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Universidade de Coimbra
Preprint Number 21–26

FRAME PRESENTATIONS OF COMPACT HEDGEHOGS

AND THEIR PROPERTIES
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Abstract: This paper considers the compact hedgehog as a frame presented by
generators and relations, based on the presentation of the frame of extended real
numbers. The main focus will be on the point-free version of continuous and semi-
continuous functions that arise from it, and their application in characterizations of
variants of collectionwise normality. The variants to be considered are defined by
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1. Introduction
Hedgehog spaces are an interesting source of examples in point-set topol-

ogy. They constitute, in fact, three different classes of spaces [1]. Here we
are interested in the so-called compact hedgehog spaces, from a point-free
viewpoint.

As the name suggests, the hedgehog can be described as a set of spines
identified at a single point. Given a cardinal κ and a set I of cardinality
κ, the hedgehog with κ spines J(κ) is the disjoint union

⋃
i∈I
(
R× {i}

)
of κ

copies (the spines) of the extended real line identified at −∞:
The compact hedgehog space ΛJ(κ) is the hedgehog endowed with the (com-

pact) topology generated by the subbasis

{ (r,—)i | r ∈ Q, i ∈ I } ∪ { (—, r)i | r ∈ Q, i ∈ I }
where (r,—)i := (r,+∞]× {i} and (—, r)i := J(κ) \ ([r,+∞]× {i}).
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−∞

J(κ) = {−∞} ∪
⋃
i∈I((−∞,+∞]× {i}).

Figure 1. The hedgehog.

(r,—)i
−∞

(—, r)i
−∞

Figure 2. Subbasic opens of the compact topology.

An important feature of point-free topology is the algebraic nature of the
category of frames that enables presentations of frames by generators and
relations. One can present a frame by generators and relations by specifying
a set G of generators and a set R ⊆ G×G of relations (written in a language
with symbols for finite meets and arbitrary joins). Then there exists a frame
Frm 〈G | R〉 such that for any frame L, the set of frame homomorphisms
Frm 〈G | R〉 → L is in bijective correspondence with functions f : G → L
satisfying f(a) = f(b) for all (a, b) ∈ R. For an account of how to construct
frames from generators and relations, see [24].

Our aim with the present paper is to study the compact topology of the
hedgehog via frame presentations by generators and relations (starting just
from the rationals, independently of any notion of real number). The main
focus will be on the point-free version of continuous and semicontinuous
functions, with values in the compact hedgehog, that arise from it, and their
relation with variants and generalizations of normality and collectionwise nor-
mality. The variants to be considered are defined by selections of adequate
families of sublocales. These selections are fixed by a convenient general
format that allows to treat the results in a unified manner and to identify
the conditions for them by lattice-theoretic properties of the given selection.
Examples of such variants are normality, mild normality, F -property, or total
κ-collectionwise normality, and their duals (like e.g. extremal disconnected-
ness, extremal δ-disconnectedness and Oz-property).
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In detail, this will proceed as follows. We begin in Section 2 with a brief
account of the necessary background and terminology. Next, in Section 3, the
core of the paper, we introduce the frame L(cJ(κ)) of the compact hedgehog
with κ spines and present its main properties. We end the section by proving
that the spatial spectrum of L(cJ(κ)) is precisely the compact hedgehog.

Section 4 takes up lower and upper semicontinuous functions with val-
ues in the compact hedgehog and Section 5 discusses variants of collection-
wise normality for frames such as κ-collectionwise normality and total κ-
collectionwise normality (for a cardinal κ). Section 6 is devoted to the study
of (disjoint) continuous extensions (it provides in particular a Tietze-type the-
orem for totally κ-collectionwise normal frames) and in Section 7 we present
the corresponding Katětov-Tong-type insertion results.

In the last four sections we use the sublocale selections of [20] to get a
general view over these notions and results with the aim of identifying the
conditions on the sublocale selection under which the results hold. Section 8
presents some general Katětov-Tong-type insertion results, Section 9 extends
the notions of zero and z-embedded sublocales, Section 10 covers variants of
total κ-collectionwise normality, and finally Section 11 provides some general
versions of Tietze-type theorems (for some variants of normal frames and
frames where certain classes of sublocales are zcκ-embedded).

2. Preliminaries
Our general reference for topology is [13]. Our terminology regarding the

categories of frames and locales will be that of [25]. The Heyting operator
in a locale L, right adjoint to the meet operator, will be denoted by →; for
each a ∈ L, a∗ = a → 0 is the pseudocomplement of a. An a ∈ L is regular
if a = b∗ for some b (in other words, a∗∗ = a). Furthermore, an element b is
rather below a (written b ≺ a) if b∗ ∨ a = 1.

A point of a locale L is an element p 6= 1 in L such that

x ∧ y ≤ p ⇒ x ≤ p or y ≤ p.

The spectrum of L is the topological space

Σ(L) =
(
{p | p ∈ L, p prime}, {Σa | a ∈ L}

)
where Σa = {p | a � p} (it is easy to see that Σ0 = ∅, Σ1 = {primes of L},
Σa∧b = Σa ∩ Σb and Σ∨

ai
=
⋃

Σai).
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A sublocale of a locale L is a subset S ⊆ L closed under arbitrary meets
such that

∀a ∈ L ∀s ∈ S (a→ s ∈ S).

These are precisely the subsets of L for which the embedding jS : S ↪→ L is
a morphism of locales. We shall denote by νS the left adjoint of jS, defined
by νS(a) =

∧
{s ∈ S | s ≥ a}.

The system S(L) of all sublocales of L, partially ordered by inclusion, is a
coframe [25, Thm. III.3.2.1], that is, its dual lattice is a frame. Infima and
suprema are given by∧

i∈I
Si =

⋂
i∈I
Si,

∨
i∈I
Si = {

∧
M |M ⊆

⋃
i∈I
Si}.

The least element is the sublocale O = {1} and the greatest element is the
entire locale L.

Since S(L) is a coframe, there is a co-Heyting operator which gives the
difference SrT of two sublocales S, T ∈ S(L). This operator is characterized
by the equivalence S r T ⊆ R if and only if S ⊆ T ∨R for R, S, T ∈ S(L).

For any a ∈ L, the sublocales

cL(a) = ↑a = {x ∈ L | x ≥ a} and oL(a) = {a→ b | b ∈ L}
are the closed and open sublocales of L, respectively (that we shall denote
simply by c(a) and o(a) when there is no danger of confusion). For each
a ∈ L, c(a) and o(a) are complements of each other in S(L) and satisfy the
identities ⋂

i∈I
c(ai) = c(

∨
i∈I
ai), c(a) ∨ c(b) = c(a ∧ b), (2.1)∨

i∈I
o(ai) = o(

∨
i∈I
ai) and o(a) ∩ o(b) = o(a ∧ b).

For any sublocale S of L, the closed (resp. open) sublocales cS(a) (resp.
oS(a)) of S are precisely the intersections c(a) ∩ S (resp. o(a) ∩ S) and we
have, for any a ∈ L, c(a) ∩ S = cS(j∗S(a)) and o(a) ∩ S = oS(j∗S(a)).

A closed sublocale c(a) will be called regular (resp. δ-regular) if a is regular
(resp. δ-regular, that is, a =

∨∞
n=0 an with an ≺ a).

Recall the frame of reals L(R) from [3]. Here we define it, equivalently, as
the frame presented by generators (r,—) and (—, r) for all rationals r, and
relations

(r1) (p,—) ∧ (—, q) = 0 if q ≤ p,
(r2) (p,—) ∨ (—, q) = 1 if p < q,
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(r3) (p,—) =
∨
r>p(r,—),

(r4) (—, q) =
∨
s<q(—, s),

(r5)
∨
p∈Q(p,—) = 1,

(r6)
∨
q∈Q(—, q) = 1.

By dropping relations (r5) and (r6) one has the frame of extended reals L(R)
([5]).

A continuous real-valued function [3] (resp. extended continuous real-valued
function [5]) on a frame L is a frame homomorphism h : L(R) → L (resp.
h : L(R)→ L). We denote by C(L) and C(L), respectively, the collections of
all continuous (resp. extended continuous) real-valued functions on L. C(L)
and C(L) are partially ordered by f ≤ g iff f(r,—) ≤ g(r,—) for all r ∈ Q
(or, equivalently, g(—, r) ≤ f(—, r) for all r ∈ Q).

An a ∈ L is said to be a cozero element if a = f ((—, 0) ∨ (0,—)) for some
f ∈ C(L). Equivalently, a is a cozero element iff a = f(

∨
r∈Q(r,—)) for some

f ∈ C(L). As usual, CozL will denote the σ-frame of all cozero elements of
L. Following the terminology used by several authors (e.g. [11, 23]), we say
that a zero sublocale is a closed sublocale c(a) with a ∈ CozL. The class of
zero sublocales is denoted by Z(L).

There is a useful way of specifying (extended) continuous real-valued func-
tions with the help of scales ([16, Section 4]). An extended scale in L is a
map σ : Q → L such that σ(p) ∨ σ(q)∗ = 1 whenever p < q. An extended
scale is a scale if

∨
p∈Q σ(p) = 1 =

∨
p∈Q σ(p)∗. For each extended scale σ in

L, the formulas

h(p,—) =
∨
r>p

σ(r) and h(—, q) =
∨
r<q

σ(r)∗, (for all p, q ∈ Q), (2.2)

determine an h ∈ C(L) ([5, Lem. 1]); h is in C(L) iff σ is a scale. If h1, h2 ∈
C(L) are generated by extended scales σ1 and σ2 respectively, then one has

h1 ≤ h2 iff σ1(r) ≤ σ2(s), for all r > s. (2.3)

Let S(L)op = (S(L),≤), with ≤≡⊇, be the dual lattice of S(L). Meets and
joins in S(L)op are given by respectively ⊔i∈I Si =

∨
i∈I Si and

⊔
i∈I Si =⋂

i∈I Si. Let F(L) = C(S(L)op): the elements of F(L) are the extended real
functions on L [5]. By the identities in (2.1), the set cL of all closed sublocales
of L is a subframe of S(L)op isomorphic to the given L. Hence the `-ring
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F(L) is an extension of C(L), partially ordered by

f ≤ g iff f(—, r) ⊆ g(—, r) iff g(r,—) ⊆ f(r,—) (for all r ∈ Q). (2.4)

An f ∈ F(L) is lower semicontinuous (resp. upper semicontinuous) if
f(r,—) (resp. f(—, r)) is closed for every r ∈ Q. These classes are denote
by LSC(L) and USC(L). By the isomorphism L ' cL, C(L) can be identified
as the set of all f ∈ F(L) such that f(p,—) and f(—, p) are closed (for any
rational p), that is, C(L) = LSC(L) ∩ USC(L).

3. The compact hedgehog frame
The usual topology on the (extended) reals can be naturally introduced in

two completely different ways:

• It is the metric topology induced by the euclidean metric.
• It is the Lawson topology induced by the linear order.

The first approach is probably the best known. In this case the topology,
being a metric topology, is generated by the basis of all open balls, i.e. the
open intervals 〈a, b〉 with a < b in R (or just with a < b in Q).

The second approach is of particular interest when one is interested in
notions like lower and upper semicontinuity. In this case one first generates
two topologies:

(1) The Scott topology, that is, the smallest topology in which the sets ↑↑a =
{x ∈ R | a < x } are open for all a in R (or, equivalently, with a just in
Q).

(2) The lower topology, that is, the smallest topology in which the principal
filters ↑a = {x ∈ R | a ≤ x } are closed for all a in R (or, equivalently,
with a ∈ Q).

Then the usual euclidean topology is the Lawson topology, that is, the com-
mon refinement of the Scott and the lower topologies ([14, Chapter III]).

The metric topology on J(κ) is precisely the cardinal generalization of
the metric topology on the unit real interval. Pointfreely, it is described
by the frame of the metric hedgehog with κ spines [19], the frame L(J(κ))
generated by abstract symbols (r,—)i and (—, r), r ∈ Q and i ∈ I, subject to
the following relations:

(h0) (r,—)i ∧ (s,—)j = 0 whenever i 6= j.
(h1) (r,—)i ∧ (—, s) = 0 whenever r ≥ s and i ∈ I.
(h2)

∨
i∈I (ri,—)i ∨ (—, s) = 1 whenever ri < s for every i ∈ I.
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(h3) (r,—)i =
∨
s>r (s,—)i for every r ∈ Q and i ∈ I.

(h4) (—, r) =
∨
s<r(—, s) for every r ∈ Q.

(r,—)i
−∞

(—, r)
−∞

Figure 3. The metric hedgehog generators.

We can also consider an extension on J(κ) of the Lawson topology. For
that, introduce first the following (partial) order on J(κ):

(t, i) ≤ (s, j) ≡ t = −∞ or i = j, t ≤ s.

The poset (J(κ),≤) is evidently a cardinal generalization of (R,≤), being
(J(1),≤) precisely (R,≤). In general, for an arbitrary cardinal κ, it fails to
be a complete lattice (but it is still a bounded complete domain [14]). We
can still generate two topologies:

(1) The Scott topology, that is, the smallest topology in which the sets
↑↑(r, i) = { (t, j) ∈ J(κ) | (r, i) � (t, j) } = (r,+∞] × {i} are open
for all r ∈ Q and i ∈ I.

(2) The lower topology, that is, the smallest topology in which the principal
filters ↑(r, i) = { (t, j) ∈ J(κ) | (r, i) ≤ (t, j) } = [r,+∞]× {i} are closed
for all r ∈ Q and i ∈ I.

The Lawson topology is the common refinement of the Scott and the lower
topologies. This is a compact Hausdorff topology on J(κ) (see [14, Exer-
cise III-3.2 and Theorem III-5.8]) that yields a separable metrizable space if
and only if κ ≤ ℵ0 (see [14, Corollary III-4.6.] and [1, Properties 6.7 (6)–(7)]).

We recall from [17] that a function f defined on a topological space X
with values in the hedgehog J(κ) is said to be lower semicontinuous if it is
continuous with respect to the Scott topology, i.e. f−1((r,+∞]×{i}) is open
in X for every r ∈ Q and i ∈ I (this notion should not be confused with the
one of Blair and Swardson [8]); similarly, it is upper semicontinuous if it is
continuous with respect to the lower topology, i.e. f−1(J(κ)\([r,+∞]×{i}))
is open in X for every r ∈ Q and i ∈ I. It is said to be continuous if it is
continuous with respect to the Lawson topology, i.e. if it is both lower and
upper semicontinuous.
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Frame presentation and fundamental properties. Pointfreely, the
compact hedgehog is described by the frame of the compact hedgehog with κ
spines, that is, the frame L(cJ(κ)) presented by generators (r,—)i and (—, r)i,
r ∈ Q and i ∈ I, subject to the following relations (cf. Figure 2):

(ch0) (r,—)i ∧ (s,—)j = 0 whenever i 6= j.
(ch1) (r,—)i ∧ (—, s)i = 0 whenever r ≥ s for every i ∈ I.
(ch2) (r,—)i ∨ (—, s)i = 1 whenever r < s for every i ∈ I.
(ch3) (r,—)i =

∨
s>r (s,—)i for every r ∈ Q and i ∈ I.

(ch4) (—, r)i =
∨
s<r (—, s)i for every r ∈ Q and i ∈ I.

Remark 3.1. Note that there is an alternative presentation for the frame
L(cJ(κ)): take the subframe Lc(J(κ)) of L(J(κ)) generated by the elements

(r,—)i and (r,—)i
∗ =

∨
j 6=i

(r − 1,—)j ∨ (—, r), r ∈ Q, i ∈ I.

It is a straightforward (but tedious) exercise to check that Lc(J(κ)) ∼=
L(cJ(κ)).

Proposition 3.2. Lc(J(κ)) is a proper subframe of L(J(κ)) if and only if κ
is infinite.

Proof : If κ is finite, then
∧
i∈I (r,—)i

∗ =
(∧

i∈I
∨
j 6=i (r − 1,—)j

)
∨ (—, r) =

(—, r), hence Lc(J(κ)) = L(J(κ)).
Otherwise, if κ is infinite, then the frame L(J(κ)) is not compact (this is a

consequence of the defining relation (h2), see [19, Remarks 3.1]) But, as we
shall see in 3.3 below, L(cJ(κ)), and hence Lc(J(κ)), is a compact frame.

For each i ∈ I, the map σi : Q → L(cJ(κ)) given by σi(r) = (r,—)i is an
extended scale in L(cJ(κ)). Hence (recall (2.2)) the formulas

πi(p,—) =
∨
s>p

(s,—)i = (p,—)i and

πi(—, q) =
∨
s<q

(s,—)i
∗ =

∨
s<q

(—, s)i = (—, q)i

determine an extended continuous real function

πi : L(R)→ L(cJ(κ)).

We shall refer to πi as the i-th projection.

Theorem 3.3. L(cJ(κ)) is a compact regular frame.



FRAME PRESENTATIONS OF COMPACT HEDGEHOGS 9

Proof : Consider the unique frame homomorphism f , given by coproduct uni-
versal property, for which the following diagram commutes:

L(R)
⊕

i∈I L(R)

L(cJ(κ))

πi

ιi

f

Let
a =

∨
i 6=j
ιi(
∨
r∈Q

(r,—)) ∧ ιj(
∨
r∈Q

(r,—)) ∈
⊕
i∈I

L(R).

By (ch0) we have

f(a) =
∨
i 6=j
f(ιi(

∨
r∈Q

(r,—))) ∧ f(ιj(
∨
s∈Q

(s,—))) =
∨
i 6=j

∨
r∈Q

∨
s∈Q

(r,—)i ∧ (s,—)j = 0.

Moreover, f(a∨ιi(r,—)) = f(ιi(r,—)) = πi(r,—) = (r,—)i and f(a∨ιi(—, s)) =
f(ιi(—, s)) = πi(—, s) = (—, s)i for every i ∈ I and r, s ∈ Q. Hence the map
k : c(a) → L(cJ(κ)) given by k(x) = f(x) for each x ∈ c(a) is a surjective
frame homomorphism making the following triangle⊕

i∈I L(R) L(cJ(κ))

c(a)

f

(−)∨a
k

commute. On the other hand, the assignments

(—, r)i 7−→ ιi(r,—) ∨ a and (s,—)i 7−→ ιi(—, s) ∨ a
for each r, s ∈ Q and i ∈ I determine a frame homomorphism

g : L(cJ(κ))→ c(a)

(the fact that they turn the relations (ch0)–(ch4) into identities in c(a) follows
easily from the fact that each ιi is a frame homomorphism and the fact that
the relations (r1)–(r4) are satisfied in L(R)). Thus g is the unique frame
homomorphism that makes the triangle⊕

i∈I L(R) L(cJ(κ))

c(a)

f

(−)∨a
g
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commutative (the fact that it commutes obviously follows from the fact that
the coproduct injections are jointly epic). Consequently, L(cJ(κ)) and c(a)
are isomorphic frames, and the latter is regular and compact because it is
a closed sublocale of a regular and compact locale (by Tychonoff’s Theorem
for locales [25]).

Remark 3.4. Since Tychonoff’s Theorem for locales and compactness of L(R)
are constructively valid, the proof above is also constructively valid provided
the index set I has decidable equality (i.e., for all i, j ∈ I, one has either
i = j or i 6= j), a condition that was already assumed in the relation (ch0).

Proposition 3.5. L(cJ(κ)) is metrizable if and only if κ ≤ ℵ0.

Proof : The coproduct of countably many metrizable frames is metrizable by
virtue of [22, p. 31]. Hence, if κ ≤ ℵ0, then, for |I| = κ,

⊕
i∈I L(R) is

metrizable, and so is any of its quotients, thus L(cJ(κ)) is metrizable.
Conversely, if L(cJ(κ)) is metrizable, and since it is also compact, then it

must have a countable
∨

-basis ([6, 4.3]). Let B = {bn}n∈N be such a basis.
Then, for each i ∈ I, there is some ni ∈ N such that 0 6= bni ≤ (0,—)i. Con-
sequently, {bni}i∈I is a pairwise disjoint family of nonzero elements contained
in B, hence κ = |I| ≤ ℵ0.

Hence, by [10, Prop. 3], we have:

Corollary 3.6. For κ ≤ ℵ0, any regular subframe of L(cJ(κ)) is metrizable.

Further properties. It is a straightforward exercise to check that for each
i ∈ I the assignments from L(cJ(κ)) into L(R) given by

(r,—)j 7−→

{
(r,—), if j = i,

0, if j 6= i,
and (—, r)j 7−→

{
(—, r), if j = i,

1, if j 6= i,

turn the defining relations (ch0)–(ch4) into identities in L(R) and thus de-
termine a surjective frame homomorphism hi : L(cJ(κ)) → L(R) (such that
hi ◦ πi is the identity in L(R)):

(1) (r,—)i ∧ (s,—)j = 0 if and only if i 6= j.
(2) (r,—)i ∧ (—, s)i = 0 if and only if r ≥ s.
(3) (r,—)i ∨ (—, s)j = 1 if and only if r < s and i = j.
(4) (—, r)i ∨ (—, s)j = 1 if and only if i 6= j.

(First note that (—, r)i∨ (—, s)i = (—, r ∨ s)i 6= 1, by (ch4). On the other
hand, if i 6= j then (—, r)i ∨ (—, s)j ≥ (—, r)i ∨ (r − 1,—)i = 1.)
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(5)
∨
i∈I
∨
r∈Q (r,—)i 6= 1.

(Indeed
∨
i∈I
∨
r∈Q (r,—)i = 1 would imply

∨
r∈Q(r,—) = 1 in L(R), a

contradiction.)
(6) For each i ∈ I,

∨
r∈Q (—, r)i 6= 1.

(
∨
r∈Q (—, r)i = 1 would imply

∨
r∈Q(—, r) = 1 in L(R).)

Lemma 3.7. All the following elements of L(cJ(κ)) are prime (hence max-
imal):

(a)
∨
r>t (r,—)i ∨

∨
r<t (—, r)i for all t ∈ R and i ∈ I.

(b)
∨
i∈I
∨
r∈Q (r,—)i.

(c)
∨
r∈Q (—, r)i for all i ∈ I.

Proof : First note that since L(cJ(κ)) is a regular frame, any prime element
is maximal.

We only show the case for (b), the others may be proved similarly.
By property (5) above, the element p =

∨
r∈Q
∨
i∈I (r,—)i is not the top

element. Clearly, p is prime iff the map

h : L(cJ(κ))→ { 0 < 1 },
given by h(x) = 0 if x ≤ p and h(x) = 1 otherwise, is a frame homomorphism.
For that it suffices to show that the assignments h(r,—)i = 0 iff (r,—)i ≤ p
and h(−, r)i = 0 iff (—, r)i ≤ p send the defining relations into identities.
But (r,—)i ≤ p for any r ∈ Q and i ∈ I. Hence h(r,—)i = 0 for all r ∈ Q and
i ∈ I. Moreover, (—, r)i ≤ p together with (ch2) would imply p = 1, hence
h(—, r)i = 1 for all r ∈ Q and i ∈ I. Now it is clear that h turns relations
(ch0)-(ch4) into identities in the two-element frame { 0 < 1 }.

Next we compute the spectrum of L(cJ(κ)).

Lemma 3.8. For each point p ∈ Σ(L(cJ(κ))) let

α(p) =
∨{

r ∈ Q |
∨
i∈I

(r,—)i 6≤ p
}
∈ R.

We have:

(1) α(p) = −∞ if and only if p =
∨
r∈Q
∨
i∈I (r,—)i.

(2) If α(p) 6= −∞, then there is a unique ip ∈ I such that (r,—)ip 6≤ p for
some r ∈ Q.

(3) If α(p) 6= −∞, then α(p) =
∧
{ s ∈ Q | (—, s)ip 6≤ p }.

(4) If α(p) ∈ R, then p =
(∨

r>α(p) (r,—)ip
)
∨
(∨

s<α(p) (—, s)ip
)
.
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(5) If α(p) = +∞, then p =
∨
r∈Q(—, r)ip.

Proof : (1) Clearly α(p) = −∞ iff
∨
r∈Q
∨
i∈I (r,—)i ≤ p. The conclusion

follows from Lem. 3.7 (b).
(2) The existence is obvious from the definition of α(p). For uniqueness,
assume that there are distinct ip, jp ∈ I such that (r,—)ip 6≤ p and (s,—)jp 6≤ p.
Then (r,—)ip ∧ (s,—)jp 6≤ p since p is prime, which contradicts (ch0).
(3) Let r ∈ Q such that

∨
i∈I (r,—)i 6≤ p. Then there is an i ∈ I satisfying

(r,—)i 6≤ p. By uniqueness of ip, i = ip. Let s ∈ Q such that (—, s)ip 6≤ p.
Then r ≤ s (otherwise, by (ch0), s < r would imply 0 = (r,—)ip∧(—, s)ip 6≤ p).
Hence α(p) ≤

∧
{ s ∈ Q | (—, s)ip 6≤ p }. The inequality cannot be strict,

otherwise there would exist r1, s1 ∈ Q such that

α(p) < r1 < s1 <
∧
{ s ∈ Q | (—, s)ip 6≤ p },

and then (r1,—)ip ≤ p and (—, s1)ip ≤ p, a contradiction (since 1 = (r1,—)ip ∨
(—, s1)ip by (ch2)).
(4) Suppose α(p) ∈ R. By Lem. 3.7(a), it is enough to show that for all
r > α(p) and all s < α(p) one has (r,—)ip ≤ p and (—, s)ip ≤ p. Now, the
former inequality follows from the definition of α(p) while the latter follows
from (3).
(5) It follows from (3) that

∨
r∈Q(—, r)ip ≤ p. The equality follows then from

Lem. 3.7 (c).

Proposition 3.9. The spectrum of L(cJ(κ)) is homeomorphic to the compact
hedgehog space ΛJ(κ).

Proof : Consider the map π : Σ(L(cJ(κ))) −→ ΛJ(κ) given by

π(p) =

{
(α(p), ip) if α(p) 6= −∞;

−∞ otherwise.

It readily follows from Lem. 3.8 (assertions 1, 4 and 5) that π is one-to-one.
Let us show that π is also onto.

By 3.8 (1), π
(∨

r∈Q
∨
i∈I (r,—)i

)
= −∞, and, by 3.8 (5), π

(∨
r∈Q (—, r)i

)
=

(+∞, i). For each t ∈ R and i ∈ I set

p(t,i) =
(∨
r>t

(r,—)i
)
∨
(∨
r<t

(—, r)i
)
.

It is straightforward to check that
∨
j∈I(s,—)j ≤ p(t,i) if and only if s ≥ t.

Hence α(p(t,i)) =
∨
{ s | s < t } = t. Moreover, if we select s < t, then
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we have (s,—)i 6≤ p(t,i) (as otherwise p(t,i) = (s,—)i ∨ p(t,i) = 1 by (ch2),
contradicting maximality). Therefore ip(t,i) = i and so π(p(t,i)) = (t, i).

Furthermore, π is lower semicontinuous, since

π−1((r,+∞]× {i}) = { p ∈ Σ(L(cJ(κ))) | (r,—)i 6≤ p } = Σ(r,—)i

is open for every r ∈ Q and i ∈ I, and upper semicontinuous, since

π−1(J(κ) \ ([r,+∞]× {i})) = { p ∈ Σ(L(cJ(κ))) | (—, r)i 6≤ p } = Σ(—,r)i

is open for every r ∈ Q and i ∈ I. Hence π is continuous.
Finally, let us prove that π is an open map. Note that, since L(cJ(κ))) is

generated by {(r,—)i, (—, r)i | r ∈ Q, i ∈ I} and π is a bijection, it suffices
to show that the sets π(Σ(r,—)i) and π(Σ(—,r)i) are open for every r ∈ Q and
i ∈ I. We have

π(Σ(r,—)i) = { π(p) | (r,—)i 6≤ p } = { (t, i) | t > r } = (r, 1]× {i} and

π(Σ(—,r)i) = { π(p) | (—, r)i 6≤ p } = J(κ) \ ([r, 1]× {i}).

Hence π is a homeomorphism.

4. Semicontinuities
We introduce now the following classes of frame homomorphisms:
A compact hedgehog-valued

– function on L is a frame homomorphism f : L(cJ(κ))→ S(L)op,
– lower semicontinuous function on L is a frame homomorphism
f : L(cJ(κ)) → S(L)op such that f((r,—)i) is closed for every r ∈ Q
and i ∈ I,

– upper semicontinuous function on L is a frame homomorphism
f : L(cJ(κ)) → S(L)op such that f((—, r)i) is closed for every r ∈ Q
and i ∈ I,

– continuous function on L is a frame homomorphism f : L(cJ(κ)) →
S(L)op such that f((—, r)i) and f((r,—)i) are closed for every r ∈ Q
and i ∈ I.

The corresponding classes of compact hedgehog-valued functions will be
denoted by, respectively,

Fκ(L), LSCκ(L), USCκ(L), Cκ(L).

Note that Cκ(L) = LSCκ(L) ∩ USCκ(L).
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The following lemma is an immediate consequence of the definition of the
i-th projection πi.

Lemma 4.1. Let f ∈ Fκ(L). Then:

(1) f ∈ LSCκ(L) if and only if f ◦ πi ∈ LSC(L) for all i ∈ I.
(2) f ∈ USCκ(L) if and only if f ◦ πi ∈ USC(L) for all i ∈ I.
(3) f ∈ Cκ(L) if and only if f ◦ πi ∈ C(L) for all i ∈ I.

Let
H =

{
hi : L(R)→ S(L)op

}
i∈I ⊆ F(L)

be a family of extended real-valued functions on L and Si = hi(
∨
r∈Q(r,—).

We say that H is disjoint if Si u Sj = 0 (i.e. Si ∨ Sj = L) for every i 6= j.

Proposition 4.2. If H = {hi | i ∈ I } is a disjoint κ-family of extended real-
valued functions on L, then there is a unique f ∈ Fκ(L) such that f ◦πi = hi
for all i ∈ I. Conversely, given f ∈ Fκ(L), the κ-family { f ◦ πi }i∈I is
disjoint.

Proof : Uniqueness. If f ◦ πi = hi for all i, then f((r,—)i) = f(πi(r,—)) =
hi(r,—) and f(—, r)i = f(πi(—, r)) = hi(—, r), and thus f is uniquely deter-
mined.

Existence. Define f : L(cJ(κ)) → S(L)op by the assignments f(—, r)i =
hi(—, r) and f((r,—)i) = hi(r,—). Let us confirm that it turns the relations
(ch0)–(ch4) into identities in S(L)op:

(ch0) Let i 6= j. Then f((r,—)i)uf((s,—)j) = hi(r,—)uhj(s,—) ≤ SiuSj = 0.
(ch1) Let r ≥ s. Then f((r,—)i)u f((—, s)i) = hi(r,—)uhi(—, s) = hi((r,—)∧

(—, s)) = hi(0) = 0.
(ch2) Let r < s. Then f((r,—)i)t f((—, s)i) = hi(r,—)thi(—, s) = hi((r,—)∨

(—, s)) = hi(1) = 1.
(ch3) f((r,—)i) = hi(r,—) = hi

(∨
s>r(s,—)

)
=
⊔
s>r f((s,—)i).

(ch4) Similar to (ch3).

Trivially, f ◦ πi = hi for all i ∈ I. The converse statement is an easy
consequence of (ch0) and the frame distributive law.

In the following, fH is always the compact hedgehog-valued function pro-
vided by 4.2. We conclude with some immediate corollaries of 4.1 and 4.2.

Corollary 4.3. Let H ⊆ F(L) be a disjoint κ-family. Then:

(1) fH ∈ LSCκ(L) if and only if f ∈ LSC(L) for all f ∈ H.



FRAME PRESENTATIONS OF COMPACT HEDGEHOGS 15

(2) fH ∈ USCκ(L) if and only if f ∈ USC(L) for all f ∈ H.
(3) fH ∈ Cκ(L) if and only if f ∈ C(L) for all f ∈ H.

Corollary 4.4. Let {ai}i∈I be a disjoint κ-family of elements of L. Then ai
is a cozero element for every i ∈ I if and only if there is an f ∈ Cκ(L) such
that ai =

∨
r∈Q f((r,—)i) for all i ∈ I.

Given a complemented sublocale S of a locale L, the extended characteristic
function χS ∈ F(L) (see [5, Example 2]) is defined by

χS(r,—) = S∗ and χS(—, r) = S, r ∈ Q.

Obviously, χS ∈ LSC(L) (resp. χS ∈ USC(L)) if and only if S is an open
(resp. closed) sublocale.

Remark 4.5. A κ-family C = {Si}i∈I of complemented sublocales of L is
pairwise disjoint in S(L) if and only if the corresponding κ-family {χSi

}i∈I
of extended characteristic functions is disjoint. Hence, by Prop. 4.2, it induces
an f ∈ Fκ(L) such that f ◦ πi = χSi

for all i ∈ I. This f will be denoted by
χC and we shall refer to it as the characteristic function of the family C.

Finally, from Cor. 4.3 we obtain:

Corollary 4.6. Let C = {Si}i∈I be a pairwise disjoint κ-family of comple-
mented sublocales of L. Then:

(1) χC ∈ LSCκ(L) if and only if each Si is open.
(2) χC ∈ USCκ(L) if and only if each Si is closed.
(3) χC ∈ Cκ(L) if and only if each Si is clopen.

5. Variants of collectionwise normality
A family {ai}i∈I of elements of L is said to be disjoint if ai ∧ aj = 0 for

every i 6= j. It is discrete (resp. co-discrete) if there is a cover C of L such
that for any c ∈ C, c ∧ ai = 0 (resp. c ≤ ai) for all i with at most one
exception. Note, in particular, that any discrete family is clearly disjoint,
and that a pair {a, b} is co-discrete if and only if a ∨ b = 1. Trivially, if
a finite {a1, a2, . . . , an} is co-discrete then a1 ∨ a2 ∨ · · · ∨ an = 1, but not
conversely for n ≥ 3.

Recall from [19] (see also [27] for more information) that a frame is κ-col-
lectionwise normal if for every co-discrete κ-family {ai}i∈I , there is a discrete
{bi}i∈I with bi∨ai = 1 for all i ∈ I. We take this opportunity to rectify a slip
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in [19]: we can replace discrete families by disjoint families in the definition
of κ-collectionwise normal frames, as we shall show in 5.2 below.

Lemma 5.1. (Cf. [28, Lem. 1.13]) For any co-discrete {ai}i∈I ⊆ L and
b ∈ L, b ∨

∧
i∈I ai =

∧
i∈I(b ∨ ai).

Proposition 5.2. A frame L is κ-collectionwise normal if and only if for any
co-discrete {ai}i∈I with |I| ≤ κ, there is a disjoint {bi}i∈I such that ai∨bi = 1
for all i ∈ I.

Proof : The implication ‘⇒’ is obvious since any discrete family is disjoint.
Conversely, let {ai}i∈I be a co-discrete family. Then there is a disjoint

family {bi}i∈I such that bi ∨ ai = 1 for all i ∈ I. Set

D := { a ∈ L | a ∧ bi 6= 0 for at most one i }
and d :=

∨
D. Clearly bi ∈ D, and hence bi ≤ d, for each i. Then, by the

previous lemma, d ∨
∧
i∈I ai =

∧
i∈I(d ∨ ai) ≥

∧
i∈I(bi ∨ ai) = 1. Moreover,

since κ-collectionwise normality implies normality [19], there are u, v ∈ L
such that u ∨

∧
i∈I ai = 1 = v ∨ d and u ∧ v = 0. The family

{ui := bi ∧ u}i∈I
is then the required discrete system. Indeed, C := D ∪ {v} is a cover of L
(since

∨
C = d ∨ v = 1), each c ∈ C meets at most one ui (since ui ∧ v ≤

u ∧ v = 0) and ui ∨ ai = (bi ∨ ai) ∧ (u ∨ ai) = u ∨ ai ≥ u ∨
∧
i∈I ai = 1 for

every i.

Next, we define a sublocale S of L to be zcκ-embedded in L if for every
disjoint κ-family {ai}i∈I of cozero elements of S, there is a disjoint family
{bi}i∈I of cozero elements of L such that νS(bi) = ai (that is, such that
oS(ai) = S ∩ o(bi)) for every i ∈ I.

Remark 5.3. In view of [7, Thm. 3.8] (see also [19]), we shall say that a
sublocale S of L is zκ-embedded in L if for every f : L(J(κ))→ S, there is a
g : L(J(κ))→ L such that νS(

∨
r∈Q g(r,—)i) =

∨
r∈Q f(r,—)i for every i ∈ I.

We shall see in Lem. 6.2 below that the notion above of zcκ-embedding is pre-
cisely what we get by replacing the (metric) hedgehog frame with the compact
hedgehog frame in the notion of zκ-embedding: a sublocale S is zcκ-embedded
in L if and only if for every f : L(cJ(κ))→ S, there is a g : L(J(κ))→ L such
that νS(

∨
r∈Q g(r,—)i) =

∨
r∈Q f(r,—)i for every i ∈ I. This is the point-free

counterpart of the notion of κ-total z-embedding from [18]. Since these two



FRAME PRESENTATIONS OF COMPACT HEDGEHOGS 17

cardinal generalizations of z-embeddedness are generally unrelated, we prefer
to use the term ‘zcκ-embedding’.

Clearly, zc1-embedding coincides with the usual notion of z-embedding (cf.
[2]). Moreover, zc2-embedding is also equivalent to z-embedding by [12,
Prop. 3.3].

Furthermore, a locale will be said to be totally κ-collectionwise normal
if every closed sublocale is zcκ-embedded. A locale is totally collectionwise
normal if it is totally κ-collectionwise normal for every cardinal κ.

We shall need the following localic version of the pasting lemma:

Proposition 5.4. (cf. Prop. 4.4 in [26] or Prop. 7.2 in [19]) Let L and M be
locales, a1, a2 ∈ M and hi : L → c(ai) (i = 1, 2) frame homomorphisms such
that h1(x)∨a2 = h2(x)∨a1 for every x ∈ L. Then the map h : L→ c(a1∧a2)
given by h(x) = h1(x)∧h2(x) is a frame homomorphism such that the triangle

L c(a1 ∧ a2)

c(ai)

hi

h

νc(ai)

commutes for i = 1, 2.

Proposition 5.5. Every totally κ-collectionwise normal frame is κ-collec-
tionwise normal.

Proof : Let {ai}i∈I be a co-discrete κ-family in a frame L. Fix some i ∈ I

and consider constant extended real valued functions h
(i)
1 : L(R)→ c(ai) and

h
(i)
2 : L(R)→ c(

∧
j 6=i aj), given by

h
(i)
1 (r,—) = 1, h

(i)
1 (—, r) = ai and h

(i)
2 (r,—) =

∧
j 6=i
aj, h

(i)
2 (—, r) = 1.

One has ai ∨
∧
j 6=i aj =

∧
j 6=i(ai ∨ aj) = 1 (the first equality follows from 5.1

and the obvious fact that any subfamily of a co-discrete family is co-discrete,
whereas the second equality holds because the family {c(ai)}i∈I is pairwise
disjoint whenever {ai}i∈I is co-discrete). Then, by Prop. 5.4, there is a frame
homomorphism

h(i) : L(R)→ c(ai) ∨ c(
∧
j 6=i
aj) = c(

∧
j∈I

aj)
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given by h(i)(x) = h
(i)
1 (x) ∧ h(i)

2 (x). But∨
r∈Q

h(i)(r,—) =
∧
j 6=i
aj,

thus
∧
j 6=i aj is a cozero element in c(

∧
j∈I aj). Hence the family {

∧
j 6=i aj}i∈I

is a disjoint family of cozero elements in the closed sublocale c(
∧
j∈I aj).

Finally, by assumption, there is a disjoint family {bi}i∈I of cozero elements
of L such that bi ∨

∧
j∈I aj =

∧
j 6=i aj; in particular,

bi ∨ ai = bi ∨
(∧
j∈I

aj
)
∨ ai =

(∧
j 6=i
aj
)
∨ ai =

∧
j 6=i

(aj ∨ ai) = 1.

Finally we recall again that κ-collectionwise normality implies normality
[19] to conclude:

Corollary 5.6. Every totally κ-collectionwise normal frame is normal.

6. Disjoint extensions
Let S ⊆ L be a sublocale and f ∈ Cκ(S). An f ∈ Cκ(L) is said to be a

(continuous) extension of f to L if νS ◦ f = f .
We say that a disjoint κ-family HS ⊆ C(S) can be disjointly extended to L

if there is a disjoint κ-family

H =
{
f | f ∈ HS

}
⊆ C(L)

in which each f is an extension of f . Further, a locale L will be said to have
the κ-disjoint extension property if for each a ∈ L every disjoint κ-family
Hc(a) ⊆ C(c(a)) can be disjointly extended to L. The following result can be
easily inferred from Lem. 4.1 (3) and Prop. 4.2.

Proposition 6.1. The following are equivalent for a locale L.

(i) L has the κ-disjoint extension property.
(ii) For each a ∈ L, every f ∈ Cκ(c(a)) has an extension f ∈ Cκ(L).

We can now characterize zcκ-embeddedness as a property about appropriate
compact hedgehog-valued functions.

Lemma 6.2. The following are equivalent for a sublocale S ⊆ L.

(i) S is zcκ-embedded in L.
(ii) For each f ∈ Cκ(S), there is a g ∈ Cκ(L) such that νS

(∨
r∈Q g((r,—)i)

)
=∨

r∈Q f((r,—)i) for every i ∈ I.
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Proof : (i) =⇒ (ii): Let f ∈ Cκ(S). For each i ∈ I set

ai :=
∨
r∈Q

(f ◦ πi)(r,—) =
∨
r∈Q

f((r,—)i).

{ai}i∈I is a disjoint κ-family of cozero elements of S. Then, by assumption,
there is a disjoint family {bi}i∈I of cozero elements of L such that νS(bi) = ai
for every i ∈ I. Applying Cor. 4.4 to {bi}i∈I we get a g ∈ Cκ(L) such that
bi =

∨
r∈Q g((r,—)i). Finally,

νS
( ∨
r∈Q

g((r,—)i)
)

= νS(bi) =
∨
r∈Q

f((r,—)i)

for every i ∈ I.

(ii) =⇒ (i): Let {ai}i∈I be a disjoint κ-family of cozero elements of
S, and take the f ∈ Cκ(S), provided by Cor. 4.4, that satisfies ai =∨
r∈Q f((r,—)i) for all i ∈ I. By hypothesis, there is a g ∈ Cκ(L) such

that νS
(∨

r∈Q g ((r,—)i)
)

= ai for all i ∈ I. Set bi :=
∨
r∈Q g((r,—)i) for each

i ∈ I. Clearly, {bi}i∈I is the claimed disjoint family.

Theorem 6.3 (Tietze-type theorem for total κ-collectionwise normality).
The following are equivalent for a locale L.

(i) L is totally κ-collectionwise normal.
(ii) For each a ∈ L, every f ∈ Cκ(c(a)) has an extension f ∈ Cκ(L).

Proof : (i) =⇒ (ii): Let f ∈ Cκ(c(a)) and set ai :=
∨
r∈Q f ((r,—)i). By the

previous lemma, there is a g ∈ Cκ(L) such that a ∨ bi = ai for every i ∈ I,
where bi :=

∨
r∈Q g ((r,—)i). For each i ∈ I, consider

h
(i)
1 = f ◦ πi : L(R)→ c(a) and h

(i)
2 = 0 : L(R)→ c(bi)

(the latter defined by h
(i)
2 (r,—) = bi and h

(i)
2 (—, r) = 1 for every r ∈ Q). Let

us show that h
(i)
1 (x) ∨ bi = h

(i)
2 (x) ∨ a for every x ∈ L(R) by checking it for

the generators of L(R). For each r ∈ Q we have:

a ∨ bi ≤ h
(i)
1 (r,—) ∨ bi = f((r,—)i) ∨ bi ≤ ai ∨ bi = a ∨ bi.

Hence h
(i)
1 (r,—) ∨ bi = a ∨ bi = h

(i)
2 (r,—) ∨ a. On the other hand, pick some

rational t < r and conclude that

h
(i)
1 (—, r) ∨ bi = (h(i)(—, r) ∨ a) ∨ bi = f((—, r)i) ∨ (a ∨ bi) = f((—, r)i) ∨ ai

≥ f((—, r)i) ∨ ai ≥ f((—, r)i) ∨ f ((t,—)i) = 1.
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Hence h
(i)
1 (—, r) ∨ bi = 1 = h

(i)
2 (—, r) ∨ a.

Consequently, by Prop. 5.4, there exists a frame homomorphism

hi : L(R)→ c(a ∧ bi),

such that ν1 ◦ hi = h
(i)
1 and ν2 ◦ hi = h

(i)
2 , where ν1 : c(a ∧ bi) → c(a) and

ν2 : c(a ∧ bi) → c(bi) are the associated surjections. Since L is normal (by
Cor. 5.6), the standard point-free version of Tietze’s extension theorem yields
a frame homomorphism gi : L(R) → L such that ν ◦ gi = hi, where ν : L →
c(a ∧ bi) is the corresponding surjection. Observe that the family {gi}i∈I is
disjoint since

gi(
∨
r∈Q

(r,—)) ≤ hi(
∨
r∈Q

(r,—)) ≤ h
(i)
2 (
∨
r∈Q

(r,—)) = bi

and {bi}i∈I is disjoint. Hence, consider the hedgehog-valued function
h : L(cJ(κ))→ L defined by h ◦ πi = gi for all i ∈ I (provided by Prop. 4.2),
which is continuous by Cor. 4.3. This is the claimed extension. Indeed,
denote by νc(a) : L→ c(a) the surjection associated to c(a). Then

νc(a) ◦ h ◦ πi = νc(a) ◦ gi = ν1 ◦ ν ◦ gi = ν1 ◦ hi = h
(i)
1 = f ◦ πi,

and thus νc(a) ◦ h = f follows from the uniqueness of Prop. 4.2.

(ii) =⇒ (i) is an immediate consequence of the implication (ii) =⇒ (i) in the
previous lemma.

We end up this section with the investigation of the case κ = ℵ0.

Proposition 6.4. A sublocale S ⊆ L is zcℵ0-embedded if and only if it is
z-embedded.

Proof : The “only if” part is obvious. Conversely, assume that S is z-embed-
ded and let {an}n∈N be a countable disjoint family of cozero elements of S.
For each n ∈ N, let bn be the join in S of the family { am | m 6= n }. Note
that { an, bn } is a disjoint pair of cozero elements of S (since a countable
join of cozero elements is again a cozero). Then, by [12, Prop. 3.3], there is
a disjoint pair { cn, dn } of cozero elements of L such that νS(cn) = an and
νS(dn) = bn. Take

u1 = c1 and un = cn ∧ d1 ∧ · · · ∧ dn−1 (n > 1).

{un}n∈N is the required disjoint family of cozero elements of L that extends
{an}n∈N. Indeed, each un is a cozero element (because cozero elements are
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closed under finite meets); for disjointness, let n < m and observe that
un ∧ um ≤ cn ∧ dn = 0. Finally, νS(u1) = νS(c1) = a1 and, for n > 1,

νS(un) = νS(cn) ∧ νS(d1) ∧ · · · ∧ νS(dn−1) = an ∧ b1 ∧ · · · ∧ bn−1.

Note that an ≤ bm for m = 1, . . . , n− 1, hence νS(un) = an as claimed.

Corollary 6.5. For 1 ≤ κ ≤ ℵ0, total κ-collectionwise normality is equiva-
lent to normality.

Corollary 6.6. The following are equivalent for a locale L.

(i) L is normal.
(ii) For each a ∈ L, every f ∈ Cℵ0(c(a)) has an extension f ∈ Cℵ0(L).

7. Insertion results
Recall the partial order in F(L) (2.4). We may extend it to Fκ(L) by

defining, for any f, g ∈ Fκ(L),

f ≤ g ≡ f ◦ πi ≤ g ◦ πi for every i ∈ I.

Inspired by [18], we obtain a first Katětov-Tong-type insertion result for
Fκ(L) that characterizes normality.

Theorem 7.1. The following are equivalent for a locale L.

(i) L is normal.
(ii) For every κ ≥ 1, and every f ∈ USCκ(L) and g ∈ LSCκ(L) such that

f ≤ g, there exists an h ∈ Cκ(L) such that f ≤ h ≤ g.
(iii) There is a κ ≥ 1 such that for every f ∈ USCκ(L) and g ∈ LSCκ(L)

satisfying f ≤ g, there exists an h ∈ Cκ(L) such that f ≤ h ≤ g.

Proof : (i) =⇒ (ii): Let κ ≥ 1, |I| = κ, f ∈ USCκ(L) and g ∈ LSCκ(L) with
f ≤ g and i ∈ I. Then f ◦πi ≤ g◦πi in F(L), and f ◦πi ∈ USC(L) and g◦πi ∈
LSC(L) (by Cor. 4.1). By the standard point-free version of Katětov-Tong
insertion theorem [16], there is an hi ∈ C(L) such that f ◦ πi ≤ hi ≤ g ◦ πi.
Since {g ◦ πi}i∈I is a disjoint family, then so is {hi}i∈I . Let h ∈ Cκ(L) be
the function defined by h ◦ πi = hi for all i ∈ I (provided by Prop. 4.2 and
Cor. 4.3). Obviously, f ≤ h ≤ g.

(ii) =⇒ (iii) is obvious.

(iii) =⇒ (i): Let |I| = κ and fix some i0 ∈ I. Let a, b ∈ L such that a∨b = 1.
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Consider the pairwise disjoint κ-families C = {Si}i∈I and D = {Ti}i∈I defined
by Si0 = c(a), Ti0 = o(b) and Si = O = Ti for every i 6= i0. By Cor. 4.6,

χC ∈ USCκ(L) and χD ∈ LSCκ(L).

Moreover, since a∨ b = 1 is equivalent to c(a) ⊆ o(b) in S(L), it follows that
χC ≤ χD. Hence, there is an h ∈ Cκ(L) such that χC ≤ h ≤ χD, from which it
follows that χc(a) ≤ h ◦ πi0 ≤ χo(b). The normality of L follows then from the
standard point-free version of Urysohn’s Lemma (as e.g. in the formulation
of [16, Cor. 8.2]).

We end up this section with an insertion result that characterizes total
collectionwise normality. To prove it we need the following property of total
κ-collectionwise normality:

Lemma 7.2. Total κ-collectionwise normality is hereditary with respect to
closed sublocales.

Proof : Let S = c(a) be a closed sublocale of a totally κ-collectionwise normal
locale L. Let cS(b) be a closed sublocale of S and let {ai}i∈I be a disjoint
κ-family of cozero elements of cS(b). Since cS(b) = c(a)∩c(b) = c(a∨b), there
is a disjoint family {bi}i∈I of cozero elements of L such that bi ∨ a ∨ b = ai
for every i ∈ I. Then {bi ∨ a}i∈I ⊆ S is the desired disjoint family extending
{ai}i∈I .

Theorem 7.3. The following are equivalent for a locale L and a cardinal κ:

(i) L is totally κ-collectionwise normal.
(ii) For each a ∈ L and every f ∈ USCκ(c(a)) and g ∈ LSCκ(c(a)) such that

f ≤ g, there exists an h ∈ Cκ(L) such that f ≤ νc(a) ◦ h ≤ g.

Proof : (i) =⇒ (ii): Suppose L is totally κ-collectionwise normal and consider
a ∈ L. By Cor. 5.6, L is normal, and so is c(a) (because normality is a
closed-hereditary property). Let f ∈ USCκ(c(a)) and g ∈ LSCκ(c(a)) such
that f ≤ g. By Thm. 7.1, there is an h ∈ Cκ(c(a)) such that f ≤ h ≤ g.
Then, since c(a) is also totally κ-collectionwise normal (by the lemma), the
conclusion follows readily from Thm. 6.3.

(ii) =⇒ (i): Let c(a) be a closed sublocale of L and let h ∈ Cκ(c(a)). Applying
the insertion condition to h ≤ h we get an h̄ ∈ Cκ(L) such that h ≤ νc(a)◦h̄ ≤
h. Of course, h = νc(a) ◦ h̄ is an extension of h and the conclusion follows
then from Thm. 6.3.
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8. A general view: sublocale selections
For the rest of the article we want to treat several variants of normality and

total κ-collectionwise normality at once. The following describes a convenient
general setting for this.

An object function F on the category of frames will be called a sublocale
selection if F(L) is a class of complemented sublocales of L. We shall denote
by F∗ the sublocale selection defined by

F∗(L) = {S∗ | S ∈ F(L) }.

We shall say that F is closed under (binary, countable, arbitrary) joins (resp.
meets) if F(L) is closed under (binary, countable, arbitrary) joins (resp.
meets), taken in S(L), for any L.

The standard examples of F are given by selecting closed sublocales, regular
closed sublocales, zero sublocales and δ-regular closed sublocales. In the
following, these will be denoted

Fc, Freg, Fz, Fδreg

respectively.
Now, for any sublocale selection F, a locale L is called F-normal if for any

S, T ∈ F(L)

S ∩ T = O =⇒ ∃ A,B ∈ F(L) : S ∩ A = O = T ∩ V, A ∨B = L.

Examples 8.1. (See [20]) For the selection F = Fc, F-normality is standard
normality and F∗-normality is just extremal disconnectedness, while for Freg,
F-normality is mild normality and F∗-normality is also extremal disconnect-
edness. For F = Fz, F-normality is a property inherent to any frame while
F∗-normality is the property of being an F -frame.

Furthermore, an f ∈ Fκ(L) will be called

– lower F-semicontinuous if for every p < q in Q and i ∈ I, there is an
F i
p,q ∈ F(L) such that f(q,—)i ≤ F i

p,q ≤ f(p,—)i.
– upper F-semicontinuous if for every p < q in Q and i ∈ I, there is a
Gi
p,q ∈ F(L) such that f(—, p)i ≤ Gi

p,q ≤ f(—, q)i.

Similarly (see [20]), an f ∈ F(L) is called

– lower F-semicontinuous if for every p < q in Q there is an Fp,q ∈ F(L)
such that f(q,—) ≤ Fp,q ≤ f(p,—).
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– upper F-semicontinuous if for every p < q in Q there is a Gp,q ∈ F(L)
such that f(—, p) ≤ Gp,q ≤ f(—, q).

In both cases f is called F-continuous if it is lower and upper F-semicontin-
uous.

This defines the following subclasses of Fκ(L) and F(L)

LSCFκ(L), USCFκ(L), CFκ(L) = LSCFκ(L) ∩ USCFκ(L),

LSC
F
(L), USC

F
(L), C

F
(L) = LSC

F
(L) ∩ USC

F
(L).

For instance, for the selection Fc above we obviously have

LSCFcκ (L) = LSCκ(L), USCFcκ (L) = USCκ(L) and CFcκ (L) = Cκ(L).

For Freg it yields the notions of lower and upper normal-semicontinuities and
continuity ; for Fz, it yields the notions of lower and upper zero-semicontinu-
ities and zero-continuity (see [20] for details).

The following results are all very easy to prove.

Proposition 8.2. Let f ∈ Fκ(L). Then:

(1) f ∈ LSCFκ(L) if and only if f ◦ πi ∈ LSC
F
(L) for all i ∈ I.

(2) f ∈ USCFκ(L) if and only if f ◦ πi ∈ USC
F
(L) for all i ∈ I.

(3) f ∈ CFκ(L) if and only if f ◦ πi ∈ C
F
(L) for all i ∈ I.

Corollary 8.3. Let f ∈ Fκ(L). Then:

(1) f ∈ LSCFκ(L) if and only if f ∈ USCF
∗

κ (L).
(2) f ∈ CFκ(L) if and only if f ∈ CF

∗

κ (L).

Corollary 8.4. Let H ⊆ F(L) be a disjoint κ-family. Then:

(1) fH ∈ LSCFκ(L) if and only if f ∈ LSC
F
(L) for all f ∈ H.

(2) fH ∈ USCFκ(L) if and only if f ∈ USC
F
(L) for all f ∈ H.

(3) fH ∈ CFκ(L) if and only if f ∈ C
F
(L) for all f ∈ H.

Proposition 8.5. Let C = {Si}i∈I be a pairwise disjoint κ-family of comple-
mented sublocales of a locale L. Then:

(1) χC ∈ LSCFκ(L) if and only if Si ∈ F∗(L) for all i ∈ I.
(2) χC ∈ USCFκ(L) if and only if Si ∈ F(L) for all i ∈ I.
(3) χC ∈ CFκ(L) if and only if Si ∈ F(L) ∩ F∗(L) for all i ∈ I.
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Recall from [20] the relations bF in S(L)op (for any L):

S bF T ≡ ∃U ∈ F(L), ∃V ∈ F∗(L) : S ≤ V ≤ U ≤ T.

We shall say that a sublocale selection F is a Katětov selection on L if for
S, S ′, T, T ′ ∈ S(L),

(K1) S, S ′ bF T ⇒ S ∩ S ′ bF T , and
(K2) S bF T, T ′ ⇒ S bF T ∨ T ′.
Fc, Fz, Fδreg, F∗c, F∗z, F∗δreg and F∗reg are all Katětov selections on any locale

while Freg is a Katětov selection on any mildly normal locale. We are now
ready to prove a generalized insertion result for compact hedgehog-valued
functions:

Theorem 8.6. Let F be a sublocale selection. The following are equivalent
for any locale L such that F is a Katětov selection on L and L ∈ F(L)∩F∗(L):

(i) L is F-normal.
(ii) For every κ ≥ 1, and every f ∈ USCFκ(L) and g ∈ LSCFκ(L) such that

f ≤ g, there exists an h ∈ CFκ(L) such that f ≤ h ≤ g.
(iii) There is a κ ≥ 1 such that for every f ∈ USCFκ(L) and g ∈ LSCFκ(L)

satisfying f ≤ g, there exists an h ∈ CFκ(L) such that f ≤ h ≤ g.

Proof : (i) =⇒ (ii): Let κ ≥ 1, |I| = κ, f ∈ USCFκ(L) and g ∈ LSCFκ(L) with
f ≤ g and i ∈ I. Then, by Cor. 8.2, f ◦ πi ≤ g ◦ πi in F(L) with

f ◦ πi ∈ USC
F
(L) and g ◦ πi ∈ LSC

F
(L).

By [20, Thm. 7.1], there is an hi ∈ C
F
(L) such that f ◦ πi ≤ hi ≤ g ◦ πi.

Since {g ◦ πi}i∈I is a disjoint family, then so is {hi}i∈I . Let h ∈ CFκ(L) be the
function given by Cor. 8.4 (defined by h ◦πi = hi for every i ∈ I). It satisfies
f ≤ h ≤ g, as claimed.

(ii) =⇒ (iii) is obvious.

(iii) =⇒ (i): Let |I| = κ and fix some i0 ∈ I. Let S, T ∈ F(L) such that
S ∩ T = O. Define pairwise disjoint κ-families C = {Si}i∈I and D = {Ti}i∈I
by Si0 = S, Ti0 = T ∗ and Si = O = Ti for i 6= i0. By Prop. 8.5 (and the fact
that O and L belong to F(L)), one has χC ∈ USCFκ(L) and χD ∈ LSCFκ(L).
Moreover, χC ≤ χD, since S ⊆ T ∗. Hence, there exists h ∈ CFκ(L) such that
χC ≤ h ≤ χD, from which it follows in particular that χS ≤ h ◦ πi0 ≤ χT ∗.
Let A,B ∈ F(L) such that

(h◦πi0)(1,—) ⊆ A ⊆ (h◦πi0)(2,—) and (h◦πi0)(—, 1) ⊆ B ⊆ (h◦πi0)(—, 0).
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Then A ∨ B ⊇ (h ◦ πi0)((1,—) ∧ (—, 1)) = L and S ∩ A = χS(—, 3) ∩ A ⊆
(h ◦ πi0)((—, 3) ∨ (2,—)) = O. Similarly, T ∩B = O.

Note that the particular case F = Fc yields immediately Thm. 7.1. Simi-
larly, for F = Freg we obtain:

Corollary 8.7. The following are equivalent for a locale L:

(i) L is mildly normal.
(ii) For every κ ≥ 1, and every upper normal-semicontinuous f ∈ Fκ(L) and

every lower normal-semicontinuous g ∈ Fκ(L) such that f ≤ g, there
exists an h ∈ Cκ(L) such that f ≤ h ≤ g.

(iii) There is a κ ≥ 1 such that for every upper normal-semicontinuous f ∈
Fκ(L) and lower normal-semicontinuous g ∈ Fκ(L) satisfying f ≤ g,
there exists an h ∈ Cκ(L) such that f ≤ h ≤ g.

Proof : Freg is a Katětov selection on any mildly normal locale. And the proof
of implication (iii) =⇒ (i) does not need F to be Katětov.

There is yet another feature of this general setting, suggested by sublocale
complementation in sublocale frames: each result applied to the ‘dual’ selec-
tion F∗ provides an extra dual result. For example, for F = F∗c, a frame is
F-normal if and only if it is extremally disconnected, and lower (resp. upper)
F-semicontinuity is precisely upper (resp. lower) semicontinuity. Hence, it
also follows readily from Thm. 8.6 that

Corollary 8.8. The following are equivalent for a locale L:

(i) L is extremally disconnected.
(ii) For every κ ≥ 1, and every f ∈ LSCκ(L) and g ∈ USCκ(L) such that

f ≤ g, there exists an h ∈ Cκ(L) such that f ≤ h ≤ g.
(iii) There is a κ ≥ 1 such that for every f ∈ LSCκ(L) and g ∈ USCκ(L)

satisfying f ≤ g, there exists an h ∈ Cκ(L) such that f ≤ h ≤ g.

For F = F∗z, we obtain:

Corollary 8.9. The following are equivalent for a locale L:

(i) L is an F -frame.
(ii) For every κ ≥ 1, and every upper zero-semicontinuous f ∈ Fκ(L) and

every lower zero-semicontinuous g ∈ Fκ(L) such that f ≤ g, there exists
a zero-continuous h ∈ Fκ(L) such that f ≤ h ≤ g.
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(iii) There is a κ ≥ 1 such that for every upper zero-semicontinuous f ∈ Fκ(L)
and every lower zero-semicontinuous g ∈ Fκ(L) satisfying f ≤ g, there
exists a zero-continuous h ∈ Fκ(L) such that f ≤ h ≤ g.

9. Relative zero and z-embedded sublocales
Let F be a sublocale selection. A sublocale T of L will be called an

F-zero sublocale of L if there is some F-continuous f ∈ F(L) for which
T = f(

∨
r∈Q(r,—)). We denote by F-Z(L) the set of all F-zero sublocales

of L.

Remark 9.1. Since F-continuity is a self-dual property, F-zero sublocales and
F∗-zero sublocales are the same, i.e. F-Z(L) = F∗-Z(L). For instance, for
F = Fc or F = F∗c, the F-zero sublocales are precisely the c(a) with a being a
cozero element of L, i.e. F-Z(L) = Z(L) (see [2]).

In the following, we say that a sublocale S of L is F-z-embedded in L if for
every F-zero sublocale T of S there is an F-zero sublocale TS of L such that
TS ∩ S = T .

Example 9.2. For F = Fc or F = F∗c, this is the standard notion of z-em-
beddedness of [21] (see also [2]).

Similarly, we say that a sublocale S of L is F-zcκ-embedded in L if for every
κ-family {Si}i∈I which is disjoint in S(S)op (i.e. Si ∨Sj = S whenever i 6= j)
consisting of F-zero sublocales of S, there is a disjoint family {Ti}i∈I of F-zero
sublocales of L such that Ti ∩ S = Si for every i ∈ I.

Furthermore, we say that a frame L is an F-zcκ frame if every S ∈ F is
F-zcκ-embedded.

Examples 9.3. (1) For F = Fc or F = F∗c, a sublocale S is F-zcκ-embedded
in L if and only if it is zcκ-embedded.

(2) Clearly, Fc-zcκ frames are just totally κ-collectionwise normal frames. In
particular, for 1 ≤ κ ≤ ℵ0, they are just the normal frames (by Cor. 6.5).

(3) For κ = 1, L is a F∗c-zcκ frame if and only if it is an Oz-frame ([4], cf.
[21, 6.2.2]). It is well known that extremally disconnected (i.e. F∗c-normal)
frames are Oz, but the reverse implication does not hold. Hence, the F-zcκ
property does not imply F-normality in general.

As noted in [20], when F happens to be closed under countable meets, i.e.,
each F(L) is closed under countable intersections in S(L), F-continuity has
the following particularly simple description:
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Lemma 9.4. Assume F is closed under countable meets. Then:

(1) f ∈ LSC
F
(L) if and only if f(r,—) ∈ F(L) for all r ∈ Q.

(2) f ∈ USC
F
(L) if and only if f(—, r) ∈ F(L) for all r ∈ Q.

(3) f ∈ C
F
(L) if and only if f(r,—) ∈ F(L) and f(—, r) ∈ F(L) for all r ∈ Q.

Proof : The implications ⇐ always hold. Further, (3) is an obvious conse-

quence of (1) and (2). Assume that f ∈ LSC
F
(L) and consider r ∈ Q. Then

f(r,—) =
⊔
s>r

f(s,—) ≤
⊔
s>r

Fr,s ≤ f(r,—)

for some Fr,s ∈ F(L) (s > r). Hence f(r,—) =
⊔
s>r Fr,s =

⋂
s>r Fr,s ∈ F(L).

The assertion in (2) may be proved in a similar way.

Remark 9.5. If F is closed under countable meets, any F-zero sublocale of L
belongs to F(L). Indeed: such a sublocale is of the form

⋂
r∈Q f(r,—) for an

F-continuous function f , therefore it follows from the previous lemma that
each f(r,—) belongs to F(L) and so does the countable join

⋂
r∈Q f(r,—).

In general, it may be hard to identify F-zero sublocales of a locale L as
they do not necessarily belong to F(L). However, if one assumes that F(L)
(resp. F∗(L)) is closed under countable joins and finite meets in S(L)op, then
F(L) (resp. F∗(L)) may be regarded as a sub-σ-frame of S(L)op and hence as
a σ-frame in its own right. Then, in this case, the theory of cozero elements
in σ-frames from [9] is useful as we explain below.

The category of σ-frames is monadic over the category of sets. Hence, as in
the category of frames, one has presentations by generators and relations. In
this case, σ-frames may be presented by generators and relations involving
only countable joins and finite meets. In particular, the frame L(R), can be
regarded as a σ-frame generated by (r,—) and (—, s) for r, s ∈ Q. Then, we
have:

Proposition 9.6. If F(L) is a sub-σ-frame of S(L)op, then a frame homo-
morphism L(R) → S(L)op is F-continuous if and only if it factors in the
category of σ-frames through the inclusion ι : F(L) ↪→ S(L)op.

Proof : The “if” part is trivial. Conversely, given a frame homomor-
phism L(R) → S(L)op which is F-continuous, we have by Lem. 9.4 (3)
f(r,—), f(—, r) ∈ F(L) for all r ∈ Q. But then we may define a σ-frame homo-
morphism g : L(R) → F(L) given by g(r,—) = f(r,—) and g(—, s) = f(—, s)
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for all r, s ∈ Q. Of course, g sends relations into identities because so does
f . Hence f factors as ι ◦ g.

It follows readily that F-zero sublocales of L are completely described by
the cozero elements (in the sense of [9]) of the σ-frame F(L). Moreover, as
we have already observed, since F-continuity is a self-dual notion, so is the
property of being an F-zero sublocale.

Hence, assuming that

F(L) (or F∗(L)) is a sub-σ-frame of S(L)op,

or, equivalently, that F (or F∗) is closed under countable meets and finite
joins, we get two lemmas. The first one follows immediately from the fact
that cozero elements in a σ-frame form a sub-σ-frame [9, Cor. 1].

Lemma 9.7. Let F be such that either F or F∗ are closed under countable
meets and finite joins. Then F-Z(L) = F∗-Z(L) is a sub-σ-frame of S(L)op,
i.e. countable meets and finite joins of F-zero sublocales are F-zero.

The proof of the second lemma is based on [12, Prop. 3.3].

Lemma 9.8. Let F be such that either F or F∗ are closed under countable
meets and finite joins and let U be an arbitrary sublocale of L. If S and T
are F-zero sublocales of L such that U = (U ∩ S) ∨ (U ∩ T ), then there are
F-cozero sublocales S ′ and T ′ of L such that S ′∨T ′ = L, S ′∩U = S ∩U and
T ′ ∩ U = T ∩ U .

Proof : Since F-Z(L) is a regular sub-σ-frame of F(L) there are {Sn ≺ S}n∈N,
{Tn ≺ T}n∈N ⊆ F-Z(L) such that

S =
⊔
n∈N

Sn and T =
⊔
n∈N

Tn.

By substituting Sn by S1t· · ·tSn (that satisfies S1t· · ·tSn ≺ S in F-Z(L)),
and similarly for T , we may assume that {Sn}n and {Tn}n are increasing.

Since Sn ≺ S and Tn ≺ T in F-Z(L), there are Cn, Dn in F-Z(L) such that
Sn u Cn = L, S t Cn = O, Tn uDn = L and T tDn = O for all n ∈ N. Set

S ′ =
⊔
n∈N

Sn uDn ∈ F-Z(L) and T ′ =
⊔
n∈N

Tn u Cn ∈ F-Z(L).

Clearly, S ′ u T ′ = L (since Sn u Cn = L, Tn uDn = L and {Sn}n and {Tn}n
are increasing). Now, observe that

T t S ′ =
⊔
n

(T t Sn) u (T tDn) =
⊔
n
T t Sn = T t S.
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Similarly, T ′ t S = T t S. Hence,

U t S ′ = U t (S u T ) t S ′ = U t [(S t S ′) u (T t S ′)]
= U t [(S t S ′) u (T t S)] = U t S t (S ′ u T ) ≥ U t S

while UtS ′ ≤ UtS is trivial from the definition of S ′. Hence UtS ′ = UtS.
The other identity follows by symmetry.

10. Variants of total collectionwise normality
Despite the fact that total collectionwise normality implies normality (recall

Cor. 5.6), we have also seen that the property of being F-zcκ frame may be
strictly weaker than F-normality (cf. Remarks 9.3 (3)). In what follows, we
study some conditions under which the F-zcκ property implies F-normality.

We shall say that a sublocale selection F is hereditary (resp. weakly hered-
itary) on a locale L if for each S ∈ F(L) the equality

F(S) = {S ∩ T | T ∈ F(L) }
(resp. the inclusion {S∩T | T ∈ F(L) } ⊆ F(S)) holds. Clearly, the standard
examples Fc, Fz and Fδreg and their duals are weakly hereditary.

Note that, on the other hand, the selections Fz and Fδreg are not hereditary
in general. For example, Fz is hereditary on L if and only if L has the
property that every zero sublocale is z-embedded. According to [15, 8.20
and 8.J (3)], the Tychonoff plank is a non-normal space whose zero-sets are
all z-embedded; hence this property is strictly weaker than normality.

Problem 10.1. Characterize the locales in which every zero sublocale is z-em-
bedded.

Problem 10.2. We also leave it as an open problem to characterize the class
of locales in which Fδreg is hereditary, that is, those locales L such that for
every a ∈ L and every δ-regular element b in c(a), there is a δ-regular element
c in L with c ∨ a = b.

The following remark motivates the need of hereditary selections for dealing
with extension results:

Remark 10.3. Assume L is a locale on which F is Katětov and closed under
countable meets and finite joins (i.e. a Tietze class in [20]).

If S ∈ F(L) and f ∈ F(S), the notion of F-continuity relative to S from [20,
Thm. 8.6] is more restrictive than the property of f being F-continuous on
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S in the sense of this paper. But if F is hereditary on L, then both notions
of continuity coincide and therefore we may apply the relative version of
Tietze’s extension theorem [20, Thm. 8.6] in our context.

Theorem 10.4. Let F be closed under countable meets and finite joins. If L
is a F-zc2 frame and F is weakly hereditary on L then L is F-normal.

Proof : Let L be an F-zc2 frame and consider S, T ∈ F(L) such that S∩T = O.
Then S, T ∈ F(S ∨ T ) (because S = S ∩ (S ∨ T ) and T = T ∩ (S ∨ T ) and F
is weakly hereditary on L), hence S = (S ∨ T ) \ T ∈ F∗(S ∨ T )). Therefore,

χS ∈ C
F
(S ∨ T ) by virtue of Prop. 8.5.

Observe that χS(
∨
r∈Q(r,—)) = T and so T is an F-zero sublocale of S ∨T .

Exchanging the roles of S and T , we see that S is an F-zero sublocale of
S ∨ T as well. Now, S ∨ T ∈ F(L) because F is closed under finite joins
and therefore it is F-zc2-embedded in L. Since {S, T} is a disjoint family in
S ∨ T consisting of F-zero sublocales, there exist F-zero sublocales A,B of L
such that A ∨ B = L, A ∩ (S ∨ T ) = T and B ∩ (S ∨ T ) = S. Accordingly,
A∩S = O and B∩T = O. Finally, by Remark 9.5, A and B belong to F(L),
and so L is F-normal.

In particular, this theorem ensures that F-zc2 frames are F-normal for F =
Fc, Fz and Fδreg.

Remark 10.5. The assumption on F being closed under countable meets can-
not be dropped. Indeed, for F = F∗c, the condition for being an F-zc2 frame is
easily seen to be equivalent to the following statement:

for every open sublocale U of L and every cozero elements a, b
of U such that a ∧ b = 0U , there exist cozero elements a′, b′ of
L such that a′ ∧ b′ = 0, νU(a′) = a and νU(b′) = b.

But according to Prop. 3.3 in [12] that is equivalent to L being an Oz-frame
and we have already pointed out that the Oz property is strictly weaker than
extremal disconnectedness (which is, in this case, F-normality).

By 9.3 (3) and 10.5, F-zc2 frames and F-zc1 frames coincide for F = F∗c;
the same happens with F = Fc (in this case, both notions are equivalent
to normality). The following consequence of Lem. 9.8 shows that this holds
more generally for any F such that either F or F∗ is closed under countable
meets and finite joins.
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Corollary 10.6. Let F be such that either F or F∗ is closed under countable
meets and finite joins. Then a frame is F-zc2 if and only if it is F-zc1.

Next, we consider the case κ = ℵ0. In this case, we can also identify the
F-zcκ condition with the F-zc2 condition.

Proposition 10.7. Let F be such that either F or F∗ are closed under count-
able meets and finite joins. Then a frame is F-zcℵ0 if and only if it is F-zc2.

Proof : The implication ⇒ is trivial. Conversely, assume that L is an F-zc2
frame. Let S ∈ F(L) and pick a countable disjoint family {Sn}n∈N of F-zero
sublocales of S. By Lem. 9.7, the sublocale

Tn =
⊔
m 6=n

Sm =
⋂
m 6=n

Sm (n ∈ N)

is an F-zero sublocale of S. Observe then that, for each n ∈ N, {Sn, Tn} is
a disjoint pair of F-zero sublocales of S. Since S is F-zc2-embedded, there is
a disjoint pair {S ′n, T ′n} of F-zero sublocales of L such that S ∩ S ′n = Sn and
S ∩ T ′n = Tn. Finally, set

P1 = S ′1 and Pn = S ′n ∨ T ′1 ∨ · · · ∨ T ′n−1, n > 1.

{Pn}n∈N is the desired disjoint family of F-zero sublocales of L extending
{Sn}n∈N. Indeed, each Pn is an F-zero sublocale since F-zero sublocales are
closed under finite joins by Lem. 9.7. For disjointness let n < m and observe
that Pm ⊇ T ′n and Pn ⊇ S ′n, hence Pn∩Pm ⊇ S ′n∩T ′n = L. Finally, S∩P1 = S1

and, for n > 1,

S ∩ Pn = (S ∩ S ′n) ∨ (S ∩ T ′1) ∨ · · · ∨ (S ∩ T ′n−1) = Sn ∨ T1 ∨ · · · ∨ Tn−1.

Note that Sn ⊇ Tm for all m = 1, . . . , n−1, hence S∩Pn = Sn as desired.

Corollary 10.8. Let F be closed under countable meets and finite joins.
Then a locale on which F is hereditary and Katětov is F-zcκ if and only if it
is F-normal, for any 1 ≤ κ ≤ ℵ0.

Proof : Since F-zcκ frames are F-zc2 frames for all κ ≥ 2, necessity follows from
Thm. 10.4. For sufficiency we first recall the fact that F-normality implies
F-zc1 follows from the relative version of the point-free Tietze’s extension
theorem from [20, Thm. 8.6]. The rest of the statement is a consequence of
Cor. 10.6 and Prop. 10.7.
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11. General Tietze-type theorems
For convenience, we start this section with a particular case of the pasting

lemma from [26] (cf. Prop. 5.4) that we shall need later.

Lemma 11.1. Let L be a locale and S, T ∈ S(L). If h1 ∈ F(S) and h2 ∈ F(T )
satisfy h1(x)∩T = h2(x)∩S for all x ∈ L(R), then there is an h ∈ F(S ∨T )
given by h(x) = h1(x) ∨ h2(x) for all x ∈ L(R).

Proof : One has S(S)op = c(S) (where the latter closed sublocale is under-
stood as a sublocale of S(L)op) and similarly S(T )op = c(T ). Hence, the
statement follows at once from [26, Prop. 4.4].

We are now ready to prove two general extension results for F-zcκ frames
and F-normal frames.

Theorem 11.2. Let F be closed under countable meets and finite joins. The
following are equivalent for a cardinal κ and a locale L on which F is hered-
itary and Katětov :

(i) L is an F-zcκ frame.
(ii) For each S ∈ F(L), every f ∈ CFκ(S) has an extension f ∈ CFκ(L).

Proof : (i) =⇒ (ii): Let f ∈ CFκ(S); for each i ∈ I set Si =
∨
r∈Q(f ◦ πi)(r,—).

Then {Si}i∈I is a disjoint family of F-zero sublocales of S. Since S ∈ F(L)
is F-zcκ-embedded, there is a disjoint family {Ti}i∈I of F-zero sublocales of L
such that Ti ∩ S = Si for every i ∈ I.

For each i ∈ I, set h
(i)
1 := f ◦πi ∈ C

F
(S) and consider the constant extended

real valued function h
(i)
2 ∈ F(Ti) defined by

h
(i)
2 (r,—) = Ti = 0S(Ti)op, and h

(i)
2 (—, r) = O = 1S(Ti)op

for every r ∈ Q. Trivially, h
(i)
2 ∈ C

F
(Ti) (as 1S(Ti)op, 0S(Ti)op ∈ F(Ti)). Let us

show that h
(i)
1 (x) ∩ Ti = h

(i)
2 (x) ∩ S for all x ∈ L(R) by showing it for the

generators of L(R). For any (r,—) we have Si ⊆ (f ◦ πi)(r,—) ⊆ S and thus

S ∩ Ti = Si ∩ Ti ⊆ (f ◦ πi)(r,—) ∩ Ti ⊆ S ∩ Ti.

Hence h
(i)
1 (r,—) ∩ Ti = S ∩ Ti = h

(i)
2 (r,—) ∩ S. Further, for any (—, r) select

t ∈ Q such that t < r; we have

(f ◦ πi)(—, r) ∩ Ti = (f ◦ πi)(—, r) ∩ S ∩ Ti = (f ◦ πi)(—, r) ∩ Si
⊆ (f ◦ πi)(—, r) ∩ (f ◦ πi)(t,—) = (f ◦ πi)((—, r) ∨ (t,—)) = O.
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Hence h
(i)
1 (—, r) ∩ Ti = O = h

(i)
2 (—, r) ∩ S. Since F is closed under binary

meets and joins and Ti, S ∈ F(L), we may apply Lem. 11.1 to conclude that

for each i ∈ I there is a hi ∈ F(S ∨ Ti) given by hi(x) = h
(i)
1 (x) ∨ h(i)

2 (x) for
all x ∈ L(R). Now, because of the hereditary property and the fact that F
is closed under finite joins, it follows easily that hi is F-continuous.

Since L is F-normal (by 10.4) and F is a Katětov and hereditary selection
on L closed under arbitrary meets and finite joins, we may apply the relative
version of the point-free Tietze’s extension theorem from [20, Thm. 8.6] and

get frame homomorphisms gi ∈ C
F
(L) such that gi(x) ∩ (S ∨ Ti) = hi(x) for

all x ∈ L(R). Note that {gi}i∈I is a disjoint family. Indeed, for each i 6= j,

gi
( ∨
r∈Q

(r,—)
)
∨ gj

( ∨
s∈Q

(s,—)
)
⊇ hi

( ∨
r∈Q

(r,—)
)
∨ hj

( ∨
s∈Q

(s,—)
)

⊇ h
(i)
2

( ∨
r∈Q

(r,—)
)
∨ h(j)

2

( ∨
s∈Q

(s,—)
)

= Ti ∨ Tj = L.

Now consider the hedgehog-valued function h : L(cJ(κ)) → S(L)op defined
by h ◦ πi = gi for all i ∈ I (recall Prop. 4.2), which is F-continuous by virtue
of Cor. 8.4. We claim that h is the desired extension.

We need to check that h(x) ∩ S = f(x) for all x ∈ L(cJ(κ)) by showing it
for the generators of L(cJ(κ)). For any (r,—)i we have

S ∩ gi(r,—) = S ∩ (S ∨ Ti) ∩ gi(r,—) = S ∩ hi(r,—)

= h
(i)
1 (r,—) ∨ (S ∩ h(i)

2 (r,—)) = (f ◦ πi)(r,—) ∨ (S ∩ Ti)
= (f ◦ πi)(r,—) ∨ Si = (f ◦ πi)(r,—).

Hence h((r,—)i)∩S = gi(r,—)∩S = f((r,—)i). Furthermore, for any (—, r)i,

S ∩ gi(—, r) = S ∩ (S ∨ Ti) ∩ gi(—, r) = S ∩ hi(—, r)

= h
(i)
1 (—, r) ∨ (S ∩ h(i)

2 (—, r)) = (f ◦ πi)(—, r) ∨ (S ∩ O)

= (f ◦ πi)(—, r) ∨ O = (f ◦ πi)(—, r).

Hence h((—, r)i) ∩ S = gi(—, r) ∩ S = f((—, r)i).

(ii) =⇒ (i): Let S ∈ F(L) and let {Si}i∈I be a disjoint family of F-zero
sublocales of S. The latter means that for each i ∈ I there is an fi ∈
C
F
(S) such that fi(

∨
r∈Q(r,—)) = Si. Let f ∈ Fκ(S) be the unique frame

homomorphism such that f ◦ πi = fi for all i ∈ I. By Cor. 8.4, f ∈ CFκ(S).
Then, by assumption, there is an F-continuous extension f ∈ CFκ(L) of f .
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Set Ti = f(
∨
r∈Q(r,—)i) for each i ∈ I. It is clear that {Ti}i∈I is the desired

disjoint family of F-zero sublocales.

We now move to the extremally disconnected side of the parallel. We shall
say that a sublocale selection F is co-hereditary on a locale L if for each
S ∈ F(L) the equality

F∗(S) = {S ∩ T | T ∈ F∗(L) }.
holds. F is co-hereditary if it is co-hereditary on any locale.

Lemma 11.3. Each of the sublocale selections F = F∗c, F∗z, F∗δreg is co-
hereditary.

Proof : F∗c: It is well-known that closed sublocales of any sublocale S are of
the form T ∩ S where T is closed in L.

F∗z: amounts to showing that for every a ∈ CozL and b ∈ Coz o(a), there
exists c ∈ CozL with νo(a)(c) = b. But in this situation, one has a∧b ∈ CozL
(see for example [21, Cor. 5.6.2] or Cor. [12, 3.2.11]).

F∗δreg: We have to show that for each δ-regular a in L and all δ-regular b in
o(a), there exists a δ-regular c in L with νo(a)(c) = b. It is of course enough
to show that c := a∧ b is δ-regular in L. By the isomorphism ↓a ∼= o(a), this
is equivalent to show that if b is δ-regular in the frame ↓a, then it is δ-regular
in L. Since a is δ-regular in L, one can write a =

∨
n an where an ≺ a for all

n ∈ N (i.e. for each n there is a cn with cn ∧ an = 0 and cn ∨ a = 1). Since
x ≺ a and y ≺ a imply x∨ y ≺ a, we may assume that {an}n∈N is increasing.
Moreover, b is δ-regular in ↓a, so one can write b =

∨
n bn where {bn}n∈N is

increasing and for each n ∈ N there is a dn with dn ∧ bn = 0 and dn ∨ b = a.
Let xn = cn ∨ dn. Then

xn ∧ (an ∧ bn) = (cn ∧ an ∧ bn) ∨ (dn ∧ an ∧ bn) = 0,

xn ∨ b = cn ∨ (dn ∨ b) = cn ∨ a = 1.

Finally, b ≤
∨
n an ∧ bn because b ≤ a and {an}n∈N, {bn}n∈N are increasing.

Hence b =
∨
n an ∧ bn with an ∧ bn ≺ b in L.

The following is the dual version of the relative Tietze’s extension theorem
which is missing in [20]:

Theorem 11.4. Let F be such that F∗ is closed under countable meets and
finite joins. The following are equivalent for a locale L on which F is co-
hereditary and Katětov :
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(i) L is F-normal.

(ii) For each S ∈ F(L), every f ∈ C
F
(S) has an extension f ∈ C

F
(L).

Proof : (i) =⇒ (ii): Let S ∈ F(L), f ∈ C
F
(S) and r ∈ Q. Since f is

F-continuous and F∗ is closed under countable meets, both f(r,—) and f(—, r)
belong to F∗(S) (cf. Lem. 9.4). Since S is complemented then so are f(r,—)
and f(—, r) and the maps σ1, σ2 : Q→ L given by

σ1(r) = S∗ ∨ f(r,—) and σ2(r) = S ∩ f(—, r)∗

are extended scales in S(L)op; denote by f1 and f2 the corresponding func-
tions in F(L).

Since f(r,—) and f(—, r) belong to F∗(S), by co-heredity there exist
Ur, Vr ∈ F∗(L) such that f(r,—) = Ur ∩ S and f(—, r) = Vr ∩ S. Then
one has (recall (2.2))

f1(r,—) =
⋂
s>r

σ1(s) = S∗ ∨ f(r,—) = S∗ ∨ (Ur ∩ S) = S∗ ∨ Ur ∈ F∗(L)

and

f2(—, r) =
⋂
s<r

σ2(s)
∗ = S∗ ∨ f(—, r) = S∗ ∨ (Vr ∩ S) = S∗ ∨ Vr ∈ F∗(L)

(as F∗(L) is closed under binary joins). It follows that f1 is lower F∗-continu-
ous while f2 is upper F∗-continuous. This means that f1 is upper F-continuous
and f2 is lower F-continuous. Moreover, by (2.3) we have f1 ≤ f2 because
f(—, s)∗ ⊆ f(r,—), and therefore σ1(r) ≤ σ2(s), for any s < r. Since F is
Katětov on L, by [20, Thm. 7.1] there is an F-continuous h ∈ F(L) such that
f1 ≤ h ≤ f2. Let hS : S(L) → S(S) be the map T 7→ S ∩ T . One readily
checks that

hS(f1(r,—)) = f(r,—) and hS(f2(—, s)) = f(—, s)

and thus (recall the partial order (2.4)) hS ◦ f1 = f and hS ◦ f2 = f . Finally
note that

f = hS ◦ f1 ≤ hS ◦ h ≤ hS ◦ f2 = f.

It follows that hS ◦ h = f and thus h is the desired F-continuous extension
of the given f .

(ii) =⇒ (i): Let S, T ∈ F(L) satisfy S∩T = O. Then S ∈ F(S∨T )∩F∗(S∨T ).
Indeed, S ∨ T ∈ F(L) (because F∗ is in particular closed under finite meets)
and T ∗ ∈ F∗(L). Hence by co-heredity one has S = T ∗∩ (S∨T ) ∈ F∗(S∨T ).
Exchanging the roles of S and T we obtain T ∈ F∗(S ∨ T ) and hence S =
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(S ∨ T ) \ T ∈ F(S ∨ T ). Then, by Prop. 8.5 one has χS ∈ C
F
(S ∨ T ). Since

S ∨ T ∈ F(L), there is an extension f ∈ C
F
(L). Choose A,B ∈ F(L) with

f(1,—) ⊆ A ⊆ f(2,—) and f(—, 1) ⊆ B ⊆ f(—, 0).

Then A∨B ⊇ f(1,—)∨ f(—, 1) = f((1,—)∧ (—, 1)) = f(0) = L and S ∩A =
χS(—, 3) ∩ A ⊆ f(—, 3) ∩ f(2,—) = O. Similarly, T ∩B = O.

The cases F = Fc, Fz, Fδreg in Thm. 11.4 yield respectively the following
corollaries:

Corollary 11.5. Let L be a locale. The following are equivalent :

(i) L is extremally disconnected.
(ii) For each a ∈ L, every f ∈ C(o(a)) has a continuous extension f ∈ C(L).

Corollary 11.6. Let L be a locale. The following are equivalent :

(i) L is an F -frame.
(ii) For each cozero element a ∈ L, every zero-continuous f ∈ F(o(a)) has a

zero-continuous extension f ∈ F(L).

Corollary 11.7. Let L be a locale. The following are equivalent :

(i) L is extremally δ-disconnected.
(ii) For each δ-regular a ∈ L, every regular-continuous f ∈ F(o(a)) has a

regular-continuous extension f ∈ F(L).

We finally prove the cardinal generalization of Cor. 11.5. Following Blair
[7], we shall say that L is an Ozcκ frame if it is an F∗c-zcκ frame, i.e. if for
each a ∈ L and every κ-family {ai}i∈I of cozero elements of o(a) satisfying
ai ∧ aj = a∗ for all i 6= j, there is a κ-family {bi}i∈I of disjoint cozero
elements of L satisfying νo(a)(bi) = a → bi = ai for all i ∈ I. We note that
every perfectly normal frame (i.e. one in which every element is a cozero) is
automatically Ozcκ for any cardinal κ.

Theorem 11.8. Let L be a locale and κ a cardinal. The following are equiv-
alent :

(i) L is extremally disconnected and Ozcκ.
(ii) For each a ∈ L, every f ∈ Cκ(o(a)) has a continuous extension f ∈

Cκ(L).
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Proof : (i) =⇒ (ii): Let f ∈ Cκ(o(a)). For each i ∈ I, set

ai = (f ◦ πi)(
∨
r∈Q

(r,—)).

Then {ai}i∈I is a κ-family consisting of cozero elements of o(a) with ai∧aj =
a∗ for all i 6= j. Since L is Ozcκ, there is a family {bi}i∈I of disjoint cozero
elements of L satisfying a→ bi = ai for each i ∈ I. Hence ai ∧ a ∧ b∗i = 0.

For each i ∈ I, set h
(i)
1 := f ◦ πi ∈ C(o(a)) and consider the constant

extended real valued function h
(i)
2 ∈ C(o(b∗i )) defined by

h
(i)
2 (r,—) = 0o(b∗i ) = b∗∗i and h

(i)
2 (—, r) = 1

for every r ∈ Q. Let us show that h
(i)
1 (x) ∧ a ∧ b∗i = h

(i)
2 (x) ∧ a ∧ b∗i for all

x ∈ L(R) by showing it for the generators of L(R). For each r ∈ Q we have:

h
(i)
1 (r,—) ∧ a ∧ b∗i ≤ ai ∧ a ∧ b∗i = 0 = h

(i)
2 (r,—) ∧ a ∧ b∗i .

Moreover, by (r2) one has (f ◦ πi)(—, r) ∨ ai = 1 and therefore a ∧ b∗i ≤
(f ◦ πi)(—, r) ∨ (a ∧ b∗i ∧ ai) = h

(i)
1 (—, r). Hence

h
(i)
1 (—, r) ∧ a ∧ b∗i = a ∧ b∗i = h

(i)
2 (—, r) ∧ a ∧ b∗i .

Consequently, by [26, 3.2, 3.3] there is an hi ∈ C(o(a ∨ b∗i )) given by

hi(x) = (h
(i)
1 (x) ∧ a) ∨ (h

(i)
2 (x) ∧ b∗i )

i.e. hi(r,—) = (f ◦πi)(r,—)∧a and hi(—, r) = ((f ◦πi)(—, r)∧a)∨ b∗i for each

r ∈ Q and which extends h
(i)
1 and h

(i)
2 . By Cor. 11.5, for each i ∈ I there is

a gi ∈ C(L) which extends hi (i.e. satisfying νo(a∨b∗i ) ◦ gi = hi). Let us check
that the family {gi}i∈I is disjoint:

gi
( ∨
r∈Q

(r,—)
)
∧ gj

( ∨
s∈Q

(s,—)
)
≤ hi

( ∨
r∈Q

(r,—)
)
∧ hj

( ∨
s∈Q

(s,—)
)

= (f ◦ πi)
( ∨
r∈Q

(r,—)
)
∧ (f ◦ πj)

( ∨
s∈Q

(s,—)
)
∧ a

= ai ∧ aj ∧ a = a∗ ∧ a = 0.

For each i ∈ I, gi extends hi, and the latter extends h
(i)
1 = f ◦ πi, hence gi

extends f ◦ πi. Therefore the function f ∈ Cκ(L) given by f ◦ πi = gi (cf.
Cor. 4.3) extends f : indeed, note that νo(a) ◦ f ◦ πi = νo(a) ◦ gi = f ◦ πi and
use the uniqueness clause of 4.2.
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(2) =⇒ (1): Extremal disconnectedness follows as in the proof of 11.4 and
the fact that L is Ozcκ is as in the proof of 11.2.

We close with the following corollary which follows at once from 10.5, 10.6,
10.7 and the previous theorem:

Corollary 11.9. Let L be a locale and 1 ≤ κ ≤ ℵ0 a cardinal. The following
are equivalent :

(i) L is extremally disconnected.
(ii) For each a ∈ L, every f ∈ Cκ(o(a)) has a continuous extension f ∈

Cκ(L).
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[20] J. Gutiérrez Garćıa and J. Picado, On the parallel between normality and extremal disconnect-

edness, J. Pure Appl. Algebra 218 (2014) 784–803.
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