributive lattice L are normally sepa-
rated ([2]) if

∃u, v, u ∧ v = 0, a ≤ u ∨ b and b ≤ a ∨ v.
Dually, we say that elements a, b are extremally separated if

∃u, v, u ∨ v = 1, a ∧ v ≤ b and u ∧ b ≤ a.

Dualizing Proposition 3.2 from [2] we get

6.1.1. Lemma. Let L,M be distributive lattices. Then an h : L → M pre-
serving meets, finite covers and 0, preserves joins of extremally separated
elements.

Proof : Since h(u) ∨ h(v) = 1, we have

h(a)∨h(b) ≥ h((a∨b)∧u)∨h((a∨b)∧v) = h(a∨b)∧(h(u)∨h(v)) = h(a∨b)
and the other inequality is trivial.

6.1.2. Notes. Elements a, b of a frame L are extremally separated if and
only if

(a→ b) ∨ (b→ a) = 1. (∗)
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It is straightforward to check that every pair in L is extremally separated if
and only if L is hereditarily extremally disconnected ([8]), i.e. iff every closed
sublocale of L is extremally disconnected. It then follows from 6.1.1 that
every hereditarily extremally disconnected frame has property (A). Indeed,
if h is an almost homomorphism, it will be a frame homomorphism iff it
preserves binary joins (as arbitrary joins are directed joins of finite joins).

6.2. We will consider a simple extension E = EX,Y (recall 2.3) with X dense
in Y .

6.2.1. Lemma. Let M,N ⊆ Y r X be disjoint. Then X ∪M and X ∪ N
are extremally separated in Ω(E).

Proof : We check (∗) for a = X ∪M and b = X ∪N . We have

(X ∪M)→ (X ∪N) = intE((X ∪N) ∪ (X ∪M)c)

= intE((X ∪N) ∪ ((Y rX) ∩ (Y rM)))

= intE(X ∪N ∪ (Y rM)) = intE(X ∪ (Y rM))

(by disjointness). Now X ∪ (Y rM) is open in E (X∪ anything is open),
so (X ∪M)→ (X ∪N) = X ∪ (Y rM). Similarly (X ∪N)→ (X ∪M) =
X ∪ (Y rN) and hence

[(X∪M)→ (X∪N)]∪[(X∪N)→ (X∪M)] = X∪(Y rN)∪(Y rM) = Y.

6.2.2. Lemma. If h : Ω(E)→ L is an almost homomorphism, then for any
M,N ⊆ Y rX, h(X ∪M) ∨ h(X ∪N) = h(X ∪M ∪N).

Proof : h(X∪M∪N) = h(X∪M∪(NrM)) = h(X∪M)∨h(X∪(NrM)) ≤
h(X ∪M)∨ h(X ∪N) by 6.2.1 and 6.1.1. The other inequality is trivial.

6.2.3. Lemma. Let Ω(Y ) satisfy (A) and let h : Ω(E) → M be an almost
homomorphism. Let U1, U2 ∈ Ω(E) with U, V ∈ Ω(Y ) and M ⊆ U ∩(Y rX),
N ⊆ V ∩ (Y rX) such that U1 = (U ∩X) ∪M and U2 = (V ∩X) ∪N . If,
moreover

U ∩N ⊆M and V ∩M ⊆ N,

then h(U1 ∪ U2) = h(U1) ∨ h(U2).

Proof : We can write U1 = U ∩ (X ∪M) and U2 = V ∩ (X ∪ N) with the
advantage that U, V,X ∪M,X ∪N are all open in Ω(E). Now

h(U1 ∪ U2) = h((U ∪ V ) ∩ (X ∪ (M ∪N)))

= h(U ∪ V ) ∧ h(X ∪ (M ∪N)). (∗)
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((U ∪ V ) and (X ∪ (M ∪N)) are in Ω(E) and h preserves ∧). Now, consider
the subframe embedding ι : Ω(Y ) ⊆ Ω(E). The composite h ◦ ι : Ω(Y )→M
is obviously an almost homomorphism and Y satisfies (A), hence it is a frame
homomorphism. Thus h(U ∪ V ) = h(U) ∨ h(V ). Moreover, by 6.2.2 we also
have h(X ∪ (M ∪N)) = h(X ∪M) ∨ h(X ∪N). Following (∗) we get

h(U1 ∪ U2) = (h(U) ∨ h(V )) ∧ (h(X ∪M) ∨ h(X ∪N))

=
(
h(U) ∧ h(X ∪M)

)
∨
(
h(U) ∧ h(X ∪N)

)
∨
(
h(V ) ∧ h(X ∪M)

)
∨
(
h(V ) ∧ h(X ∪N)

)
= h(U1) ∨ h(U ∩ (X ∪N)) ∨ h(V ∩ (X ∪M)) ∨ h(U2).

Now since U ∩ N ⊆ M , we have U ∩ (X ∪ N) = (U ∩ X) ∪ (U ∩ N) ⊆
(U ∩ X) ∪M = U1, and similarly, V ∩ (X ∪M) ⊆ U2, and the statement
follows.

6.2.4. Lemma. Let Ω(Y ) satisfy (A) and let Y be T1. Furthermore, let
h : Ω(E) → M be an almost homomorphism and let U1, U2 ∈ Ω(E) with
U, V ∈ Ω(Y ) and M ⊆ U ∩ (Y r X), N ⊆ V ∩ (Y r X) such that U1 =
(U ∩X) ∪M and U2 = (V ∩X) ∪N . Moreover, assume that M and N are
finite.

Then h(U1 ∪ U2) = h(U1) ∨ h(U2).

Proof : Decompose Ui = U ′i ∪ U ′′i , i = 1, 2 with

U ′1 = (U ∩X) ∪ (M ∩N), U ′2 = (V ∩X) ∪ (M ∩N),

U ′′1 = (U ∩X) ∪ (M rN), U ′′2 = (V ∩X) ∪ (N rM).

Obviously M ∩N ⊆ U ∩ V , M rN ⊆ U and N rM ⊆ V and hence “they
are in their typical form” so U ′i , U

′′
i ∈ Ω(E). Now

h(U1 ∪ U2) = h
(
(U ∪ V ) ∩

(
X ∪ (M ∩N) ∪ (M rN) ∪ (N rM)

))
= h(U ∪ V ) ∧

(
h(X ∪ (M ∩N)) ∨ h(X ∪ (M rN) ∪ (N rM))

)
= h(U ′1 ∨ U ′2) ∨ h(U ′′1 ∨ U ′′2 )

where we have used 6.2.2 and the fact that h preserves meets. Now since
U ′1 ≤ U1, U

′
2 ≤ U2, U

′′
1 ≤ U1 and U ′′2 ≤ U2, it suffices to show that

h(U ′1 ∨ U ′2) = h(U ′1) ∨ h(U ′2) and h(U ′′1 ∨ U ′′2 ) = h(U ′′1 ) ∨ h(U ′′2 ).

The first follows from 6.2.3 since U ′1, U
′
2 clearly satisfy the additional condition

in the statement.
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For the latter note that we can write

U ′′1 = ((U rN) ∩X) ∪ (M rN) and U ′′2 = ((V rM) ∩X) ∪ (N rM)

(the equalities simply follow because N ∩X = ∅ = M ∩X). Moreover, since
N and M are finite and Y is T1, then U r N, V r M ∈ Ω(Y ). Now we
see that U ′′1 , U

′′
2 also satisfy the additional condition in 6.2.3 and the result

follows.

6.3. Theorem. Let Y be a T1-space satisfying (A). Then E = EX,Y also
satisfies (A).

Proof : Let h : Ω(E) → M be an almost homomorphism. We will show that
it preserves binary joins. Let U1 = (U ∩X)∪M and U2 = (V ∩X)∪N with
U, V ∈ Ω(Y ), M ⊆ U ∩ (Y rX) and N ⊆ V ∩ (Y rX). Then

h(U1 ∪ V1) = h
( ⋃
F∈Pf (M), G∈Pf (N)

((U ∩X) ∪ F ) ∪ (V ∩X) ∪G
)

=
∨

F∈Pf (M), G∈Pf (N)

h
(
((U ∩X) ∪ F ) ∪ ((V ∩X) ∪G)

)
=

∨
F∈Pf (M), G∈Pf (N)

h((U ∩X) ∪ F ) ∨ h((V ∩X) ∪G)

≤ h(U1) ∨ h(U2),

by 6.2.4 and the fact that the union is directed.

As a consequence we now obtain from the result of Banaschewski [1] pre-
sented in 2.3.1 that

6.4. Theorem. There exists a strongly Hausdorff F-separated spatial frame
which is not fit.

6.5. (Fsep) and conditions akin to fitness. Since we know that, for
trivial reasons fitness implies (Fsep) we have now learned that

fitness is strictly stronger than (Fsep).

This solves Problem 3 of [18, 2.7] in the negative.
The question naturally arises what is the relation of (Fsep) to other of-

ten used properties strictly weaker than fitness. In particular there is the
subfitness (arguably even more important than fitness itself)

a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c (sfit)
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or the weaker weak subfitness

a 6= 0 ⇒ ∃c 6= 1, a ∨ c = 1 (wsfit)

or, finally, the prefitness

a 6= 0 ⇒ ∃c = c∗∗ 6= 1, a ∨ c = 1. (pfit)

6.5.1. Note. The formula for prefitness looks deceptively similar to that of
weak prefitness. In fact it is quite a strong property (although strictly weaker
than fitness), incomparable with subfitness ([16, 17]).

6.5.2. Proposition. None of the properties (sfit), (wsfit) or (pfit) coincides
with (Fsep).

Proof : None of them is hereditary while each (P)-separation is even closed
under all monomorphisms ([5, 18]).
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