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ABSTRACT: For a complete and cocomplete monoidal-closed category V and a
Set-monad T suitably extended to V-Rel, we show that the category of (T, V)-
categories and (7', V)-functors is infinitary extensive.
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1. Introduction

The introduction of (7', V)-categories in [7] — as both a generalization of
Eilenberg-Moore algebras and enriched categories — led mostly to the study
of topological aspects of these structures in the particular case when V is a
thin category (see e.g. the monograph [10]). Much less is known in the case
of a general monoidal-closed category V, although it includes as examples of
(T, V)-categories Lambek’s multicategories, Burroni’s T-categories [3], and
Hermida’s generalized multicategories when V = Set [8, 9] (as a bridge
between the quantalic and the categorical examples see also [5]).

In this note, generalizing Mahmoudi-Schubert-Tholen’s proof [12], we show
that, for a complete, cocomplete, symmetric monoidal-closed category V,
the category (7, V)-Cat of (T, V)-categories and (7', V)-functors is infini-
tary extensive, proving that (7, V)-Cat has coproducts and pullbacks along
coproduct injections, and that coproducts are universal and disjoint.

2. The setting
Throughout this paper we use essentially the setting of [7]; that is,

(1) V is a (non-degenerate) complete, cocomplete, symmetric monoidal-
closed category, with tensor product ® and unit I.
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We make use of the bicategory V-Rel (or Mat(V): see [2], [13]), whose ob-
jects are sets, arrows (=1-cells) r: X—— Y are families of V-objects r(z,y),
forz € X,y € Y,ie. functorsr: X xY — V (where X and Y are considered
as discrete categories), and 2-cells ¢: r = 1’ are families of V-morphisms
Ouy: T(x,y) = r'(z,y), i.e. natural transformations ¢: r = r'.

Transposition of V-relations defines a pseudo-involution: the transpose
r°: Y —— X of r: X——Y is defined by r°(y,z) = r(x,y). The category Set
of sets embeds naturally into V-Rel: if f: X — Y is a map, as a V-relation
f: X——=Y is defined by f(z,y) =1 if z =y and f(x,y) = 0 otherwise. Its
transpose f° is a right adjoint to f; we will denote the unit and the counit
of this adjunction by A¢: 1x = f°f and ps: ff° = 1y, respectively.

(2) (T, m,e) is a Set-monad with an extension (T, m,e) to V-Rel.

More precisely, T: V-Rel — V-Rel is a lax functor which extends the given
Set-functor, with given natural and coherent 2-cells x5, T's - Tr — T'(s -
r), for V-relations r: X——=Y, s: Y——= Z; the 2-cells k;, are isomorphisms
whenever r is a Set-map (and therefore also when s° is a Set-map), and
(Tf)° =T(f°). The functor T extends to 2-cells functorially, and m and e
become oplax natural transformations, with given «,. and 5,, for r: X—+—Y
a V-relation, as in the diagrams:

X -=7X TTX 2 TX
réf TN iTr TT% g }Tr
Y ——TY TTY —TY
such that
X -2 71Xx X -2 7X
|2
Y —ev= TYE pT(sr) = sy 48T 1T(sr)
| s
7 —=T7 Z—=TZ

€z €z
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72X 2. TXx 72X ™. TXx
T2r‘\; % ‘t‘TT T2( )
T?Y -mys T}g T(sr) = T26. T2y :"> Bs-r T(sr)
T25J[ 65; J[Ts
TX xS TX TX L TX TX xS TX
TTJ[ OZ_JT,TQTJ[:%) J[Tr = T7$ = iTr = $4$ Br $
TY —T?Y —TY TY —TY TY—>T2Y—>TY
ery my 1 Tey my
T3X I e Xy T3x DX e Xy
T3r$ 6T7§ T?*FJ[ ﬂr; J[Tr — T3TJ[ § $ BT; iTT
T —T%Y —TY TY —T% ——TY
Tmy

(For the pointwise version of these conditions see [7, Section 3].) We point
out that here, as well as in the remaining text, no coherence issues occur
since in each composition of V-relations at most two of them are not maps.

In addition to the conditions of [7], we assume throughout that:

(3) the initial object O of V is strict;

(4) the Set-functor T is taut, that is, it preserves pullbacks along monomor-
phisms (which is in fact weaker than the Beck-Chevalley condition
usually assumed in this context);

(5) ksyp: Ts-Tr —T(s-r) is an isomorphism when s is a Set-map.

3. The category (7T, V)-Gph

A (T, V)-graph is a pair (X, a) where X is a set and a: TX—— X a V-

relation. (For r € TX and = € X, we will sometimes denote a(g,x) by
X(z,x) a la Lawvere [11]). A morphism between two (T, V)-graphs (X, a),



4 M.M. CLEMENTINO

(Y,b) is given by amap f: X — Y and a 2-cell p: f-a =0 -Tf:

rx Ly
Jd o
P
X ——Y
f
Given a map f: X — Y, there are several different ways of defining the
morphism structure on f; indeed, any of the 2-cells

(®1) pp: f-a=b-Tf,

(®2) ofra= f°-b-TFf,

(®3) @y a-(Tf) = f°-0,
defines a morphism (f,¢¢). Each of these three descriptions can be stated
pointwise. We present the one we will use mostly:

(@) VreTX, xeX  X(ra) =Y (T/@). /().
The following diagrams show how ¢ and @y may be obtained from ;.

TY
(Tf)OJV[ &

rx L1y TX 7/~ TY

7 a% LINRY b ai LIy
_f_> —fa-

%o \;ffo

Definition 3.1. A morphism (f, ¢¢): (X,a) = (Y,b) is said to be

(1) fully faithful it ¢ is pointwise an isomorphism;
(2) an embedding if f is injective and fully faithful;
(3) open if oy is pointwise an isomorphism.

(Although not used throughout, we mention that f is said to be proper if
is pointwise an isomorphism.)

The lax functor T: V-Rel — V-Rel induces an endofunctor
T: (T, V)-Gph — (T, V)-Gph,
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with T( (X, a) —(fep)— (Y,0) ) = (TX,Ta) (r1Ttep)~ (TY,T) ), where

—1
Toy K,y

T(b-Tf)

p— K,f_’a

T(pf): Tf-Ta = T(f-a)

— Th-T?f.
Lemma 3.2. The functor T: (T,V)-Gph — (T, V)-Gph preserves fully
faithful morphisms, embeddings, open and proper morphisms.

Proof: Straightforward. |
The following result was essentially proved in [6].
Theorem 3.3. The category (T, V)-Gph is complete and cocomplete. ]

We point out that in [6] by (T, V)-graph we meant reflexive (T, V)-graph.
Here we do not assume reflexivity a priori. It is important to recall that in
(T, V)-Gph limits and colimits are built as in Set, with a (7, V)-structure
built pointwise as a limit in V. That is, given a functor J: D — (T, V)-Gph

(with D small), where J( D —f~D") = ( (Xp,ap) —(fep—~ (Xp,ap) ),

one equips the limit in Set ( L -mo- Xp )p with the structure defined, for
each y € T'L, x € L, by the limit in V of J.,: D — V, where

¢r

Jeol D=L D) = ((Xp(Trp(x), 7p(2))

Xp(Trp(x), mp(2)) ).
Colimits are constructed analogously.
We recall the infinitary version of Proposition 2.14 of [4]:

Proposition 3.4. A category with coproducts and pullbacks along coproduct
injections is infinitary extensive if, and only if, coproducts are universal and
disjoint.

We recall that a coproduct (op: X — Xp)pep is said to be universal if,
when pulling back along any morphism f: Y — X, the diagram

Yp 2oy (3.1)

o |

XD?X
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is a coproduct diagram, i.e. (Yp LN Y)p is a coproduct, for every D € D;

the coproduct (X 2 Xp)p is disjoint if, for every D, D" € D with D # D',
the pullback of Xp -op= X <op- Xy is the initial object.

In order to show that (7, V)-Gph is infinitary extensive, we revisit in
particular the construction of coproducts and pullbacks.

The coproduct of a family (Xp,ap)pep is given by (X,a) with X the
disjoint union of the sets Xp, with inclusions op: Xp — X, and

- XD(P,.%') ifreTXp, xe Xp

X 7) = { 0 otherwise
(where, for simplicity, we consider that the injective map Top is an inclu-
sion). With ¢p =id: op-ap = a-Top, (op,¢p): (Xp,ap) — (X, a) are
morphisms of (7, V)-graphs, and it is easily checked that they have the co-
product universal property. The coproduct of the empty family, that is, the
initial object in (T, V)-Gph is the empty set with the trivial (T, V)-graph
structure.

The description of the (7, V)-graph structure of the coproduct gives us
immediately the following result:

Proposition 3.5. Let (Xp,ap)p be a family of (T,V)-graphs and
(cp: Xp — X)p a coproduct in Set. For a (T,V)-graph (X,a), the fol-
lowing assertions are equivalent.

(i) (ep,¢p): (Xp,ap) — (X, a) is a coproduct in (T, V)-Gph.

(ii) Fach (op,vp) is an open embedding. _

Given morphisms (X, a) —f— (Y, b) <9— (Z,¢) of (T, V)-graphs, their pull-
back is the pullback in Set

X xy Z -7 (3.ii)
S
X Y

f
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and, for each w € T(X xy Z), (x,2) € X xy Z, (X xy Z)(w, (x, 2)) and @,
and ¢, are given by the pullback in V

Pry

(X xy Z)(ro, (x, 2)) Z(Tmo (1), 2) (3.iii)

on | | 2

X(Tm (), z)

of

Lemma 3.6. (1) Both fully faithful morphisms and embeddings are stable
under pullback.
(2) Open embeddings are pullback-stable.

Proof: 1. In diagrams (3.ii) and (3.iii) above, assume that f is fully faithful.
If f is injective, then my is injective; pointwise @, is defined as the pullback
of an isomorphism, therefore both fully faithful morphisms and embeddings
are stable under pullback.

2. Now let f: (X,a) — (Y,b) be an open embedding. Then, for each

DeETY, z€X, (a-(Tf))(y,z) — (f°-b)(y,z) , that is,

DT )=y X (&, ) Y (v, f(x)) is an isomorphism.

With f also T'f is injective, and therefore this isomorphism translates to

Y(y, f(z) = { X(x, f(x)) ify="Tf(r)

0 otherwise.

To show that 79 is an open embedding, let 3 € TZ and (x,2) € X Xy Z.
If 3 = Tmy(to) for some w € T(X xy Z), then we already know that
(X xy Z)(r,(z,2)) = Z(3,2); otherwise, since T preserves the pullback
(3.i), T'g(3) is not in the image of T'f, and therefore Y (7Tg(3),9(2)) = 0.
Since 0 is a strict initial object of V| we may conclude that Z(3,2) =0. =

Theorem 3.7. The category (T, V)-Gph is infinitary extensive.

Proof: (T, V)-Gph is complete, and so in particular it has finite limits.
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Let ( (Xp,ap) —= (X,a) )p be a coproduct in (T, V)-Gph. Given a mor-
phism f: (Y,b) — (X, a) in (T, V)-Gph, form the pullback of op along f:

(YD; bD) i (Y7 b)

| |/

(XD,CLD) e (X, a).

0D

/

Then, due to extensivity of Set, ( Yp vy )p is the coproduct in Set;
together with pullback stability of open embeddings, using Proposition 3.5

one concludes that ( (Yp,bp) 5, (Y,b) )p is a coproduct in (T, V)-Gph,
that is, coproducts are universal.

To check that they are also disjoint, let Xp -op> X <op- X be distinct
coproduct injections. Since coproducts in Set are disjoint, their pullback is

the empty set with the only possible (T, V)-graph structure, that is, it is the
initial object of (T, V)-Gph. |

4. (T, V)-Cat is infinitary extensive

A (T, V)-category is a (T, V)-graph (X, a) equipped with two additional
natural transformations

Ta

X X 71X TX L T12X

NN
1 :>

X XL TX

providing a generalized monad structure on a; that is,

TX X 72X TX —TX TX
mx | Tex
a$ % JV[TN 1@1"(@116)(&
X—~TX fo TX = af = tfa = TX <—T°X
U $ { 0 Lm
x // of Moy |my
X X ——X X <+ TX

(4.i)
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and
T3x L2y X
T?ﬁ ﬂ a }Txmf T% a)\wzx
72X - TX Fo TX = T2X &, ~ T2X 2XTX
T% LN Jy[a/\a/ \ Tamsx) }a
TX —— X X

(4.11)
Given two (T, V)-categories (X, a), (Y, b), a (T, V)-functor (f,¢s): (X,a) =
(Y,b) isamap f: X — Y together with a natural transformation

Tx Ty
| L
X——Y

— i.e. it is a morphism in (7, V)-Gph — preserving the generalized monad
structures on a and b:

X%TXT—JLTY XLY%TY (4.ii)
=1, ¢ _ =
NG TN gL
X——Y %
7
and
2 2
Tex T ey T°X r

N =N\ e

. o /\
\/S”f/ N E\/

(4.iv)

(For the pointwise version of these equalities see [7, Section 4].)

Examples 4.1. As shown in [7], when V = Set and T is the free-monoid
Set-monad naturally extended to Set-Rel, (7, V)-Cat is the category of
multicategories. Furthermore, when 7' is the ultrafilter monad on Set and
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V = {0 < 1} or V is the half-real line ¢ la Lawvere, then (7, V)-Cat is,
respectively, the category of topological spaces (Barr [1]) and the category of
Lowen’s approach spaces. (For more examples see [7].)

Proposition 4.2. (T, V)-Cat has coproducts and they are preserved by the
forgetful functor (T, V)-Cat — (T, V)-Gph.

Proof: Let (Xp,ap)pep be a family of (T, V)-categories, and (X, a) their
coproduct in (7, V)-Gph as built in Section 3; that is, X is the disjoint
union of the sets Xp, with inclusions op: Xp — X, and, for each r € T'X and
x € Xp, X(zr,x) = Xp(rp,x) if there is rp € T Xp such that Top(rp) =1,
and X (g, ) = 0 otherwise. Hence, we can define 7,, for each = € Xp, as:

Nap

na(x,z): I — Xp(ex,(x),z) = X(ex(z),x) .
In order to define, for each X € T?X,r € TX, x € Xp,
fo: TX(X,1) @ X(xr,2) — X(mx(X),2) ,

we observe that Top is also an open embedding. If ¢t = Top(rp) and
X = T2O'D(%D), then TX(:{,;) & X(;,x) = TXD(%D,gD) 039 XD(Q:D,.%'),
amx(X),z) = ap(mx,(Xp),r), and define p, = pg,. Otherwise,
TX(X,r) ® X(z,x) = 0 and p, is trivial. From the way 7, and pu, were
defined we conclude that:

— the equalities of diagrams (4.i) and (4.ii) follow from the corresponding
equalities for n,, and pg,;

— this way op becomes a (T, V)-functor for every D, and, moreover, this
is the only (7, V)-category structure on the (7', V)-graph (X, a) that
makes op a (T, V)-functor;

— (op: (Xp,ap) — (X,a))p is a coproduct in (7, V)-Cat, and, as in
(T, V)-Gph, the coproduct injections are open embeddings.

m
Lemma 4.3. If (Y,b) is a (T, V)-category and (f,¢5): (X,a) = (Y.,b) is

an embedding in (T, V)-Gph, then (X, a) has a (T, V)-category structure so
that (f,¢y) is a (T, V)-functor.

Proof: With f, also T'f is an embedding in (7, V)-Gph. Hence we may
consider that both f and T'f are inclusions, and the isomorphisms of ($4)
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read, for every X € T?°X,r € TX, z € X, as
TX(X,r) =2 TY(X,r), and X(x,7) = Y(r, ).

Defining 7, and p, as (co)restrictions of 7, and py, the equalities of diagrams
(4.1) and (4.ii) for (X, a) follow immediately from the corresponding equalities
for (Y, ).

The equalities of diagrams (4.iii) and (4.iv) follow by similar arguments,
taking into account that both f and 7'f are inclusions, and therefore (f, ¢y)
is a morphism in (7, V)-Cat as claimed. m

Proposition 4.4. (T, V)-Cat has pullbacks along embeddings and they are
preserved by the forgetful functor (T, V)-Cat — (T, V)-Gph.

Proof: Let (X, a), (Y,b), (Z,c) be (T, V)-categories, and (f,¢y): (X,a) —
(Y,b) and g: (Z,¢) — (Y,b) be (T, V)-functors, with f an embedding. Form
their pullback (3.i1)-(3.iii) in (7, V)-Gph. Since 7 is an embedding, by
the lemma above X Xy Z has a (T, V)-category structure induced by the
one of (Z,c) which makes my a (T, V)-functor. Moreover, 7 is nothing but
a restriction and a corestriction of the (7', V)-functor g, hence it is also a
(T, V)-functor. The universal property of the pullback follows easily from
the universal property of the diagram when considered in (7, V)-Gph and
the fact that m is an embedding. |

Theorem 4.5. The category (T, V)-Cat is infinitary extensive.

Proof: We make use again of Proposition 3.4. Propositions 4.2 and 4.4 assure
that (7, V)-Cat has coproducts and pullbacks along coproduct injections.
Given diagrams (3.i) in (7', V)-Cat, we know that ( Yp 2oy ) is a coprod-
uct in (7, V)-Gph and that each o7, is an open embedding in (7', V)-Cat.
Hence, from Proposition 4.2 (and its proof) we conclude that Y, as a (T, V)-

category, must have the structure that makes ( Yp oy ) a coproduct in

(T, V)-Cat.

Finally, from Proposition 4.4 it follows that coproducts in (T, V)-Cat are
disjoint. ]
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