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Abstract: An integer-valued ARCH process with a conditional zero-in�ated bi-
nomial distribution is introduced. Stationarity, ergodicity and the autocovariance
structure are studied as well as the estimation of parameters by conditional maxi-
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ers.
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1. Introduction
The integer-valued models present in literature have underlying distributions

which allow the count time series in study to be zero, which means that zero
is a possible value of the model.
It may happen, however, that the expected number of zeros according to the

underlying distribution is not compatible with those actually occurring. We
have in this case an in�ation or de�ation situation of the zero value and, in
order to correct this situation, we have to provide for the possibility to mix the
underlying distribution with a point probability. This is for example the case of
integer-valued zero in�ated models, studied in particular by Zhu ([9]), Lee, Lee
and Chen ([4]) and Gonçalves, Mendes Lopes and Silva ([2]), involving Poisson,
generalized Poisson, negative binomial and compound Poisson distributions, all
of them with support N0.
Motivated by the wide presence of integer-valued time series with a �nite

range in diverse real-life applications, such as the monitoring of computer tools
with n workstations (Weiÿ, [8]) or the daily number of hours in which the
prices of electricity of Portugal and Spain are di�erent ([3]), Ristic, Weiÿ and
Janji¢ ([5]) introduce a binomial integer-valued ARCH model for time series
with �nite range {0, 1, ..., n} where n denotes the (known) upper limit.
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So, in order to accommodate in�ation at zero and �nite support in the same
work environment, we propose in this paper an integer-valued ARCH process
with a conditional zero-in�ated binomial distribution.
In Section 2 we recall the de�nition of the binomial integer-valued with au-

toregressive conditional heteroskedasticity process ([5]), denoted as BINARCH,
and we introduce the zero-in�ated binomial INARCH model de�nition, denoted
as ZI_BINARCH. The probabilistic structure of this family of stochastic pro-
cesses is discussed, including conditional and unconditional moments, strict
and weak stationarity, ergodicity as well as the statement of Yule-Walker equa-
tions for the autocorrelation fonction of the ZI_BINARCH process. Section
3 includes the estimation of the parameters of the ZI_BINARCH model by
conditional maximum likelihood and a simulation study that illustrates the
properties of the estimation methodology in moderate and large samples. Sec-
tion 4 concludes with a real-data application consisting of monthly counts of
poliomyelitis cases recorded in the United States.

2. Zero-in�ated Binomial INARCH processes
2.1. Binomial INARCH process. Let X = (Xt, t ∈ Z) be a nonnegative
integer-valued stochastic process and, for t ∈ Z, let X t denote the σ− �eld
generated by (Xt−j, j ≥ 0) .

De�nition 2.1. ([5]) The process X follow a binomial integer-valued ARCH
model if

Xt|X t−1 ∼ Bin (n, αt) , t ∈ Z, (1)

with n ∈ N and

αt = a0 +
1

n

p∑
i=1

aiXt−i, t ∈ Z, (2)

for constants a0 > 0, ai ≥ 0, i = 1, ..., p, p ∈ {1, 2, ...} such that

a0 +

p∑
i=1

ai < 1.

In a brie�y way, the model is denoted BINARCH(p).
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So, from (1) we have

P (Xt = x | X t−1) =

(
n

x

)
αxt (1− αt)n−x I{0,1,...,n} (x)

E (Xt|X t−1) = nαt

V (Xt|X t−1) = nαt (1− αt) .
The BINARCH model was studied by Ristic et al ([5]), stating in particular

its ergodicity and strict and second order stationarity.

2.2. Zero in�ated Binomial INARCH process. Now we introduce the
de�nition of the zero in�ated binomial integer-valued autoregressive conditional
heteroscedastic model, brie�y ZI_BINARCH(p).

De�nition 2.2. The stochastic process

Z = (Zt, t ∈ Z)

follows a ZI_BINARCH(p) model if, for any t ∈ Z,

P (Zt = z | Zt−1) = [β + (1− β) (1− βt)n] I{0} (z) + (1− β)

(
n

z

)
βzt (1− βt)n−z I{1,...,n} (z)

(3)

with Zt the σ− �eld generated by (Zt−i, i ≥ 0) , n a positive integer, β ∈ [0, 1]
and

βt = b0 +
1

n

p∑
i=1

biZt−i (4)

for constants b0 > 0, bi ≥ 0, i = 1, ..., p, p ∈ {1, 2, ...} such that

b0 +
p∑
i=1

bi < 1

so that βt ∈ ]0, 1[ since the support of Z is {0, 1, ..., n} . If β = 0, the model
reduces to the previous BINARCH one.

In order to illustrate the probabilistic changes related with the zero in�ation,
we present in Figure 1 the histograms and basic descriptives of a series X
following a BINARCH(1) model with αt = a0 + 1

na1Xt−1, and of a Z process
following a ZI_BINARCH(1) model with βt = b0 + 1

nb1Zt−1, where n = 5,
a0 = b0 = 0.5, β = 0.5 and a1 = b1 = 0.4. We note that the parameter β is
quite large and the zero in�ation is naturally notorious.
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Figure 1. Histograms and descriptives of a BINARCH(1) process X
with αt = a0 + 1

n
a1Xt−1, and of a ZI_BINARCH(1) process Z with βt =

b0 + 1
n
b1Zt−1 where n = 5, a0 = b0 = 0.5, β = 0.5 and a1 = b1 = 0.4.

2.3. Probabilistic structure of ZI_BINARCH(p) processes. The gen-
eral probabilistic study presented in this Section includes the study of the strict
and weak stationarity of ZI_BINARCH(p) processes as well as some prop-
erties of their temporal characteristics.

2.3.1 Conditional Moments

We have

E(Zt|Zt−1) = (1− β)nβt

and, analogously,

E(Z2
t |Zt−1) = (1− β)

n∑
z=0
z2P (Zt = z|Zt−1) = (1− β)

[
nβt (1− βt) + n2β2

t

]
,

deducing that

V (Zt|Zt−1) = (1− β)nβt [1− βt (1− nβ)] .

The analysis of the conditional dispersion coe�cient

E(Zt|Zt−1)

V (Zt|Zt−1)
= 1 +

βt (1− nβ)

1− βt (1− nβ)

shows that the model is conditionally equal dispersed if and only if (1− nβ) = 0
(as, for example, if n = 2 and β = 0.5), it is overdispersed (resp. underdis-
persed) if and only if (1− nβ) > 0 (resp., (1− nβ) < 0).

2.3.2 Strict and weak stationarity and ergodicity of Z

Property 2.1. The ZI_BINARCH(p) process Z given by (3) and (4) is
ergodic, strictly stationary and also second order stationary.
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Proof. The proof follows the lines of Ristic et al ([5]). We use the pth-order
Markov process Z = (Zt, t ∈ Z) to build the vector-valued process

Zt = (Zt, ..., Zt−p+1) , t ∈ Z
which is a �nite �rst order Markov process, that is, a �nite Markov chain. Its
one-step-ahead transition probabilities are, with k = (k1, ..., kp), l = (l1, ..., lp)

and δij =

{
1, i = j
0 i 6= j

,

pk|l = P (Zt = k|Zt−1 = l) = δk2l1 ...δkplp−1P (Zt = k1|Zt−1 = l)

= δk2l1 ...δkplp−1

{[
β + (1− β)

(
1− β̃0

)n]
I{0} (k1) + (1− β)

(
n

k1

)
β̃k10

(
1− β̃0

)n−k1
I{1,...,n} (k1)

}

with β̃0 = b0 + 1
n

p∑
i=1

bili.

Let ki= (ki, ..., ki+p−1) . The k-step-ahead transition probabilities are

P (Zt = k0|Zt−p = kp)

=

p−1∏
j=0

P (Zt−j = kj|Zt−j−1 = kj+1, ..., Zt−j−p = kj+p)

=

p−1∏
j=0

{[
β + (1− β)

(
1− β̃j

)n]
I{0} (kj) + (1− β)

(
n

kj

)
β̃
kj
j

(
1− β̃j

)n−kj
I{1,...,n} (kj)

}

where β̃j = b0 + 1
n

p∑
i=1

bikj+i, and they are larger than zero, since 0 < β < 1

and b0 > 0. The �nite Markov chain Zt is primitive, so irreductible and ape-
riodic and therefore ergodic with a unique stationary distribution ([7]). Since
the range of Zt is �nite, any moments exist and so the strict stationarity of Z
implies its second-order stationarity.

We note that any moment of βt also exist.

2.3.3 Moments of ZI_BINARCH(p) processes

We have

E (Zt) = E [E(Zt|Zt−1)] = E [(1− β)nβt] = (1− β)nE (βt) .

Since
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E (βt) = E

[
b0 + 1

n

p∑
i=1

biZt−i

]
= b0 + 1

n

p∑
i=1

bi (1− β)nE (βt)

⇔ E (βt)

[
1− (1− β)

p∑
i=1

bi

]
= b0

⇔ E (βt) = b0

1−(1−β)
p∑

i=1

bi

,

we also have

V (Zt) = E [V (Zt|Zt−1)] + V [E(Zt|Zt−1)]

= (1− β)nE [βt [1− βt (1− nβ)]] + V [(1− β)nβt]

that is,

V (Zt) = (1− β)n
[
E (βt)− (1− nβ)E

(
β2
t

)]
+ (1− β)2 n2V (βt) (5)

Let us evaluate now the dispersion coe�cient E(Zt)
V (Zt)

in the case p = 1, where

βt = b0 + 1
nb1Zt−1.

In this case E (Zt) = (1− β)n b0
1−(1−β)b1 . Moreover,

E (βt) =
b0

1− (1− β) b1

and V (βt) =
(
b1
n

)2
V (Zt−1) . We deduce that

E
(
β2
t

)
=
(
b1
n

)2
V (Zt−1) +

[
b0

1−(1−β)b1

]2
and, replacing in (5) we obtain V (Zt−1) = γZ (0) given by

γZ (0) = (1− β)n

{
b0

1− (1− β) b1
− (1− nβ)

(
b1
n

)2

γZ (0)− (1− nβ)

[
b0

1− (1− β) b1

]2}

+ (1− β)2 n2

(
b1
n

)2

γZ (0)

⇔ γZ (0)

{
1 + (1− β) (1− nβ)

b21
n
− (1− β)2 b21

}
= (1− β)n

b0
1− (1− β) b1

[
1− (1− nβ)

b0
1− (1− β) b1

]
,



ZI-BINARCH MODELS 7

that is,

γZ (0) =
(1− β)n2 b0

[1−(1−β)b1]2
[1− (1− β) b1 − (1− nβ) b0]

n+ (1− β) (1− nβ) b21 − n (1− β)2 b21

=
(1− β)n2 b0

[1−(1−β)b1]2
[1− (1− β) b1 − (1− nβ) b0]

n+ (1− β) b21 (1− n)
.

The inverse of the dispersion coe�cient is then equal to

V (Zt)

E (Zt)
=

n
1−(1−β)b1 [1− (1− nβ) b0 − (1− β) b1]

(1− β) (1− nβ) b21 + n
[
1− (1− β)2 b21

] .
So, the model ZI_BINARCH(1) is equidispersed if and only if

n
1−(1−β)b1 [1− (1− nβ) b0 − (1− β) b1] = (1− β) (1− nβ) b21 + n

[
1− (1− β)2 b21

]
⇔ 1− (1− β) b1 − (1− nβ) b0 = 1−(1−β)b1

n

{
(1− β) (1− nβ) b21 + n

[
1− (1− β)2 b21

]}
⇔ − (1− nβ) b0 = −1 + (1− β) b1 + 1−(1−β)b1

n

{
(1− β) (1− nβ) b21 + n

[
1− (1− β)2 b21

]}
⇔ b0 = 1

(1−nβ) −
(1−β)b1
(1−nβ) −

1−(1−β)b1
n(1−nβ)

{
(1− β) (1− nβ) b21 + n

[
1− (1− β)2 b21

]}
and, depending on the parameter values, it may also accomodate under or over
dispersion.

Theorem 2.1. The autocovariance function, γZ (k) = Cov (Zt, Zt−k) , k ≥
0, of the ZI_BINARCH(p) process Z given by (3) and (4) satis�es the
equations

γZ (0) = µZ − (1−nβ)
(1−β)nµ

2
Z +

(
1− 1

n

) p∑
i=1

biγZ (i)

γZ (k) = (1− β)
p∑
i=1

biγZ (|k − i|) , k ≥ 1,

where µZ = E (Zt) .

Proof. For k ≥ 0,

γZ (k) = Cov (Zt, Zt−k) = E [(Zt − µZ) (Zt−k − µZ)]

= E [(Zt−k − µZ)E (Zt − µZ |Zt−1)]

= E [(Zt−k − µZ) ((1− β)nβt − µZ |Zt−1)]

since E (Zt|Zt−1) = (1− β)nβt. So,
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γZ (k) = Cov ((1− β)nβt, Zt−k)

= (1− β)nCov (βt, Zt−k)

= (1− β)nCov

(
b0 +

1

n

p∑
i=1

biZt−i, Zt−k

)

= (1− β)

p∑
i=1

biγZ (|k − i|) .

Moreover,

V (βt) = V

(
b0 +

1

n

p∑
i=1

biZt−i

)
=

1

n2

p∑
i=1

bi

p∑
j=1

bjγZ (|j − i|)

=
1

(1− β)n2

p∑
i=1

biγZ (i)

and so, from equality (5),

V (Zt) = (1− β)n
[
E (βt)− (1− nβ)E

(
β2
t

)]
+ (1− β)2 n2V (βt)

= E (Zt)− (1− β)n (1− nβ)
[
V (βt) + (E (βt))

2]+ (1− β)2 n2V (βt)

= E (Zt)− (1− β)n (1− nβ)
(E (Zt))

2

(1− β)2 n2
+
[
(1− β)2 n2 − (1− β)n (1− nβ)

]
V (βt)

= E (Zt)− (1− nβ)
(E (Zt))

2

(1− β)n
+ (1− β)n [(1− β)n− 1 + βn]

1

(1− β)n2

p∑
i=1

biγZ (i)

= µZ −
(1− nβ)

(1− β)n
µ2
Z +

(
1− 1

n

) p∑
i=1

biγZ (i) .

3. Parameter estimation of ZI_BINARCH(p) processes

3.1. Conditional maximum likelihood. Using the conditional maximum
likelihood (CML) methodology we estimate in this Section the parameter vector

Θ = (b0, b1, ..., bp, β)T = (θ0, θ1, ..., θp+1)
T of a stochastic process Z following

a ZI_BINARCH(p) model, based on an N -sample (Z1, ..., ZN). So, in the
following we consider n known.
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The probability function of the conditioned law is, from equations (3) and
(4),

P
(
Zt = z | Zt−1

)
= [β + (1− β) (1− βt)n] I{0} (z)+(1− β)

(
n

z

)
βzt (1− βt)n−z I{1,...,n} (z)

where βt = b0 + 1
n

p∑
i=1

biZt−i.

The conditional likelihood function associated to theN observations Z1, ..., ZN
conditionally to the initial values is

L (Θ) =
N∏

t=p+1

[β + (1− β) (1− βt)n] I{0}(Zt)

[
(1− β)

(
n

Zt

)
βZt
t (1− βt)n−Zt

]
I{1,...,n}(Zt).

The log-likelihood function is then given by

L (Θ) = logL (Θ)

=
N∑

t=p+1

log

{
[β + (1− β) (1− βt)n] I{0}(Zt)

[
(1− β)

(
n

Zt

)
βZt
t (1− βt)n−Zt

]
I{1,...,n}(Zt)

}

=
N∑

t=p+1

lt (Θ)

with

lt (Θ) = I{0} (Zt) log [β + (1− β) (1− βt)n] +

+ I{1,...,n} (Zt)

[
log (1− β) + log

(
n

Zt

)
+ Zt log βt + (n− Zt) log (1− βt)

]

The �rst derivatives of lt in order to θi, i = 0, ..., p are

∂lt
∂θi

= − I{0} (Zt)
(1− β)n (1− βt)n−1

β + (1− β) (1− βt)n
∂βt
∂θi

+ I{1,...,n} (Zt)

(
Zt
βt
− n− Zt

1− βt

)
∂βt
∂θi
(6)

and

∂lt
∂θp+1

= I{0} (Zt)
1− (1− βt)n

β + (1− β) (1− βt)n
− I{1,...,n} (Zt)

(
1

1− β

)
, (7)

with
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∂βt
∂θ0

= 1,
∂βt
∂θi

= Zt−i, i = 1, ..., p,
∂βt
∂θp+1

= 0.

As the derivative in order to θj of
(1− βt)n−1

β + (1− β) (1− βt)n
is equal to

− (n− 1) (1− βt)n−2 ∂βt
∂θj

[β + (1− β) (1− βt)n] + (1− β)n (1− βt)n−1 ∂βt
∂θj

(1− βt)n−1

[β + (1− β) (1− βt)n]
2

= (1− βt)n−2
−nβ + β + (1− β) (1− βt)n

[β + (1− β) (1− βt)n]
2

∂βt
∂θj

,

the second derivatives are, for 0 ≤ i, j ≤ p,

∂2lt
∂θj∂θi

= − I{0} (Zt) (1− β)n

{
(1− βt)n−2

−nβ + β + (1− β) (1− βt)n

[β + (1− β) (1− βt)n]
2

∂βt
∂θj

∂βt
∂θi

}
+

+ I{1,...,n} (Zt)

{
∂βt
∂θi

[
−Zt
β2
t

∂βt
∂θj
− n− Zt

(1− βt)2
∂βt
∂θj

]}

that is,

∂2lt
∂θj∂θi

= − I{0} (Zt) (1− β)n (1− βt)n−2
−nβ + β + (1− β) (1− βt)n

[β + (1− β) (1− βt)n]
2

∂βt
∂θj

∂βt
∂θi

− I{1,...,n} (Zt)

[
Zt
β2
t

+
n− Zt

(1− βt)2

]
∂βt
∂θi

∂βt
∂θj

(8)

Moreover, for i = 1, ..., p,

∂2lt
∂θp+1∂θi

= I{0} (Zt)n (1− βt)n−1
β + (1− β) (1− βt)n + [1− (1− βt)n] (1− β)

[β + (1− β) (1− βt)n]
2

∂βt
∂θi

(9)

and

∂2lt
∂θ2p+1

= − I{0} (Zt)
[1− (1− βt)n]2

[β + (1− β) (1− βt)n]2
− I{1,...,n} (Zt)

1

(1− β)2
, (10)

If N is large enough, the distribution of the conditional maximum likelihood
estimator, Θ̂, may be approached by the following distribution:

Θ̂
•∼ N

(
Θ0, [NI (Θ0)]

−1
)
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where I (Θ0) is the information matrix evaluated at Θ0, the true value of Θ.
Let us present now consistent estimates for the information matrix. Taking

expectations in both sides of the equation (8) we obtain

E
( ∂2lt
∂θi∂θj

| Zt−1

)
=

= E

[
−I{0} (Zt) (1− β)n (1− βt)n−2

−nβ + β + (1− β) (1− βt)n

[β + (1− β) (1− βt)n]
2

∂βt
∂θj

∂βt
∂θi
| Zt−1

]
− E

[
I{1,...,n} (Zt)

(
Zt
β2
t

+
n− Zt

(1− βt)2

)
∂βt
∂θi

∂βt
∂θj
| Zt−1

]

= − (1− β)n (1− βt)n−2
−nβ + β + (1− β) (1− βt)n

[β + (1− β) (1− βt)n]
2

∂βt
∂θj

∂βt
∂θi

P
(
Zt = 0 | Zt−1

)
− E

[
I{1,...,n} (Zt)

(
Zt
β2
t

+
n− Zt

(1− βt)2

)
∂βt
∂θi

∂βt
∂θj
| Zt−1

]
.

So, as P (Zt = 0| Zt−1) = β + (1− β) (1− βt)n ,

E

(
∂2lt
∂θi∂θj

| Zt−1

)
= − (1− β)n (1− βt)n−2

−nβ + β + (1− β) (1− βt)n

β + (1− β) (1− βt)n
∂βt
∂θj

∂βt
∂θi

+

−E
[
I{1,...,n} (Zt)

(
Zt
β2
t

+
n− Zt

(1− βt)2

)
∂βt
∂θi

∂βt
∂θj
| Zt−1

]
.

But from E (Zt|Zt−1) = (1− β)nβt we deduce

E
(
I{1,...,n} (Zt)Zt| Zt−1

)
= (1− β)nβt

E
(
I{1,...,n} (Zt) (n− Zt) | Zt−1

)
= nP (Zt 6= 0| Zt−1)− (1− β)nβt

= n [1− β − (1− β) (1− βt)n]− (1− β)nβt

= n (1− β) [1− (1− βt)n − βt.]

So, E

(
∂2lt
∂θi∂θj

|Zt−1

)
=
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= − (1− β)n (1− βt)n−2
−nβ + β + (1− β) (1− βt)n

β + (1− β) (1− βt)n
∂βt
∂θj

∂βt
∂θi

+

−
[

(1− β)n

βt
+
n (1− β) [1− (1− βt)n − βt]

(1− βt)2

]
∂βt
∂θi

∂βt
∂θj

= −n (1− β)

{
(1− βt)n−2

[
−nβ + β + (1− β) (1− βt)n

β + (1− β) (1− βt)n
]

+

[
1

βt
+

1− (1− βt)n − βt
(1− βt)2

]}
∂βt
∂θj

∂βt
∂θi

= −n (1− β)

{
(1− βt)n−2

[
−nβ + β + (1− β) (1− βt)n

β + (1− β) (1− βt)n
]

+
1− βt − βt (1− βt)n

βt (1− βt)2

}
∂βt
∂θj

∂βt
∂θi

= −n (1− β)

{
(1− βt)n−2

[
−nβ + β + (1− β) (1− βt)n

β + (1− β) (1− βt)n
]

+
1− βt (1− βt)n−1

βt (1− βt)

}
∂βt
∂θj

∂βt
∂θi

.

Let us note that, with At = β + (1− β) (1− βt)n ,

− (1− βt)n−2
(
−nβ + At

At

)
+

1− βt (1− βt)n−1

βt (1− βt)

= −
βt (1− βt)n−1 (−nβ + At) +

[
1− βt (1− βt)n−1

]
At

Atβt (1− βt)

=
−βt (1− βt)n−1 nβ + Atβt (1− βt)n−1 + At − βt (1− βt)n−1At

Atβt (1− βt)

=
−βt (1− βt)n−1 nβ + At

Atβt (1− βt) .
So,

E

(
∂2lt
∂θi∂θj

|Zt−1

)
= −n (1− β)

−βt (1− βt)n−1 nβ + β + (1− β) (1− βt)n

[β + (1− β) (1− βt)n] βt (1− βt)
∂βt
∂θj

∂βt
∂θi

(11)

We also have from (9)

E

(
∂2lt

∂θp+1∂θi
|Zt−1

)
= n (1− βt)n−1

β + (1− β) (1− βt)n + [1− (1− βt)n] (1− β)

[β + (1− β) (1− βt)n]
2

∂βt
∂θi

E
[
I{0} (Zt) | Zt−1

]
= n (1− βt)n−1

β + (1− β) (1− βt)n + [1− (1− βt)n] (1− β)

β + (1− β) (1− βt)n
∂βt
∂θi
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that is,

E

(
∂2lt

∂θp+1∂θi
|Zt−1

)
= n (1− βt)n−1

1

β + (1− β) (1− βt)n
∂βt
∂θi

(12)

and from (10)

E

(
∂2lt
∂θ2p+1

|Zt−1

)
= − [1− (1− βt)n]2

β + (1− β) (1− βt)n
− 1

1− β
[1− (1− βt)n] (13)

Otherwise, from (6) we get

E

(
∂lt
∂θi

∂lt
∂θj
|Zt−1

)
= E { I{0} (Zt)

[
(1− β)n (1− βt)n−1

β + (1− β) (1− βt)n

]2
∂βt
∂θi

∂βt
∂θj

+

+ I{1,...,n} (Zt)

(
Zt
βt
− n− Zt

1− βt

)2
∂βt
∂θi

∂βt
∂θj
| Zt−1 }

=

[
(1− β)n (1− βt)n−1

]2
β + (1− β) (1− βt)n

∂βt
∂θi

∂βt
∂θj

+

+ E

(
I{1,...,n} (Zt)

(Zt − nβt)2

β2
t (1− βt)2

| Zt−1

)
∂βt
∂θi

∂βt
∂θj

.

Taking into account that E
(
Z2
t |Zt−1

)
= (1− β)nβt (1− βt + nβt) we de-

duce that

E
(
I{1,...,n} (Zt) (Zt − nβt)2 |Zt−1

)
= E

[
I{1,...,n} (Zt)

(
Z2
t − 2nβtZt + n2β2

t |Zt−1
)]

= (1− β)nβt (1− βt + nβt)− 2n2β2
t (1− β) + n2β2

t [1− β − (1− β) (1− βt)n]
= (1− β)nβt {1− βt + nβt − 2nβt + nβt [1− (1− βt)n]}
= (1− β)nβt [1− βt − nβt (1− βt)n] .
Consequently

E

(
∂lt
∂θi

∂lt
∂θj
|Zt−1

)
=

([
(1− β)n (1− βt)n−1

]2
β + (1− β) (1− βt)n

+
(1− β)n [1− βt − nβt (1− βt)n]

βt (1− βt)2

)
∂βt
∂θi

∂βt
∂θj

= (1− β)n

{
(1− β)n (1− βt)2n−2

β + (1− β) (1− βt)n
+

1− βt − nβt (1− βt)n

βt (1− βt)2

}
∂βt
∂θi

∂βt
∂θj

.
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Let us note that, again with At = β + (1− β) (1− βt)n ,

(1− β)n (1− βt)2n−2

At
+

1− βt − nβt (1− βt)n

βt (1− βt)2

=
(1− β)nβt (1− βt)2n

Atβt (1− βt)2
+

+
β − ββt − nββt (1− βt)n + (1− β) (1− βt)n − (1− β) βt (1− βt)n − (1− β)nβt (1− βt)2n

Atβt (1− βt)2

=
β − ββt − nββt (1− βt)n + (1− β) (1− βt)n − (1− β) βt (1− βt)n

Atβt (1− βt)2

=
β − ββt − nββt (1− βt)n + (1− β) (1− βt)n − (1− β) βt (1− βt)n

Atβt (1− βt)2

=
β + (1− β) (1− βt)n − βt [β + (1− β) (1− βt)n]− nββt (1− βt)n

Atβt (1− βt)2

=
At (1− βt)− nββt (1− βt)n

Atβt (1− βt)2
=
At − nββt (1− βt)n−1

Atβt (1− βt) .

So

E

(
∂lt
∂θi

∂lt
∂θj
|Zt−1

)
= n (1− β)

β + (1− β) (1− βt)n − nββt (1− βt)n−1

[β + (1− β) (1− βt)n] βt (1− βt)
∂βt
∂θi

∂βt
∂θj

. (14)

Also for i = 1, ..., p, from (6) and (7)

E

(
∂lt
∂θi

∂lt
∂θp+1

|Zt−1

)
= − (1− β)n (1− βt)n−1

β + (1− β) (1− βt)n
[1− (1− βt)n]

∂βt
∂θi

− E
[
I{1,...,n} (Zt)

(
Zt
βt
− n− Zt

1− βt
|Zt−1

)](
1

1− β

)
∂βt
∂θi

= − (1− β)n (1− βt)n−1

β + (1− β) (1− βt)n
[1− (1− βt)n]

∂βt
∂θi

− 1

βt (1− βt) (1− β)
E
[
I{1,...,n} (Zt)

(
Zt − nβt|Zt−1

)] ∂βt
∂θi

.
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So

E

(
∂lt
∂θi

∂lt
∂θp+1

|Zt−1

)
= − (1− β)n (1− βt)n−1

β + (1− β) (1− βt)n
[1− (1− βt)n]

∂βt
∂θi

− 1

βt (1− βt) (1− β)
[(1− β)nβt − nβt [1− β − (1− β) (1− βt)n]]

∂βt
∂θi

= − (1− β)n (1− βt)n−1

β + (1− β) (1− βt)n
[1− (1− βt)n]

∂βt
∂θi

− (1− β)n

βt (1− βt) (1− β)
[βt − βt [1− (1− βt)n]]

∂βt
∂θi

that is,

E
( ∂lt
∂θi

∂lt
∂θp+1

|Zt−1

)
=

= − (1− β)n

{
(1− βt)n−1

β + (1− β) (1− βt)n
[1− (1− βt)n] +

(1− βt)n

(1− βt) (1− β)

}
∂βt
∂θi

= − (1− β)n (1− βt)n−1
{

1− (1− βt)n

β + (1− β) (1− βt)n
+

1

1− β

}
∂βt
∂θi

= −n (1− βt)n−1
{

1− β − (1− β) (1− βt)n + β + (1− β) (1− βt)n

[β + (1− β) (1− βt)n]

}
∂βt
∂θi

,

simplifying to

E

(
∂lt
∂θi

∂lt
∂θp+1

|Zt−1

)
= − n (1− βt)n−1

β + (1− β) (1− βt)n
∂βt
∂θi

, (15)

and

E
( ∂lt
∂θp+1

∂lt
∂θp+1

|Zt−1

)
=

= E

(
I{0} (Zt)

[
1− (1− βt)n

β + (1− β) (1− βt)n
]2

+ I{1,...,n} (Zt)

(
1

1− β

)2

| Zt−1

)

=

[
1− (1− βt)n

β + (1− β) (1− βt)n
]2
P
(
Zt = 0|Zt−1

)
+

(
1

1− β

)2

P
(
Zt 6= 0| Zt−1

)
=

[1− (1− βt)n]
2

β + (1− β) (1− βt)n
+

(
1

1− β

)2

[1− β − (1− β) (1− βt)n]
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which gives

E

(
∂lt
∂θp+1

∂lt
∂θp+1

|Zt−1

)
=

[1− (1− βt)n]2

β + (1− β) (1− βt)n
+

1

1− β
[1− (1− βt)n] . (16)

Comparing now the expectation of (14), (15) and (16) with that of (11),
(12) and (13) respectively, we conclude that this model satisfy the information
matrix equality:

−E
(

∂2lt
∂θi∂θj

)
= E

(
∂lt
∂θi

∂lt
∂θj

)
, 0 ≤ i, j ≤ p+ 1.

So, the matrices

Ŝn = 1
N

N∑
t=p+1

∇lt∇T lt and D̂n = − 1
N

N∑
t=p+1

∇
[
∇T lt

]
are consistent estimates for the information matrix, where ∇lt is the gradient
of lt , and both can be used to estimate the asymptotic covariance matrix of
the conditional maximum likelihood estimator.

3.2. Simulation study. In this Section we illustrate by several forms the �nite
sample performance of the CML estimation methodology previously presented
considering a stochastic process Z following a ZI_BINARCH(1) model. We
assume that n is known and consider n = 5.
A numerical study was carried out in order to evaluate the �nite sample

performance of the CML estimators of b0, b1 and β, generating a sample of
size N of the ZI_BINARCH(1) model with parameters b0 = 0.5, b1 = 0.4
and β = 0.5. For this sample, we obtained the CML estimates following the
previous theoretical approach. We repeated this procedure 100 times and the
mean values of the estimates, along with the standard deviations in parenthesis,
are presented in Table 1. The used sample sizes are N = 1000 and 10000.

Table 1. CML estimates for the ZI_BINARCH(1) model with b0 = 0.5, b1 = 0.4, β = 0.5

Eest

(
b̂0

)
Eest

(
b̂1

)
Eest

(
β̂
)

N = 1000 0.496262 0.406347 0.499498
(0.015351) (0.021799) (0.017069)

N = 10000 0.500122 0.400024 0.499416
(0.004532) (0.006691) (0.004974)

These simulations show that, as expected, the estimates of the parameters
seem to converge to the corresponding true parameter values as the sample size
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increases. Further, the standard deviations of the estimates decrease when the
sample size increases.

Figure 2 displays the Box-plots of the CML estimates for the three parameters
for N = 1000 and 10000. We observe, in all cases, a strong concentration near
the true value of the parameter and we notice that this concentration increases
with N .
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Figure 2. Box-plots of the CML estimates of b0,b1 and β, with N = 1000
(up) and N = 10000 (down).

The Q-Q plots of the CML estimates corresponding to N = 1000 and 10000
are presented in Figure 3. We note that the empirical quantiles approach
the Gaussian distribution ones when N increases, for all the parameters in
study. Moreover, the Jarque-Bera, Cramer-von Mises, Watson and Anderson-
Darling statistics and p-values presented in Table 2 for N = 100 show the clear
compatibility of the empirical distributions of CML estimates of all parameters
with the Gaussian distribution.



18 E. GONÇALVES AND N. MENDES LOPES

.44

.46

.48

.50

.52

.54

.44 .46 .48 .50 .52 .54

Quantiles of B0

Q
u
a
n
ti
le

s
 o

f 
N

o
rm

a
l

B0

.32

.36

.40

.44

.48

.34 .36 .38 .40 .42 .44 .46

Quantiles of B1
Q

u
a
n
ti
le

s
 o

f 
N

o
rm

a
l

B1

.44

.46

.48

.50

.52

.54

.56

.46 .48 .50 .52 .54 .56

Quantiles of BETA

Q
u
a
n
ti
le

s
 o

f 
N

o
rm

a
l

BETA

.488

.492

.496

.500

.504

.508

.512

.485 .490 .495 .500 .505 .510 .515

Quantiles of B0

Q
u
a
n
ti
le

s
 o

f 
N

o
rm

a
l

B0

.38

.39

.40

.41

.42

.37 .38 .39 .40 .41 .42

Quantiles of B1

Q
u
a
n
ti
le

s
 o

f 
N

o
rm

a
l

B1

.485

.490

.495

.500

.505

.510

.515

.485 .490 .495 .500 .505 .510

Quantiles of BETA

Q
u
a
n
ti
le

s
 o

f 
N

o
rm

a
l

BETA

Figure 3. Q-Q plots of the CML estimates of b0, b1 and β, for N = 1000
(up) and 10000 (down).

Table 2. CML estimates of b0, b1 and β and Gaussian distribution.

N = 100 b0 b1 β
Method Value Probab. Value Probab. Value Probab.
Jarque-Bera 2.062752 0.3565 2.624497 0.2692 2.988610 0.2267
Cramer-von Mises (W2) 0.039846 0.6811 0.045249 0.5818 0.076325 0.2287
Watson (U2) 0.037944 0.6642 0.045247 0.5311 0.057642 0.3625
Anderson-Darling (A2) 0.288669 0.6097 0.274759 0.6548 0.544131 0.1583

4. Real-data example: Poliomyelitis cases in USA
We apply the estimation methodology to the polio data presented in Zeger

(1988). The data consists of 167 monthly counts of poliomyelitis cases recorded
in the United States from january 1970 to november 1983 by the Centres for
Desease Control. Figure 4 presents this series, its descriptive summaries and
empirical autocorrelation and partial autocorrelation values. The empirical
mean and standard deviation are 1.341317 and 1.874922 respectively. There
is a large number of zero observations, the maximum observed is 14, the �rst
autocorrelation is 0.295 and those of higher order are not signi�cant.
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Series: POLIO1970_1983

Sample 1970M01 1983M11

Observations 167

Mean       1.341317

Median   1.000000

Maximum  14.00000

Minimum  0.000000

Std. Dev.   1.874922

Skewness   3.046183

Kurtosis   16.76660

Jarque-Bera  1577.011

Probability  0.000000


Figure 4. Polio series: plot, descriptive summaries and autocorrelation
and partial autocorrelation values.
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The results related to the estimation of BINARCH and ZI BINARCH of order
one with n = 14 are present in Table 3. Despite the non-signi�cance of the
autocorrelations of higher orders, we study also the e�ect of modeling the same
observations by models BINARCH and ZI BINARCH with order two. For the
comparison of the �tting quality we use, besides the log-likelihood function and
Akaike ([1]) and Schwarz ([6]) criterion values, the mean square error given by

RMS2 =
1

N

N∑
t=1

(
Zt − E

(
Zt|Zt−1

))2
.

Taking into account the sistematic smaller values of the criterions, we note
that the ZI_BINARCH models perform better than the BINARCH ones of
equal order. Comparing now the ZI_BINARCH(1) and ZI_BINARCH(2)
models, we observe that the �rst one has better values for all criterions except-
ing the negative log-likelihood. We point out the similarity of the estimates in
these two modellings and also the expected non-signi�cance of the parameter
b2 (with p-value equal to 0.7661) in the ZI_BINARCH(2) �tting. So, we retain
the ZI_BINARCH(1) model and then analyse the residuals series produced.

Table 3. Conditional maximum likelihood estimates of the parameters of the models,
with the corresponding standard errors and probabilities, and the negative log-likelihood
functions, Akaike and Schwarz criterions and root mean square errors

Model Estimates - log L Akaike Schwarz RMS

BINARCH(1)

b0 b1
0.0628 0.3470
(0.0059) (0.0290)
0.0000 0.0000

296.7372 3.5992 3.6367 1.7895

ZI_BINARCH(1)

b0 b1 β
0.0856 0.4262 0.2473
(0.0100) (0.0342) (0.0489)
0.0000 0.0000 0.0000

283.5904 3.4529 3.5091 1.7883

BINARCH(2)

b0 b1 b2
0.0569 0.3273 0.0866
(0.0064) (0.0295) (0.0465)
0.0000 0.0000 0.0626

294.0457 3.6006 3.6570 1.7905

ZI_BINARCH(2)

b0 b1 b2 β
0.0839 0.4214 0.0175 0.2407
(0.0106) (0.0363) (0.0587) (0.0492)
0.0000 0.0000 0.7661 0.0000

282.5818 3.4737 3.5490 1.7899
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Figure 5 shows the correlogram and partial correlogram of the Pearson resid-
uals. The compatibility with an white noise is clear. Figure 6 presents the
polio series and the series estimated by the ZI_BINARCH(1) model that was
chosen in the previous discussion.

Figure 5. Pearson residuals: autocorrelation and partial autocorrelation values.
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Figure 6. Polio series and �tted conditional mean from the estimated
ZI_BINARCH(1) model.

5. Conclusion
In order to deal with zero in�ation within the �nite-range conditionally het-

eroscedastic count series, we de�ne and study the zero in�ated binomial IN-
GARCH process. The probabilistic structure of this model is developed by es-
tablishing its stationarity and ergodicity properties, and obtaining closed-form
expressions for its mean and autocovariance functions. Furthermore, a statisti-
cal analysis is performed by estimating the model parameters and establishing
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the corresponding asymptotic behaviour. The simulation study carried out
shows the good performance of such estimators with �nite samples. Addition-
ally, we highlight the best �t of these models to time series with a large number
of zeros, as illustrated by the real-data example considered. Future develop-
ments of this study may consider other discrete conditional distributions with
�nite support, such as general discrete truncated ones.
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