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TRAVELLING WAVE AND SHOCK WAVE SOLUTIONS

FOR INEXTENSIBLE STRING EQUATIONS
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Abstract: In the present work we prove existence of travelling wave solutions for
the motion of inextensible strings, examples of which are bullwhips, chains, flagella,
suspension bridge and some galactic motion. We start by expressing the equation as
a system of conservation law, and modifying it to obtain a hyperbolic system while
also adding a dissipative regularization term. For this modified system, we show
existence of travelling wave solutions. Then, by considering the limiting cases, we
analyze various shock wave solutions for the original system, and hence the initial
model, and the relations between them.
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1. Introduction
The free motion for a homogenous, inextensible string with unit length

and density is governed by a system of equations consisting of the equation
of motion and the inextensibility constraint which is given by{

ηtt(t, s) = (σ(t, s)ηs(t, s))s,

|ηs| = 1,
(1.1)

where η : [0,∞) × [0, 1] → Rm is the unknown position vector for material
point s ∈ [0, 1] at time t ≥ 0. The auxiliary unknown scalar function σ,
which is called tension, can be seen as a Lagrange multiplier satisfying the
inextensibility constraint |ηs| = 1 as well as the equation

σss(t, s)− |ηss(t, s)|2σ(t, s) + |ηst(t, s)|2 = 0, (1.2)

(which is derived in (Şengül and Vorotnikov, 2017, Sec. 2.4) in the presence of
gravity, and below in Section 2 for (1.1)). The initial values for the governing
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and Technological Research Council of Turkey (TÜBİTAK) and the Foundation for Science and
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equation can be stated as

η(0, s) = α(s) and ηt(0, s) = β(s), (1.3)

where α(s) is the initial position and β(s) is the initial velocity. There are
several possible boundary conditions to consider:

(1) Two fixed ends:

η(t, 0) = α(0) and η(t, 1) = α(1). (1.4)

(2) Two free ends:
σ(t, 0) = σ(t, 1) = 0. (1.5)

(3) Periodic boundary conditions:

η(t, 0) = η(t, 1) and σ(t, 0) = σ(t, 1). (1.6)

(4) Whip boundary conditions:

η(t, 1) = 0 and σ(t, 0) = 0. (1.7)

Inextensible string equations are very well-known for a long time. Due to
the technical difficulties arising during the analytis, there is not much liter-
ature on them. One can see that the pioneering works were mainly done on
the 16th century (cf. Antman (2005)), which were focusing on the stationary
equation to find the geometric shape of the curve satisfying these equations.
It is known that famous mathematicians such as Galileo, Leibniz, Huygen
and Johann Bernoulli had studied these equations in different contexts with
various types of external forces.

Only few results about general well-posedness of inextensible string equa-
tion are known. One of the few existence results that we have, is given by
Reeken. He approaches to problem by using chains. In his papers Reeken
(1977, 1979a,b), he studies the infinite string with gravity when the initial
values are near to trivial stable stationary solution. Serre Serre (1991) gives
a relaxed model for inextensible strings, he discusses two possible approaches
to the problem; the relax constraint and the chain as the limit of a stiff elas-
tic string. He mentions that both shows a concentration phenomena either
tension in time or energy in space.

PrestonPreston (2011) studies the motion of inextensible string with whip
boundary conditions in the absence of gravity, he approximates the string
with chains. He proves local existence and uniqueness in a weighted Sobolev
space defined for the energy. In another article Preston (2012), he studies
the geometric aspects of the space of arcs parameterized by unit speed in the
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L2-metric. He proves that the space of arcs is a submanifold of the space of
all curves and the orthogonal projection exists but is not smooth, and as a
consequence he gets a Riemannian exponential map that is continuous and
even differentiable but not C1. His result is the only known local existence
result. Preston and Saxton in Preston and Saxton (2012) study the geodesics
of the H1 Riemannian metric on the space of inextensible curves. They use
the results in Preston (2012) to show that the geodesic equation is C∞ in a
Banach topology which implies that there is a smooth Riemannian exponen-
tial map. We see another paper of Preston in collaboration with Bauer and
Moller-Andersen Bauer et al. (2019), where they study the waving of the flags
and their immersions. If we consider the whips as 2-dimensional objects, then
flags are the 3-dimensional whips with similar boundary conditions. Further-
more, their way of approaching to problem is similar to Arnold’s geometric
studies of motion an incompressible fluid.

Şengül and Vorotnikov in Şengül and Vorotnikov (2017) rewrite the prob-
lem as a hyperbolic conservation law with discontinuous flux. They show
the existence of the generalized Young measure solutions. Vorotnikov and
Shi Shi and Vorotnikov (2019a) observe that the mean curvature flow is a
gradient flow on a Riemannian structure with a degenerate geodesic distance
which was shown by Michor and Mumford in Michor and Mumford (2007).
They introduce a new related gradient flow with respect to non a degenerate
distance. The new flow is obtained by orthogonal projection of the mean cur-
vature on the tangent bundle of the infinite-dimensional submanifold and it
can be seen as the formal gradient flow in a submanifold of the Wasserstein
space of probability measures.In Shi and Vorotnikov (2019b), they study
the gradient flow of the potential energy on a similar infinite-dimensional
Riemannian manifold, akin to Preston (2012), which is the model for over-
damped motion of a falling inextensible string. They show the exponential
decay of the solution to the equilibrium after proving the existence of solu-
tions.

In this work, we would like to investigate travelling and shock wave solu-
tions for system (1.1). In Section 2 we give some preliminary information
about the system including definitions of different notions of solutions for
hyperbolic conservation laws. In Section 3 we transform (1.1) into a system
of conservation law. In Section 4 we further transform our system into a
hyperbolic system by modifying it with two parameters ε and δ, and prove
existence of travelling wave solutions for this new system. In Section 5 we
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prove existence of shock wave solutions for (1.1) by investigating limits as ε
and δ tend to zero.

2. Preliminaries
In this section, we discuss the equation for the tension and the conservation

of energy for system (1.1). In the presence of gravity in the equation of
motion, similar calculations have been done in Şengül and Vorotnikov (2017)
and similar results were obtained. We also give preliminary information
about hyperbolic conservation laws, which we refer to later in the manuscript.

2.1. Derivation of the equation for tension. Under sufficient regularity
assumptions on η and σ, we first take the derivative on the right-hand side
of the equation of motion in (1.1) and then multiply both sides by ηs to
get ηs · ηtt = ηs · ηsσs + ηs · ηssσ. Since ηs · ηs = 1 by the inextensibility
constraint, we obtain ηs ·ηtt = σs+ηs ·ηss σ. The last term on the right-hand
side is 0 due to differentiating the constraint |ηs|2 = 1 with respect to the
spacial variable, which gives ηs · ηss = 0. Hence, we have ηs · ηtt = σs. Taking
the spatial derivative of this equality, and differentiating the inextensibility
constraint twice with respect to time, which gives ηst · ηst + ηs · ηstt = 0, we
obtain ηss ·ηtt−|ηst|2 = σss. Rewriting this inequality by incorporating (1.1),
we find (1.2) as required.

2.2. Conservation of Energy. Since we do not incorporate gravity in the
equation of motion in (1.1), we only have the kinetic energy of the string
defined by

K(t) =
1

2

∫ 1

0

|ηt(t, s)|2ds. (2.8)

Taking the time derivative of K(t) and using (1.1) we obtain

d

dt
K(t) =

∫ 1

0

ηt ·
(
σ ηs

)
s
ds.

Integration by parts gives

d

dt
K(t) = ηt(t, 1)σ(t, 1)ηs(t, 1)− ηt(t, 0)σ(t, 0)ηs(t, 0)−

∫ 1

0

σ ηs · ηstds.

The integral term vanishes due to the derivative of the inextensibility con-
straint. The first two terms on the right-hand side also vanish when s = 0 or
s = 1 is the fixed end, as well as in the whip boundary conditions case. Also,
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their difference is zero in the periodic case. Hence, we can conclude that the
kinetic energy does not change by time. We can summarize this as follows.

Proposition 2.1. Let (η, σ) be a regular solution of (1.1) satisfying any of
the boundary conditions (1.4) - (1.7). Then, the total energy, which is the
kinetic energy, is conserved.

2.3. Non-negativity of the tension. We do similar calculations as in
Şengül and Vorotnikov (2017) to show non-negativity of the tension, the
difference being the fact that gravity is not considered here.

Proposition 2.2. Let (η, σ) be a solution to (1.1), (1.3) with boundary con-
ditions given as (1.5), (1.6) (1.7), or (1.4) with |α(0) − α(1)| < 1. Then,
σ ≥ 0 for all t.

Proof : Assume that the minimum of σ(t, ·) is negative for some t. From
(1.2), we know that −σss + |ηss|2σ ≥ 0. By maximum principle, either σ is a
negative constant or the maximum is achieved at s = 0 or s = 1. Clearly, the
first possibility cannot hold with (1.5) and (1.7). With the other boundary
conditions, it gives |ηss| ≡ 0. This means that string is straight, and hence
|η(t, 0) − η(t, 1)| = 1 holds. This clearly contradicts with (1.6), and with
(1.4) it lead to |α(0) − α(1)| = 1. If, on the other hand, the second option
holds, that is, if σ reaches its minimum on s = 0 or s = 1, then we must
have σs(t, 0) > 0 or σs(t, 1) < 0, respectively. This immediately rules out the
periodic case (1.6) so that it is only possible to have a minimum on fixed ends.
However, due to the inextensibility constraint we have ηs ·ηss = 0. Therefore,
multiplying the equation of motion in (1.1) by ηs and using |ηs|2 = 1, we
obtain σs = ηs·ηtt. If the minimum is achieved at 1, this gives σs(t, 1) = 0 with
(1.7) or (1.4), which is a contradiction. Also, with (1.5) we have σ(t, 1) = 0
contradicting the initial assumption. If the minimum is achieved at 0, again
σs(t, 1) = 0 with (1.4), giving a contradiction. Also, with (1.7) and (1.5), we
have σ(t, 0) = 0, which contradicts the initial assumption.

2.4. Hyperbolic conservation laws. In this subsection, we give some
necessary definitions, such as that of conservation law and entropy condition,
by mostly consulting to Evans (2010).

Definition 2.3. A conversation law is a first-order differential equation of
the form

ut + F(u)x = 0, (2.9)
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where u : [0,∞) × R → Rm is the unknown, u = u(t, x), F : Rm → Rm is
the flux function (which is an m× n matrix for x ∈ Rn).

Definition 2.4. System (2.9) is called strictly hyperbolic if for each z ∈ Rm

the eigenvalues of DF(z) are real and distinct.

It is well-known that solutions of (2.9) are not smooth in general. One can
seek for weak solutions (in the sense of ditributions) and these solutions can
contain shock-waves.

Definition 2.5. A weak solution u(x, t) of (2.9) is called a shock wave so-
lution if it has the form

u(x, t) =

{
ul, if x < ct,

ur, if x > ct.
(2.10)

In this case ur, ul and c are related by the Rankine-Hugoniot equation

F(ur)− F(ul) = c(ur − ul).

Conversely, if the Rankie-Hugoniot equation holds, then the function u(x, t)
defined by (2.10) is indeed a solution of (2.9).

We know that weak solutions of hyperbolic conservation laws are not nec-
essarily unique. The so-called entropy condition which is motivated by the
second law of thermodynamics for gas dynamics (cf. Conlon and Liu (1981))
is used to guarantee uniqueness. It is possible to describe shock wave solu-
tions quite accurately when ur is close to ul.

Definition 2.6. Given a fixed state z0 ∈ Rm, we define the shock set

S(z0) = {z ∈ Rm|F(z)− F(z0) = c(z− z0) for a scalar c = c(z, z0)}.

In some small neighbourhood of z0, S(z0) consists of the union of m smooth
curves Si(z0), i = 1, 2, . . . ,m.

Liu’s entropy condition (Liu (1976), also Conlon (1980) and Evans (2010)):
Suppose that ur ∈ Si(ul) for some 1 ≤ i ≤ m. The shock is said to satisfy
Liu’s entropy condition if for all u ∈ Si(ul) the inequality

c(ul,ur) ≤ c(ul,u), (2.11)

holds.
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Definition 2.7. We say that u(t, x) is a weak solution of (2.9) provided the
equality ∫ ∞

0

∫ ∞
−∞

u ·wt + F(u) ·wxdxdt = 0 (2.12)

holds, where w : [0,∞) × R → Rm is smooth with compact support. This
identity, which is derived by supposing u is a smooth solution makes sense if
u is merely bounded. Therefore, u ∈ L∞([0,∞)× R;Rm).

3. Transformed system
In this section, as a result of some changes of variables, we transform system

(1.1) into the form of a system of conservation law. In order to do so, we
assume that σ ≥ 0 and let κ = σηs, so that we have σ = |κ| and ηs = κ

|κ| . As

a result (1.1) becomes {
ηtt = κs,

ηs =
κ

|κ|
. (3.13)

Defining v = ηt, we can write
vt = κs,

vs =

(
κ

|κ|

)
t

.

In order to write this system in the form of (2.9), we swap the time and
spatial variables to get 

κt − vs = 0,

vt −

(
κ

|κ|

)
s

= 0.
(3.14)

Defining β := (κ, v) ∈ Rm × Rm, we can write (3.14) as

βt + F(β)s = 0

where F(z) =
(
−z2,− z1

|z1|

)
, for any z = (z1, z2), so that

DF =

 0 −1

− d

dz1

z1

|z1|
0

 .
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Clearly, DF does not have distinct and positive eigenvalues, and hence the

system is not strictly hyperbolic. Note also that the term
κ

|κ|
is not differen-

tiable when σ = 0. In the next section, we modify (3.14) to obtain a system
of hyperbolic conservation law.

4. Travelling Wave Solutions
In this section, we find the explicit travelling wave solutions of the trans-

formed system (3.14). Therefore, we will assume that s ∈ R.

4.1. Obtaining a hyperbolic conservation law. We modify the system
(3.14) by adding a term including the parameter δ > 0 so that we have a hy-
perbolic conservation law. In order to indicate dependance on the parameter,
we denote the variables as βδ = (κδ, vδ) and get

∂tκδ − ∂svδ = 0,

∂tvδ − ∂s

(
κδ√

δ + |κδ|2

)
= 0.

(4.15)

For this system we have

DF =

 0 −1

− δ

(δ + |κδ|2)3/2
0

 ,

and hence the eigenvalues of the above matrix can be found as λ1,2 =

∓ 4

√
κ2
δ

δ + |κδ|2
. We can conclude that this system has real and distinct eigen-

values for κδ > 0, and hence is a strictly hyperbolic conservation system by
Definition 2.4.

4.2. Travelling wave solutions. In this section, we find the travelling
waves solutions of a new hyperbolic system explicitly. In order to obtain this
new system, we perturb (4.15) by adding to the second equation a dissipative
regularization term with a parameter ε > 0 in front. Also, we denote our
solution as βδ,ε to indicate dependance on both parameters. As a result we
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have 
∂tκδ,ε − ∂svδ,ε = 0,

∂tvδ,ε − ∂s

(
κδ,ε√

δ + |κδ,ε|2

)
= ε∂ssvδ,ε.

(4.16)

The idea of adding the term ε∂ssvδ,ε is to provide a small viscosity effect,
which, theoretically, should smear out sharp shocks. Note that we added the
regularizing term to the second equation only, rather than the whole system.
Physically this makes sense since the first equation in system (4.16) (as well as
the previous equivalent systems) is only the compatibility equation while the
second equation is the Newton’s law. Also, since ε and δ are small numbers,
there is no change in the physical nature of the inextensible string. Now, let
us define the travelling wave solution.

Definition 4.1. Let u(s, t) be a solution of a partial differential equation. A
particular solution U of the form

U(s, t) = V (s− ct)

is called a travelling wave solution, where c is wave speed, and V is the wave
profile.

We denote the travelling wave profile corresponding to our solution βδ,ε(s, t)
as µδ,ε(s− ct/ε). Also, we change κδ,ε and vδ,ε into their wave profiles ξδ,ε and
γδ,ε, respectively, so that µδ,ε(s− ct/ε) = (ξδ,ε, γδ,ε). Notice that doing this,
our system of partial differential equations become an ordinary differential
equations system. Defining a = (s − ct)/ε, we would like to rewrite the
system (4.16) as an ordinary differential equation system for this new vari-
able. In order to do so, we should find derivatives of ξδ,ε and γδ,ε, which
are one-variable, vector-valued functions in Rm. Therefore, their derivatives
(Jacobians) are vectors in Rm. That is, denoting differentiation with respect
to a as ˙ = d

da , we have ξ̇δ,ε = (ξ̇1
δ,ε, ξ̇

2
δ,ε, . . . , ξ̇

m
δ,ε), and similarly for γ̇δ,ε. Here,

each ξjδ,ε for j = 1, . . . ,m, is a real-valued function of a single variable. As a

result, (4.16) becomes the system of vector equations given by
γ̇δ,ε + cξ̇δ,ε = 0

γ̈δ,ε + cγ̇δ,ε +

(
δ

(δ + |ξδ,ε|2)3/2

)
ξ̇δ,ε = 0.

(4.17)
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Theorem 4.2. Assume that ε, δ > 0 are given, and c is a constant. Then,
there exists solutions µδ,ε ∈ C∞(R;Rm) to the system (4.17).

Proof : Using the first equation in (4.17), we can write the second equation
as the second order, non-linear differential equation given by

ξ̈δ,ε −

(
δ

c(δ + |ξδ,ε|2)3/2
− c

)
ξ̇δ,ε = 0. (4.18)

We consider (4.19) for each component of ξδ,ε separately while keeping the
same notation for simplicity. Once the solution is found componentwise, we
are going to comment on the vector solution. Denoting a single component
of ξδ,ε by z, we can rewrite this equation as

z̈ − d

da
G(z) = 0, (4.19)

where G : R→ R is given by

G(z) =

∫ z ( δ

c(δ + |w|2)3/2
− c
)
dw. (4.20)

Therefore, equivalently, we have

ż −G(z) = constant =: K1. (4.21)

Now, solving (4.21) with G(z) as in (4.20) gives

c

1− δc4

[
δc2

2
ln z2+

√
δ

2
ln

∣∣∣∣∣
√
δ + z2 −

√
δ√

δ + z2 +
√
δ

∣∣∣∣∣− 1

c2
ln
∣∣1−c2

√
δ + z2

∣∣] = K1 a+K2,

where K2 is also an integration constant. A similar implicit expression for
both components of the vector ξδ,ε can be found, which together give the
vector solution of (4.19) as

c

1− δc4

[
δc2

2
ln(ξδ,ε)

2 +

√
δ

2
ln

∣∣∣∣∣
√
δ + (ξδ,ε)2 −

√
δ√

δ + (ξδ,ε)2 +
√
δ

∣∣∣∣∣− 1

c2
ln
∣∣∣1− c2

√
δ + (ξδ,ε)2

∣∣∣]
= K1 a+K2,

(4.22)

where K1 and K2 denote the corresponding constant vectors. Similarly, one
can find an implicit expression for γδ,ε by using the first equation in (4.17)
so that µδ,ε = (ξδ,ε, γδ,ε) is obtained, which completes the proof.
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Remark 4.3. Note from (4.22) that, for system (4.17), the parameter δ
appears explicitly in the solution, while ε dependance is via the variable a.

Theorem 4.4. The regularized system (4.16) admits travelling wave solu-
tions µδ,ε for any fixed ε, δ > 0 satisfying the asymptotic boundary conditions
given as

lim
a→−∞

µδ,ε = (ξlδ,ε, γ
l
δ,ε), lim

a→∞
µδ,ε = (ξrδ,ε, γ

r
δ,ε), lim

a→∓∞
µ̇δ,ε = 0, (4.23)

if and only if Liu’s entropy criterion (2.11) is satisfied.

Proof : Assume that system (4.16) has travelling wave solutions µδ,ε. Inte-
grating (4.18) with respect to a on R we obtain

ξ̇δ,ε(a)
∣∣∣∞
−∞
−
∫ ∞
−∞

(
δ

c(δ + |ξδ,ε|2)3/2
− c

)
ξ̇δ,ε da = 0.

The first term vanishes due to the last condition in (4.23). Hence, we are left
with the integral term only. Taking the integral for the last part gives∫ ∞

−∞

δ

c(δ + |ξδ,ε|2)3/2
ξ̇δ,ε(a) da− c

(
ξδ,ε

∣∣∣∞
−∞

)
= 0.

Writing ξ̇δ,ε(a) da = dξδ,ε and changing the integral limits accordingly gives∫ ξrδ,ε

ξlδ,ε

δ

c(δ + |z|2)3/2
dz − c(ξrδ,ε − ξlδ,ε) = 0.

Finally, taking the integral, we obtain

ξrδ,ε
c(δ + |ξrδ,ε|2)1/2

−
ξlδ,ε

c(δ + |ξlδ,ε|2)1/2
− c(ξrδ,ε − ξlδ,ε) = 0.

This is equivalent to say

c2 =

ξrδ,ε
(δ+|ξrδ,ε|2)1/2

− ξlδ,ε
(δ+|ξlδ,ε|2)1/2

ξrδ,ε − ξlδ,ε
. (4.24)

Suppose now that ξlδ,ε < ξrδ,ε. Let us define

z
(δ+|z|2)1/2

− ξlδ,ε
(δ+|ξlδ,ε|2)1/2

c
− c(z − ξlδ,ε) =: g(z).
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Clearly, g(ξlδ,ε) = 0 and g(ξrδ,ε) = 0 by (4.24). Therefore, in order that the
system (4.16) has a traveling wave solution with (4.23) we require

g(z) > 0 for ξlδ,ε < z < ξrδ,ε.

But this is precisely Liu’s entropy criterion (2.11). A similar calculation also
works for ξlδ,ε > ξrδ,ε.

As a result of Theorem 4.2 we obtain the following conclusion.

Corollary 4.5. Liu’s entropy criterion (2.11) is satisfied for system (4.16).

Having obtained traveling wave solutions, we would like to pass to the
limit in both parameters δ and ε in order to relate them with other notions
of solutions. For this purpose, we consider the system∂tκε − ∂svε = 0,

∂tvε − ∂s
(
κε
|κε|

)
= ε∂ssvε.

(4.25)

Theorem 4.6. System (4.25) admits travelling wave solutions µε = (ξε, γε).
Moreover, these solutions can be obtained as the limit as δ → 0 in Theorem
4.2.

Proof : We start by rewriting the system (4.25) in terms of traveling wave
profiles ξε and γε for κε and vε, respectively. We have the following system{

γ̇ε + cξ̇ε = 0,

γ̈ε + cγ̇ε = 0.

The second equation can be easily solved to obtain γε(a) = b1 + b2e
−ca, for

constants b1 and b2. Using this, we solve the first equation to get ξε(a) =
b3 − b2

c e
−ca, for the additional constant b3. With b2 = 1

c and b3 = 1
c2 we see

that travelling wave solutions in Theorem 4.2 converge to ξε as δ goes to 0
for K1 = 1 and K2 = 0. Similarly for γε.

5. Shock Wave Solutions
In this section, using the explicit travelling wave solutions and their limits,

we show the existence of the shock wave solutions.
It is well-known that a shock wave satisfies Liu’s entropy condition (2.11)

if and only if it is a limit as ε→ 0, of traveling wave solutions of the viscosity
equation

ut + F(u)x = εuxx, (5.26)
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associated with (2.9) (see e.g., Conley and Smoller (1971), Smoller and Con-
ley (1972)). Thus, as explained in Conlon and Liu (1981), the entropy satis-
fying solutions of (2.9) are the physically relevant ones. Note that the form
of (5.26) is different from our modified system (4.16), namely, in (4.16) the
viscosity term is only added to the second equation in the system.

Clearly, the limit as ε → 0 of our solution βδ,ε for system (4.16) gives
a shock wave connecting the states βlδ and βrδ . Considering the travelling
wave profiles µδ,ε together with (4.23) the Rankine-Hugoniot condition in
Definition 2.5 becomes

dµδ,ε
da

= F(µδ,ε)− F(µlδ,ε)− c(µδ,ε − µlδ,ε). (5.27)

Now, consider the left state µlδ,ε as being given. Then, if there is a trajectory

of the vector field (5.27) joining the critical point µlδ,ε to the critical point µrδ,ε,
then we have a shock wave solution to (4.15). However, we already obtained
travelling wave solutions. Therefore, we have the following result.

Theorem 5.1. System (4.15) admits shock wave solutions βδ.

Proof : By the theory developed by Conley and Smoller in Conley and Smoller
(1971) and Smoller and Conley (1972).

We would like to use Conlon’s Conlon (1980) results in order to show that
the system (3.14) has a shock wave solution which can be obtained as the
limit ε → 0 of the travelling wave solutions of the viscous system (4.25)
obtained in Theorem 4.6.

Corollary 5.2. The solution βε of system (4.25) converges as ε → 0 to the
shock wave solution β of system (3.14).

Proof : Firstly, we introduce the following constant ζ(M,m) > 0 that depends
only m and M , where m := |λ1 − λ2|, λ1,2 are the eigenvalues of F, and M
is the following bound in

sup
|βε|≤1

|F| ≤M.

Note that we know existence of such M due to convexity of

F =

 0 −1

− 1

(|κε|2)1/2
0

 ,
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βδ,ε
travelling wave

ε→ 0

ε→ 0

βε

δ → 0 δ → 0?

β
shock wave

βδ
shock wave

travelling wave

Figure 1. Relations between solutions

which is obtained from the viscous system (4.25). We follow the reasoning
given in (Conlon, 1980, Page 15-17). We modify the results for our case
by slightly changing some assumptions. However, none of the conclusions
change.

Since the transformed system (3.14) is the limit of the viscous system (4.25)
as ε → 0, we immediately satisfy the shock condition (E) in Conlon (1980)
. Therefore, the shock wave solution of (4.16), whose definition was given
in (2.10), satisfies condition (E). This implies that there is a trajectory of
vector fields satisfying the Rankine-Hugoniot condition which joins βlε to βrε .
Hence, by (Conlon, 1980, Theorem 4.2), we know that there exists a shock
wave solution to system (3.14) with βlε = (κlε, v

l
ε) and βrε satisfying the entropy

condition (E). Here βlε is a constant whereas in the original statement of the
theorem it was taken 0 for simplicity.

5.1. Relations between shock wave solutions. We would like to un-
derstand the relation between the shock wave solution βδ of system (4.15)
and the shock wave solution β of system (3.14) (see Figure 1). From the
beginning, system (4.15) was designed in such a way that not only it is a
hyperbolic conservation law, but also it converges pointwise to the system
(3.14) as δ → 0. This suggests that the shock profile βδ should converge to
the shock profile β as δ → 0. Since the explicit forms of these shock waves
are not known, the tool we use in order to see the relation between them will
be the corresponding equations of motion for both systems.
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Recall that we obtained (3.13) from (1.1) by putting σ = |κ| and ηs =
κ
|κ| . Now, we would like to write the corresponding equation of motion and

the inextensibility constraint by using (4.15). Since v stands for ηt we can
immediately write 

κs = ηtt,

|ηs| =
|κ|√
δ + |κ|2

,
(5.28)

where, for convenience, we dropped indication of δ on η and κ, and cancelled
out one t derivative on both sides of the second equality before taking the
modulus. Here, the first equation is the equation of motion with κ = σηs,
whereas the second one represents the inextensibility constraint for the mod-
ified system (4.15). Using κ = σηs in the second equality in (5.28) we obtain

|ηs|2 = 1− δ

σ2
.

This means, (4.15) can be rewritten as{
ηtt = (σηs)s,

|ηs|2 = 1− δ
σ2 .

(5.29)

Multiplying the first equation by ηs replacing |ηs|2 by using the constraint in
(5.29), and using the fact that ηs · ηss = δσ−3σs which is obtained from the
same relation, we obtain

ηtt · ηs = σs

as in the case of (1.1). Taking another derivative with respect to the space
variable we find ηstt · ηs + ηtt · ηss = σss. Now, differentiating the second
equality in (5.29) with respect to t and multiplying the resulting relation
with ηst we obtain

|ηst|2 + ηs · ηstt = δ
(
− 3σ−4σ2

t + σ−3σtt
)
.

Replacing the term ηs · ηstt by σss− ηstt · ηs and using the equation of motion
once again to replace ηtt · ηss we obtain

σss − |ηss|2σ + |ηst|2 =
δ

σ2

(
σσ2

s − 3σ2
t + σσtt

σ2

)
. (5.30)

Comparing (1.2) and (5.30) we see that the only difference is the right-hand
side. Moreover, since we would like to see the relation between the two
shock wave solutions of (1.1) and (5.29) as δ → 0, we see that in this case
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δ/σ2 → 0 must hold. Therefore, in (5.30) the second ratio must be bounded.
Indeed, considering the case of σ(s) that is independent of time, although
still spatially nonuniform, the right-hand side becomes δσ2

s/σ
3. In this case,

Hanna and Santangelo Hanna and Santangelo (2013) observed that

σ2 =
2B3

3
s,

for a constant B, under the assumption that σ(0) = 0. This gives σ2
s+σssσ =

0. Hence, equation (5.30) reduces to(
1 +

δ

σ2

)
σss − |ηss|2σ + |ηst|2 = 0.

Since, we know that δ/σ2 → 0 we would obtain the same equation for σ.
Although this is a special case to consider due to σ assumed to be time-
independent, it suggests that the same conclusion might hold also in the
general case.

6. Positivity of σ revisited
Since |ηs|2 > 0 must hold, the second equality in (5.29) implies that σ >√
δ > 0 so that σ stays positive for the approximating system. Under some

hypotheses of compatible boundary data, this might also hold for the limiting
system (1.1). This is the first time that positivity of the tension is shown for
hyperbolic systems that are derived from inextensible string equations.
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