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1. Introduction

Given a commutative unital ring K, a matrix A ∈ Mn(K) is tridiagonal
k-Toeplitz if it is tridiagonal and the entries along the main diagonal and its
adjacent diagonals are periodic sequences of period k, so that it has the form

A =



a1 b1

c1
. . . . . .
. . . ak bk

ck a1 b1

c1
. . . . . .
. . . ak bk

ck a1 b1

c1
. . . . . .
. . .


.

Tridiagonal matrices appear frequently in many areas of pure and applied
mathematics (see [21]); consequently, tridiagonal k-Toeplitz matrices appear in
those contexts when some periodicity of the studied problem or physical system
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is assumed. For example, they appear in the discretization of elliptic or para-
bolic partial di�erential equations by �nite di�erence methods ([11,20,23]), in
classical mechanics ([22]), in chain models of quantum physics ([4]), in sound
propagation theory ([6, 7]), in telecommunication system analysis ([16]), and
in circuit models of wireless power transfer arrays ([1�3]). Thus the eigen-
values or the inverse of the associated matrix can be invoked to solve these
problems. The case of a general complex tridiagonal matrix has been inde-
pendently studied and solved many times since Egerváry and Szász's paper [9]
of 1928, through di�erent methods yielding more or less explicit formulas (see
[12]). In particular, Mallik in [17] gave rational formulas for the elements of
the inverse of a (nonsingular) complex tridiagonal matrix through the solu-
tion of a second-order linear inhomogeneous di�erence equation with variable
coe�cients.
The eigenproblem of a complex tridiagonal k-Toeplitz matrix was studied

in small cases by Gover, and Marcellán and Petronilho ([15, 18, 19]), and a
solution for the general case was given by da Fonseca and Petronilho ([14])
using tools from the theory of orthogonal polynomials. In the same paper [14]
from 2005, formulas were given for the elements of the inverse of a complex
tridiagonal k-Toeplitz matrix (small cases having been considered previously
in [13]). These formulas are not completely in closed form, in the sense that
they depend on polynomial maps of determinants that must be computed in
each case. Encinas and Jiménez in 2018 ([10]), in the slightly more general
context of tridiagonal (k, r)-Toeplitz matrices (see [5]), and through an elab-
orate use of the discrete Schrödinger operator and the Chebyshev functions,
provided closed-form formulas for the elements of the inverse of a real tridi-
agonal k-Toeplitz matrix in the special case in which the period k divides the
order n of the matrix. Actually, Wittenburg in [22, Section 4] already in 1998
produced rational formulas for the elements of the inverse of a complex tridiag-
onal k-Toeplitz matrix, although relating them to determinants of tridiagonal
matrices of order less than k, which he did not compute explicitly. Wittenburg
computes the inverse from the adjugate matrix, relates the cofactors to some
determinants, and then solves, with some e�ort, an associated linear di�erence
equation through the roots of an associated polynomial. He needs to study two
cases separately (the defective and nondefective cases, say), depending on the
multiplicity of the roots.
The second author, in [1], devised an elementary linear algebra algorithm to

compute the elements of the inverse of a complex k-Toeplitz matrix with equal
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and constant upper and lower diagonals in the nondefective case, yielding ra-
tional formulas; with this algorithm the elements of the inverse are written
as a product of determinants of tridiagonal k-Toeplitz matrices, but those de-
terminants need to be computed a posteriori for each k, which the algorithm
does through the diagonalization of an associated 2× 2 matrix. In this paper
we generalize said method to give actual closed-form, rational formulas for the
determinant, the characteristic polynomial and the entries of the inverse of any
tridiagonal k-Toeplitz matrix over any commutative unital ring, using only el-
ementary linear algebra arguments, which in our opinion are the simplest to
date.
In the �rst place we give an explicit polynomial formula for the determinant

by generalizing the formulas from Mallik ([17]). This we achieve by solving a
second-order linear di�erence equation with variable periodic coe�cients (which
appears from applying Laplace's expansion twice) by writing it as a 2× 2 ma-
trix di�erence equation and applying recursion, and then applying induction
to prove the correctness of the associated polynomial formulas. Implicitly, we
are actually computing the determinant of a generic tridiagonal k-Toeplitz ma-
trix and then evaluating it into the commutative unital ring. The characteristic
polynomial arises as a special case of the determinant of a tridiagonal k-Toeplitz
matrix. Finally, the elements of the inverse are computed from the adjugate
matrix: the submatrix associated to a cofactor is block-triangular with three
diagonal blocks, the middle one triangular, the two in the extremes again tridi-
agonal k-Toeplitz matrices, allowing to write the cofactor from the product of
their determinants, which we already know how to compute. In this last part
our ideas are close to that of Wittenburg ([22]). We �nish the paper with an
example implementing the results.

2. Determinant, characteristic polynomial, and inverse

Let us quickly establish some conventions. Throughout this paper let K
be any commutative unital ring. For us 0 ∈ N, N∗ := N \ {0}, an empty
summation yields 0 and an empty product yields 1. The notation b · c stands
for the �oor function from Q to Z. The notation

(
i
j

)
with i, j ∈ N stands

for the image of the corresponding binomial coe�cient under the canonical
homomorphism from Z to K, understanding

(
i
j

)
= 0 when i < j. For k ∈ N∗,

a := (a1, . . . , ak) describes a vector of Kk. For n ∈ N∗, Mn(K) denotes the
ring of square matrices of order n over K, I ∈ Mn(K) denotes the identity
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matrix, and tr(A), det(A) respectively denote the trace and the determinant
of A ∈ Mn(K).

De�nition 2.1 (Tridiagonal k-Toeplitz matrix).
Given k, n ∈ N∗ and a := (a1, . . . , ak), b := (b1, . . . , bk), c := (c1, . . . , ck) ∈ Kk,
let

Tn := Tn(a; b; c) ∈ Mn(K), Tn = (tij)
n
i,j=1,

be the tridiagonal matrix (tij := 0 for all i, j such that |i − j| ≥ 2) such
that tii := ai, ti,i+1 := bi, ti+1,i := ci for 1 ≤ i ≤ k, and ti+k,j+k := tij for
1 ≤ i, j ≤ n− k.

In Theorem 2.11 we are going to give a polynomial formula for the determi-
nant of a tridiagonal k-Toeplitz matrix, which will be found by solving a 2× 2
matrix di�erence equation. To do so we need a formula for the powers of a
2× 2 matrix in terms of the original matrix:

De�nition 2.2. Given t, d ∈ K and m ∈ N we de�ne

sm(t, d) :=

b(m−1)/2c∑
i=0

(−1)i
(
m− 1− i

i

)
tm−1−2idi.

Lemma 2.3. If A ∈ M2(K) then, for all m ∈ N∗,

Am = sm(tr(A), det(A))A− det(A)sm−1(tr(A), det(A))I.

Proof : We proceed by induction. Denote

t := tr(A), d := det(A) and sm := sm(t, d).

The base case A = A is true since s1 = 1, s0 = 0. By the Cayley-Hamilton
theorem A2 = tA− dI, so if Am = smA− dsm−1I then

Am+1 = AAm = smA
2 − dsm−1A = (tsm − dsm−1)A− dsmI.
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Now

tsm − dsm−1 =

=

b(m−1)/2c∑
i=0

(−1)i
(
m− 1− i

i

)
tm−2idi +

b(m−2)/2c∑
i=0

(−1)i+1

(
m− 2− i

i

)
tm−2−2idi+1 =

= tm +

b(m−1)/2c∑
i=1

(−1)i
(
m− 1− i

i

)
tm−2idi +

bm/2c∑
i=1

(−1)i
(
m− 1− i
i− 1

)
tm−2idi =

= tm +

bm/2c∑
i=1

(−1)i
((

m− 1− i
i

)
+

(
m− 1− i
i− 1

))
tm−2idi =

=

bm/2c∑
i=0

(−1)i
(
m− i
i

)
tm−2idi = sm+1,

since b(m − 1)/2c = bm/2c when m is odd and
(
m−1−bm/2c
bm/2c

)
= 0 when m is

even. Therefore Am+1 = sm+1A− dsmI, as we needed to show.

Remarks 2.4 (Powers through the eigenvalues).
In this remark let K be a �eld.

(1) Given A ∈ M2(K) we can also express sm(tr(A), det(A)) in terms of its
eigenvalues λ1, λ2 (may be equal) in an algebraic closure K of K. It is easy
to show by induction that, for m ∈ N∗,

sm(tr(A), det(A)) =
m−1∑
i=0

λi1λ
m−i−1
2 . (A)

Thus by Lemma 2.3 (taking into account that det(A) = λ1λ2) we can
express Am in terms of the eigenvalues. This choice makes the formula
dependent on the characteristic char(K) of the �eld: if char(K) 6= 2, the
eigenvalues of A ∈ M2(K) can be found from the characteristic polynomial
by the quadratic formula, but when char(K) = 2 the roots ofX2+aX+b ∈
K[X] cannot be expressed by radicals when the polynomial is irreducible
over K and a 6= 0, and a di�erent approach is taken (see e.g. [8, Exercise
2.4.6]).
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(2) Formula (A) can be simpli�ed as follows: if A is nondefective (λ1 6= λ2)
then

sm(tr(A), det(A)) =
λm2 − λm1
λ2 − λ1

,

while if A is defective (λ1 = λ2 =: λ) then sm(tr(A), det(A)) = mλm−1.
Defectiveness is easy to detect: if char(K) = 2, the matrix A ∈ M2(K)
is defective if and only if tr(A) = 0, i.e., if and only if the characteristic
polynomial is of the formX2+det(A) (with only eigenvalue

√
det(A) ∈ K).

If char(K) 6= 2, by the quadratic formula the matrix is defective if and only
if tr(A)2 − 4 det(A) = 0 (with only eigenvalue tr(A)/2). In any case, the
matrix A is defective if and only if tr(A)2 − 4 det(A) = 0.

In case K is not a �eld, formula (A) still holds if λ1, λ2 are two eigenvalues
in some overring K such that the characteristic polynomial of A equals (X −
λ1)(X − λ2) in K[X], the simpli�cation in the defective case can always be
done, and the simpli�cation in the nondefective case can be done when λ2−λ1
is a unit of K.

In what follows we de�ne the polynomials which will feature in the formula for
the determinant. Informally speaking, given variables x1, . . . , xk and y1, . . . , yk,
to build the polynomial pr,k(i1, . . . , im) we start with the product x1 · · ·xr and
then for each index ij we substitute two consecutive x variables in the product,
xij and xij+1, by the corresponding y variable yij (so a y variable �weights� like
two x variables), even cyclically: xr and x1 can be substituted together, but
with the caveat that they are not substituted by yr, but by yk. The indices
are taken so that the consecutive substitutions they imply are indeed possible.
Then the polynomial π(r, k) is the sum of all pr,k polynomials for all possible
indices, the polynomial α(r, k) is the sum of those pr,k which do not have the
variable yk, and the polynomial β(r, k) is the sum of those pr,k which do have
the variable yk .

De�nitions 2.5. Given r ∈ Z we denote [r] := {1, . . . , r} if r ≥ 1, [r] := ∅
otherwise. For a �nite set S ⊆ N∗, by

(
S
m

)
2
with m ∈ N∗ we denote the set of

all m-combinations of the set satisfying |s− t| ≥ 2 for all s, t ∈ S, and by
(
S
m

)
2c

the subset which applies this rule also cyclically, i.e., the subset of
(
S
m

)
2
which

excludes those combinations including both min(S) and max(S). For example(
[7]

3

)
2c

= {(1, 3, 5), (1, 3, 6), (1, 4, 6), (2, 4, 6), (2, 4, 7), (2, 5, 7), (3, 5, 7)}.
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We also denote
(
S
0

)
2
:= {0} and

(
S
0

)
2c
:= {0} (even if S is empty). Given k, r ∈

N∗ with r ≤ k+1 and considering the ring R := Z[x1, . . . , xk, xk+1, y1, . . . , yk],
we denote

x′i := xi for 1 ≤ i ≤ r, x′r+1 := x1,

y′i := yi for 1 ≤ i < r, y′r := yk,

and de�ne the monomial of R (computed inside the ring Z(x1, . . . , yk))

pr,k(i1, . . . , im) := x1 · · ·xr
y′i1 · · · y

′
im

x′i1x
′
i1+1 · · ·x′imx

′
im+1

(2.6)

for (i1, . . . , im) ∈
(
[r]
m

)
2c

with 1 ≤ m ≤ br/2c. With the same formula (2.6)
and de�ning x′0 := 1, y′0 := x1 we also extend the de�nition of pr,k(i1, . . . , im)

to the case i1 = 0, (i2, . . . , im) ∈
(

[r]
m−1
)
2c

(the second condition holding when
m > 1). So we have

pr,k(0) = x1 · · · xr, pr,k(0, i) = pr,k(i) for i ∈
(
[r]

m

)
2c

,m ≥ 1.

In addition we de�ne p0,k(0) := 1.
For example,

p6,8(3) = x1x2y3x5x6, p6,8(1, 5) = y1x3x4y5,

p6,8(6) = x2x3x4x5y8, p6,6(3, 6) = x2y3x5y6, p7,6(3, 7) = x2y3x5x6y6,

p3,4(0) = x1x2x3, p3,4(0, 3) = p3,4(3) = x2y4.

Now, for �xed 0 ≤ r ≤ k we denote in R the sum of all the pr,k by π(r, k),

π(r, k) :=

br/2c∑
m=0

∑
i∈([r]m)2c

pr,k(i), (2.7)

the sum of those pr,k having degree 0 in yk by α(r, k),

α(r, k) :=

br/2c∑
m=0

∑
i∈([r−1]m )

2

pr,k(i), (2.8)
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and the sum of those pr,k having degree 1 in yk by β(r, k),

β(r, k) :=

b(r−2)/2c∑
m=0

∑
i∈([r−2]−{1}m )

2

pr,k(i, r). (2.9)

We extend the de�nition to β(k + 1, k) through formula (2.9).
Note that π(0, k) = 1, α(0, k) = 1, β(0, k) = 0 = β(1, k) and that, for
0 ≤ r ≤ k, π(r, k) = α(r, k) + β(r, k). For example we have

π(4, 6) =x1x2x3x4 + y1x3x4 + x1y2x4 + x1x2y3 + x2x3y6 + y1y3 + y2y6,

α(4, 6) =x1x2x3x4 + y1x3x4 + x1y2x4 + x1x2y3 + y1y3, β(4, 6) = x2x3y6 + y2y6,

β(6, 5) =x2x3x4x5y5 + y2x4x5y5 + x2y3x5y5 + x2x3y4y5 + y2y4y5.

Now, given elements a := (a1, . . . , ak), d := (d1, . . . , dk) ∈ Kk, we de�ne

pa,dr,k(i1, . . . , im) as the image of the evaluation of pr,k(i1, . . . , im) to K
k mapping

xi 7→ ai, yi 7→ di for 1 ≤ i ≤ k, and xk+1 7→ a1. Analogously we de�ne
πa,d(r, k), αa,d(r, k) and βa,d(r, k).

Lemma 2.10. Given k ∈ N∗, in Z[x1, . . . , xk+1, y1, . . . , yk] we have

α(r + 1, k) =xr+1α(r, k) + yrα(r − 1, k) for 1 ≤ r ≤ k − 1,

β(r + 1, k) =xrβ(r, k) + yr−1β(r − 1, k) for 2 ≤ r ≤ k.

Proof : We state the proof for the α polynomials, for the β polynomials is
similar. For r = 1 we have α(2, k) = x1x2 + y1, α(1, k) = x1, α(0, k) = 1, so
indeed α(2, k) = x2α(1, k) + y1α(0, k). For 2 ≤ r ≤ k − 1 consider

α(r + 1, k) =

b(r+1)/2c∑
m=0

∑
i∈([r]m)2

pr+1,k(i)

and �x some p := pr+1,k(i1, . . . , im) appearing as a term in the above expression
of α(r + 1, k), with indices rearranged so that i1 < . . . < im. Since im < r + 1
(so yk is not a factor of p), we have that either

- im < r, xr+1 is a factor of p and yr is not, whence p = xr+1pr,k(i1, . . . , im),
or

- im = r, yr is a factor of p and xr+1 is not, whence p = yrpr−1,k(i1, . . . , im−1)
if m ≥ 2 and p = yrpr−1,k(0) if m = 1.
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Denote

S1(m) := {(i1, . . . , im) ∈
(
[r]

m

)
2

| i1, . . . , im < r},

S2(m) := {(i1, . . . , im−1, r) ∈
(
[r]

m

)
2

}

and observe that
(
[r]
m

)
2
is the disjoint union of S1 and S2 for 0 ≤ m ≤

b(r + 1)/2c. We have S1(m) =
(
[r−1]
m

)
2
for 0 ≤ m ≤ b(r + 1)/2c and

S2(m) = {(i, r) | i ∈
(
[r−2]
m−1
)
2
} for 2 ≤ m ≤ b(r + 1)/2c; in addition, since

pr+1,k(0, r) = pr+1,k(r) = yrpr−1,k(0), we can substitute S2(1) by {(i, r) | i ∈(
[r−2]
0

)
2
}. Therefore

α(r + 1, k) =

br/2c (∗)∑
m=0

∑
i∈([r−1]m )

2

xr+1pr,k(i) +

b(r+1)/2c∑
m=1 (?)

∑
i∈([r−2]m−1)2

yrpr−1,k(i) =

= xr+1

br/2c∑
m=0

∑
i∈([r−1]m )

2

pr,k(i) + yr

b(r−1)/2c (†)∑
m=0

∑
i∈([r−2]m )

2

pr−1,k(i) =

= xr+1α(r, k) + yrα(r − 1, k),

with (∗) being true since b(r + 1)/2c = br/2c when r is even while we cannot
simultaneously have m = b(r + 1)/2c and im < r when r is odd, (?) since we
cannot simultaneously have m = 0 and im = r, and (†) since b(r+1)/2c−1 =
b(r − 1)c/2.

Theorem 2.11 (Determinant of a tridiagonal k-Toeplitz matrix).
LetK be any commutative unital ring. Given k, n ∈ N∗ and a, b := (b1, . . . , bk),
c := (c1, . . . , ck) ∈ Kk, put di := −bici for 1 ≤ i ≤ k and d := (d1, . . . , dk). If
n ≤ k (i.e, if we are considering a general tridiagonal matrix) then

det(Tn(a; b; c)) = αa,d(n, k).

If n > k write n = mk + r with r the remainder of n modulo k, and denote
s(i) := si(π

a,d(k, k), d) for i ∈ N; then

det(Tn(a; b; c)) =

= s(m)(αa,d(k, k)αa,d(r, k) + αa,d(k − 1, k)βa,d(r + 1, k))− ds(m− 1)αa,d(r, k).
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Proof : Fixed k ∈ N∗ and a := a1, . . . , ak, b := b1, . . . , bk, c := c1, . . . , ck ∈ K,
for n ∈ N∗ denote Tn := Tn(a; b; c) and D(n) := det(Tn), and denote also
D(0) := 1. If n = 1 then D(n) = det((a1)) = a1. Suppose n ≥ 2 and
write Tn = (tij)

n
i,j=1. From Laplace expansion along the last column we see

that D(n) = tnnD(n − 1) − tn−1,nD′, with D′ = tn,n−1D(n − 2) by Laplace
expansion along the last row of its associated submatrix (also true for n = 2
with D(0) = 1). If the residue of n modulo k is r, n = km+ r, then tnn = ar,
tn−1,n = br−1, tn,n−1 = cr−1, with a0 := ak, b0 := bk, c0 := ck. Therefore,
putting di := −bici for 0 ≤ i ≤ k and d−1 := dk−1, we get for D(n) the
second-order linear di�erence equation with variable periodic coe�cients

D(n) = arD(n− 1) + dr−1D(n− 2) for n ≥ 2

or, written in matrix form,(
D(n)

D(n− 1)

)
=

(
ar dr−1
1 0

)(
D(n− 1)
D(n− 2)

)
. (1)

De�ne Ar :=

(
ar dr−1
1 0

)
for 0 ≤ r ≤ k (note A0 = Ak), which has det(Ar) =

−dr−1, and A := AkAk−1 · · ·A1. Observe that we also have(
D(1)
D(0)

)
=

(
a1
1

)
=

(
a1 dk
1 0

)(
1
0

)
= A1

(
1
0

)
.

Therefore, by recursion on (1), for n = km+ r we have(
D(n)

D(n− 1)

)
= ArAr−1 · · ·A1 · Am

(
1
0

)
, (2)

understanding Ar · · ·A1 = I when r = 0. Denote A(r) := Ar · · ·A1 for 1 ≤
r ≤ k (note A(k) = A) and d := (d1, . . . , dk). Let us show by induction on r
that

A(r) =

(
αa,d(r, k) βa,d(r + 1, k)

αa,d(r − 1, k) βa,d(r, k)

)
. (3)

From De�nitions 2.5, in the ringZ[x1, . . . , xk+1, y1, . . . , yk] we compute β(2, k) =
yk, π(1, k) = x1, β(1, k) = 0, α(1, k) = x1, α(0, k) = 1, so(

αa,d(1, k) βa,d(2, k)

αa,d(0, k) βa,d(1, k)

)
=

(
a1 dk
1 0

)
= A1 = A(1).



THE INVERSE OF A TRIDIAGONAL k-TOEPLITZ MATRIX 11

This shows the base case. Now assume that (3) is true for a �xed 1 ≤ r ≤ k−1.
Then

A(r + 1) = Ar+1A(r) =

(
ar+1 dr
1 0

)(
αa,d(r, k) βa,d(r + 1, k)

αa,d(r − 1, k) βa,d(r, k)

)
=

=

(
ar+1α

a,d(r, k) + drα
a,d(r − 1, k) ar+1β

a,d(r + 1, k) + drβ
a,d(r, k)

αa,d(r, k) βa,d(r + 1, k)

)
=

=

(
αa,d(r + 1, k) βa,d(r + 2, k)

αa,d(r, k) βa,d(r + 1, k)

)
by Lemma 2.10, as we needed to show.

Now, if m = 0 then by (2) we get

(
D(n)

D(n− 1)

)
= A(r)

(
1
0

)
, so D(n) =

αa,d(r, k) by (1). If m > 0 then again by (2), setting A(0) := I, we get(
D(n)

D(n− 1)

)
= A(r)Am

(
1
0

)
, (4),

so D(n) equals the (1, 1)th element of A(r)Am. Since by (3)

A = A(k) =

(
αa,d(k, k) βa,d(k + 1, k)

αa,d(k − 1, k) βa,d(k, k)

)
,

we get tr(A) = αa,d(k, k) + βa,d(k, k) = πa,d(k, k). In addition we have

det(A) =
∏k

r=1 det(Ar) = (−1)kd1 · · · dk =: d, thus by Lemma 2.3, if s(i) :=

si(π
a,d(k, k), d) then Am = s(m)A− ds(m− 1)I, so the �rst column of Am is(

s(m)αa,d(k, k)− ds(m− 1)

s(m)αa,d(k − 1, k)

)
. (5)

By (3), if r > 0 then the �rst row of A(r) is(
αa,d(r, k) βa,d(r + 1, k)

)
, (6)

and the same holds for A(0) = I, since αa,d(0, k) = 1, βa,d(1, k) = 0. Using
(5),(6) in (4) we �nally get

D(n) = s(m)(αa,d(k, k)αa,d(r, k)+αa,d(k−1, k)βa,d(r+1, k))−ds(m−1)αa,d(r, k).
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Observe that this formula gives D(k) = αa,d(k, k) (for n = k), since in this

case m = 1, r = 0, s(1) = 1, s(0) = 0, αa,d(0, k) = 1, βa,d(1, k) = 0, so the
formula for n < k actually works also for n = k.

Remark 2.12 (Characteristic polynomial of a tridiagonal k-Toeplitz matrix).

Since Theorem 2.11 gives an explicit formula for the determinant of any tridi-
agonal k-Toeplitz matrix Tn(a, b, c) over any commutative unital ring, it can
also be used to explicitly compute the determinant of the tridiagonal k-Toeplitz
matrix Tn(X − a, b, c), where X − a := (X − a1, . . . , X − ak) ∈ K[X]k, which
gives the characteristic polynomial of Tn(a, b, c).

The formula for the determinant in Theorem 2.11 allows also to compute any
element of the inverse of a nonsingular tridiagonal k-Toeplitz matrix, since the
submatrices giving rise to its cofactors turn out to be composed of diagonal
blocks which are either triangular or again tridiagonal k-Toeplitz matrices.

Theorem 2.13 (Inverse of a tridiagonal k-Toeplitz matrix).
Let K be any commutative unital ring. Given k ∈ N∗ and a, b := (b1, . . . , bk),
c := (c1, . . . , ck) ∈ Kk, put di := −bici for 1 ≤ i ≤ k and d := (d1, . . . , dk).

Given n ∈ N, if n ≤ k denote Dn(a, d) := αa,d(n, k), else write n = mk + r
with r the remainder of n modulo k, put d := (−1)kd1 · · · dk, denote s(i) :=

si(π
a,d(k, k), d) for i ∈ N and

Dn(a, d) :=

s(m)(αa,d(k, k)αa,d(r, k) + αa,d(k − 1, k)βa,d(r + 1, k))− ds(m− 1)αa,d(r, k).

Let Sk be the kth permutation group acting on Kk and for j ∈ N let σj ∈ Sk
be the jth cyclic permutation to the left, so that σ0(x1, . . . , xk) = (x1, . . . , xk),
σ1(x1, . . . , xk) = (x2, . . . , xk, x1), σk = σ0, etc. Let i%k denote the residue of
i modulo k and put bi := b(i−1)%k+1, ci := c(i−1)%k+1 for i ∈ N∗. If Dn(a, d)

is a unit of K then Tn(a; b; c) is invertible and the (i, j)th element mij of its
inverse is given by

(−1)i+j
j−1∏
p=i

bp

i−1∏
p=j

cp
Dmin(i,j)−1(a; d)Dn−max(i,j)(σmax(i,j)(a);σmax(i,j)(d))

Dn(a; d)
.

Proof : Denote Tn := Tn(a; b; c) and suppose det(Tn) is a unit of K. We com-
pute its inverse through its adjugate matrix, so that the (r, s)th element of T−1n
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is

mrs :=
Csr

det(Tn)
(1),

where Csr := (−1)r+s det(Asr) is the cofactor obtained from the submatrix Asr

of Tn formed by deleting the sth row and the rth column. Thus if Tn = (tij)
n
i,j=1

and Ars = (aij)
n−1
i,j=1 we have

aij =


tij, if i < r, j < s
ti+1,j, if i ≥ r, j < s
ti,j+1, if i < r, j ≥ s
ti+1,j+1, if i ≥ r, j ≥ s

.

Since tij = 0 if |j − i| ≥ 2, this implies that Ars is a block upper triangular
matrix when r ≤ s and a block lower triangular matrix when r ≥ s, with three
diagonal blocks. For ease of indexing, put ai := a(i−1)%k+1 for i ∈ N∗ and
similarly with bi, ci. Then when r ≤ s we have

Ars =


A1 br−1 rth row

cr ar+1

cr+1
. . .
. . . bs

sth col
A2


where A1, A2 are again tridiagonal k-Toeplitz matrices, concretely
A1 = Tr−1(a; b; c), A2 = Tn−s(σs(a);σs(b);σs(c)). Since the middle diago-
nal block Ac is upper triangular with main diagonal composed from the lower
diagonal of Tn, its determinant is det(Ac) = crcr+1 · · · cs−1. Analogously, when
r ≥ s we get Ts(a; b; c), Ab, and Tn−r(σr(a);σr(b);σr(c)) as the diagonal blocks
of Ars, with Ab lower triangular with main diagonal composed from the upper
diagonal of Tn and determinant det(Ab) = bs · · · br−1. Thus, since the deter-
minant of a block-triangular matrix is the product of the determinants of its
diagonal blocks, we get

det(Ars) =

{
cr · · · cs−1 det(Tr−1(a; b; c)) det(Tn−s(σs(a);σs(b);σs(c)), if r ≤ s
bs · · · br−1 det(Ts−1(a; b; c)) det(Tn−r(σr(a);σr(b);σr(c))) if s ≤ r

.

The result now follows from (1) and the application of Theorem 2.11.

Remark 2.14. Observe that the product of determinants appearing in the
computation of the element mij of the inverse (with i < j, say) is the same
as that appearing for its re�ected element mji, the only di�erence in their
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computations being that the factor
∏j−1

p=i bp appearing for mij is substituted by

the factor
∏j−1

p=i cp for mji.

To conclude we provide an example of computation of the determinant, the
characteristic polynomial, and an element of the inverse, of an speci�c tridiag-
onal k-Toeplitz matrix.

Example 2.15. Pick n := 10, k := 3, a1 := 1, a2 := 0, a3 := −1, b1 := 2, b2 :=
5, b3 := 1, c1 := 3, c2 := −2, c3 := 1 ∈ Q and consider Tn(a; b; c). To �nd its
determinant we compute

d1 = −b1c1 = −6, d2 = 10, d3 = −1, d = (−1)kd1d2d3 = −60

π(k, k) = x1x2x3 + y1x3 + x1y2 + x2y3, π
a,d(k, k) = 16

n = 3 · k + 1⇒ m = 3, r = 1

sm(x, y) = x2 − y, sm−1(x, y) = x

s(m) = sm(π
a,d(k, k), d) = 316, s(m− 1) = sm−1(π

a,d(k, k), d) = 16

α(k, k) = x1x2x3 + y1x3 + x1y2, α(k − 1, k) = x1x2 + y1, α(r, k) = x1

αa,d(k, k) = 16, αa,d(k − 1, k) = −6, αa,d(r, k) = 1

β(r + 1, k) = y3, β
a,d(r + 1, k) = −1.

Then det(Tn(a; b; c)) is

s(m)(αa,d(k, k)αa,d(r, k)+αa,d(k−1, k)βa,d(r+1, k))−ds(m−1)αa,d(r, k) = 7912.

The characteristic polynomial of Tn(a; b; c) is det(Tn(X − a; b; c)), so we com-
pute

αX−a,d(k, k) = (X − 1)X(X + 1)− 6(X + 1) + 10(X − 1) = X3 + 3X − 16

αX−a,d(k − 1, k) = (X − 1)X − 6 = X2 −X − 6, αX−a,d(r, k) = X − 1

πX−a,d(k, k) = X3 + 3X − 16−X = X3 + 2X − 16, βX−a,d(r + 1, k) = −1

s(m) = sm(π
X−a,d(k, k), d) = (X3 + 2X − 16)2 + 60 =

= X6 + 4X4 − 32X3 + 4X2 − 64X + 316

s(m− 1) = sm−1(π
X−a,d(k, k), d) = X3 + 2X − 16

to get

X10−X9+6X8−54X7+66X6−204X5+1112X4−1280X3+1992X2−8176X+7912.
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The (4, 5)th element m45 of the inverse of Tn(a; b; c) is

m45 = −
4∏
p=4

bp
D3(a; d)Dn−5(σ5(a);σ5(d))

Dn(a; d)
.

We compute

b4 = b1 = 2, c4 = c1 = 3, d = −60

D3(a, d) = αa,d(k, k) = 16, Dn(a, d) = 7912

σ5 = σ2 ⇒ σ5(a1, a2, a3) = (a3, a1, a2), σ5(d1, d2, d3) = (d3, d1, d2)

n = 5⇒ m = 1, r = 2, s(1) = 1, s(0) = 0, βσ5(a),σ5(d)(k, k) = 10

ασ5(a),σ5(d)(k, k) = 6, ασ5(a),σ5(d)(k − 1, k) = ασ5(a),σ5(d)(r, k) = −2
D5(σ5(a), σ5(d)) = 1 · (6 · (−2) + (−2) · 10)− (−60) · 0 · (−2) = −32

to get m45 = −2
16 · (−32)

7912
= 128/989. In addition m54 =

c4
b4
m45 = 192/989.
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