
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 21–19

SUFFIX-CONNECTED LANGUAGES

HERMAN GOULET-OUELLET

Abstract: Inspired by a series of papers initiated in 2015 by Berthé et al., we
introduce a new condition called suffix-connectedness. We show that the groups
generated by the return sets of a uniformly recurrent suffix-connected language lie
in a single conjugacy class of subgroups of the free group. Moreover, the rank of
the subgroups in this conjugacy class only depends on the number of connected
components in the extension graph of the empty word. We also show how to explicitly
compute a representative of this conjugacy class using the first order Rauzy graph.
Finally, we provide an example of suffix-connected, uniformly recurrent language
that contains infinitely many disconnected words.

Keywords: Tree sets, Extension graphs, Return words, Rauzy graphs, Stallings
algorithm, Free groups.
Math. Subject Classification (2010): 68Q45, 68R15.

1. Introduction
In [4], Berthé et al. introduced the notion of extension graph and used it

to study the subgroups generated by the return sets in uniformly recurrent
languages. One result achieved in that paper, dubbed the Return Theorem,
states that if L is a uniformly recurrent language on the alphabet A such that
all the extension graphs of L are trees, then the return sets of L are all bases
of the free group on A [4, Theorem 4.5]. Moreover, they also show that part
of this result holds under weaker assumptions: if we merely assume that the
extension graphs of L are connected, then the return sets of L all generate the
free group on A [4, Theorem 4.7]. The aim of this paper is to give a weaker
condition under which a similar conclusion still holds. To do this, we introduce
suffix extension graphs, a notion generalizing the extension graphs of [4]. This
allows us to define a new condition called suffix-connectedness. Our main result
is the following:

Received June 7, 2021.
The author is grateful for the financial support provided by the Centre for Mathematics of

the University of Coimbra (UIDB/00324/2020, funded by the Portuguese Government through
FCT/MCTES), the Centre for Mathematics of the University of Porto (UIDB/00144/2020, funded
by the Portuguese Government through FCT/MCTES), as well as a PhD grant from FCT/MCTES
(PD/BD/150350/2019). Special thanks go to Jorge Almeida and Alfredo Costa for many helpful
discussions and comments which greatly improved this paper.

1

2 H. GOULET-OUELLET

Theorem 1.1. Let L be a suffix-connected uniformly recurrent language on an
alphabet A. Then the subgroups generated by the return sets of L all lie in the
same conjugacy class and their rank is n− c+ 1, where n = Card(A) and c is
the number of connected components of the extension graph of the empty word.

Our proof is constructive, in the sense that we can also deduce a way to
explicitly compute a representative for this conjugacy class. Moreover, the
proof of Theorem 1.1 has two notable consequences that we wish to highlight
now. The first one is a characterization of suffix-connected, uniformly recurrent
languages whose return sets generate the full free group.

Corollary 1.2. Let L be a suffix-connected and uniformly recurrent language
on the alphabet A. Then the following statements are equivalent:

(1) All the return sets of L generate the free group on A.
(2) Some return set of L generates a group of rank Card(A).
(3) The extension graph of the empty word is connected.

The next corollary is a special case of our main result. It involves neutrality,
which is a combinatorial condition also introduced in [4] (we will recall the
definition in Section 8). A connected set is a language in which the extension
graphs of non-empty words are connected, while a tree set is a language in
which the extension graph of the empty word is a forest, and all other extension
graphs are trees. These conventions differ slightly from [4], but are in line with
other papers such as [3, 7]. The term dendric has also been used to refer to
tree sets, for instance in [8]. A subset of the free group is called free if it forms
a basis of the subgroup it generates.

Corollary 1.3. Let L be a uniformly recurrent language on the alphabet A. If
L is connected and neutral, then the following conditions are equivalent:

(1) Some return set of L is a free subset of the free group on A.
(2) All return sets of L are free subsets of the free group on A.
(3) L is a tree set.

Since connectedness implies suffix-connectedness, the assumptions of the
Return Theorem place us in the scope of both Corollary 1.2 and 1.3. It follows
that the Return Theorem is a direct consequence of the above corollaries.
In order to further motivate this new suffix-connectedness condition, we give

an example of a uniformly recurrent language which is suffix-connected but
contains infinitely many disconnected elements. This language is defined by a
primitive substitution. More precisely, we will show the following:

SUFFIX-CONNECTED LANGUAGES 3

Theorem 1.4. The language of the primitive substitution

ϕ : 0 7→ 0001
1 7→ 02
2 7→ 001

is suffix-connected and contains infinitely many disconnected words.

We will also see that, in the language of this substitution, the extension
graph E(ε) is connected. Therefore, as a result of Corollary 1.2, all the return
sets in this language generate the full free group of rank 3. However, further
computations reveal that the language of ϕ has return sets of cardinality 3 and
4, which means that some but not all of them are free subsets of the free group.
This paper is structured as follows. In Section 2, we introduce suffix extension

graphs and suffix-connectedness, while also recalling some relevant definitions in
more details. Section 3 reviews some basic material about the groups generated
by labeled digraphs. Section 4 is devoted to Rauzy graphs. Section 5 presents
a technical result that makes up the core of the proof of our main result. In
Section 6, we examine the relationship between Rauzy graphs and return sets.
In Section 7, we put everything together and give the proof of Theorem 1.1.
Section 8 discusses the proof of the two corollaries above. Finally, Section 9 is
devoted to our suffix-connected example.

2. Suffix-connectedness
In this paper, L denotes a language on a finite alphabet A of cardinality

n, and F (A) denotes the free group on A. We will always suppose that L is
recurrent and that A ⊆ L. We recall that a language L is recurrent if it is
closed under taking factors, and if for every two words u, v ∈ L, there exists a
non-empty word w such that uwv ∈ L. The left extensions and right extensions
of order k of w ∈ L, are:

Lk(w) = {u ∈ L ∩ Ak : uw ∈ L}, Rk(w) = {v ∈ L ∩ Ak : wv ∈ L}.

The extension graph of order (k, l) of w ∈ L is a bipartite graph over the
disjoint union of Lk(w) and Rl(w) (the union of disjoint copies of Lk(w) and
Rl(w)). In this graph, there is an edge between u ∈ Lk(w) and v ∈ Rl(w) if
uwv ∈ L. We denote this graph by Ek,l(w). Note that all extension graphs are
simple and undirected. We abbreviate R1, L1 and E1,1 respectively by R, L
and E. In the absence of further clarifications, the term extension graph of w
refers to E(w). A word is connected if its extension graph is connected, and it

4 H. GOULET-OUELLET

is called disconnected otherwise. A language is connected if all its non-empty
words are connected, and it is disconnected otherwise.
A word w ∈ L is called left special if Card(L(w)) > 1. Similarly, w is called

right special if Card(R(w)) > 1. By a bispecial word, we mean a word which is
both left and right special.

Remark 2.1. If w is not bispecial, then E(w) is a star graph, and in particular
a tree. Hence, only bispecial factors can be disconnected.

Given a word w ∈ A∗ and 0 ≤ i < |w|, we denote by w(i) the i-th letter of w.
In particular, the first letter of w is w(0). Given 0 ≤ i ≤ j ≤ |w|, we denote
w[i : j] the factor of w defined by:

w[i : j] = w(i)w(i+ 1) . . . w(j − 1)

Note that |w[i : j]| = j − i, w[i : i] is the empty word and w[0 : |w|] = w. Let
u ∈ A∗ with |u| = k. We say that an index j is an occurrence of u in w if
w[j : j + k] = u. We also define the tail and the init of a non-empty word w
by putting:

tail(w) = w[1 : |w|], init(w) = w[0 : |w| − 1].

We view tail and init as maps A+ → A∗. With this, we are now ready to
introduce suffix extension graphs.

Definition 2.2. For w ∈ L and 1 ≤ d ≤ |w|+ 1, the depth d suffix extension
graph of w is the extension graph Ed,d(tail

d−1(w)).

The set L(w) naturally embeds in the suffix-extension graphs of w. Indeed, let
u be the prefix of length d−1 of w, which means that u satisfies w = u taild−1(w).
Then a 7→ au is an injective map L(w)→ Ld(tail

d−1(w)), with the latter set
being viewed as a subset of Ed,d(tail

d−1(w)). We call this the natural embedding
of L(w) in the depth d suffix extension graph.

Definition 2.3. A word w is called suffix-connected if the natural embedding
of L(w) in Ed,d(tail

d−1(w)) lies in one connected component, for some 1 ≤ d ≤
|w| + 1. A language is called suffix-connected if all its non-empty words are
suffix-connected.

We note that this definition is sensitive to both increases and decreases in
the depth parameter. That is, for a given word w, it may happen that some of
the natural embeddings L(w) lie in a single connected component, while others
do not. The next example is a good illustration of this behaviour. It features

SUFFIX-CONNECTED LANGUAGES 5

0 1

1 0

E1,1(010)

01

01

10

10

00 11

E2,2(10)

101

010

011

110

101

110

010

001

011

100

E3,3(0)

0101 1010

1001

0010

1100

1101

1011

0100

0011

1100

1011

0100

0110

0101

0110

1010

1001

1101

0010

0011

E4,4(ε)

Figure 1. Suffix extension graphs of the word 010 in the language
of the Thue-Morse substitution. The dashed vertices represent the
natural embeddings of L(010).

a language defined by a primitive substitution, and such languages are well
known to be uniformly recurrent (see for instance [10, Proposition 1.2.3]).

Example 2.4. Let us consider the following binary substitution, known as the
Thue-Morse substitution:

µ : 0 7→ 01
1 7→ 10

.

Let L be the language defined by µ. That is, L is the set of factors of all
words of the form µn(a) for n ∈ N and a ∈ {0, 1}. Figure 1 gives all the suffix
extension graphs of the word 010 ∈ L, which show that L is not suffix-connected.
On the other hand, Figure 2, gives some extension graphs of 01100 ∈ L.

These graphs show that the natural embeddings of a given word can alternate
between being connected and disconnected as the depth increases.

Replacing tail by init and L by R yields the dual notions of prefix extension
graphs and prefix-connectedness. Note that the depth 1 suffix and prefix
extension graphs of w both coincide with E(w), so a connected word or language
is both prefix and suffix-connected.

6 H. GOULET-OUELLET

1

1

0

E1,1(01100)

1110

00 10

E2,2(1100)

001

101

110

110
101

E3,3(100)

1100

1011

1011 1101

0011

1101

E4,4(00)

Figure 2. First four suffix extension graphs of the word 01100 in
the language of the Thue-Morse substitution. The dashed vertices
represent the natural embeddings of L(01100).

3. Stallings equivalence
Let us start this section by clarifying some basic terminology. A labeled

digraph over the alphabet A (or, more simply, a digraph) is a diagram of sets G
of the following form:

E(G)

A V(G)

α

ω
λ

One can think of V as the set of vertices, E as the set of edges, and A, the
alphabet, as the set of labels. The maps α, ω and λ give us respectively the
origin, terminus and label of a given edge. For our purposes, we may assume
that there are no redundant edges, meaning that (α, λ, ω) are jointly injective.
This means in effect that E may be considered a subset of V ×A×V whenever
convenient.
Given an edge e = (x, a, y), we consider its formal inverse e−1 = (y, a−1, x).

From now on, we use the term edge both for elements of E(G) and for their
formal inverses. Two edges are said to be consecutive if the last component of
the first is equal to the first component of the second. A path is a sequence of
consecutive edges. We can naturally extend the maps α, ω to paths, and talk
about consecutive paths. Two consecutive paths can be composed, and any path
can be inverted; we write respectively pq and p−1. A self-consecutive path is
called a loop. As expected, if p, q are consecutive, then so are q−1, p−1 and the
relation (pq)−1 = q−1p−1 holds.
The labeling map λ also naturally extends, mapping the set of all paths to

the free group F (A). This map satisfies λ(pq) = λ(p)λ(q) and λ(p−1) = λ(p)−1.

SUFFIX-CONNECTED LANGUAGES 7

We write p : x u→ y as a shorthand for α(p) = x, ω(p) = y, λ(p) = u. The set
of all labels of loops over a given vertex x forms a subgroup of F (A), which we
call the group of G at x. Note that under the assumption that G is connected
(any two vertices can be joined by a path), all the groups of G lie in the same
conjugacy class of subgroups of F (A).
Let ≡ be an equivalence relation on the vertices of a digraph G. Then ≡ can

also be seen as an equivalence relation on E(G),

(x, a, y) ≡ (x′, b, y′) ⇐⇒ x ≡ x′, a = b, y ≡ y′.

The quotient digraph G/≡ is then defined by:

V(G/≡) = V(G)/≡, E(G/≡) = E(G)/≡,

together with the following adjancency and labeling maps:

α(x/≡) = α(x)/≡, ω(x/≡) = ω(x)/≡, λ(x/≡) = λ(x).

The definition of G/≡ can be summarized by the following commutative dia-
grams:

A E(G)

E(G/≡)

λ

≡
λ

E(G) V(G)

E(G/≡) V(G/≡)

α

≡ ≡

α

E(G) V(G)

E(G/≡) V(G/≡)

ω

≡ ≡

ω

The natural projection G → G/≡ is a digraph morphism, meaning that it
preserves the maps α, ω, λ. If, conversely, φ : G→ H is a digraph morphism,
then the quotient G/ ker(φ) is isomorphic to Im(φ), where ker(φ) = {(x, y) :
φ(x) = φ(y)}. Note that for a digraph morphism φ : G → G′ to be onto, it
needs to be onto on both V(G′) and E(G′). The latter condition can be written
as follows:

∀(x, a, y) ∈ E(G′),∃(x′, a, y′) ∈ E(G), φ(x′) = x ∧ φ(y′) = y.

We say that an equivalence relation ≡ on V(G) is group-preserving if the
group of G at x is equal to the group of G/≡ at x/≡, for all x ∈ V(G). We also
call group-preserving a digraph morphism whose kernel is a group-preserving
relation. Note that the group of G at x is always a subgroup of the group of
G/≡ at x/≡. Therefore, to prove that ≡ is group-preserving, one only needs
to prove the reverse inclusion. Moreover, in the case of a connected digraph,
this inclusion needs only to be checked on a single vertex.

8 H. GOULET-OUELLET

The family of group-preserving equivalence relations of a digraph G also has
the property of being closed under taking subrelations. Indeed, let us suppose
that ≡1 is group-preserving and consider ≡2 ⊆ ≡1. Then, the canonical
surjection of ≡1 factors through that of ≡2, giving us the following commutative
diagram:

G G/≡1

G/≡2

≡2

≡1

Let us fix x ∈ V(G) and let H, H1, H2 be respectively the group of G at x; the
group of G/≡1 at x/≡1; and the group of G/≡2 at x/≡2. Then the diagram
above implies H ≤ H2 ≤ H1, while the fact that ≡1 is group-preserving implies
H = H1. Thus, H2 = H and ≡2 is also group-preserving.
A well-known algorithm due to Stallings implies that a digraph always has

a greatest group-preserving equivalence relation. We now proceed to give a
description of this equivalence relation, starting with the following definition.

Definition 3.1. The Stallings equivalence of G is the least equivalence relation
on V(G) closed under the two following rules:

(F) If (x, y), (u, x′), (y′, v) are related, and (x, a, x′), (y, a, y′) are edges in
G, then (u, v) are related.

(F') If (x, y), (u, x′), (y′, v) are related, and (x′, b, x), (y′, b, y) are edges in
G, then (u, v) are related.

We denote the Stallings equivalence by ≡S.

Note that if two equivalence relations are closed under either rule (F) or
(F'), then so is their intersection (this follows immediately from the definitions).
Moreover, the total relation V(G)×V(G) is trivially closed under the two rules.
Hence, the relation ≡S is simply the intersection of all equivalence relations on
V(G) that are closed under (F) and (F').
By a trivially-labeled path, we mean a path whose label is the identity element

of F (A). The next result relates Stallings equivalence with trivially-labeled
paths, and can be seen as a reformulation of Stallings algorithm.

Proposition 3.2. Let G be a connected digraph. The equivalence ≡S is,
alternatively,

(1) the equivalence relation induced by trivially-labeled paths;

SUFFIX-CONNECTED LANGUAGES 9

x y

vu

x′ y′

a a

(F)

x y

vu

x′ y′

b b

(F')

Figure 3. The rules defining Stallings equivalence. The arrows
represent edges, the thick lines represent existing relations, and the
dashed lines represent the relations deduced from each rule.

(2) the greatest group-preserving equivalence of G.

For the proof of this result, the following definition will be useful: given
an equivalence relation ≡ on V(G), an ≡-path in G is a sequence of edges
p = (e1, . . . , ek) satisfying α(ei+1) ≡ ω(ei). The notions of label and length
extend in a straightforward way to ≡-paths. We also use the notation p : x u→ y
for ≡-paths, to mean α(p) = x, ω(p) = y and λ(p) = u. Finally, we adopt the
convention that an ≡-path of length 0 is a pair x ≡ y.

Proof of Proposition 3.2: (1) Let us denote by ∼ the relation induced by
trivially-labeled paths and by ≈ the relation induced by trivially-labeled ≡S-
paths. Clearly ∼ is contained in ≈. Let us show that ≈ is contained in
≡S.
We proceed by induction on the length of the trivially-labeled ≡S-path. Note

that by definition, an ≡S-path of length 0 is nothing but a pair x ≡ y, so the
basis of the induction is trivial. Let us suppose that there is a trivially-labeled
≡S-path p : x→ y of length k ≥ 1. Write p = (e1, . . . , ek). Since p is trivially-
labeled, k is even and there must exist i such that λ(ei) = a−1 and λ(ei+1) = a,
where a is either a letter, or the inverse of a letter. Write ei = (u′, a−1, u) and
ei+1 = (v, a, v′), where u ≡S v. If a ∈ A, then we may use rule (F) to conclude
u′ ≡S v′. Otherwise, one uses rule (F') to obtain the same conclusion. It follows
that p′ = (e1, . . . , ei−1, ei+2, . . . , ek) is also a trivially-labeled ≡S-path between
x and y. Since p′ has length k − 2 < k, we conclude by induction that x ≡S y.
We finish the proof of (1) by showing that ≡S is contained in ∼. By definition

of ≡S, it suffices to show that ∼ is closed under the rules (F) and (F'). Suppose
that u ∼ x′, x ∼ y, y′ ∼ v, and that there are two edges e = (x, a, x′) and
f = (y, a, y′). Consider trivially-labeled paths p1 : u → x′, q : x → y and
p2 : y

′ → v. Then, the composition p1e−1qfp2 is a trivially-labeled path in G

10 H. GOULET-OUELLET

between u and v. Thus, u ∼ v, which proves ∼ is closed under (F). The proof
for (F') is similar.
(2) We first show that ≡S is a group-preserving equivalence relation, and then

we show it is the greatest. Let us fix any path p : x/≡S → y/≡S in the quotient
G/≡S. We say that an ≡S-path q in G lifts p if q : x′ → y′ with x ≡S x′, y ≡S y′
and λ(p) = λ(q). Note that any path in the quotient G/≡S admits such a lift
in G. If q = (e0, . . . , ek) lifts p, we put D(q) = {0 ≤ i < k : ω(ei) 6= α(ei+1)}.
Clearly, q is a path if and only if D(q) is empty. Assume j = max(D(q)),
and consider a trivially-labeled path r : ω(ej)→ α(ej+1) in G, which we know
exists by Part (1). Let q = q1q2 be the factorization of q where |q1| = j + 1.
Then, q′ = q1rq2 is an ≡S-path between x′ and y′ satisfying λ(q′) = λ(q) and
D(q′) = D(q) \ {j}. Thus, we may assume that q is a path. Composing on
both ends with trivially-labeled paths x → x′ and y′ → y, we get a lift of p
which is a path between x and y in G. This result applied to loops shows that
≡S is group-preserving.
Finally, let us suppose that ≡ is another group-preserving congruence, and let

x ≡ y. Choose any path p : x→ y. Then p/≡ is a loop over y/≡ in G/≡. Since
≡ is group-preserving, there is a loop q over y with λ(q) = λ(p/≡) = λ(p). It
follows that pq−1 is a trivially-labeled path between x and y, so x ≡S y.
From now on, we will use the three equivalent descriptions of ≡S interchange-

ably.

4. Rauzy graphs
Recall that we defined the two maps init and tail by init(x) = x[0 : |x| − 1]

and tail(x) = x[1 : |x|]. For k ∈ N, let us also define the map evalk by
evalk(x) = x(k). Note that init and tail are defined on A+, while evalk is
defined on A>k.

Definition 4.1. Let L be a recurrent language on A and m, k ∈ N with k ≤ m.
The k-labeled Rauzy graph of level m of L is the digraph Gm,k defined by the
diagram:

L ∩ Am+1

A L ∩ Am

evalk
init

tail

Special cases of these labeled Rauzy graphs have appeared in the litterature,
including in [4] with k = m, and in [1] with m = 2k.

SUFFIX-CONNECTED LANGUAGES 11

The maps init, tail and evalk used to define the Rauzy graphs are jointly
injective, and moreover the following diagrams commute:

A≥2 A+

A+ A∗

init

tail tail

init

A>k+1 A>k

A

init

evalk
evalk

A>k+1 A>k

A

tail

evalk+1

evalk

Therefore, init and tail also define onto digraph morphisms for m ≥ 1:

init : Gm,k → Gm−1,k (0 ≤ k ≤ m− 1)

tail : Gm,k → Gm−1,k−1 (1 ≤ k ≤ m).

These morphisms will allow us to relate the groups defined the Rauzy graphs.
In the next definition, we introduce a convenient notation for these groups.

Definition 4.2. Let (u, v) be such that uv ∈ L, |u| = k and |u|+ |v| = m. We
denote by Hu,v the group of Gm,k at uv. We call Hu,v a Rauzy group of L.

The fact that tail and init define digraph morphisms immediately implies
that:

Hu,v ≤ Htail(u),v, Hu,v ≤ Hu,init(v).

We further note that Hua,v = a−1Hu,ava. Since we are assuming that L is
recurrent, the Rauzy graphs are connected and it follows that Hu,v and Hu′,v′

lie in the same conjugacy class whenever |uv| = |u′v′|.

5. Paths in suffix extension graphs
For this section, it is useful to introduce a local version of suffix-connectedness.

We do this in the next definition.

Definition 5.1. Let m, e ∈ N with 1 ≤ e ≤ m+ 1. We say that L is (m, e)-
suffix-connected if for every w ∈ L ∩ Am, there exists 1 ≤ d ≤ e such that
the natural embedding of L(w) in Ed,d(tail

d−1(w)) lies in a single connected
component.

Remark 5.2. This local version of suffix-connectedness has the following feature:
suppose that 1 ≤ e ≤ e′ ≤ m + 1 and that L is (m, e)-suffix-connected;
then L is also (m, e′)-suffix-connected. In particular, if we suppose that L is
suffix-connected, then it must be (m,m+ 1)-suffix-connected for all m ≥ 1.

The main result of this section is the following proposition, which is the main
ingredient in the proof of Theorem 1.1:

12 H. GOULET-OUELLET

Proposition 5.3. Assume that L is recurrent and (m− 1, e)-suffix-connected,
where m ≥ 1 and 1 ≤ e ≤ m. Then, ker(tail) is a group-preserving equivalence
relation of Gm,k whenever e ≤ k ≤ m.

The proof relies on the following lemma:

Lemma 5.4. Let L be a recurrent language on A, m ∈ N, 0 ≤ k ≤ m, d ≥ 1
and x ∈ L ∩ Am+d. Then there exists a path px in Gm,k such that:

px : initd(x) taild(x)
x[k:k+d]

Proof : We proceed by induction on d. If d = 1, then x itself is an edge in Gm,k

providing the required path.
For the induction step, we assume that d > 1. Let x′ = init(x) and x′′ =

taild−1(x). Note that |x′′| = |x| − d + 1 = m + 1, so x′′ is an edge in Gm,k,
which we see as a path of length 1. Moreover, the induction hypothesis gives us
a path p′ such that

p′ : initd−1(x′) taild−1(x′)
x′[k:k+d−1]

Recalling that init and tail commute, we find that:

taild−1(x′) = taild−1 ◦ init(x) = init ◦ taild−1(x) = init(x′′).

Hence, p′ and x′′ are consecutive, and we may form the composition p = p′x′′.
Note that p is a path between initd(x) and taild(x), as required. Moreover, the
label of this path is given by:

x′[k : k + d− 1]x′′(k) = x[k : k + d− 1]x(k + d− 1) = x[k : k + d],

and this concludes the proof.

We are now ready to prove the proposition above.

Proof of Proposition 5.3: Let us fix a pair of vertices identified by the digraph
morphism tail : Gm,k → Gm−1,k−1, that is to say two words ax, bx ∈ L ∩ Am

where x ∈ L ∩Am−1 and a, b ∈ A. We want to show ax ≡S bx, which amounts
to find a trivially-labeled path in Gm,k between ax and bx.
By assumption, there exists d ≤ e such that the natural embedding of L(x) in

Ed,d(tail
d−1(x)) lies in one connected component. Let us write y = taild−1(x),

and let u, v be the natural embeddings of a, b ∈ L(x) inside Ed,d(y). In other
words, u and v satisfy ax = uy and bx = vy. Let us consider a path in Ed,d(y)

SUFFIX-CONNECTED LANGUAGES 13

01 01

11 22

2121

20

22

1212

E2,2(tail(12))

101 011 122112

012 212010 221 222

220120 201

i

ii iii iv,vii

v,viii

vi
ix

0

22

1

0

2

1

1

1

0

1

0

2

2

1

0

2

G3,3

Figure 4. A trivially-labeled path between a pair of words in
ker(tail) induced by a path in a depth 2 suffix extension graph. The
Roman numerals indicate the order in which the vertices are visited
in the Rauzy graph. This takes place in the language defined by
the primitive substitution 0 7→ 12, 1 7→ 2, 2 7→ 01.

joining u and v. Since Ed,d(y) is bipartite, this path must have the following
form:

u = s0, t0, s1, t1, . . . , tj−1, sj = v,

where si ∈ Ld(y), ti ∈ Rd(y). The fact that this forms a path in Ed,d(y) means
that, for each 0 ≤ i < j, we have:

siyti, si+1yti ∈ L.

Let us put wi = siyti and zi = si+1yti. By Lemma 5.4, there exist paths:

pi : initd(wi) taild(wi)
wi[k:k+d]

qi : initd(zi) taild(zi)
zi[k:k+d]

We notice that initd(wi) = siy, taild(wi) = yti = taild(zi), initd(zi) = si+1y.
Therefore, pi, q−1i are consecutive and their composition is a path siy → si+1y.
Moreover, since k ≥ e ≥ d, it follows that

wi[k : k + d] = (yti)[k − d : k] = zi[k : k + d].

Therefore, piq−1i is trivially-labeled. Composing these paths for i = 0, . . . , j − 1
gives us a trivially-labeled path between ax = uy = s0y and sjy = vy = bx.

By combining Proposition 5.3 with Remark 5.2, it then follows that for each
m ≥ 1, the map tail defines a group-preserving morphism:

tail : Gm,m → Gm−1,m−1.

14 H. GOULET-OUELLET

But clearly, the class of all group-preserving morphisms is closed under com-
position. Therefore, in a suffix-connected language, the following is a group-
preserving morphism for all m ≥ 1:

tailm−1 : Gm,m → G1,1.

We immediately deduce the following:

Corollary 5.5. Let L be a suffix-connected recurrent language and u ∈ L with
u 6= ε. Then Hu,ε = Hb,ε, where b is the last letter of u.

Let us highlight another particular case of this result. The condition of being
(m, 1)-suffix-connected is equivalent to being m-connected, meaning that E(w)
is connected for all w ∈ L∩Am, which in turn is equivalent to the dual condition
of being (m, 1)-prefix-connected. Combining Proposition 5.3 with its dual for
the special case e = 1, we obtain the following result, which is reminescent of
[4, Proposition 4.2]:

Corollary 5.6. If L is a (m− 1)-connected recurrent language, where m ≥ 1,
then:

(1) For 0 ≤ k ≤ m− 1, ker(init) is a group-preserving equivalence relation
of Gm,k;

(2) For 1 ≤ k ≤ m, ker(tail) is a group-preserving equivalence relation of
Gm,k.

6. Return sets
Let us recall that the return set to (u, v) in L is the set of all words r ∈ L

such that urv ∈ L, urv starts and ends with uv, and contains exactly two
occurrences of uv. We denote this set by Ru,v. For basic properties of return
sets, see [9].

Definition 6.1. Let (u, v) be such that uv ∈ L. The subgroup of F (A)
generated by Ru,v is denoted by Ku,v. We call this a return group of L.

Our main result for this section relates the return groups with the Rauzy
groups.

Proposition 6.2. Let L be a recurrent language and let u, v be such that
uv ∈ L.

(1) Ku,v ≤ Hu,v.
(2) If Ru,v is finite and s is one of its longest elements, then Hu,sv ≤ Ku,v.

SUFFIX-CONNECTED LANGUAGES 15

The following lemma recalls several properties of Rauzy graphs that will be
relevant. By a positive path, we mean a path which consists only of edges in
E(G) or, equivalently, which contains no formal inverses.
Lemma 6.3. Let L be a recurrent language and let u, v be such that uv ∈ L,
|u| = k and |u|+ |v| = m.

(1) Any element w ∈ L is the label of a positive path in Gm,k.
(2) Any label w of a positive path in Gm,k of length at most m+ 1 is in L.
(3) If p : x→ uv is a positive path in Gm,k, then λ(p) is suffix-comparable

with u. Moreover, there is at least one such path satisfying λ(p) = u.
(4) If q : uv → y is a positive path in Gm,k, then λ(q) is prefix-comparable

with v. Moreover, there is at least one such path satisfying λ(q) = v.
All of these properties follow from the definition of Gm,k in a straightforward

manner. Parts (1) and (2) are standard and can be found for instance in [4,
Section 4.1]. Parts (3) and (4) are analogous to [1, Lemma 4.5].
We are now ready to prove the proposition. Let us mention that Part (2) of

the proposition is inspired by the proof of [4, Theorem 4.7], which relied partly
on the fact that return sets of the form Ru,ε are prefix codes. However, this
property no longer holds for general return sets and we had to find a way to
avoid it. This is essentially what is accomplished by the very last paragraph of
the proof.

Proof of Proposition 6.2: (1) Let k = |u|, m = |u|+ |v|, and fix r ∈ Ru,v. Then
urv ∈ L is the label of a positive path p in Gm,k by Part (1) of Lemma 6.3.
Consider the factorization p = q1p

′q2, where λ(q1) = u, λ(p′) = r and λ(q2) = v.
Write α(p′) = x1 and ω(p′) = x2. Consider the factorization x1 = u1v1, where
|u1| = k. Since ω(q1) = x1, it follows from Part (3) of Lemma 6.3 that u1
is suffix-comparable with λ(q1) = u. As |u| = k = |u1|, we conclude that
u1 = u. Similarly, α(p′q2) = x1, so Part (4) implies that v1 is prefix-comparable
with λ(p′q2) = rv. Since r ∈ Ru,v, the word rv starts with v, and since
|v| = m − k = |v1|, we conclude that v1 = v. Thus, x1 = uv. A similar
argument yields x2 = uv, so p′ is a loop over uv, and Ru,v ⊆ Hu,v. This proves
(1).
(2) Let m′ = |u| + |s| + |v|, and consider a positive path in Gm′,k of the

form p : uvx → uvy. We start by proving the following claim: w = λ(p) is a
concatenation of elements of Ru,v.
To prove this claim, let us first consider two positive paths q1 : x1

u→ uvx
and q2 : uvy

v→ x2, whose existence is a consequence of Part (3) and (4) of

16 H. GOULET-OUELLET

Lemma 6.3. Since α(pq2) = uvx, Part (4) of Lemma 6.3 implies that λ(pq2) is
prefix-comparable with vx; thus, it starts with v. Similarly, since ω(q1p) = uvy,
Part(3) of Lemma 6.3 implies that λ(q1p) is suffix-comparable with u; thus, it
ends with u. In particular, this implies

uwv = λ(q1)λ(pq2) = λ(q1p)λ(q2) ∈ uvA∗ ∩ A∗uv.
We now prove the claim by induction on |w| = |p|. If |w| ≤ |s|, then uwv

is the label of the positive path q1pq2 in Gm′,k, which has length at most m′.
Hence, Part (2) of Lemma 6.3 implies that uwv ∈ L. This, taken together with
the fact that uwv belongs to uvA∗ ∩ A∗uv, implies that w is a concatenation
of elements of Ru,v. This establishes the basis of the induction.
For the inductive step, let us suppose that |w| > |s|. Let p′ be the prefix

of p of length m′ of q1pq2, and let z = λ(p′). By Part (2) of Lemma 6.3,
z ∈ L. Moreover, z ∈ uvA∗, so it is prefix-comparable with some element
of uRu,vv. But by assumption, |z| is the maximal length of an element of
uRu,vv. Therefore, it follows that z has at least two occurrences of uv. Since
z is a proper prefix of uwv, we deduce that uwv has an occurrence of uv at
position 0 < j < |s|. Consider the factorization p = p1p2 where |p1| = j, and
let x′ = ω(p1) = α(p2). Since j is an occurrence of uv in uwv = λ(q1pq2) and
|q1p1| = |u|+ j, it follows that λ(q1p1) ends with u. Consider the factorization
x′ = u′x′′, where |u′| = |u|. By Part (3) of Lemma 6.3, u′ is suffix-comparable
with λ(q1p1), and since |u′| = |u|, it follows that u′ = u. Similarly, the fact that
j is an occurrence of uv in uwv, with uwv = λ(q1p1p2q2) and |q1p1| = |u|+ j,
implies that λ(p2q2) starts with v. By Part (4) of Lemma 6.3, it follows that
x′′ is prefix-comparable with λ(p2q2), and hence with v. However, recall that
x′ ∈ L ∩ Am′ where m′ = |u|+ |s|+ |v|:

|x′′| = |x′| − |u| = |s|+ |v| ≥ |v|.
Therefore, v is a prefix of x′′, and x′′ = vt for some word t. Hence, we conclude
that p1, p2 satisfy:

p1 : uvx→ uvt, p2 : uvt→ uvy.

Since 0 < j < |s| < |w|, we have |p1| < |p| and |p2| < |p|. Thus, by the
induction hypothesis, both λ(p1) and λ(p2) are product of words in Ru,v. And,
therefore, so is w. This finishes the proof of the claim.
We finish the proof of Part (2) of the proposition by showing that it follows

from that claim. First, recall that Gm′,k is strongly connected, in the sense that
any two vertices can be joined by a positive path. Moreover, the groups of a

SUFFIX-CONNECTED LANGUAGES 17

strongly connected digraph are generated by the labels of positive loops [12,
Corollary 4.5]. Since the claim above shows in particular that the labels of
positive loops over usv in Gm′,k lie in Ku,v, the result follows.

7. Proof of the main result
Let us first recall the statement of our main result, Theorem 1.1: if L is a

suffix-connected uniformly recurrent language on A, then all the return groups of
L lie in the same conjugacy class and their rank is n−c+1, where n = Card(A)
and c is the number of connected components of E(ε).
The proof is split in two lemmas. In the first one, we apply the results obtained

in the previous sections to show that (under the assumptions of Theorem 1.1)
all the return groups of L belong to the same conjugacy class. The second
lemma finishes the proof by showing that the groups in this conjugacy class
have rank n− c+ 1.

Lemma 7.1. Let L be a uniformly recurrent suffix-connected language. Then,
the return groups of L lie in the conjugacy class of subgroups of F (A) generated
by the groups of the Rauzy graph G1,1.

Proof : Consider a pair (u, v) such that uv ∈ L and uv 6= ε. By Corollary 5.5,
Huv,ε = Hb,ε, where b is the last letter of uv. Using the conjugacy relation
between Rauzy groups, we then have:

Hu,v = vHuv,εv
−1 = vHb,εv

−1,

and this equality holds for any such pair (u, v).
Since L is uniformly recurrent, we may choose an element s ∈ Ru,v of

maximum length and by Proposition 6.2:

Hu,sv ≤ Ku,v ≤ Hu,v.

Applying the conclusion of the previous paragraph to the pair u, sv while noting
that s ∈ Ku,v ≤ Hu,v, we get:

Hu,sv = svHb,εv
−1s−1 = sHu,vs

−1 = Hu,v.

Hence, Ku,v = Hu,v = vHb,εv
−1.

The next lemma concludes the proof of Theorem 1.1. It also gives an effective
way of computing the Stallings equivalence of G1,1 and, in turn, the Stallings
equivalence can be used to find a basis for any of the groups defined by G1,1.

18 H. GOULET-OUELLET

Lemma 7.2. Let L be a recurrent language. Then, the groups of the Rauzy
graph G1,1 have rank n − c + 1, where n = Card(A) and c is the number of
connected components of E(ε).

Proof : A well-known consequence of Stallings algorithm is that the rank of any
group generated by a connected digraph G is

Card(E(G/≡S))− Card(V(G/≡S)) + 1

(see [11, Lemma 8.2]). Thus, we need only to show that the quotient G1,1/≡S
has c vertices and n edges.
Let us start by showing that G1,1/≡S has c vertices. By definition, we have
V(G1,1) = A = L(ε). Let ∼ be the relation defined as follow: for a, b ∈ A, we
have a ∼ b exactly when, viewed as elements of L(ε), a and b lie in the same
connected component of E(ε). Note that the relation ∼ has precisely c classes
because every connected component of E(ε) contains at least one vertex in L(ε).
Therefore, it suffices to show that ∼ = ≡S.
We now prove the inclusion ∼ ⊆ ≡S. Since E(ε) is bipartite, any path in

E(ε) between elements of L(ε) has even length, and thus it suffices to argue for
elements related by paths of length 2. Let us assume that a, b ∈ L(ε) = A are
related by a path of length 2 inside E(ε). By definition of E(ε), the existence
of such a path means that there is some c ∈ A such that ac, bc ∈ L. But recall
that E(G1,1) = L ∩ A2, so we may view e = ac and f = bc as edges in G1,1,
both of which have label c. The path (e, f−1) is then a trivially-labeled path
between a and b, so a ≡S b as required.
Let us prove the inclusion ≡S ⊆ ∼. By definition of ≡S, we only need to show

that ∼ is closed under the two rules (F) and (F'). We argue for each separately.
Let us fix a, b, c, c′, d, d′ ∈ A such that a ∼ c′, b ∼ d′, c ∼ d.

(F) We assume that there are edges e : c→ c′, f : d→ d′ such that λ(e) =
λ(f). Note that the maps tail and eval1 agree on A2, so by definition
ω = λ in the Rauzy graph G1,1. Thus, under our current assumptions,
c′ = d′. Hence, a ∼ c′ ∼ b and a ∼ b by transitivity.

(F') We assume that there are edges e : c′ → c, f : d′ → d such that λ(e) =
λ(f). Since ω = λ in G1,1, we deduce that d = c. By definition,
E(G1,1) = L ∩ A2, e = c′c ∈ L and f = d′d = d′c ∈ L. In particular,
there is an edge in E(ε) joining c′ and c, and another one joining d′ and
c. Hence, a ∼ c′ ∼ d′ ∼ b and a ∼ b by transitivity.

SUFFIX-CONNECTED LANGUAGES 19

c d

ba

c′ d′

∼

∼ ∼

d′ = c′ d′ = c′

(F)

c d

ba

c′ d′

∼

∼ ∼

d = c d = c

(F')

Figure 5. The rules (F) and (F') as they appear in the proof of
Lemma 7.2 when showing that ≡S ⊆ ∼.

It only remains to show that G1,1/≡S has n edges. We do this by showing
that the labeling map λ : G1,1/≡S → A is a bijection. Fix a letter a ∈ A. Since
L is recurrent, there exists b ∈ A with ba ∈ L. Hence, there is at least one
edge labeled a in G1,1, and therefore also in G1,1/≡S. Hence, λ : G1,1/≡S → A
is surjective. Now suppose that G1,1 has two edges e, f labeled a. As noted
before, λ = ω in G1,1, so ω(e) = a = ω(f). Applying rule (F'), we conclude
that α(e) ≡S α(f). In particular, e/≡S = f/≡S, which proves that the labeling
map λ : G1,1/≡S → A is injective.

8. Proof of the corollaries
Let us start this section by recalling the statement of Corollary 1.2: if L is

suffix-connected and uniformly recurrent, then the following statements are
equivalent:

(1) All the return sets of L generate the full free group F (A).
(2) Some return set of L generates a group of rank Card(A).
(3) The extension graph of the empty word is connected.

Proof of Corollary 1.2: (1) implies (2). Trivial.
(2) implies (3). By Theorem 1.1, all return groups of L have rank n− c+ 1

where c is the number of connected components of E(ε) and n = Card(A).
Under the assumption (2), we therefore have n = n− c+ 1 and c = 1.
(3) implies (1). If E(ε) is connected, then by Corollary 5.6, there is a

group-preserving morphism G1,1 → G0,0. But note that G0,0 has a single vertex
with loops labeled by the letters of A. Thus, the group generated by G0,0 is
equal to the full free group F (A), and so are all the groups of the level 1 Rauzy
graph G1,1. But recall that, for a suffix-connected language, all the return
groups lie in the conjugacy class generated by the level 1 Rauzy groups (see
Lemma 7.1), and so the result follows.

20 H. GOULET-OUELLET

Before proving Corollary 1.3, we need some preliminary material. A word
w ∈ L is called neutral if:

1− χ(E(w)) = 0,

where χ(E(w)), the characteristic of E(w), is the difference between the number
of vertices and edges in E(w). A neutral language is a language in which all
non-empty words are neutral. The next result, quoted from [7, Corollary 5.4],
will be useful to prove Corollary 1.3.

Lemma 8.1. If L is recurrent and neutral, then for all u, v with uv ∈ L,

Card(Ru,v) = Card(A)− χ(E(ε)) + 1.

With this lemma in mind, let us recall the statement of Corollary 1.3: if L is
uniformly recurrent, connected and neutral, then the following statements are
equivalent:

(1) Some return set of L is a free subset of the free group F (A).
(2) All return sets of L are free subsets of the free group F (A).
(3) L is a tree set.

Proof of Corollary 1.3: We first recall the following fact, which is a straightfor-
ward consequence of the well-known Hopfian property of F (A): a finite subset
of F (A) is free if and only its cardinality agrees with the rank of the subgroup
it generates. Moreover, note that under our assumptions, the return sets of L
all have the same cardinality (by Lemma 8.1), as well as the same rank (by
Theorem 1.1). Therefore if some return set is free, then all return sets are free,
that is to say (1) and (2) are equivalent.
To prove the equivalence of (2) and (3), we use the following fact about

graphs: a simple graph G is a forest if and only if it has exactly χ(G) connected
components [5, Exercise 2.1.7 (b)]. On the one hand, this implies that in a
connected neutral language, the extension graph of any non-empty word must
be a tree (since neutrality implies χ(E(w)) = 1). Thus, a neutral connected
language is a tree set if and only if E(ε) is a forest, if and only if χ(E(ε)) = c,
where c denotes the number of connected components of E(ε). This is also
equivalent to the following equality:

Card(A)− χ(E(ε)) + 1 = Card(A)− c+ 1.

Let us fix u, v with uv ∈ L. Lemma 8.1 implies that Card(Ru,v) is equal to
the left-hand side of the previous equation, while Theorem 1.1 implies that

SUFFIX-CONNECTED LANGUAGES 21

rank(Ku,v) is equal to the right hand side. Since (2) holds exactly when
Card(Ru,v) = rank(Ku,v) for all such u, v, the result follows.

9. Suffix-connected example
This section is devoted to the proof of Theorem 1.4. We consider the following

substitution on the alphabet A = {0, 1, 2}:
ϕ : 0 7→ 0001

1 7→ 02
2 7→ 001

.

Note that ϕ is primitive (since for every a, b ∈ A, a occurs in ϕ3(b)), and
that ϕ(A) is a prefix code (no word in ϕ(A) is a proper prefix of another). In
particular, this implies that ϕ is injective, a fact that will be used several times.
We recall that the language defined by ϕ is the subset of all words w ∈ A+ such
that w is a factor of ϕn(a) for some a ∈ A and n ∈ N. For the current section,
L denotes the language of ϕ. As we already mentioned, it is well known that
the language of a primitive substitution is uniformly recurrent. We will show
that L is suffix-connected, and deduce that all the return sets of L generate the
full free group F (A).
The proof, being a bit lengthy, is organized in 5 steps. Let us give a quick

outline of each step:
(1) We show that every right special factor of length at least 2 either ends

with 00 and satisfies R(x) = {0, 1}; or ends with 10 and satisfies
R(x) = {0, 2}. Similarly, we show that every left special factor of length
at least 3 either starts with 000 and satisfies L(x) = {1, 2}; or starts
with 001 and satisfies L(x) = {0, 1}.

(2) We show that L contains only 4 bispecial factors starting with 001 and
we compute them.

(3) We show that if x is a bispecial factor that starts with 000, then

E(x) ∼=

{
E(ϕ(x)0) if x ends with 00,
E(ϕ(x)00) if x ends with 10.

(4) We define inductively a sequence of words (wk)k∈N of increasing lengths,
and we show that the disconnected elements of L are precisely the
members of that sequence.

(5) We define a sequence of integers (dk)k∈N such that L(wk) embeds in one
connected component of Edk,dk(tail

dk−1(wk)).

22 H. GOULET-OUELLET

Some of these steps involve the computation of the sets L∩Ak for several values
of k, some of them quite large. We will omit the details of these computations
and provide only the results. These computations can be checked either by
hand (e.g. with the algorithm described in [2, Section 3.2]), or perhaps more
appropriately using SageMath [6]. At the time of writing, a SageMath web
interface can be accessed at the address https://sagecell.sagemath.org.
To compute the set L ∩ Ak, simply evaluate the following line of code in the
web interface:

WordMorphism({0:[0,0,0,1],1:[0,2],2:[0,0,1]}).language(k).

Step 1. We prove the following claim.

Claim. Let x be a right special factor of L of length at least 2. Then one of the
two following alternatives hold:

(1) x ends with 00 and R(x) = {0, 1}.
(2) x ends with 10 and R(x) = {0, 2}.

Dually, let y be a left special factor of L of length at least 3. Then one of the
two following alternatives hold:

(1) y starts with 000 and L(y) = {1, 2}.
(2) y starts with 001 and L(y) = {0, 1}.

Proof of the claim: Direct computations reveal that:

L ∩ A3 = {000, 001, 010, 020, 100, 102, 200}.
Hence, the only two right special factors in L ∩ A2 are 00 and 10, and they
satisfy respectively:

R(00) = {0, 1}, R(10) = {0, 2}.
Since the sets R(x) are weakly increasing under taking suffixes, the first part
follows.
Similarly, we find:

L ∩ A4 = {0001, 0010, 0100, 0102, 0200, 1000, 1001, 1020, 2000}.
Therefore L ∩ A3 contains only two left special factors, 000 and 001, satisfying
respecitvely:

L(000) = {1, 2}, L(001) = {0, 1}.
Since the sets L(x) are weakly increasing under taking prefixes, the second part
follows as well.

https://sagecell.sagemath.org

SUFFIX-CONNECTED LANGUAGES 23

Step 2. We now know that all long enough bispecial factors must start with
either 000 or 001, and end with either 00 or 10. We restrict the possibilities
even further by proving the following claim:

Claim. The only four bispecial factors of L starting with 001 are:

0010, 00100, 00100010, 001000100010.

The proof of this claim makes use of the concept of cutting points, by which
we mean the following: in a word of the form ϕ(z), a cutting point is an index
0 ≤ j ≤ |ϕ(z)| − 1 such that j = |ϕ(z1)|, for some prefix z1 of z. We observe
that in the specific case of ϕ, the cutting points are located exactly after the
occurrences of the letters 1 and 2. The following elementary lemma will be
useful.

Lemma 9.1. Let ϕ(z) = u1 . . . un be a factorization such that |u1 . . . uk| is a
cutting point for all 1 ≤ k < n. Then there is a factorization z = z1 . . . zn such
that ϕ(zi) = ui for all 1 ≤ i ≤ n.

Proof : By assumption, u1 . . . uj−1, u1 . . . uj ∈ ϕ(A∗) for all 1 ≤ j ≤ n. Since
ϕ(A) is a prefix code, we have uj ∈ ϕ(A∗) and we may write uj = ϕ(zj) for some
zj. Then ϕ(z) = ϕ(z1 . . . zn) and as ϕ is injective, z = z1 . . . zn as required.

Proof of the claim: Let us start by noting that the only bispecial factors of L
with length at most 4 are:

ε, 0, 00, 0010.

This can be proven simply by inspecting the sets L ∩ Ak for 2 ≤ k ≤ 6. The
extension graphs of these four words can be found in Figure 6. From now on,
we work only with bispecial factors of length at least 5.
Let us suppose that u is bispecial, |u| ≥ 5 and 001 is a prefix of u. We

distinguish two cases: u = 001x10 and u = 001x00.
We start by the case u = 001x10. Let x′ = x1. By Step 1, we know that

0u, 1u ∈ L. Thus, there exist z1, z2 ∈ L such that:

ϕ(z1) = s10001x
′0t1, ϕ(z2) = s21001x

′0t2.

Since 0000 /∈ L, it follows that s1 ends with either 1 or 2. Therefore |s1|
is a cutting point in ϕ(z1). Similarly, there is a cutting point in ϕ(z1) at the
end of x′. It follows from Lemma 9.1 that z1 has a factor of the form 0y1 such
that ϕ(y1) = x′. With similar arguments, we conclude that z2 has a factor of
the form 2y2 such that ϕ(y2) = x′. Since ϕ is injective, we find y1 = y2 = y,

24 H. GOULET-OUELLET

0

0

1

2

1

2

E(ε)

0

0

1

1 2

2

E(0)

0

1

2
0

1

E(00)

0

0

2

1

E(0010)

Figure 6. Extension graphs of all the bispecial words of length at
most 4 in L.

and L(y) ⊇ {0, 2}. By Step 1, it follows that |y| < 3, which leaves us with
only thirteen possibilities. Further accounting for the fact that 2 ∈ L(y) and
ϕ(y) 6= ε, we narrow it down to only two possibilities, namely y = 0 and y = 00.
Trying out both values, we obtain either:

u = 001ϕ(0)0 = 00100010; or
u = 001ϕ(00)0 = 001000100010.

A direct computation shows that both of those words are bispecial.
Finally, we treat the case u = 001x00. By Step 1, u0 = 001x000 ∈ L.

Since 0000 /∈ L, it follows that x cannot end with 0. Moreover, we also have
0u, 1u, u1 ∈ L, so there exist z1, z2, z3 ∈ L such that:

ϕ(z1) = s10001x00t1, ϕ(z2) = s21001x00t2, ϕ(z3) = s3001x001t3.

Again, since 0000 /∈ L, s1 cannot end with 0. Recalling that cutting points are
located exactly after the occurrences of 1 or 2, we apply Lemma 9.1 to conclude
that there exist: a factor of z1 of the form 0y1 such that ϕ(y1) = x; a factor
of z2 of the form 2y2 such that ϕ(y2) = x; and a factor of z3 of the form y32
such that ϕ(y3) = x. Since ϕ is injective, y1 = y2 = y3 = y, and L(y) ⊇ {0, 2},
2 ∈ R(y). By Step 1, we conclude that |y| < 3, which again leaves us with
thirteen possible values for y. Accounting for the fact that 2 ∈ R(y) and
2 ∈ L(y) narrows this to only two possibilities: y = ε and y = 0. Testing both
possibilities, we find that y = 0 does not yield a bispecial factor, leaving us
with only one bispecial factor for that case:

u = 001ϕ(ε)00 = 00100.

SUFFIX-CONNECTED LANGUAGES 25

0

0

2

1

E(0010)

0

0

1

1

E(00100)

1 0

0 2

E(00100010)

0 2

1 0

E(001000100010)

Figure 7. Extension graphs of all bispecial factors of L starting
with 001.

All in all, we exhausted all cases and found four bispecial factors:

0010, 00100, 00100010, 001000100010.

This proves the claim.

We give the extension graphs of these four bispecial factors in Figure 7. The
longest among these, which has length 12, is the only one which is disconnected.
We also saw that all the bispecial factors of L of length at most 4 are con-
nected, and it is not hard from there to complete the picture and show that
001000100010 is both the longest bispecial factor starting with 001 and the
smallest disconnected factor of L. This can be done by explicit computations
for the only three missing bispecial factors of length at most 12, which are
00010, 000100 and 000100010.

Step 3. Next, we give conditions ensuring stability of some extension graphs
under x 7→ ϕ(x)0 or x 7→ ϕ(x)00.

Claim. Let x be a bispecial factor of L starting with 000. Then:

E(x) ∼=

{
E(ϕ(x)0) if x ∈ A∗00
E(ϕ(x)00) if x ∈ A∗10.

Proof of the claim: Let us put:

y =

{
ϕ(x)0 if x ∈ A∗00
ϕ(x)00 if x ∈ A∗10.

Let σ be the permutation of A = {0, 1, 2} fixing 0 and exchanging 1, 2. We
readily deduce from Step 1 that σ(a) is a suffix of ϕ(a), for all a ∈ L(x).
Similarly, if x ∈ A∗00, then 0σ(b) is a prefix of ϕ(b), for all b ∈ R(x); and

26 H. GOULET-OUELLET

if x ∈ A∗10, then 00σ(b) is a prefix of ϕ(b), for all b ∈ R(x). In particular,
σ(a)yσ(b) is a factor of ϕ(axb). Thus,

axb ∈ L =⇒ ϕ(axb) ∈ L =⇒ σ(a)yσ(b) ∈ L.

This shows that σ : E(x)→ E(y) is a graph morphism, and that y is bispecial.
Moreover, it follows from Step 1 that σ is bijective on vertices. It remains only
to show that σ is onto on edges.
Let us suppose that σ(a)yσ(b) ∈ L for a, b ∈ A. We need to show that

axb ∈ L. The fact that σ(a)yσ(b) ∈ L implies:

∃z ∈ L, ϕ(z) = sσ(a)yσ(b)t.

Note that y = ϕ(x)0 or ϕ(x)00. In both cases, ϕ(x) is a prefix of y ending with
1 or 2. Moreover, we have σ(a) ∈ {1, 2} by Step 1. Thus, in the factorization
sσ(a)yσ(b)t given above, there must be one cutting point at the start of y, and
one at the end of ϕ(x). By Lemma 9.1, this implies that z has a factor of the
form cx′d, where:

(1) ϕ(x′) = ϕ(x);
(2) σ(a) is a suffix of ϕ(c);
(3) ϕ(d) starts with 0σ(b) if x ∈ A∗00; or 00σ(b) if x ∈ A∗10.

Injectivity of ϕ implies x = x′, so c ∈ L(x) and d ∈ R(x). Using Step 1, we
can then deduce from a case-by-case analysis that a = c and b = d. This proves
that σ is onto on edges, thus finishing the proof.

Step 4. Recall that the longest bispecial factor of L that starts with 001 is also
its smallest disconnected element. We will see that all disconnected elements of
L arise from this word. Consider the sequence of words {wk}k∈N defined by:

w0 = 001000100010, wk+1 =

{
ϕ(wk)00 if k is even;
ϕ(wk)0 if k is odd.

For the purpose of the proof below, it is useful to notice that wk ends with
10 if k is even, and with 00 if k is odd. We now prove the following claim.

Claim. A word w ∈ L is disconnected if and only if w = wk for some k ∈ N.

Proof : We already saw that w0 is disconnected, and one can check via explicit
computations that so is w1. Since wk starts with 000 whenever k ≥ 1, it follows
from Step 3 that wk is disconnected for all k ∈ N.

SUFFIX-CONNECTED LANGUAGES 27

For the converse, we proceed by induction on |w|. The smallest disconnected
word, w0, provides the basis for the induction. Let us consider a disconnected
word w ∈ L such that |w| > |w0| = 12. Since w0 is also the longest bispecial
factor starting with 001 (see Step 2), we may assume that w starts with 000.
We start by treating the case w ∈ A∗00. By Step 1, we know that:

L(w) = {1, 2}, R(w) = {0, 1}.
Let us write w = w′00. Since w0 ∈ L, it follows that w′ cannot end with 0. Let
us consider z1, z2, z3, z4 ∈ L such that:

ϕ(z1) = s12wt1, ϕ(z2) = s21wt2, ϕ(z3) = s3w0t3, ϕ(z4) = s4w1t4.

By repeatedly applying Lemma 9.1, we deduce that:
• z1 has a factor of the form 1x1 such that ϕ(x1) = w′.
• z2 has a factor of the form ax2 such that ϕ(x2) = w′ and a ∈ {0, 2}.
• z3 has a factor of the form x30 such that ϕ(x3) = w′.
• z4 has a factor of the form x42 such that ϕ(x4) = w′.

Since ϕ is injective, we deduce x1 = x2 = x3 = x4 = x, and x is bispecial. Note
that |x| ≤ 2 would imply |w| = |ϕ(x)|+2 ≤ 10, which is a contradiction. Thus,
we may assume |x| ≥ 3. Since 2 is a right extension of x, we deduce by Step 1
that x ∈ A∗10. By Step 4, E(x) ∼= E(ϕ(x)00) = E(w); thus, x is disconnected.
By induction, x = wk for some k ∈ N, and since x ends with 10, k is even.
Therefore w = ϕ(wk)00 = wk+1.
The case w ∈ A∗10 is handled in a similar fashion. Let us go quickly over the

argument. This time, we have

L(w) = {1, 2}, R(w) = {0, 2}.
We write w = w′0. Take z1, z2, z3, z4 ∈ L such that:

ϕ(z1) = s12wt1, ϕ(z2) = s21wt2, ϕ(z3) = s3w0t3, ϕ(z4) = s4w2t4.

Again, it follows from Lemma 9.1 that:
• z1 has a factor of the form 1x1 such that ϕ(x1) = w′.
• z2 has a factor of the form ax2 such that ϕ(x2) = w′ and a ∈ {0, 2}.
• z3 has a factor of the form x3a such that ϕ(x3) = w′ and a ∈ {0, 2}.
• z4 has a factor of the form x41 such that ϕ(x4) = w′.

By injectivity of ϕ, we have x1 = x2 = x3 = x4 = x and x is bispecial.
Moreover, |x| ≤ 2 would imply |w| = |ϕ(x)| + 1 ≤ 9, which contradicts our
standing assumption that |w| > 12. Thus, we may assume |x| ≥ 3. Since

28 H. GOULET-OUELLET

0 2

1 0

E(w0)

2 0

1 1

E(wk), k ≥ 1 odd

2 2

1 0

E(wk), k ≥ 1 even

Figure 8. Extension graphs of the disconnected words of L.

1 is a right extension of x, it follows from Step 1 that x ends with 00, so
by Step 3, E(x) ∼= E(ϕ(x)0) = E(w). This implies that x is disconnected,
so by induction x = wk for some k ∈ N. As x ends with 00, k is odd and
w = ϕ(wk)0 = wk+1.

This, combined with the graph isomorphism identified in Step 3, allows us
to explicitly compute the extension graphs of all the disconnected words of L.
These extension graphs are shown in Figure 8.

Step 5. Now that we know exactly which are the disconnected words of L, it
remains to show that these words are suffix-connected. For k ∈ N, let us write
dk = |ϕk(001)| + 1 and yk = taildk−1(wk). This means that wk = ϕk(001)yk
and the depth dk suffix extension graph of wk is precisely Edk,dk(yk). For the
case k = 0, we have d0 = 4 and y0 = 000100010. Notably, the depth 4 suffix
extension graph of w0, which is shown in Figure 9, is connected, hence w0 is
suffix-connected at depth 4. We will show that wk is suffix-connected at depth
dk for all k ∈ N.
Let us first note that the natural embedding of L(wk) in Edk,dk(yk) is given

by right multiplication by ϕk(001). Before concluding the proof of Theorem 1.4,
we need to establish the following technical lemma, which gives some properties
of the words xk = init(ϕk(2)).

Lemma 9.2. For all k ∈ N, the following hold:

(1) xk+1 =

{
ϕ(xk)00 if k is even;
ϕ(xk)0 if k is odd.

(2) xk0 is a prefix of ϕk(0).

Proof : (1) If k is even, then ϕk(2) = xk2 and ϕk+1(2) = xk+11. It follows that

xk+11 = ϕ(xk2) = ϕ(xk)001.

SUFFIX-CONNECTED LANGUAGES 29

0 2

1 0

E1,1(001000100010)

00 20

10 00

E2,2(01000100010)

000 200

100 001

E3,3(1000100010)

0001

2000

0102

0010

1001

E4,4(000100010)

Figure 9. Suffix extension graphs of w0 = 001000100010 at depth
up to 4. The dashed vertices represent the natural embeddings of
L(w0).

Hence, the result follows. Similarly, if k is odd, ϕk(2) = xk1, ϕk+1(2) = xk+12,
and

xk+12 = ϕ(xk1) = ϕ(xk)02.

(2) We proceed by induction on k. The basis, k = 0, is obvious. Let us
assume ϕk(0) = xk0tk, for some tk ∈ A∗. Hence,

ϕk+1(0) = ϕ(xk0tk) = ϕ(xk)0001ϕ(tk) =

{
xk+101ϕ(tk) if k even;
xk+1001ϕ(tk) if k odd.

By the recursive definition of wk and a straightforward inductive argument
involving Part (1) of the lemma, we have ϕk(y0)xk = yk for all k ∈ N. Moreover,
note that xk is a prefix of both ϕk(2000) and ϕk(0010), the former by definition
and the latter by part (2) of the lemma. Since 2000 and 0010 are right extensions
of y0 (see Figure 9), it follows that x−1k ϕk(2000) and x−1k ϕk(0010) are right
extensions of yk. With these observations in mind, we are ready to conclude
the proof of Theorem 1.4. We do this by establishing the following claim.

Claim. For k ≥ 1, there is a path in Edk,dk(yk) between 1ϕk(001) and 2ϕk(001).

Proof of the claim: Consider the map σk : Ed0,d0(y0) → Edk,dk(yk) defined as
follows: an element u ∈ Ld0(y0) = {0001, 0102, 1001} is mapped to the suffix
of length dk of ϕk(u), and an element v ∈ Rd0(y0) = {2000, 0010} is mapped
to the prefix of length dk of x−1k ϕk(v). We first need to show that this map is
well-defined. This amounts to show that |ϕk(u)| ≥ dk for all u ∈ L(y0), and
|ϕk(v)| − |xk| ≥ dk for all v ∈ R(y0). The former condition is obvious, and the

30 H. GOULET-OUELLET

latter boils down to a few computations:

|ϕk(0010)| − |xk| = |ϕk(001)|+ |ϕk(0)| − |ϕk(2)|+ 1

> |ϕk(001)|+ 1 = dk;

|ϕk(2000)| − |xk| = |ϕk(2000)| − |ϕk(2)|+ 1

= |ϕk(000)|+ 1

> |ϕk(001)|+ 1 = dk.

Note that σk maps {0001, 1001} onto the natural embedding of L(wk). Since
Ed0,d0(y0) is connected, it suffices to show that σk defines a graph morphism.
Take u ∈ Ld0(y0) and v ∈ Rd0(y0), and suppose that uy0v ∈ L. Then, it follows
that ϕk(uy0v) ∈ L. Since σk(u) is a suffix of u and xkσk(v) is a prefix of v,
we conclude that σk(u)ykσk(v) = σk(u)ϕ

k(y0)xkσk(v) is a factor of ϕk(uy0v).
Therefore, it must also be in L, and σk : Ed0,d0(y0) → Edk,dk(yk) is a graph
morphism.

With some extra work, we were able to show that the map σk defined in the
previous proof is in fact a graph isomorphism. To prove this, we made use
of the following observation, which is a consequence of the Cayley-Hamilton
theorem: for any word x ∈ A∗, the sequence (|ϕk(x)|)k∈N follows the linear
recurrence determined by the characteristic polynomial of ϕ. This is a general
observation which holds for any substitution, and we believe it could be useful
for establishing suffix-connectedness in harder cases.

10. Conclusion
Let us end this paper by suggesting a few ideas for future reasearch.
Firstly, we feel that the proof presented in Section 9, on account of its ad-hoc

and technical nature, is somewhat unsatisfactory. We hope it could be improved.

Question 10.1. Is there a more systematic approach to show that a given language
is suffix-connected?

In particular, it could be interesting to study other examples of suffix-
connected languages defined by primitive substitutions, and see how much
of Section 9 can be recycled. According to our computations, the languages
defined by the following primitive substitutions are likely to be suffix-connected

SUFFIX-CONNECTED LANGUAGES 31

while also having infinitely many disconnected elements:
0 7→ 100
1 7→ 032
2 7→ 232
3 7→ 03

;

0 7→ 01
1 7→ 2
2 7→ 3
3 7→ 02

;

0 7→ 12
1 7→ 2
2 7→ 01

.

In [8], Dolce and Perrin introduced the notion of an eventually dendric
language, which requires all but finitely many extension graphs to be trees. This
suggests the analogous notion of an eventually suffix-connected language, in
which all but finitely many words are suffix-connected.

Question 10.2. Can we find a generalization of Theorem 1.1 for eventually
suffix-connected languages?

Finally, Dolce and Perrin also showed that the class of eventually dendric
languages is closed under two operations, namely conjugacy and complete bifix
decoding [8]. We wonder if analogous results hold for suffix-connected languages.

Question 10.3. Is the class of suffix-connected languages closed under complete
bifix decoding or conjugacy?

References
[1] J. Almeida and A. Costa, A geometric interpretation of the Schützenberger group of a minimal

subshift, Ark. Mat. 54 (2016), no. 2, 243–275.
[2] S. Balchin and D. Rust, Computations for symbolic substitutions, J. Integer Seq. 20 (2017).
[3] V. Berthé, C. De Felice, V. Delecroix, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and

G. Rindone, Specular sets, Theoret. Comput. Sci. 684 (2017), 3–28.
[4] V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G. Rindone, Acyclic,

connected and tree sets, Monatsh. Math. 176 (2015), no. 4, 521–550.
[5] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan London, 1976.
[6] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), 2020,

https://www.sagemath.org.
[7] F. Dolce and D. Perrin, Neutral and tree sets of arbitrary characteristic, Theoret. Comput. Sci.

658 (2017), 159–174.
[8] , Eventually dendric shift spaces, Ergodic Theory Dynam. Systems (2020), 1–26.
[9] F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179

(1998), no. 1-3, 89–101.
[10] N. Pytheas Fogg, V. Berthé, S. Ferenczi, C. Mauduit, and A. Siegel (eds.), Substitutions in

dynamics, arithmetics and combinatorics, Springer Berlin Heidelberg, 2002.
[11] I. Kapovich and A. Myasnikov, Stallings foldings and subgroups of free groups, J. Algebra 248

(2002), no. 2, 608–668.
[12] B. Steinberg, Fundamental groups, inverse Schützenberger automata, and monoid presentations,

Comm. Algebra 28 (2000), no. 11, 5235–5253.

32 H. GOULET-OUELLET

Herman Goulet-Ouellet
University of Coimbra, CMUC, Department of Mathematics, and University of Porto,
CMUP, Department of Mathematics

E-mail address: hgouletouellet@student.uc.pt

	1. Introduction
	2. Suffix-connectedness
	3. Stallings equivalence
	4. Rauzy graphs
	5. Paths in suffix extension graphs
	6. Return sets
	7. Proof of the main result
	8. Proof of the corollaries
	9. Suffix-connected example
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	10. Conclusion
	References

