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1. Introduction
The introduction of (T,V)-categories in [7] – as both a generalization of

Eilenberg-Moore algebras and enriched categories – led mostly to the study
of topological aspects of these structures in the particular case when V is a
thin category (see e.g. the monograph [10]). Much less is known in the case
of a general monoidal-closed category V, although it includes as examples of
(T,V)-categories Lambek’s multicategories, Burroni’s T -categories [3], and
Hermida’s generalized multicategories when V = Set [8, 9] (as a bridge
between the quantalic and the categorical examples see also [5]).

In this note, generalizing Mahmoudi-Schubert-Tholen’s proof [12], we show
that, for a complete, cocomplete, symmetric monoidal-closed category V,
the category (T,V)-Cat of (T,V)-categories and (T,V)-functors is infini-
tary extensive, proving that (T,V)-Cat has coproducts and pullbacks along
coproduct injections, and that coproducts are universal and disjoint.

2. The setting
Throughout this paper we use essentially the setting of [7]; that is,

(1) V is a (non-degenerate) complete, cocomplete, symmetric monoidal-
closed category, with tensor product ⊗ and unit I.
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We make use of the bicategory V-Rel (or Mat(V): see [2], [13]), whose ob-
jects are sets, arrows (=1-cells) r : X−→7 Y are families of V-objects r(x, y),
for x ∈ X, y ∈ Y , i.e. functors r : X×Y → V (where X and Y are considered
as discrete categories), and 2-cells ϕ : r =⇒ r′ are families of V-morphisms
ϕx,y : r(x, y)→ r′(x, y), i.e. natural transformations ϕ : r =⇒ r′.

Transposition of V-relations defines a pseudo-involution: the transpose
r◦ : Y−→7 X of r : X−→7 Y is defined by r◦(y, x) = r(x, y). The category Set
of sets embeds naturally into V-Rel: if f : X → Y is a map, as a V-relation
f : X−→7 Y is defined by f(x, y) = I if x = y and f(x, y) = 0 otherwise. Its
transpose f ◦ is a right adjoint to f ; we will denote the unit and the counit
of this adjunction by λf : 1X =⇒ f ◦f and ρf : ff ◦ =⇒ 1Y , respectively.

(2) (T,m, e) is a Set-monad with an extension (T,m, e) to V-Rel.

More precisely, T : V-Rel→ V-Rel is a lax functor which extends the given
Set-functor, with given natural and coherent 2-cells κs,r : Ts · Tr → T (s ·
r), for V-relations r : X−→7 Y , s : Y−→7 Z; the 2-cells κs,r are isomorphisms
whenever r is a Set-map (and therefore also when s◦ is a Set-map), and
(Tf)◦ = T (f ◦). The functor T extends to 2-cells functorially, and m and e
become oplax natural transformations, with given αr and βr, for r : X−→7 Y
a V-relation, as in the diagrams:

X
eX //

_r
��

TX
_ Tr
��

TTX
mX //

_TTr
��

TX
_ Tr
��

Y eY
//

αr=⇒
TY TTY mY

//

βr
=⇒

TY

such that

X
eX //

_r
��

TX

` T (s·r)κs,r
=⇒
~~

_ Tr
��

X
eX //

_s·r

��

TX

_ T (s·r)

��

Y

αr=⇒
eY //

_s
��

TY
_ Ts
��

Z

αs=⇒
eZ
// TZ

=

Z

αs·r=⇒

eZ
// TZ
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T 2X
mX //

_
T 2r

��

TX

` T (s·r)κs,r
=⇒

~~

_ Tr
��

T 2X

]
T 2s·T 2r

κ⇒

��

mX //

_
T 2(s·r)

��

TX

_ T (s·r)

��

T 2Y

βr
=⇒
mY //

_
T 2s

��

TY
_ Ts
��

T 2Z

βs
=⇒
mZ

// TZ

=

T 2Z

βs·r
=⇒

mZ

// TZ

TX
eTX//

_Tr
��

T 2X
mX //

_
T 2r
��

TX
_ Tr
��

TX
1 //

_Tr
��

TX
_ Tr
��

TX
TeX//

_Tr
��

T 2X
mX //

_
T 2r
��

TX
_ Tr
��

TY eTY
//

αTr=⇒
T 2Y mY

//

βr
=⇒

TY

=

TY

=

1
// TY

=

TY
TeY

//

Tαr=⇒
T 2Y mY

//

βr
=⇒

TY

T 3X
mTX //

_
T 3r

��

T 2X
mX //

_
T 2r
��

TX
_ Tr
��

T 3X
TmX //

_
T 3r

��

T 2X
mX //

_
T 2r
��

TX
_ Tr
��

T 3Y mTY

//

βTr=⇒
T 2Y mY

//

βr
=⇒

TY

=

T 3Y
TmY

//

Tβr
=⇒

T 2Y mY

//

βr
=⇒

TY

(For the pointwise version of these conditions see [7, Section 3].) We point
out that here, as well as in the remaining text, no coherence issues occur
since in each composition of V-relations at most two of them are not maps.

In addition to the conditions of [7], we assume throughout that:

(3) the initial object 0 of V is strict ;
(4) the Set-functor T is taut, that is, it preserves pullbacks along monomor-

phisms (which is in fact weaker than the Beck-Chevalley condition
usually assumed in this context);

(5) κs,r : Ts · Tr → T (s · r) is an isomorphism when s is a Set-map.

3. The category (T,V)-Gph
A (T,V)-graph is a pair (X, a) where X is a set and a : TX−→7 X a V-

relation. (For x ∈ TX and x ∈ X, we will sometimes denote a(x, x) by
X(x, x) à la Lawvere [11]). A morphism between two (T,V)-graphs (X, a),
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(Y, b) is given by a map f : X → Y and a 2-cell ϕf : f · a =⇒ b · Tf :

TX
Tf
//

_a
��

TY
_ b
��

X
f

//

ϕf
=⇒

Y

Given a map f : X → Y , there are several different ways of defining the
morphism structure on f ; indeed, any of the 2-cells

(Φ1) ϕf : f · a =⇒ b · Tf ,
(Φ2) ϕ̃f : a =⇒ f ◦ · b · Tf ,
(Φ3) ϕ̂f : a · (Tf)◦ =⇒ f ◦ · b,

defines a morphism (f, ϕf). Each of these three descriptions can be stated
pointwise. We present the one we will use mostly:

(Φ4) ∀x ∈ TX, x ∈ X X(x, x)
ϕ̃f
// Y (Tf(x), f(x)) .

The following diagrams show how ϕ̃f and ϕ̂f may be obtained from ϕf .

TY
1

##
_(Tf)◦
��

TX
Tf
//

_a
��

TY
_ b
��

TX

ρf⇒
Tf //

_a
��

TY
_ b
��

ϕ̃f :

X

ϕf
=⇒
f //

1 ##

Y
_ f◦
��

ϕ̂f :

X

ϕf
=⇒
f //

1 ##

Y
_ f◦
��

λf⇒
X

λf⇒
X

Definition 3.1. A morphism (f, ϕf) : (X, a)→ (Y, b) is said to be

(1) fully faithful if ϕ̃f is pointwise an isomorphism;
(2) an embedding if f is injective and fully faithful;
(3) open if ϕ̂f is pointwise an isomorphism.

(Although not used throughout, we mention that f is said to be proper if ϕf
is pointwise an isomorphism.)

The lax functor T : V-Rel→ V-Rel induces an endofunctor

T : (T,V)-Gph→ (T,V)-Gph,
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with T ( (X, a) (f,ϕf ) // (Y, b) ) = ((TX, Ta) (Tf,T (ϕf )) // (TY, Tb) ), where

T (ϕf) : Tf · Ta
κf,a

∼=
// T (f · a)

Tϕf
// T (b · Tf)

κ−1
b,Tf

∼=
// Tb · T 2f.

Lemma 3.2. The functor T : (T,V)-Gph → (T,V)-Gph preserves fully
faithful morphisms, embeddings, open and proper morphisms.

Proof : Straightforward.

The following result was essentially proved in [6].

Theorem 3.3. The category (T,V)-Gph is complete and cocomplete.

We point out that in [6] by (T,V)-graph we meant reflexive (T,V)-graph.
Here we do not assume reflexivity a priori. It is important to recall that in
(T,V)-Gph limits and colimits are built as in Set, with a (T,V)-structure
built pointwise as a limit in V. That is, given a functor J : D→ (T,V)-Gph

(with D small), where J( D f // D′ ) = ( (XD, aD) (f̆ ,ϕf̆ ) // (XD′, aD′) ),

one equips the limit in Set ( L πD // XD )D with the structure defined, for
each x ∈ TL, x ∈ L, by the limit in V of Jx,x : D→ V, where

Jx,x( D
f
// D′ ) = ( (XD(TπD(x), πD(x))

ϕ̃f̆
// XD′(TπD′(x), πD′(x)) ).

Colimits are constructed analogously.

We recall the infinitary version of Proposition 2.14 of [4]:

Proposition 3.4. A category with coproducts and pullbacks along coproduct
injections is infinitary extensive if, and only if, coproducts are universal and
disjoint.

We recall that a coproduct (σD : X → XD)D∈D is said to be universal if,
when pulling back along any morphism f : Y → X, the diagram

YD
σ′D //

fD
��

Y

f
��

XD σD
// X

(3.i)
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is a coproduct diagram, i.e. (YD
σD // Y )D is a coproduct, for every D ∈ D;

the coproduct (X
σD // XD)D is disjoint if, for everyD,D′ ∈ D withD 6= D′,

the pullback of XD σD // X XD′σD′oo is the initial object.

In order to show that (T,V)-Gph is infinitary extensive, we revisit in
particular the construction of coproducts and pullbacks.

The coproduct of a family (XD, aD)D∈D is given by (X, a) with X the
disjoint union of the sets XD, with inclusions σD : XD → X, and

X(x, x) =

{
XD(x, x) if x ∈ TXD, x ∈ XD

0 otherwise

(where, for simplicity, we consider that the injective map TσD is an inclu-
sion). With ϕD = id : σD · aD =⇒ a · TσD, (σD, ϕD) : (XD, aD)→ (X, a) are
morphisms of (T,V)-graphs, and it is easily checked that they have the co-
product universal property. The coproduct of the empty family, that is, the
initial object in (T,V)-Gph is the empty set with the trivial (T,V)-graph
structure.

The description of the (T,V)-graph structure of the coproduct gives us
immediately the following result:

Proposition 3.5. Let (XD, aD)D be a family of (T,V)-graphs and
(σD : XD → X)D a coproduct in Set. For a (T,V)-graph (X, a), the fol-
lowing assertions are equivalent.

(i) (σD, ϕD) : (XD, aD)→ (X, a) is a coproduct in (T,V)-Gph.
(ii) Each (σD, ϕD) is an open embedding.

Given morphisms (X, a) f // (Y, b) (Z, c)goo of (T,V)-graphs, their pull-

back is the pullback in Set

X ×Y Z
π1
��

π2 // Z

g
��

X
f

// Y

(3.ii)
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and, for each w ∈ T (X ×Y Z), (x, z) ∈ X ×Y Z, (X ×Y Z)(w, (x, z)) and ϕ̃π1

and ϕ̃π2
are given by the pullback in V

(X ×Y Z)(w, (x, z))
ϕ̃π2 //

ϕ̃π1
��

Z(Tπ2(w), z)

ϕ̃g
��

X(Tπ1(w), x)
ϕ̃f

// Y (T (f · π1)(w), f(x)).

(3.iii)

Lemma 3.6. (1) Both fully faithful morphisms and embeddings are stable
under pullback.

(2) Open embeddings are pullback-stable.

Proof : 1. In diagrams (3.ii) and (3.iii) above, assume that f is fully faithful.
If f is injective, then π2 is injective; pointwise ϕ̃π2

is defined as the pullback
of an isomorphism, therefore both fully faithful morphisms and embeddings
are stable under pullback.

2. Now let f : (X, a) → (Y, b) be an open embedding. Then, for each

y ∈ TY , x ∈ X, ( a · (Tf)◦)(y, x)
∼= // (f ◦ · b)(y, x) , that is,

∑
Tf(x)=yX(x, x)

ϕ̂f
// Y (y, f(x)) is an isomorphism.

With f also Tf is injective, and therefore this isomorphism translates to

Y (y, f(x)) =

{
X(x, f(x)) if y = Tf(x)
0 otherwise.

To show that π2 is an open embedding, let z ∈ TZ and (x, z) ∈ X ×Y Z.
If z = Tπ2(w) for some w ∈ T (X ×Y Z), then we already know that
(X ×Y Z)(w, (x, z)) ∼= Z(z, z); otherwise, since T preserves the pullback
(3.ii), Tg(z) is not in the image of Tf , and therefore Y (Tg(z), g(z)) = 0.
Since 0 is a strict initial object of V, we may conclude that Z(z, z) = 0.

Theorem 3.7. The category (T,V)-Gph is infinitary extensive.

Proof : (T,V)-Gph is complete, and so in particular it has finite limits.
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Let ( (XD, aD)
σD // (X, a) )D be a coproduct in (T,V)-Gph. Given a mor-

phism f : (Y, b)→ (X, a) in (T,V)-Gph, form the pullback of σD along f :

(YD, bD)
σ′D //

f ′D
��

(Y, b)

f
��

(XD, aD) σD
// (X, a).

Then, due to extensivity of Set, ( YD
σ′D // Y )D is the coproduct in Set;

together with pullback stability of open embeddings, using Proposition 3.5

one concludes that ( (YD, bD)
σ′D // (Y, b) )D is a coproduct in (T,V)-Gph,

that is, coproducts are universal.
To check that they are also disjoint, let XD σD // X XD′σD′oo be distinct

coproduct injections. Since coproducts in Set are disjoint, their pullback is
the empty set with the only possible (T,V)-graph structure, that is, it is the
initial object of (T,V)-Gph.

4. (T,V)-Cat is infinitary extensive
A (T,V)-category is a (T,V)-graph (X, a) equipped with two additional

natural transformations

X
eX //

1 !!

TX
_ a
��

TX
_a
��

T 2X

mX
��

�Taoo
ηa⇒

X X

µa
=⇒

TX�aoo

providing a generalized monad structure on a; that is,

TX
eTX //

_a
��

T 2X
_ Ta
��

mX

##

TX
1 //

_a

��

TX

_ a

��

TX

_1 Tη⇒
((

T(aeX)
��

TeX

##

X

αa=⇒
eX //

1 ##

TX µa
=⇒

_ a
��

TX =
7
a{{

= TX

∼=

_a
��

T 2X�

Ta
oo

mX
��

ηa⇒

X X

=

1
// X X

µa
=⇒

TX�
a

oo

(4.i)
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and

T 3X
_

T 2a
��

mTX // T 2X
_ Ta
��

mX

##

T 3X
6T 2a

{{

TmX

##
^

T(a·Ta)

��

`

T(a·mX)

Tµ⇒

��

T 2X

βa
=⇒
mX //

_Ta
��

TX µa
=⇒

_ a
��

TX =
7
a{{

T 2X κ
=⇒

�
Ta $$

∼= T 2X
mX //

6

Tazz

TX
_ a
��

TX

µa
=⇒

�
a

// X TX

µa
=⇒

�
a

// X

(4.ii)
Given two (T,V)-categories (X, a), (Y, b), a (T,V)-functor (f, ϕf) : (X, a)→

(Y, b) is a map f : X → Y together with a natural transformation

TX
Tf
//

_a
��

TY
_ b
��

X
f

//

ϕf
=⇒

Y

– i.e. it is a morphism in (T,V)-Gph – preserving the generalized monad
structures on a and b:

X
eX //

1 ""

TX
Tf
//

_ a
��

TY
_ b
��

X
f
// Y

1 !!

eY // TY
_ b
��

ηa⇒

X

ϕf
=⇒
f

// Y

=
ηb⇒

Y

(4.iii)

and

T 2X
@Ta

��

T 2f
//

mX

��

T 2Y
mY

��

T 2X
@Ta

��

T 2f
// T 2Y

@Tb

��

mY

��

TX µa
=⇒

�
a ��

TX

=

?
a��

Tf
// TY

?

b��

= TX

Tϕf
=⇒Tf
//

�
a ��

TY µb=⇒
�
b ��

TY
?b

��

X

ϕf
=⇒

f
// Y X

ϕf
=⇒

f
// Y

(4.iv)
(For the pointwise version of these equalities see [7, Section 4].)

Examples 4.1. As shown in [7], when V = Set and T is the free-monoid
Set-monad naturally extended to Set-Rel, (T,V)-Cat is the category of
multicategories. Furthermore, when T is the ultrafilter monad on Set and
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V = {0 < 1} or V is the half-real line à la Lawvere, then (T,V)-Cat is,
respectively, the category of topological spaces (Barr [1]) and the category of
Lowen’s approach spaces. (For more examples see [7].)

Proposition 4.2. (T,V)-Cat has coproducts and they are preserved by the
forgetful functor (T,V)-Cat→ (T,V)-Gph.

Proof : Let (XD, aD)D∈D be a family of (T,V)-categories, and (X, a) their
coproduct in (T,V)-Gph as built in Section 3; that is, X is the disjoint
union of the sets XD, with inclusions σD : XD → X, and, for each x ∈ TX and
x ∈ XD, X(x, x) = XD(xD, x) if there is xD ∈ TXD such that TσD(xD) = x,
and X(x, x) = 0 otherwise. Hence, we can define ηa, for each x ∈ XD, as:

ηa(x, x) : I
ηaD // XD(eXD

(x), x) = X(eX(x), x) .

In order to define, for each X ∈ T 2X, x ∈ TX, x ∈ XD,

µa : TX(X, x)⊗X(x, x) // X(mX(X), x) ,

we observe that TσD is also an open embedding. If x = TσD(xD) and
X = T 2σD(XD), then TX(X, x) ⊗ X(x, x) = TXD(XD, xD) ⊗ XD(xD, x),
a(mX(X), x) = aD(mXD

(XD), x), and define µa = µaD . Otherwise,
TX(X, x) ⊗ X(x, x) = 0 and µa is trivial. From the way ηa and µa were
defined we conclude that:

– the equalities of diagrams (4.i) and (4.ii) follow from the corresponding
equalities for ηaD and µaD ;

– this way σD becomes a (T,V)-functor for every D, and, moreover, this
is the only (T,V)-category structure on the (T,V)-graph (X, a) that
makes σD a (T,V)-functor;

– (σD : (XD, aD) → (X, a))D is a coproduct in (T,V)-Cat, and, as in
(T,V)-Gph, the coproduct injections are open embeddings.

Lemma 4.3. If (Y, b) is a (T,V)-category and (f, ϕf) : (X, a) → (Y, b) is
an embedding in (T,V)-Gph, then (X, a) has a (T,V)-category structure so
that (f, ϕf) is a (T,V)-functor.

Proof : With f , also Tf is an embedding in (T,V)-Gph. Hence we may
consider that both f and Tf are inclusions, and the isomorphisms of (Φ4)
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read, for every X ∈ T 2X, x ∈ TX, x ∈ X, as

TX(X, x) ∼= TY (X, x), and X(x, x) ∼= Y (x, x).

Defining ηa and µa as (co)restrictions of ηb and µb, the equalities of diagrams
(4.i) and (4.ii) for (X, a) follow immediately from the corresponding equalities
for (Y, b).

The equalities of diagrams (4.iii) and (4.iv) follow by similar arguments,
taking into account that both f and Tf are inclusions, and therefore (f, ϕf)
is a morphism in (T,V)-Cat as claimed.

Proposition 4.4. (T,V)-Cat has pullbacks along embeddings and they are
preserved by the forgetful functor (T,V)-Cat→ (T,V)-Gph.

Proof : Let (X, a), (Y, b), (Z, c) be (T,V)-categories, and (f, ϕf) : (X, a) →
(Y, b) and g : (Z, c)→ (Y, b) be (T,V)-functors, with f an embedding. Form
their pullback (3.ii)-(3.iii) in (T,V)-Gph. Since π2 is an embedding, by
the lemma above X ×Y Z has a (T,V)-category structure induced by the
one of (Z, c) which makes π2 a (T,V)-functor. Moreover, π1 is nothing but
a restriction and a corestriction of the (T,V)-functor g, hence it is also a
(T,V)-functor. The universal property of the pullback follows easily from
the universal property of the diagram when considered in (T,V)-Gph and
the fact that π2 is an embedding.

Theorem 4.5. The category (T,V)-Cat is infinitary extensive.

Proof : We make use again of Proposition 3.4. Propositions 4.2 and 4.4 assure
that (T,V)-Cat has coproducts and pullbacks along coproduct injections.

Given diagrams (3.i) in (T,V)-Cat, we know that ( YD
σ′D // Y ) is a coprod-

uct in (T,V)-Gph and that each σ′D is an open embedding in (T,V)-Cat.
Hence, from Proposition 4.2 (and its proof) we conclude that Y , as a (T,V)-

category, must have the structure that makes ( YD
σ′D // Y ) a coproduct in

(T,V)-Cat.
Finally, from Proposition 4.4 it follows that coproducts in (T,V)-Cat are

disjoint.
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