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Abstract: We prove some comparison results between generalized quantiles of
different degrees, including the ordinary quantiles and the increasingly popular ex-
pectiles. Based on the generalized quantiles, we extend the notion of odds functions
to higher degrees, including the Omega ratio as a special case, and establish their
convexity under mild conditions. Finally, we show that the stochastic order based
on comparisons of expectiles is a suitable order of skewness.

Keywords: generalized quantiles, stochastic orders, odds function, Omega ratio,
skeweness.

Math. Subject Classification (2010): 60E15, 60E05, 62N05.

1. Introduction
Let X be a continuous random variable (RV) with cumulative probability

distribution (CDF) F , survival function F = 1− F , and probability density
f . Let p ≥ 1 and assume that E(Xp) <∞.

As remarked, for example, by Newey and Powell (1987) or Chen (1996),
the notion of quantile of order α ∈ [0, 1] of X may be generalized, up to
a degree p ≥ 1, as the value xp(α) which solves the following minimization
problem:

min
x

(
αE(X − x)p− + (1− α)E(X − x)p+

)
, (1)

where t+ = max(t, 0) and t− = max(−t, 0). This value, xp(α), is known in
the literature as Lp-quantile of order α (Chen, 1996). Hereafter, with a slight
abuse of terminology, Lp-quantiles will be simply referred to as generalized
quantiles of degree p ≥ 1. Note that this should not be misunderstood with
the wider definition of generalized quantile given by Bellini et al. (2014). For
a more convenient representation, one may use the notations introduced by

Received June 29, 2021.
This work was partially supported by the Centre for Mathematics of the University of Coimbra

- UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES..
Tommaso Lando was supported by the Italian funds ex MURST 60% 2019, by the Czech Science

Foundation (GACR) under project 20-16764S and moreover by SP2020/11, an SGS research project
of VŠB-TU Ostrava. The support is greatly acknowledged.

1



2 I. ARAB, T. LANDO AND P.E. OLIVEIRA

Fishburn (1980), based on fractionary integration:

Fp(x) =
1

Γ(p)

∫ x

−∞
(x− t)p−1 dF (t) and F p(x) =

1

Γ(p)

∫ ∞
x

(t− x)p−1 dF (t),

(2)
to define the p-iterated integrals of F and F , respectively, where F = F1

and F = F 1. It is well known that Fp(x) =
∫ x

−∞ Fp−1(t) dt and F p(x) =∫∞
x F p−1(t) dt. It is now simple, differentiating (1), to verify that xp(α) may

be equivalently represented as the solution of the first order condition,

(1− α)Fp(x) = αF p(x).

It is clear from the above expression that the quantiles are obtained by setting
p = 1, that is x(α) := x1(α) = F−1(α). On the other hand, choosing p = 2,
we obtain the expectiles, namely e(α) := x2(α). Generalized quantiles are
useful tools in statistics, as they may be employed to define regression models
determined through possibly asymmetric loss functions (Newey and Powell,
1987), extending the scope of the quantile regression approach of Koenker
and Bassett (1978). Moreover, such extensions have been used to define risk
measures, in various fields related to finance, economics and insurance (see,
for instance, Bellini et al. (2014) or Bellini and Di Bernardino (2017)). On
this regard, another function that is often of interest, and which is closely
related to the expectiles, is given by the Omega ratio, introduced by Keating
and Shadwick (2002) as a measure of the performance of financial variables,
and defined by

Ω(x) =
F 2(x)

F2(x)
=

E(X − x)+

E(X − x)−
. (3)

Owing to the growing interest in expectiles and Omega ratios, in spite of
the lack of a clear characterization of their behaviour, some authors studied
the coherence of such functions with respect to known comparisons criteria
for distributions, discovering insightful relations with the field of stochastic
orders (see Bellini (2012), Bellini et al. (2018), or Klar and Müller (2019)). In
this paper, we prove some results concerning generalized quantiles and some
related measures, such as Omega ratios, in terms of dispersion, geometric
properties, and stochastic ordering.

Statisticians often argue that typically the expectiles (or generalized quan-
tiles of higher degree p) are somewhat less spread out, or dispersed, around
their center, when compared to the corresponding quantiles. Proving such a
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property would be especially useful, for instance, to understand the effect of
moving from quantile regression to expectile regression, at a given level α,
or to infer that expectiles measure risk in a more conservative way, that is,
showing less variability with respect to the degree, compared to quantiles,
as conjectured by Bellini et al. (2014). However, this may be true for some
special distributions, but not in general: in fact, an example of a distribu-
tion for which quantiles and expectiles coincide was exhibited in Koenker
(1993). In Section 3, under some mild conditions, we obtain a comparison
result between generalized quantiles of different degrees. Similar conditions
may be used to characterize the Omega ratio and, more generally, what we
shall denote below as generalized odds, in terms of convexity properties.

As pointed out by Jones (1994), expectiles or, more generally, generalized
quantiles, are the ordinary quantiles of the following CDF:

Hp(x) =
Fp(x)

Fp(x) + F p(x)
. (4)

We shall refer to Hp as the generalized quantile distribution. This remark
gives rise to the possibility of studying stochastic orders among the general-
ized quantile distributions that correspond to different RVs, say X and Y .
A remarkable example, besides the trivial case p = 1, which yields the clas-
sic stochastic ordering problem, is represented by the choice p = 2, which
corresponds to the expectile order of Bellini et al. (2018). Some authors in-
vestigated the relations, in terms of coherence, or isotonicity, between this
ordering of expectiles (or the closely related omega ratios) and some known
stochastic orders (Bellini (2012), Bellini et al. (2018), or Klar and Müller
(2019)). In Section 5 we show that, in case of suitably standardized RVs X
and Y , X dominates Y in the expectile order if and only if X is more skewed
(to the right) than Y , in a sense that will be explained in the sequel. In
other words, the expectile order (for standard RVs) is actually an order of
skewness, being coherent with all the basic principles of a skewness order (see
van Zwet (1964), Arnold and Groeneveld (1992), Oja (1981), or MacGillivray
(1986) for some literature on this topic).

2. Preliminaries
Let X and Y be two RVs with CDFs FX and FY . We shall recall some

definitions of stochastic orders which will be useful in the sequel.



4 I. ARAB, T. LANDO AND P.E. OLIVEIRA

Definition 1 (Shaked and Shantikumar (2007)). We say that

(1) X dominates Y w.r.t. the convex (concave) order, denoted by X ≥cx

Y (X ≥cv Y ), if E(g(X)) ≥ E(g(Y )) for every convex (concave) func-
tion g;

(2) X dominates Y w.r.t. the convex transform order (denoted by X ≥c

Y ) if F−1
X ◦ FY is convex;

(3) X dominates Y w.r.t. the star order (denoted by X ≥∗ Y ) if F−1
X ◦FY

is starshaped, that is,
F−1
X ◦FY (x)

x is increasing.

The convex (concave) order expresses the notion of being more (less) dis-
persed, where clearly X ≥cx Y iff Y ≥cv X. Differently, the convex transform
order has been introduced by van Zwet (1964) to compare continuous RVs in
terms of skewness. The star order is also a (weaker) order of skewness, which
applies to the case of nonnegative RVs whose CDFs vanish at 0 (see Shaked
and Shantikumar (2007), Oja (1981)). Coherently with the literature, sto-
chastic orders may be denoted in terms of RVs or, equivalently, in terms of
their distribution functions (meaning that X � Y is considered equivalent
to FX � FY ). We shall use these notations interchangeably.

We start with some useful lemmas. The following one gives a characteri-
zation of monotonicity in terms of sign changes.

Lemma 2 (Lemma 11 in Arab and Oliveira (2019)). A real valued function
g is increasing (decreasing) iff, for every c ∈ R, g(x)−c changes sign at most
once when x traverses from −∞ to +∞, and, if the change occurs, it is in
the order “−,+” (“+,−”).

Now, we can prove the following useful results. Recall that a function φ is
said to be log-concave (log-convex) if lnφ is concave (convex).

Lemma 3. Let p and q be positive real numbers. If f is log-concave (log-

convex), then, for every p < q,
Fp

Fq
is decreasing (increasing) and

F p

F q
is in-

creasing (decreasing).

Proof : Assume that f is log-concave. To show that rp,q(x) =
Fp(x)
Fq(x) is decreas-

ing, we apply Lemma 2 and look at the sign sequence of rp,q(x) − c, which
coincides with that of sp,q(x) = Fp(x)− cFq(x). By an appropriate change of
variable, (2) yields

sp,q(x) =

∫ ∞
0

h(u)f(x− u) du,
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where h(u) = up−1

Γ(p)

(
1− cΓ(p)

Γ(q) u
q−p
)

. Taking into account that p < q, h(u)

has at most one sign change, and, if the change occurs, it is in the order
“+,−”. Since f is log-concave, it follows from Theorem 3.1 of Karlin (1968)
that sp,q(x) has the same sign sequence as h(x). Thus, Lemma 2 implies

that rp,q(x) is decreasing. To prove that
F p(x)

F q(x)
is increasing, again we look

at
F p(x)

F q(x)
− c, which has the same sign changes as kp,q(x) = F p(x) − cF q(x).

Composing kp,q(x) with −x, Proposition 6 of Arab et al. (2020) implies that
the sign sequence of kp,q(x) is the reversed sign sequence of kp,q(−x) :=
F p(−x)− cF q(−x). Again, (2) gives

kp,q(−x) =

∫ ∞
0

h(u)f(u− x) du.

The same arguments applied in the first part of the proof imply that kp,q(x)
changes sign at most once, and, if the change occurs, it is in the order “+,−”.
Taking into consideration that the sign sequence of kp,q is the reverse of that
of kp,q(x), so Lemma 2 implies the conclusion. The case when f is log-convex
is proved analogously.

In the particular case of integer degrees p and q, the previous result holds
under weaker assumptions, as proved next.

Lemma 4. Let p and q be positive integers.

(1) If f
1−F is increasing (decreasing), then

F p

F q
is increasing (decreasing)

for every p < q.
(2) If f

F is decreasing (increasing), then
Fp

Fq
is decreasing (increasing) for

every p < q.

Proof : Assume that f(x)
1−F (x) is increasing. We shall first prove by induction

that
F p(x)

F p+1(x)
is, for every p ≥ 1, increasing. Let rp(x) =

F p(x)

F p+1(x)
, and take

p = 1. To prove that r1 is increasing, using Lemma 2, it is enough to prove
that r1(x) − c changes sign at most once for every positive constant c, and,
if the change occurs it, is in the order “−,+”. Note that r1(x) − c has
the same sign change as s(x) = F 1(x) − cF 2(x). Differentiating, we get

s′(x) = −f(x) + cF (x) which has the same sign change as c − f(x)

F (x)
. Taking

into account the assumption, it follows that s′ changes sign at most once
and, if the change occurs, it is in the order “+,−”. Consequently, the sign
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change of r1(x) − c is at most “−,+”, meaning that r1 is increasing. Now,
assuming that rp is increasing, we need to prove that rp+1 is also increasing.
Following the same technique used to prove that the sign sequence of r1(x)
is at most “−,+”, we find that also the sign sequence of rp+1(x) − c is at

most “−,+”, meaning that rp+1 is increasing. Therefore,
F p

F p+1
is increasing

for every positive integer p. Finally, to prove that
F p

F q
is increasing for every

positive integers p < q, it is enough to remark that

F p

F q

=

q−p−1∏
j=0

F p+j

F p+1+j

,

which is a product of positive increasing functions. The proof of the second
part of the lemma follows analogously.

3. Single-crossing results on generalized quantiles
We study the dispersion property mentioned in the introduction, proving

that, under some mild conditions, generalized quantiles become more con-
centrated as the degree p increases. In particular, this clearly holds when
comparing expectiles with quantiles. Such properties are a consequence of
the following single-crossing results.

Lemma 5. Assume that 0 < p < q,
Fp

Fq
is decreasing and

F p

F q
is increasing.

Then there exists some αp,q such that:

xp(α) < xq(α), for α < αp,q, and xp(α) > xq(α), for α > αp,q. (5)

Proof : Denote by Kp,q(x) = 1
Hq(x) −

1
Hp(x) =

F q(x)
Fq(x) −

F p(x)
Fp(x) , which has the

same sign change as Lp,q(x) =
Fp(x)
Fq(x) −

F p(x)

F q(x)
. It follows from the monotonic-

ity assumptions that Lp,q is decreasing. Moreover, as limx→+∞
Fp(x)
Fq(x) = 0, and

limx→−∞
F p(x)

F q(x)
= 0, it follows that limx→−∞ Lp,q(x) > 0 and limx→+∞ Lp,q(x) <

0. Taking now into account that Lp,q(x) is decreasing, the sign change of
Lp,q(x) is “+,−”, therefore the sign change of Kp,q(x) is “+,−”, implying
that Hp(x)−Hq(x) has a “+,−” sign change, so the conclusion follows.

Now, the main result of this section easily follows from Lemmas 3, 4 and 5.
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Theorem 6. Assume one of the following conditions is satisfied:

(1) 0 < p < q and f be log-concave;
(2) p < q are positive integers, f

1−F is increasing and f
F is decreasing.

Then there exists some αp,q such that (5) holds.

The log-concavity of the density, required by condition 1., is an important
property in statistics (Marshal and Olkin, 2007, p.98), which is satisfied by
several prominent models (uniform, power function with power parameter
≥ 1, normal, Gumbel, logistic, Laplace, exponential, gamma and Weibull
with shape parameter a ≥ 1, beta with shape parameters a, b ≥ 1). The
monotonicity assumptions of condition 2. are weaker than the log-concavity
of f . In particular, assuming that f

1−F is increasing, which is typically referred
to as the increasing hazard rate condition, is a quite popular hypothesis in
survival analysis, being equivalent to log-concavity of the survival function
F (see, for example, (Marshal and Olkin, 2007, p.103)). Similarly, assuming
that f

F is decreasing, which is typically referred to as the decreasing reversed
hazard rate condition, is equivalent to the log-concavity of the CDF F (Mar-
shal and Olkin, 2007, p.178). It is hard to find instances of distributions that
do not satisfy this property. Overall, conditions 1. and 2. are not restrictive,
therefore Theorem 6 has a quite wide range of applicability.

With regard to the special case of comparisons between quantiles and ex-
pectiles, the following result is an immediate consequence of Theorem 6.

Corollary 7. Let X be an RV such that f
1−F is increasing and f

F is decreasing.
Denote by µ and m the mean and the median of X, respectively.

(1) If m ≤ µ, then there exists α0 <
1
2 such that x(α) < e(α) for α < α0

and x(α) > e(α) for α > α0.
(2) If m > µ, then there exists α1 >

1
2 such that x(α) < e(α) for α < α1

and x(α) > e(α) for α > α1.
(3) If m = µ, then x(α) < e(α) for α < 1

2 and x(α) > e(α) for α > 1
2.

Proof : It follows from Theorem 6 that x(α) and e(α) cross once and the sign
sequence of x(α)−e(α) is, as α goes from 0 to 1, “−,+”. taking into account
that x(1

2) = m and e
(

1
2

)
= µ, the conclusion follows.

In the symmetric case, the above result ensures that, for q > p, the values
of xq(α) are less variable, or spread out, than those of xp(α). In particular,
this is stated in terms of stochastic orders.
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Theorem 8. Let F be a symmetric distribution with finite mean. Assume
that f

1−F is increasing and f
F is decreasing, if p, q ∈ N, or that f is log-concave,

if p, q ∈ R. Then, if q > p, Hp ≤cv Hq (equivalently, Hq ≤cx Hp).

Proof : Denote by µp =
∫
R x dHp(x) and mp = xp(

1
2) = H−1

p (1
2) the mean and

the median of Hp, respectively. If F is symmetric, with mean µ and median
m, Proposition 1 of Chen (1996) implies that Hp is also symmetric w.r.t.
the same center, namely µp = mp = µ = m, for every p ≥ 1. Taking into
account Theorem 6, Hq−Hp changes sing exactly once and the sign sequence
is “−,+”. Then, Theorem 3.A.44 of Shaked and Shantikumar (2007) implies
the result.

4. Geometric properties of generalized odds functions
It is easy to see that the Omega ratio, given by (3), is the odds function

corresponding to the generalized quantile CDF H2, namely Ω = H2

H2
= F 2

F2
.

It now becomes natural to look at Ω as a special case of a family of odds
functions of degree p≥ 0, defined as follows.

Definition 9. Given a CDF F , the generalized odds function of degree p ≥ 0
is given by

Ωp(x) =
F p+1(x)

Fp+1(x)
=
Hp+1(x)

Hp+1(x)
, (6)

where Fp and F p are given by (2), and Hp and Hp by (4).

The Omega ratio (3) is obtained for p = 1, as Ω1 := Ω, whereas, for

p = 0, we obtain the classic odds function Ω0 = F
F . Similarly, we may define

generalized reversed odds function of degree p≥ 0 as Ω̃p = 1
Ωp

. In this case, for

p = 0, we obtain the odds for failure, which has been studied by Lando et al.
(2020), whereas for p = 1 we obtain the reversed Omega ratio associated
to a loss distribution, addressed by Sharma et al. (2017). In the literature,
it is typically deduced that Ω, that is Ω1, is a non-convex function, being
the ratio of two convex functions. However, the convexity of the odds is an
important property. In particular, the convexity of Ωp, together with the
fact that the function is decreasing, implies that the ratio between expected
gains and losses has an increasing deceleration with respect to x. Below, we
provide sufficient conditions for establishing convexity and log-convexity of
the generalized odds function Ωp, including the special cases Ω0 and Ω, just
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based on the assumptions which are involved in the single-crossing results of
Section 3. Similar results can be obtained for Ω̃p.

Theorem 10.

(1) If f is log-concave and p is real, then Ωp is convex.

(2) If f
F is decreasing and p is integer, then Ωp is convex.

(3) If f
1−F is decreasing and p is integer, then Ωp is log-convex.

Proof : (1) Differentiating Ωp, we get

−Ω′p(x) =
F p(x)Fp+1(x) + Fp(x)F p+1(x)

(Fp+1(x))2

=
F p(x)

Fp+1(x)
+

Fp(x)

Fp+1(x)

F p+1(x)

Fp+1(x)
.

Taking into account that f(x)
F (x) is decreasing, it follows from Lemma 3

that
Fp(x)

Fp+1(x) is also decreasing. Moreover, as
F p(x)
Fp+1(x) and

F p+1(x)
Fp+1

are

decreasing, −Ωp
′(x) is a sum of two decreasing functions, hence de-

creasing, meaning that Ωp is convex.
(2) The proof follows from the previous arguments, using Lemma 4 instead

of Lemma 3.
(3) Note that, if the failure rate f(x)

1−F (x) is decreasing, then the reversed

failure rate f(x)
F (x) is also decreasing. Indeed, this follows from

f(x)

F (x)
=
f(x)

F (x)

F (x)

F (x)
,

where the odds F (x)
F (x) is decreasing by construction. After some calcu-

lations, the derivative of ln Ωp is

(ln Ωp)
′ (x) = −Fp+1(x)

F p+1(x)

(
F p(x)

Fp+1(x)
+
F p+1(x)Fp(x)

Fp+1(x)2

)
= − F p(x)

F p+1(x)
− Fp(x)

Fp+1(x)
.
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Since f(x)
1−F (x) and f(x)

F (x) are decreasing, Lemma 4 implies that
F p(x)

F p+1(x)

and
Fp(x)

Fp+1(x) are decreasing, therefore (ln Ωp)
′ is increasing, meaning

that ln(Ωp) is convex.

5. Relations to skewness
We recall a stochastic ordering related to expectiles that was recently in-

troduced. Let us denote by eX(α) and eY (α) the expectiles corresponding to
the RVs X and Y , respectively.

Definition 11 (Bellini et al. (2018)). We say that X dominates Y in the
expectile order, denoted by X ≥e Y , if eX(α) ≥ eY (α), for every α ∈ [0, 1].

In this section, we consider suitably standardized RVs, and we relate the
expectile order to the notion of skewness. Since skewness is a location-scale
invariant concept, let X and Y be a pair of RVs such that E(X) = E(Y ) = µ
and E|X − µ| = E|Y − µ|. Henceforth, without loss of generality, for the
sequel we shall let µ = 0 and E|X| = 1, like in Arnold and Groeneveld
(1992). In doing so, we simplify the notations, without needing to rely on

standardization, taking X̃ = X−E(X)
E|X−E(X)| . Various stochastic orders have been

introduced for comparing RVs in terms of skewness, see for instance van Zwet
(1964), Arnold and Groeneveld (1992), Oja (1981), or MacGillivray (1986),
among which, the convex transform order of van Zwet (1964) is the main
(and strongest) one. We introduce a new ordering of skewness and show that
it is actually equivalent to the expectile order among standardized variables.

Intuitively, we may say that X is more skewed (to the right) than Y if the
left tail of X is lighter than that of Y and the right tail of X is heavier than
that of Y . This justifies defining the following stochastic order.

Definition 12. Given the RVs X and Y , with CDFs FX and FY , respectively,
we say that X dominates Y in the s-order, denoted by X ≥s Y , if∫ x

−∞
FX(t) dt ≤

∫ x

−∞
FY (t) dt, ∀x ≤ 0,

and ∫ ∞
x

FX(t) dt ≥
∫ ∞
x

F Y (t) dt, ∀x ≥ 0.



A NOTE ON EXPECTILES AND RELATED MEASURES 11

Expressing this relation in terms of known stochastic orders, X ≥s Y
holds if both −(X−) ≥cv −(Y−) and −(Y+) ≥cv −(X+) hold, or equivalently,
X+ ≥cx Y+ and Y− ≥cx X− (note that the conditions E(X) = E(Y ) = 0 and
E|X| = E|Y | imply E(X+) = E(Y+) and E(X−) = E(Y−)). To see that the
s-order is a suitable ordering of skewness, we remark that it satisfies some
fundamental properties, as shown in the following theorem (in particular, the
s-order is coherent with the convex transform order of van Zwet (1964)).

Theorem 13.

(1) If X and Y are symmetric and X 6=d Y , then X and Y are not
comparable w.r.t. the s-order.

(2) If Y = −X, then either X ≥s Y or Y ≥s X.
(3) If FX(0)≥FY (0), X ≥c Y implies X ≥s Y .

Proof : (1) Assume that X ≥s Y , and let ∆(x) =
∫ x

−∞ FX(t) − FY (t) dt

and ∆(x) =
∫∞
x FX(t) − F Y (t) dt. Since E(X−) = E(Y−) that is

∆(0) = 0, and ∆(x) ≤ 0, then ∆′(x) = FX(x) − FY (x) ≥ 0 on
some interval [x0, 0], where x0 < 0. Taking into consideration that
FX(0) = FY (0) = 0 and the densities of X and Y are symmetric, it
follows that fX − fY ≤ 0 for x ∈ [x0, 0], therefore FX(x)− FY (x) < 0
for x ∈ (0,−x0], unless X =d Y . Finally, as E(X+) = E(Y+), that is

∆(0) = 0, and ∆
′
(x) = FX(x) − FY (x) < 0, for x ∈ (0,−x0], which

contradicts X ≥s Y .
(2) This easily follows from the fact that the negative part of X coincides

with the positive part of Y , and vice-versa.
(3) X ≥c Y obviously implies X+ ≥c Y+. Since FX(0)≥FY (0), the previ-

ous condition implies X+ ≥∗ Y+, which in turn implies that FX+
−FY+

changes sign at most once, with sign sequence starting with “+”. How-
ever, since E(X+) = E(Y+), FX+

−FY+
changes sign exactly once, and

the sign sequence is “+,−”. Then, Theorem 3.A.44 of Shaked and
Shantikumar (2007) gives X+ ≥cx Y+ (which is equivalent to −Y+ ≥cv

−X+). Similarly, −(X−) ≥c −(Y−). However, since F−1
−(X−) ◦F−(Y−)(x)

is convex iff φ(x) = F−1
X−
◦ FY−(x) = −F−1

−(X−) ◦ F−(Y−)(−x) = ψ(x)

is concave (φ′(x) = ψ′(−x)), the previous condition is equivalent to
Y− ≥c X−, implying that FY− − FX− changes sign exactly once, with
sign sequence “+,−” (again, this is due to E(X−) = E(Y−)), which
gives Y− ≥cx X− (which is equivalent to −(X−) ≥cv −(Y−)).
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The equivalence of the skewness order ≥s and the expectile order ≥e is
established in the following theorem. This result may also be derived from
Theorem 12 (see also Corolary 13) in Bellini et al. (2014), although the cited
work does not deal with the notion of skewness.

Theorem 14. Let E(X) = E(Y ) = 0, then X ≥e Y iff X ≥s Y .

Proof : It is easily seen that X ≥e Y iff

HX(t) =
E(X − t)+ + t

2E(X − t)+ + t
≤ E(Y − t)+ + t

2E(Y − t)+ + t
= HY (t), ∀t. (7)

Composing both sides of the previous inequality by the decreasing function
1

2x−1 , (7) is equivalent to

E(X − t)+

t
≥ E(Y − t)+

t
,∀t. (8)

This condition holds iff E(X − t)+ ≥ E(Y − t)+, for every t > 0 and E(X −
t)+ ≤ E(Y − t)+, for every t < 0, which can be equivalently expressed as
X+ ≥cx Y+ and Y− ≥cx X−.
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