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THE COMMUTATION GRAPH FOR THE LONGEST
SIGNED PERMUTATION

RICARDO MAMEDE, JOSÉ LUIS SANTOS AND DIOGO SOARES

Abstract: Using the standard Coxeter presentation for the signed symmetric
group SB

n+1 on n + 1 letters, two reduced expressions for a given signed permu-
tation are in the same commutation class if one expression can be obtained from
the other one by applying a finite sequence of commutations. The commutative
classes of a given signed permutation can be seen as the vertices of a graph, called
the commutation graph, where two classes are connected by an edge if there are
elements in those classes that differ by a long braid relation. We define a ranking
function for the commutation graph for the longest signed permutation, and use
this function to compute the diameter and the radius of the graph. We also prove
that the commutation graph for the longest signed permutation is not planar for
n > 2, and identify the classes with a single element.

Keywords: Signed permutations, reduced words, commutation graph, diameter,
radius.

1. Introduction
A Coxeter group is a group W with a presentation〈

S | (st)m(s,t) = 1 for s, t ∈ S
〉
,

where S is a finite set and m : S × S → N ∪ {∞} is a function satisfying
m(s, s) = 1 for each s ∈ S, m(s, t) = m(t, s) for each s, t ∈ S, and m(s, t) ≥ 2
if s 6= t. Since the elements of S, called simple reflections, are involutions,
one can write the relation (st)m(s,t) = 1 as

stst · · ·︸ ︷︷ ︸
m(s,t)

= tsts · · ·︸ ︷︷ ︸
m(s,t)

(1)

for 2 ≤ m(s, t) < ∞. When m(s, t) = 2, the relation st = ts is called a
commutation or a short braid relation, and if m(s, t) ≥ 3, relation (1) is
called a long braid relation.
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Since the set S generates W , every element w ∈ W can be written as a
finite product w = si1si2 · · · sil, with sij ∈ S. When l is minimal, we say
that l(w) := l is the length of w and si1si2 · · · sil a reduced expression for
w. The string of subscripts i1i2 · · · il is called a reduced word for w and the
collection of all reduced words for w is denoted by R(w). Commutations
and long braid relations have obvious analogues in reduced words, and we
refer to these phenomena in reduced words as commutations and long braid
relations, respectively, as well. Tits [12] showed that any reduced word can
be transformed into any other by a sequence of commutations and long braid
relations.

We define a relation ∼ on the set R(w) by setting a ∼ b if and only if a
and b differ by a sequence of commutations. This is an equivalence relation
and the classes it defines are the commutation classes of w. We write [a] to
denote the commutation class of a ∈ R(w), and let C(w) be the set of all
commutation classes of w.

The graph G(w), with vertex set C(w), and one edge between two com-
mutation classes [a] and [b] whenever there are reduced words a′ ∈ [a] and
b′ ∈ [b] such that a′ and b′ differ by a single long braid relation, is called
the commutation graph of w. The distance d([a], [b]) between commutation
classes [a] and [b] in G(w) is the length of a shortest path joining [a] and
[b]. The eccentricity of [a] is the distance to a farthest vertex of [a], and the
radius and diameter of G(w) are, respectively, the minimum and maximum
eccentricities.

The graph G(w) has a rich combinatorial structure, and has been con-
sidered especially when W is the symmetric group Sn+1 of order n + 1
[1, 7, 11, 10]. Elnitsky [8] showed that G(w) is bipartite by establishing
a bijection between C(w) and rhombic tilings of a certain polygon that de-
pends on w. A formula for the diameter of G(w) was computed in [6] for any
permutation w ∈ Sn+1, and recursive formulas for the number of reduced
words in each commutation class was obtained by Bédard [3]. Stembridge
[9] investigated and enumerated permutations having a single commutation
class. Connection of G(w) to geometric representation theory where consid-
ered in [13]. The graph G(w0) for the longest permutation w0 of the sym-
metric group Sn+1, has been particularly well studied. Detailed properties
of the commutation classes of w0 where obtained in [3] and [5]. The radius
of G(w0) was computed and it was showed that this graph is not planar for
n > 4.
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In contrast to the symmetric group case, little is known about the structure
of the graph G(w) when w is an element of the Coxeter group SB

n+1 of type
B on {±1, . . . ,±(n+ 1)}, also known as the hyperoctahedral group. In this
paper, we focus on the commutation graph for the longest signed permutation
wB

0 of SB
n+1. We construct a ranking function on the commutation classes of

G(wB
0 ) which is invariant within each class, and differ by one unit between

classes that share an edge. This ranking function is then used to compute
the radius and the diameter of G(wB

0 ). Wagners’s Theorem [4] is used to
prove that G(wB

0 ) is not planar for n > 2. Finally, it is shown the existence
of exactly two commutation classes in this graph having a single element, for
all n ≥ 2.

2. Definitions and Background
Given a positive integer n ≥ 2, let Sn+1 denote the symmetric group of

order n+ 1, formed by all permutations of the set [n+ 1] := {1, 2 . . . , n+ 1},
with composition (read from the right) as group operation. A permutation
w ∈ Sn+1 will be written in one-line notation as w = (w(1),w(2), . . . ,w(n+
1)). The symmetric group Sn+1 is generated by the simple reflections

{sA1 , sA2 , . . . , sAn},
where sAi interchanges i and i + 1. These reflections satisfy the following
relations:

sAi s
A
j = sAj s

A
i , |i− j| > 1 (2)

sAi s
A
i+1s

A
i = sAi+1s

A
i s

A
i+1, i ∈ [n− 1]. (3)

The symmetric group Sn+1 acts on itself by right multiplication, so that the
product wsi changes the values in positions i and i+1 in w. The permutation
wAn

0 := (n + 1, n, . . . , 1) is the longest permutations of the symmetric group

Sn+1, with length l(wAn
0 ) =

(
n+1

2

)
.

Let SB
n+1 denote the Coxeter group of type B on [±(n+1)] := {±1,±2, . . . ,

±(n + 1)}. This group is formed by all signed permutations on [±(n + 1)]
such that w(−k) = −w(k) for all k ∈ [n + 1], with composition (read from
the right) as group operation. SB

n+1 can be seen as sub-group of S2n+2, and

we can use one-line notation w := (w(n+ 1), . . . ,w(1),w(1), . . . ,w(n + 1))
to represent a signed permutation w, where for ease of notation we write
w(k) to represent −w(k). Since w is completely determined by its values
on the set [n + 1], we can also use the window notation to represent w as
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w = [w(1),w(2), . . . ,w(n+ 1)]. The image w(i) will be referred to as the i-th
letter of w in the the window notation.

The group SB
n+1 is generated by the simple reflections {s0, s1, . . . , sn},

where si := [1, . . . , i+ 1, i, . . . , n+ 1] for 1 ≤ i ≤ n, and s0 := [1̄, 2, . . . , n+ 1].
These reflections satisfy the following relations:

sisj = sjsi, |i− j| > 1, (4)

sisi+1si = si+1sisi+1, i ∈ [n− 1], (5)

s0s1s0s1 = s1s0s1s0. (6)

Relation (4) is a commutation, and long braid relations (5) and (6) are
called braid relation of type 1 and of type 2, respectively. As in the symmetric
group case, SB

n+1 acts on itself by right multiplication, meaning that for
i > 0, wsi changes the values in positions i and i+ 1 in the window notation
of w ∈ SB

n+1. The reflection s0 changes the sign of the first entry in the

window notation of w, that is ws0 = [w(1),w(2), . . . ,w(n + 1)]. In this
sense, if w = si1 . . . sil we say that sij acts on the letters in positions ij and
ij + 1 (resp. on the letter in the first position) in the window notation of
si1si2 . . . sij−1

, when ij > 0 (resp. ij = 0). Abusing terminology slightly, we
will say that the window notation of w = si1 . . . sil is the window notation of
the corresponding word i1 · · · il, and identify the letter ij with the generator
sij . To simplify notation, we denote by ki1i2···ij−1 the k-th letter in the window
notation of i1i2 · · · ij−1, that is ki1i2···ij−1 = si1si2 · · · sij−1

(k).

Example 2.1. If v = [2, 4̄, 3, 1] ∈ SB
4 , then vs2 = [2, 3, 4̄, 1] and vs0 =

[2̄, 4̄, 3, 1]. If a is a reduced word for v, then we also have 1a2 = 2, 2a2 = 3,
3a2 = 4̄ and 4a2 = 1.

The length of a signed permutation w can be given by the formula (see [2])

l(w) = inv(w)−
∑

{j∈[n]:w(j)<0}

w(j), (7)

where inv(w) = #{(i, j) ∈ [n]2 : i < j, w(i) > w(j)}. From (7), it is easy to
conclude that

l(wsi) =

{
l(w) + 1, if w(i) < w(i+ 1)
l(w)− 1, if w(i) > w(i+ 1)

, (8)
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with i ∈ [n] and

l(ws0) =

{
l(w) + 1, if w(1) > 0
l(w)− 1, if w(1) < 0

. (9)

The following result follows easily from (8) and (9).

Proposition 2.2. Let a ∈ R(w) be a reduced word of w ∈ SB
n+1 and i ∈ [n].

Then,

(1) the word a · i is a reduced word of wsi if and only if ia < (i+ 1)a;
(2) the word a · 0 is a reduced word of ws0 if and only if 1a > 0.

The permutation wBn
0 = [1̄, 2̄, . . . , n+ 1] is the longest permutation of SB

n+1,

with length l(wBn
0 ) = (n + 1)2. It is easy to check that the permutation

associated to the word

w0 = 0 · 10 · 210 · . . . · (n+ 1)n · · · 210 · (n+ 1)n · · · 21 · . . . · (n+ 1)n · n
is wBn

0 . Since w0 has (n+1)2 letters, it is a reduced word for wBn
0 . For instance,

when n = 3, we obtain the reduced word w0 = 0 · 10 · 210 · 3210 · 321 · 32 · 3.
The word w0 will play an important role in the following sections. To sim-

plify the handling of these words, we introduce some notation. A subword of
a word a is a word obtained from a by deleting some of its letters, consecutive
or not, and a factor of a is a subword of a formed by consecutive letters. If
k is a nonnegative integer and 1 ≤ r ≤ k + 1, we define the factorial k! as
the word k! = k(k − 1) · · · 10, with 0! = 0, and the truncated factorial (k)r
as the word (k)r = k(k − 1) · · · (k − r + 1). Note that (k)k+1 = k!. A k-th
power of a word p is the word composed by the concatenation of k words p,
i.e. pk = p · · · p︸ ︷︷ ︸

k times

, with p0 the empty word. With this notation, we can write

the reduced word w0 as

w0 =
n∏

i=0

i!
n∏

i=1

(n)n−i+1.

Given a reduced word a = i1i2...il we define aR := ilil−1 · · · i1 as the reversed
word of a. In particular, if a is a reduced word of wBn

0 , then aR is also a

reduced word of wBn
0 since l(a) = l(aR) and wBn

0 is an involution.

A reduced word a = i1i2 · · · il of wBn
0 , can be seen as a set of operations that

transform the identity in wBn
0 , more exactly a set of transpositions of letters

in adjacent positions in the window notation and change of signs. This can
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easily be seen using the line diagram of a. The line diagram of a = i1i2 · · · il
is the array [±2(n + 1)] × [l] in Cartesian coordinates, which describes the
trajectories of the letters n+ 1, n̄, . . ., 1̄, 1, . . ., n + 1 as they are arranged
into the permutation wBn

0 by the successive action of the simple reflections

sij . The line diagram of the word 101210102 ∈ R(wB2
0 ) is displayed in Figure

1.

Figure 1. Line diagram of 101210102 ∈ R(wB2
0 ).

Let a = i1i2 · · · il be a reduced word of wBn
0 , and consider a pair (x, y) ∈

[±(n + 1)]2, with x < y. Since in the one-line notation of wBn
0 the letter y

appears before letter x, there must be some reflection sij such that x and
y, or x̄ and ȳ are in positions ij and ij + 1 in the permutation associated
with the word i1i2 · · · ij−1. Then, the reflection sij changes the values in these
two pairs of positions, transposing the letters x and y, and x̄ and ȳ. In this
case, we say that ij transposes the pairs (x, y) and (ȳ, x̄). Moreover, since
a is reduced, each pair (x, y) ∈ [±(n + 1)]2 with x < y is transposed by
exactly one reflection sij . For instance, we can use the line diagram of the

word 101210102 = i1i2 · · · i9 ∈ R(wB2
0 ) in Figure 1 to check that the pair

(1̄, 2) is transposed by the reflection si3 = s1, while (2, 3) is transposed by
the reflection si9 = s2.

Note also that s0 is the only reflection that acts on a permutation transpos-
ing pairs (x̄, x), for x ∈ [n+1]. Since there are n+1 such pairs in [±(n+1)]2,
there are exactly n+ 1 reflections s0 in any reduced decomposition for wBn

0 .
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We define the lexicographic order on the set R(wBn
0 ) of all reduced words

of wBn
0 as follows: given a = a1 · · · al, b = b1 · · · bl ∈ R(wBn

0 ) we say that a
is less than b if exist an integer k such that ai = bi for 1 ≤ i ≤ k − 1 and
ak < bk. We can use commutation relations i j ∼ j i, with j < i, to “move”
each letter in a to their leftmost possible position, obtaining in this way the
minimal word in the commutation class [a] with respect to the lexicographic
order.

Since the lexicographic order is a total order relation, we can check if two
reduced words a, b are in the same commutation class by computing the
minimal words, in the commutation class [a] and [b], with respect to the
lexicographic order. That is, we have [a] = [b] if and only if the minimal
words for the lexicographic order of the two classes are the same.

3. Ranking function and the diameter of G(wBn
0 )

In this section, we compute the diameter of the commutation graphG(wBn
0 ).

This is achieved through the construction of a ranking function on the com-
mutation classes of wBn

0 . In the sequel, given a positive integer n, we let
[0, n] = [n] ∪ {0}.

Given two words a, b ∈ R(wBn
0 ) we write a

L1∼ b (respectively, a
L2∼ b) if a

and b differ from a long braid relation of type 1 (respectively, type 2). We

also write [a]
L1∼ [b] (respectively, [a]

L2∼ [b]) if there is a′ ∈ [a] and b′ ∈ [b] such

that a′
L1∼ b′ (respectively, a′

L2∼ b′).
Figure 2 depicts the graph G(wB2

0 ), where the solid edges represent long
braid relations of type 1 and the dashed edges represent long braid relations
of type 2. Let a = 102101210, b = 121010210 and c = 210210210. Since

a = 102101210 ∼ 120101210 and 120101210
L2∼ 121010210 = b, we have

[a]
L2∼ [b]. We also have that b = 121010210

L1∼ 212010210 = c′ and c′ =

212010210 ∼ 210210210 = c, so [b]
L1∼ [c].

Definition 3.1. Let a = i1i2 · · · il be a reduced word for wBn
0 . We define the

word ã := ĩ1ĩ2 · · · ĩl, where 0̃ = 0 and if ij > 0 then

ĩj =

{
ij, if (ij)

i1i2···ij−1 > 0 and (ij + 1)i1i2···ij−1 > 0

ij, otherwise
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Figure 2. The graph G(wB2
0 ).

We also define the sum function, S, and the negative number function, neg,

on R(wBn
0 ) setting S(a) :=

l∑
j=1

ĩj, and neg(a) := #
{
ij|ĩj < 0

}
, for each

a = i1i2 · · · il ∈ R(wBn
0 ).

Thus, given a reduced word a = i1i2 · · · il and j ∈ [l] such that ij 6=
0, we have ĩj = ij if and only if ij transposes two positive letters in the
window notation of i1i2 · · · ij−1. In this case we say that the letter ij (and
the corresponding reflection sij) is positive. Otherwise, if ij transposes one
or two negative letters in the window notation of i1i2 · · · ij−1, we say that the
letter ij (and the corresponding reflection sij) is negative. The neg function
counts the negative generators of a, and the S function is the sum of the
indices of the positive generators minus the sum of the indices of the negative
generators.
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Example 3.2. Let a = 210102101. The sequence of left factors ri, with
length 1 ≤ i ≤ 9, of a, the window notation for the respective signed permu-
tations, and their correspondent words r̃i are presented bellow.

r1 = 2, [1,3,2], r̃1 = 2

r2 = 21, [3,1, 2], r̃2 = 21

r3 = 210, [3̄, 1, 2], r̃3 = 210

r4 = 2101, [1, 3̄, 2], r̃4 = 2101̄

r5 = 21010, [1̄, 3̄, 2], r̃5 = 2101̄0

r6 = 210102, [1̄,2, 3̄], r̃6 = 2101̄02̄

r7 = 2101021, [2, 1̄, 3̄], r̃7 = 2101̄02̄1̄

r8 = 21010210, [2̄, 1̄, 3̄], r̃8 = 2101̄02̄1̄0

a = r9 = 210102101, [1̄, 2̄, 3̄], r̃9 = 2101̄02̄1̄01̄ = ã.

We have S(a) = 2 + 1− 1− 2− 1− 1 = −2 and neg(a) = 4.

Proposition 3.3. Let a, b ∈ R(wBn
0 ). If a ∼ b, then S(a) = S(b) and

neg(a) = neg(b).

Proof : Suppose without loss of generality that a and b differ by one commu-
tation. We can write a and b as

a = p1 · i j · p2

b = p1 · j i · p2,

for some i, j ∈ [0, n] such that |i − j| > 1, with p1 and p2 words on the
alphabet [0, n]. Obviously, the sign of the generators in p1 are the same for
both words a and b. Moreover, since i and j act on distinct letters in the
window notation of p1, the signs of i and j are the same in both a and b.
Finally, since p1 · i j and p1 · j i represent the same permutation, the signs
of the generators in p2 are also the same in both words. It follows that
S(a) = S(b) and neg(a) = neg(b).

In the next corollaries, which are consequence of Proposition 2.2, we ana-
lyze the signs of the letters of a reduced word for wBn

0 before a given factor.
This results will allows us to characterize the behavior of the functions S and
neg on words that differ by a single long braid relation.
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Corollary 3.4. Let i ∈ [n − 1], and a = p1 · i · p2, with p1, p2 words on the
alphabet [0, n], be a reduced word for wBn

0 . If ip1 > 0 then (i+ 1)p1 > 0.

Corollary 3.5. Let a = p1 · 1 0 1 0 · p2, with p1, p2 words on the alphabet
[0, n], be a reduced word for wBn

0 . Then 1p1 > 0 and 2p1 > 0.

Proof : Since a is reduced, we must have 1p1 = 1p1·101 > 0, and by Corollary
3.4, we get 2p1 > 0.

Proposition 3.6. Let a, b ∈ R(wBn
0 ).

(1) If a
L1∼ b then |S(a)− S(b)| = 1 and neg(a) = neg(b),

(2) If a
L2∼ b then |S(a)− S(b)| = 2, |neg(a)− neg(b)| = 1 and

|S(a) + neg(a)− (S(b) + neg(b))| = 1.

Proof : Supposing that a
L1∼ b and we may write a and b as

a = p1 · i(i+ 1)i · p2

b = p1 · (i+ 1)i(i+ 1) · p2,

for some i ∈ [n− 1] and p1, p2 words on the alphabet [0, n].
Since p1 · i(i+ 1)i and p1 · (i+ 1)i(i+ 1) represent the same permutation,

the sign of the generators in p2 are the same in both words. This means that
the sum function and the negative number will only depend on the sign of
the letters in the factor i(i+ 1)i and (i+ 1)i(i+ 1) in a and b, respectively.

The generators corresponding to i(i+ 1)i and (i+ 1)i(i+ 1) will act on the
letters ip1, (i+ 1)p1 and (i+ 2)p1, so we only have to check the possible signs
of those letters. If ip1 > 0 then Corollary 3.4 imply (i + 1)p1 > 0 and also
(i + 2)p1 > 0, and all generators in each factor i(i+ 1)i and (i+ 1)i(i+ 1)
are positive. In this case, we have

S(a)− S(b) = i+ (i+ 1) + i− (i+ 1 + i+ i+ 1) = −1. (10)

Suppose now that ip1 < 0. If only this letter is negative, then exactly two
generators in each factor i(i+ 1)i and (i+ 1)i(i+ 1) are negative. In this
case, we have

S(a)− S(b) = −i− (i+ 1) + i− (i+ 1− i− (i+ 1)) = −1. (11)

Finally, if two or more letters are negative, then the generators of the factors
i(i+ 1)i and (i+ 1)i(i+ 1) of a and b, respectively, are all negative, and we
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have

S(a)− S(b) = −i− (i+ 1)− i− (−(i+ 1)− i− (i+ 1)) = 1. (12)

It follows from equations (10), (11) e (12), that |S(a) − S(b)| = 1, and
neg(a) = neg(b).

Suppose now that a
L2∼ b. We may write a and b as

a = p1 · 1 0 1 0 · p2

b = p1 · 0 1 0 1 · p2,

with p1, p2 words on the alphabet [0, n]. As in the previous case, we only
need to check the signs of the generators 1 0 1 0 and 0 1 0 1 of a and b
respectively. From Corollary 3.5, only the leftmost 1 of the factor 1 0 1 0
of a is positive, and the two letters 1 of the factor 0 1 0 1 of b are negative.
Thus we have

S(a)− S(b) = 1− 1− (−1)− (−1) = 2

and neg(a)−neg(b) = −1. It follows that S(a) +neg(a)− (S(b) +neg(b)) =
1.

Definition 3.7. The rank of a reduced word a ∈ R(wBn
0 ) is defined as the

integer rank(a) := S(a) + neg(a).

Next proposition shows that the map rank : R(wBn
0 ) → N is invariant in

each commutation class, and varies by one unit between classes that differ
by a single long braid relation. It generalizes the function used in [5] to
compute the radius and diameter of the commutation graph for the longest
permutation of the symmetric group.

Proposition 3.8. Let a, b ∈ R(wBn
0 ).

(1) If a ∼ b, then rank(a) = rank(b).

(2) If a
L1∼ b or a

L2∼ b, then |rank(a)− rank(b)| = 1.

Proof : Condition (1) is a consequence of the invariance of the functions S and
neg inside a commutation class, proved in Proposition 3.3, and (2) follows
from Proposition 3.6.

Since the rank function is a class invariant, we define the rank of [a] as
rank(a). We conclude that G(wBn

0 ) is a layered graph, with each layer defined
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by the rank value, and two classes are connected by an edge only if their ranks
differ by one unit.

The ranks of w0 and wR
0 will have an important role in the computation

of the diameter of G(wBn
0 ). Since w0 =

∏n
i=0 i!

∏n
i=1(n)n−i+1, every non-zero

generator transposes a negative letter, and therefore every non-zero generator
is negative. Moreover, since there are n(n+ 1) non-zero generators in w0, we
have

rank(w0) = S(w0) + neg(w0) =

= −n(n+ 1)(n+ 2)

6
− n(n+ 1)(2n+ 1)

6
+ n(n+ 1)

=
n(n+ 1)(1− n)

2
.

In the case of wR
0 , we can write wR

0 = (
∏n

i=1(n)n−i+1)
R · (

∏n
i=0 i!)

R
. Since all

letters 0 are in the factor (
∏n

i=0 i!)
R

, it follows that every generator in the

factor (
∏n

i=1(n)n−i+1)
R

is positive. Moreover, since (
∏n

i=0 i!)
R

= 012 · . . . · n ·
012 · · · (n− 1) · . . . · 012 · 01 · 0, each one of the (n+1)n

2 non-zero generators in
this factor is negative. Therefore,

rank(wR
0 ) =

n(n+ 1)(2n+ 1)

6
− n(n+ 1)(n+ 2)

6
+

(n+ 1)n

2

=
n(n+ 1)(n+ 2)

6
.

Next, we will show that the rank of the commutative class of w0 is the min-
imum for the function rank. First, however, we need some auxiliar results.

Definition 3.9. Consider a word a = p1 · i! · p2 ∈ R(wBn
0 ), where i ∈ [0, n],

and p1 and p2 are words over the alphabet [0, n]. We say that the factor i!
of a is a negative factorial if all of its non-zero generators are negative. We
consider 0! to be a negative fatorial.

Lemma 3.10. Let a = p1 · i! · p2 ∈ R(wBn
0 ), where i ∈ [n], and p1 and p2 are

words over the alphabet [0, n]. Then, the factor i! is a negative factorial if
and only if kp1 < 0 for all k ∈ [i].

Proof : The factor i! acts on p1 by “moving” the letter (i + 1)p1 to the first
position, that is (i+ 1)p1 = 1p1·i(i−1)···21, and then changing its sign. Thus, by
Proposition 2.2 we have (i + 1)p1 > 0. Since the factorial i! is negative, all
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its generators are negative and all transposes the letter (i+ 1)p1. Therefore,
kp1 < 0 for all k ∈ [i].

Conversely, if kp1 < 0 for all k ∈ [i], all non-zero generators of i! will act
only on negative letters, and thus the factorial i! is negative.

Lemma 3.11. Let a = p1 · j · i! · p2 ∈ R(wBn
0 ), with i ∈ [n], j ∈ [0, i − 1],

and p1 and p2 words over the alphabet [0, n], such that a is the minimal word
in [a] for the lexicographic order, and rank(a) is the minimum value for the
rank function. If the factorial i! is negative, then j = 0.

Proof : For i = 1 the result is obvious since a is the minimal word in [a] for
the lexicographic order. If i > 1, we must have 0 ≤ j < i and we can use
commutation relations to “move” the rightmost letter j of the factor p1 · j to
the rightmost possible position inside the factorial i!. Thus,

a ∼ a′ = p1 · i(i− 1) · · · j(j + 1)j · (j − 1)! · p2.

Notice that the factor i! being negative forces the generator j to also be

negative. Thus, if j 6= 0, we have a′
L1∼ b = p1 · i(i− 1) · · · (j+ 1)j(j+ 1) · (j−

1)! · p2, which by Proposition 3.6 satisfy rank(b) < rank(a), contradicting
the minimality of rank(a). Therefore, we must have j = 0.

Note that in the conditions of Lemma 3.11, we may write a = p1 · j! · i! · p2

for some j ∈ [n]. Next lemma shows that if i! is negative, then j! is also
negative and satisfy j < i.

Lemma 3.12. Let a = p1 · j! · i! · p2 with i, j ∈ [0, n], and p1 and p2 words
over the alphabet [0, n], such that a is the minimal word in [a] for the lexico-
graphic order, and rank(a) is the minimum value for the rank function. If
the factorial i! is negative, then j! is also negative and j < i.

Proof : If i = 1 and j ≥ 1 then we have

a = p1 · j(j − 1) · · · 10 · 10 · p2
L2∼ p1 · j(j − 1) · · · 01 · 01 · p2 = b.

But then, the proof of Proposition 3.6 implies that rank(b) < rank(a), con-
tradicting the minimality of rank(a). Suppose now that j ≥ i > 1. Then,
we can write a as

a = p1 · j(j − 1) · · · (i+ 1)i!i! · p2.
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The leftmost factor i! of a is positive since the factor i!i! acts on the letters
(i+ 1)p1·j(j−1)···(i+1) and ip1·j(j−1)···(i+1) by changing its signs. We have

a ∼ p1 · j(j − 1) · · · (i+ 1)i(i− 1)i · (i− 2)!(i− 1)! · p2 = a′

L1∼ p1 · j(j − 1) · · · (i+ 1)(i− 1)i(i− 1) · (i− 2)!(i− 1)! · p2 = b.

We already know that the leftmost generator i of the factor i(i − 1)i of a′

is positive, and the rightmost generator i of this factor is negative, since
it belongs to a negative factorial. But then, Proposition 3.6 implies that
rank(b) < rank(a), contradicting the minimality of rank(a). Thus, we must
have j < i.

Finally, note that since i! is negative, by Lemma 3.10 we have kp1·j! < 0 for
all k ∈ [i]. Thus, the condition j < i implies that kp1·j! < 0 for all k ∈ [j+ 1],
proving that j! is negative.

Proposition 3.13. Let a ∈ R(wBn
0 ). If [a] 6= [w0], then there exists b ∈

R(wBn
0 ) such that [a]

L1∼ [b] or [a]
L2∼ [b] and rank(a) > rank(b).

Proof : We prove the contrapositive assertion. Suppose that [a] is such that

for all commutation class [b] with [a]
L1∼ [b] or [a]

L2∼ [b] we have rank(b) >
rank(a). Moreover, assume without loss of generality that a is the minimal
word in the commutation class [a], with respect to the lexicographic order.
We will show that in this case, we have [a] = [wBn

0 ]. To achieve this aim, we
start by showing that

∏n
i=0 i! is a left factor of a.

It is easy to see that every letter 0 in a belongs to a factorial factor, and so
a has exactly n+ 1 factorials. Moreover, the rightmost factorial of a must be
negative since it acts on a permutation with only one positive letter in their
window notation. Therefore, the successive application of Lemma 3.12 shows
that we can write a = i0!i1! · · · in! · p, where each ij! is a negative factorial
with ij < ij+1, and p is a word over the alphabet [n]. It follows that

a = 0!1! · · ·n! · p =
n∏

i=0

i! · p.

It is easy to check that the permutation associated to the left factor
∏n

i=0 i!
of a is [n+ 1, n̄, . . . , 1̄]. Therefore, the permutation associated with p must
be [n + 1, n, . . . , 1]. That is, the restriction of p to the set [n] corresponds
to the longest permutation in the symmetric group Sn+1. Moreover, since p

has (n+1)n
2 letters, it is a reduced word for wAn

0 .



THE COMMUTATION GRAPH FOR THE LONGEST SIGNED PERMUTATION 15

All letters in p are negative, and thus by the proof of Proposition 3.6, the
word p cannot contain a factor i(i+ 1)i, for i ∈ [n− 1]. It was proven in [5]
that amongst all reduced words for wAn

0 , the ones having the largest value for
the sum function, when restricted to type A words, are precisely the elements
of the commutation class of

∏n
i=1(n)n−i+1, which are reduced words for wAn

0

without any factor i(i+ 1)i. It follows that p =
∏n

i=1(n)n−i+1, and therefore,
a = w0.

Proposition 3.13 shows that any commutation class distinct from [w0] is
linked to a class with a smaller rank-value, which means that every com-
mutation class is linked to [w0]. This gives a new proof that G(wBn

0 ) is a

connected graph [12]. From Proposition 3.8 it follows that G(wBn
0 ) is a bi-

partite graph [8], with the partition of the commutation classes given by the
parity of the rank-values of its vertices.

Proposition 3.14. Let a, b ∈ R(wBn
0 ) such that a

L1∼ b (resp. a
L2∼ b), and

rank(a) < rank(b). Then aR
L1∼ bR (resp. aR

L2∼ bR), and rank(aR) >
rank(bR).

Proof : It is clear that if a
L1∼ b (respectively, a

L2∼ b), then aR
L1∼ bR (respec-

tively, aR
L2∼ bR). We prove the result for the case a

L1∼ b. The other case is

similar. Supposing that a
L1∼ b we can write

a = p1 · i (i+ 1) i · p2

b = p1 · (i+ 1) i (i+ 1) · p2,

for some i ∈ [n − 1] and p1, p2 words on the alphabet [0, n]. Since we are
assuming that rank(a) < rank(b), by the proof of Proposition 3.6 we must
have either (i+1)p1 > 0 and (i+2)p1 > 0. This implies that the generators in

p2 change the signs of (i+ 1)p1 and (i+ 2)p1, which means that (i+ 1)p
R
2 < 0

and (i + 2)p
R
2 < 0. Again by Proposition 3.6, it follows that rank(aR) >

rank(bR).

From Propositions 3.13 and 3.14, we can conclude that if [a] 6= [wR
0 ], then

exist b ∈ R(wBn
0 ) such that [a]

L1∼ [b] or [a]
L2∼ [b] and rank(a) > rank(b),

so rank(wR
0 ) is the maximum value for the map rank, and that rank(a) =

rank(wR
0 ) if and only if a ∈ [wR

0 ]. This means that the function rank :
C(wBn

0 ) → N is a rank function for the graph G(wBn
0 ), making it into a
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ranked partially ordered set with a unique minimal and a unique maximal
element.

Proposition 3.15. Let a ∈ R(wBn
0 ). Then, d([w0], [a]) = rank(a)−rank(w0)

and d([a], [wR
0 ]) = rank(wR

0 )− rank(a). In particular,

d([w0], [w
R
0 ]) =

n(n+ 1)(4n− 1)

6
.

Proof : Since G(wBn
0 ) is a layered connected graph, with edges between classes

in consecutive layers, having minimal class [w0] and maximal class [wR
0 ], it

follows that d([w0], [a]) = rank(a)− rank(w0) and d([a], [wR
0 ]) = rank(wR

0 )−
rank(a) for any class [a]. In particular, we have

d([w0], [w
R
0 ]) = rank(wR

0 )− rank(w0) =
n(n+ 1)(4n− 1)

6
.

Teorema 3.16. The diameter of G(wBn
0 ) is the number

rank(wR
0 )− rank(w0) =

n(n+ 1)(4n− 1)

6
.

Proof : To prove that the diameter is
n(n+ 1)(4n− 1)

6
, we need to show that

this number is the maximum distance between any two commutation classes
in the graph G(wBn

0 ). Consider two classes [a] and [b]. Since

d([w0], [a]) +d([a], [wR
0 ]) +d([w0], [b]) +d([b], [w0]) = 2(rank(wR

0 )− rank(w0))

from Proposition 3.15, using the triangle inequality, we conclude that,

d([a], [b]) ≤ min{d([w0], [a]) + d([w0], [b]), d([a], [wR
0 ]) + d([b], [wR

0 ])}
≤ rank(wR

0 )− rank(w0),

proving that the distance between any two commutation classes [a] and [b]
is at most rank(wR

0 ) − rank(w0). It follows that the maximum eccentricity

of a commutation class in the graph G(wBn
0 ) is

n(n+ 1)(4n− 1)

6
.
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4. The Radius of G(wBn
0 )

Consider the symmetric group S2(n+1) on the alphabet [±(n+1)] generated

by the reflections {sAi : i ∈ [±n] ∪ {0}} where sA0 interchanges 1̄ and 1, and
sAi interchanges i and i + 1, for i > 0, or ī and i+ 1, if i < 0. The group
SB

n+1 is a sub-group of S2(n+1) so we can consider an element w ∈ SB
n+1 as

permutation in S2(n+1) through the injection

φ : SB
n+1 → S2(n+1)

w 7→ φ(w) =
(

w(n+ 1), . . . ,w(1),w(1), . . . ,w(n+ 1)
)
.

Note that φ(wBn
0 ) = w

A2n+1

0 , i.e. the longest signed permutation of SB
n+1

corresponds to the longest permutation in S2(n+1). Also, we have φ(si) =

sAi s
A
ī
, for i ∈ [n], and φ(s0) = sA0 . If a = i1i2 · · · il is a reduced word in

SB
n+1, we write φ(a) to denote the corresponding word on S2(n+1), that is,

φ(a) = ĩ1ĩ2 . . . ĩl, with ĩj = ijij if ij 6= 0 and ĩj = 0 otherwise. It is easy to
check that [φ(aR)] = [φ(a)R].

Lemma 4.1. If a = i1i2 · · · il is a reduced word for wBn
0 , then φ(a) is a

reduced word for w
A2n+1

0 .

Proof : Since every non-zero generator of SB
n+1 corresponds to two generators

in S2(n+1), and a has exactly n+ 1 generators 0, it follows that the length of
φ(a) is 2(n + 1)n + (n + 1) = (n + 1)(2n + 1). We conclude that φ(a) is a

reduced word for w
A2n+1

0 .

Given two words a, b ∈ R(w
A2n+1

0 ) we write a
LA∼ b if a and b differ by a long

braid relation.

Lemma 4.2. Let a, b ∈ R(wBn
0 ).

(1) If a ∼ b, then φ(a) ∼ φ(b).

(2) If a
L1∼ b, then the word φ(a) differ from φ(b) by two braid relations.

(3) If a
L2∼ b, then φ(a) differ from φ(b) by four braid relations.

Proof : We only prove (1) and (3). The proof of (2) is analogous to the
proof of (3). Suppose without loss of generality that a and b differ by one
commutation. Then, we can write a = p1 · i j · p2 and b = p1 · j i · p2, for
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some i, j ∈ [n] such that |i − j| > 1, with p1 and p2 words on the alphabet
[0, n]. It follows that

φ(a) = φ(p1) · i ī j j̄ · φ(p2)

∼ φ(p1) · j i ī j̄ · φ(p2)

∼ φ(p1) · j j̄ i ī · φ(p2) = φ(b).

The case i = 0 and j > 1 is analogous.

Suppose now that a
L2∼ b. Then we can write a = p1 · 0 1 0 1 · p2 and

b = p1 · 1 0 1 0 · p2, with p1, p2 words on the alphabet [0, n]. It follows that

φ(a) = φ(p1) · 0 1 1̄ 0 1 1̄ · φ(p2)

∼ φ(p1) · 0 1 1̄ 0 1̄ 1 · φ(p2)

LA∼ φ(p1) · 0 1 0 1̄ 0 1 · φ(p2)

LA∼ φ(p1) · 1 0 1 1̄ 0 1 · φ(p2)

∼ φ(p1) · 1 0 1̄ 1 0 1 · φ(p2)

LA∼ φ(p1) · 1 0 1̄ 0 1 0 · φ(p2)

LA∼ φ(p1) · 1 1̄ 0 1̄ 1 0 · φ(p2) = φ(b).

Let Tn be the set of all triples (x, y, z) ∈ [±(n + 1)]3 such that x < y < z.
Recalling that each pair of integers x < y in [±(n+ 1)]2 is transposed by the
permutation wBn

0 , we can give the following definition (see also [5]):

Definition 4.3. Given a ∈ R(wBn
0 ) and a triple (x, y, z) ∈ Tn we define

T (a, xyz) = 1 if, by the action of the generators of a on the identity per-
mutation, in the process of transforming it into wBn

0 , the transposition of
the pair (x, y) occurs before the transposition of the pair (y, z), and define
T (a, xyz) = −1 otherwise.

The number T (a, xyz) can be easily obtained by the line diagram of a.
For instance, for the reduced word a = 101210102, whose line diagram is
displayed in Figure 1, we have T (a, 2̄1̄1) = 1 and T (a, 3̄12) = −1. It was

proved in [5] that over the graph G(w
A2n+1

0 ), the map T is invariant for words

in the same commutation class. Moreover, [a]
LA∼ [b] if and only if T (a, xyz) =

T (b, xyz) for all triples (x, y, z) ∈ Tn except for one (see also [6]). From
Lemma 4.2 we obtain the following properties.
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Lemma 4.4. Let a, b be two reduced words of wBn
0 .

• [a] = [b] if and only if T (a, xyz) = T (b, xyz) for all triples (x, y, z) ∈
Tn.

• If a
L1∼ b, then T (a, xyz) = T (b, xyz) for all triples (x, y, z) ∈ Tn except

for two.

• If a
L2∼ b, then T (a, xyz) = T (b, xyz) for all triples (x, y, z) ∈ Tn except

for four.

Lemma 4.5. Let a be a reduced word. For all triples (x, y, z) ∈ Tn we have
T (a, xyz) = −T (a, z̄ȳx̄).

Proof : Let (x, y, z) ∈ Tn and suppose without loss of generality that T (a, xyz) =
1. First note that (z̄, ȳ, x̄) ∈ Tn because x < y < z. Since T (a, xyz) = 1, the
pair (x, y) was transposed before the pair (y, z). The generators that trans-
pose those pairs also transpose the pairs (x̄, ȳ) and (ȳ, z̄), respectively, so
the transposition of (x̄, ȳ) happened before the transposition of (ȳ, z̄), which
implies that T (a, z̄ȳx̄) = −1.

Proposition 4.6. Given a word a ∈ R(wBn
0 ) and a triple (x, y, z) ∈ Tn we

have T (a, xyz) = −T (aR, xyz).

Proof : The line diagram of aR corresponds to a horizontal reflection of the
symmetric of all components in the line diagram of a. Given a triple (x, y, z),
if the pair (x, y) was transposed before the pair (y, z) by the generators of a,
then the pair (y, z) was transposed before the pair (x, y) by the generators of
aR, which means that T (a, xyz) = −T (aR, xyz). The other case is analogous.

Given a reduced word a ∈ R(wBn
0 ), it follows from Proposition 4.6 that

the length of a path between [φ(a)] and [φ(aR)] is at most equal to |Tn| =(
2n+2

3

)
= (2n+2)(2n+1)2n

6 . It was proved in [5] that this number is the distance

between [φ(a)] and [φ(aR)] in the graph G(w
A2n+1

0 ). We will use this fact to

compute the radius of G(wBn
0 ). Consider the set T ′n = {(x, y, z) ∈ Tn : x =

ȳ or x = z̄ or y = z̄}.

Lemma 4.7. Let a, b ∈ R(wBn
0 ).

(1) If a
L1∼ b then T (a, xyz) = T (b, xyz) for all triples (x, y, z) ∈ T ′n.

(2) If a
L2∼ b, then T (a, xyz) = T (b, xyz) for all triple (x, y, z) ∈ Tn \ T ′n
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Proof : Supposing a
L1∼ b, we may write

a = p1 · i (i+ 1) i · p2

b = p1 · (i+ 1) i (i+ 1) · p2

for some i ∈ [n − 1] and p1, p2 words on the alphabet [0, n]. From Lemma
4.4, T (a, xyz) = T (b, xyz) for all triples (x, y, z) ∈ Tn, except for two. In
fact, those triples are (x′, y′, z′) and (z̄′, ȳ′, x̄′), with x′ = ip1, y′ = (i + 1)p1

z′ = (i + 2)p1. Since i 6= 0, the generators of the factors i (i + 1) i and
(i + 1) i (i + 1) of a and b, respectively, do not transpose pairs of the form
(k̄, k), and therefore the triples (x′, y′, z′) and (z̄′, ȳ′, x̄′) are not in T ′n.

Analogous arguments shows that if a
L2∼ b, then T (a, xyz) = T (b, xyz) for

all triple (x, y, z) ∈ Tn \ T ′n

Lemma 4.8. If a ∈ R(wBn
0 ), then a and aR differ by at least n(n+1)

2 braid

relations of type 2, and at least n(n+1)(4n−4)
6 braid relation of type 1.

Proof : From Proposition 4.6, T (a, xyz) = −T (aR, xyz) for all (x, y, z) ∈
Tn, and thus by Lemmas 4.4 and 4.7, there are necessarily at least 1

4 |T
′
n| +

1
2 |Tn \ T

′
n| long relations in a path between a and aR. It is easy to check that

|T ′n| =
4n(n+1)

2 , so that a path between a and aR has at least n(n+1)
2 long braid

relations of type 2. Since

|Tn \ T ′n| =
(2n+ 2)(2n+ 1)2n

6
− 4n(n+ 1)

2
=

2n(n+ 1)(4n− 4)

6
,

there are at least n(n+1)(4n−4)
6 long braid relations of type 1 in a path between

a and aR.

The next result is a consequence of the previous lemma and Theorem 3.16.

Teorema 4.9. The radius of the graph G(wBn
0 ) is

n(n+ 1)(4n− 1)

6
.

Proof : From the previous lemma, for any a ∈ R(wBn
0 ) we have

d([a], [aR]) ≥ n(n+ 1)

2
+
n(n+ 1)(4n− 4)

6
=
n(n+ 1)(4n− 1)

6
. (13)

Since the right hand side of equation (13) was proved in Theorem 3.16 to be

the diameter of G(wBn
0 ), it follows that d([a], [aR]) =

n(n+ 1)(4n− 1)

6
. That
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is, the eccentricity of any commutation class is equal to the diameter, which
proves that this number is also the radius of the graph.

5. Planarity and Atoms in G(wBn
0 )

Figure 2 shows that G(wB2
0 ) is a planar graph. We will show that for n > 2,

G(wBn
0 ) is not planar, using Wagners’s Theorem [4]. An edge contraction of

an edge e = {u, v} in a graph is the graph that we obtain by combining the
vertices a and b into a single vertex, which is adjacent to every vertex that
was adjacent to u and v in the original graph. A graph minor of a graph is a
new graph obtained by deleting vertices, deleting edges, and/or contracting
edges of the original graph. Wagner’s theorem says that a graph is planar if
and only if it does not contain K5 or K3,3 as minor.

Lemma 5.1. The graph G(wB3
0 ) is not planar.

Proof : The minor of G(wB3
0 ) having as vertices the sets:

A = {[1012101032101323]},
B = {[1012101232101023]},
C = {[1021021023210123]},
D = {[1012101023210123]},
E = {[1021021032101323], [1021021321010323], [1012101321010323]},
F = {[1021021232101023], [1021012132101023], [1210102132101023],

[2102102132101023], [2101210132101023], [2101210103210123],
[2101021013210123], [0210121013210123], [0210210213210123],
[0121010213210123], [0102101213210123], [0102102123210123],
[0101210123210123], [0101210132101323], [1010210132101323]},

where E and F are the edge contractions of their vertices, is isomorphic to
K3,3 since each of the vertices A,B,C is connected to all the vertices D,E, F .

By Wagner’s theorem, we conclude that G(wB3
0 ) is not planar.

Figure 3 displays the minor of G(wB3
0 ) isomorphic to K3,3, where solid edges

represent long braid relations of type 1, dashed edges represent long braid
relations of type 2, and the vertices are given in previous lemma with Ei and
Fj the i-th and j-th elements of the sets E and F , respectively, with E0 = E
and F0 = F .

Lemma 5.2. If n > 1, then the graph G(w
Bn−1

0 ) is a sub-graph of G(wBn
0 ).

Proof : Note that given a word a ∈ R(w
Bn−1

0 ), the word a · n! · 123 · · ·n is

a reduced word of wBn
0 since it has length n2 + 2n + 1 = (n + 1)2, and its
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Figure 3. Minor of G(wB3
0 ) isomorphic to K3,3.

associated permutation is wBn
0 . Thus, the sub-graph of G(wBn

0 ) formed by

the commutation classes of the words a · n! · 123 · · ·n with a ∈ R(w
Bn−1

0 ) is

isomorph to G(w
Bn−1

0 ).

From Lemmas 5.1 and 5.2 we have the following result.

Teorema 5.3. For n > 2 the graph G(wBn
0 ) is not planar.

The reduced word 010121012 ∈ R(wB2
0 ) has the property that [010121012] =

{010121012}, i.e. its commutation class has only one element. A commuta-
tion class formed by exactly one word is called an atom. It is easy to see that
a reduced word is an atom if and only if each factor of length two is formed
by generators with consecutive indices. In [5] it was proved that G(wAn

0 ) has
exactly 4 atoms for any n > 2. Next, we compute the number of atoms in
G(wBn

0 ).

Lemma 5.4. The word n!(12...n) is the only reduced word amongst the set
of all words of length ≥ 2n + 1 on the alphabet [0, n] having rightmost and
leftmost generator equal to n, at least one generator 0, and where each factor
of length 2 is formed by generators with consecutive indices.

Proof : We start by considering the set of words with only one letter 0 in the
conditions of the lemma. If a is such word, then we can write a = p1 0 p2,
with p1 and p2 words in the alphabet [n], where the leftmost generator of
p1 is n and the rightmost generator of p1 is 1, and the leftmost generator of
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p2 is 1 and the rightmost generator of p2 is n. It was proved in [5] that the
increasing (resp. decreasing) word 12 · · ·n (resp. n(n − 1) · · · 1) is the only
reduced word amongst the set of all words of length ≥ n over the alphabet [n],
having leftmost generator 1 (resp. n) and rightmost generator n (resp. 1),
and where each factor of length 2 is formed by generators with consecutive
indices. Since the lengtht of p1 and p2 is ≥ n and they are words in the
alphabet [n], it follows that p1 = n(n − 1) · · · 1 and p2 = 12 · · ·n, and thus
a = n!(12...n).

Suppose now that a is a word in the conditions of the lemma with exactly
two generators 0. We will must show that in this case a is not reduced. We
can write a as

a = p1 · 0 · p2 · 0 · p3,

with p1, p2 and p3 words on the alphabet [n]. Using the previous arguments
we have that p1 = n(n− 1) · · · 1 and p3 = 12 · · ·n, and so

a = n! · p2 · 0 · (12 · · ·n).

Since 1n! = n+ 1, this letter can not be in the first position of the window
notation of n! ·p2. Thus there exists k ∈ [n+1]\{1} such that kn!·p2 = n+ 1,
and therefore kn!·p2·01···(k−1) = n+ 1 < (k − 1)n!·p2·01···(k−1). By Proposition
2.2, the word n! · p2 · 01 · · · (k − 1) is not reduced, and so a is not reduced.
If a has more than two generators 0, an inductive argument shows that a is
not reduced.

Lemma 5.5. Let a ∈ R(wBn
0 ). If a = p1 · n!(12...n) · p2, for some words p1

and p2 over the alphabet [0, n], then, p1 · p2 ∈ R(w
Bn−1

0 ).

Proof : We start by proving that (n + 1)p1 = n + 1. If (n + 1)p1 = k with
k < n+ 1 we have two cases:

• ip1 = n+ 1 for some i ∈ [n].
• ip1 = n+ 1 for some i ∈ [n].

In the first case we have ip1·n(n−1)···(i+1) = n+1 > (i+1)p1·n(n−1)···(i+1) = k, since
the factor n(n−1) · · · (i+1) “moves” the letter (n+1)p1 = k into position i+1,
and in the second case, we have ip1·n!1···(i−1) = k̄ > (i + 1)p1·n!1···(i−1) = n+ 1.
Proposition 2.2 implies that in the first case the word p1 ·n(n−1) · · · (i+1)i is
not reduced, and in the second case the word p1 ·n!1 · · · (i−1)i is not reduced,
contradicting our assumption. Thus, we must have (n+ 1)p1 = n+ 1 and the
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permutation associated to n!(12...n) acts on p1 changing the sign of the letter
n+ 1. This means that p1 · p2 acts on the identity permutation changing the
sign of the letters 1, 2, . . ., n. Since p1 ·p2 has (n+1)2− (2n+1) = n2 letters,

we conclude that it is a reduced word for w
Bn−1

0 .

Lemma 5.6. If a is an atom of G(wBn
0 ), then there are words p1, p2 over the

alphabet [0, n− 1] such that a = p1 · n!(12...n) · p2 with p1 · p2 ∈ R(w
Bn−1

0 ).

Proof : Consider the first and last occurrence of a generator n in a. Between
those two generators there is a generator 0 that is responsible for the change
of the sign of n + 1. Thus, we can write a as a = p1 · n · p2 · 0 · p3 · n · p4

with p1, p4 words in the alphabet [0, n− 1] and p2, p3 words in the alphabet
[0, n]. Since a is an atom, each factor of length 2 of a is formed by generators
with consecutive indices, and thus, by Lemma 5.4, we have n · p2 · 0 · p3 · n =
n!(12 · · ·n). Finally, by the previous lemma, we find that p1 · p4 is a reduced

word for w
Bn−1

0 .

Definition 5.7. Given a permutation v ∈ Sn+1 let wv =
∏n+1

i=1 fv(i), where
fj+1 = j!(12 · · · j) for j ∈ [0, n]. We say that wv is a ordered word, and set
O(n) = {wv : v ∈ Sn+1} , the set of all ordered words.

For instance, if v = (2, 4, 1, 3) ∈ S4, then wv = f2f4f1f3 = 101 · 3210123 · 0 ·
21012.

Proposition 5.8. Every ordered word w ∈ O(n) is a reduced word of wBn
0 .

Proof : We have that fi+1 as lenght 2i+ 1, so every ordered word has length
n∑

i=0

(2i+ 1) = 2
n∑

i=0

i+ n+ 1 =
2n(n+ 1)

2
+ n+ 1 = (n+ 1)2.

The permutation associated to fi+1 acts on a permutation by changing the
sign of the (i+1)-th letter of its window notation. Since v ∈ Sn+1, the factor
fi+1 appears exactly once in wv, for all i ∈ [0, n], and thus it follows that wv

is a reduced word of wBn
0 .

Definition 5.9. Given a ∈ R(wBn
0 ) define ord(a) := (k1, k2, . . . , kn+1) where

ki ∈ [n + 1] is the i-th letter to change sign in the process of transforming
the identity into wBn

0 using a.

Lemma 5.10. Let a, b ∈ R(wBn
0 ) such that a ∼ b. Then ord(a) = ord(b).
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Proof : Suppose, without loss of generality, that a = p1 · i j · p2 and b =
p1 · j i · p2, for some i, j ∈ [0, n] such that |i − j| > 1, with p1 and p2. If
i 6= 0 6= j, then all n + 1 generators 0 are in the factors p1 and p2 in the
alphabet [0, n]. In this case, we have ord(a) = ord(b), since the permutation
associated with p1·i j is the same as the one associated with p1·j i. Otherwise,
or i or j is equal to 0 and in that case ord(a) = ord(b) since i and j acts on
distinct letters in the window notation of p1.

Proposition 5.11. The set O(n) has (n+ 1)! reduced words, each belonging
to a different commutation class.

Proof : It is easy to see that by construction, |O(n)| = |Sn+1| = (n+ 1)!. To
show that each ordered word belong to a different commutation class just
notice that the order in which the letters change sign is different for each
ordered word, i.e. ord(wu) = ord(wv) if and only if u = v. The result now
follows from Lemma 5.10.

Teorema 5.12. For n ≥ 1 there are exactly two atoms in G(wBn
0 ), namely

wid and wwAn
0

.

Proof : We proceed by induction. The graph G(wB1
0 ) has only two commu-

tation classes, [0101] and [1010], and both are atoms, with 0101 = wid and
1010 = w

w
A1
0

. Assume the result for n = k − 1 , and consider the graph

G(wBk
0 ). From Lemma 5.6, if a is an atom ofG(wBk

0 ), then a = p1k!(12 · · · k)p2

with p1p2 a reduced word of w
Bk−1

0 . Since a is an atom, the rightmost genera-
tor of p1 and the leftmost generator of p2 must both be equal to k−1. But this
implies that p1p2 would not be reduced, so either p1 or p2 must be the empty
word. If p1 is the empty word, then a = k!(12 · · · k)p2 with p2 a reduced word

of w
Bk−1

0 . Each factor of length 2 of a is formed by generators with consecu-

tive indices, which implies that p2 is an atom of G(w
Bk−1

0 ). By the induction
hypothesis, p2 is equal to w

w
Ak−1
0

, so that a = k!(12 · · · k)w
w

Ak−1
0

= w
w

Ak
0

. If p2

is the empty word, an analogous argument shows that a = wid.
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