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Introduction
The first instance of Rota-Baxter operator appeared in the context of asso-

ciative algebras in 1960, in a paper by Baxter [1], as a tool to study fluctuation
theory in probability. Since then, these operators were widely used in many
branches of mathematics and mathematical physics.

Almost forty years later, Kupershmidt [4] introduced O-operators on Lie
algebras as a kind of generalization of classical r-matrices, thus opening a
broad application of O-operators to integrable systems. Given a Lie algebra
(E, [·, ·]) and a representation Φ of E on a vector space V , an O-operator on
E with respect to Φ is a linear map T : V → E such that [T (x), T (y)] =
T
(
Φ(T (x))(y) − Φ(T (y))(x)

)
. When Φ is the adjoint representation of E,

T is a Rota-Baxter operator (of weight zero). O-operators are also called
relative Rota-Baxter operators or generalized Rota-Baxter operators.

In recent years Rota-Baxter and O-operators, in different algebraic and geo-
metric settings, have deserved a great interest by mathematical and physical
communities.

In [9], a homotopy version of O-operators on symmetric graded Lie algebras
was introduced. This was the first step towards the definition of a O-operator
on a Lie∞-algebra with respect to a representation on a graded vector space
that was given in [6]. The current paper also deals with O-operators on Lie
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∞-algebras, but with a different approach which uses Lie ∞-actions instead
of representations of Lie ∞-algebras. Our definition is therefore different
from the one given in [6] but there is a relationship between them.

There are two equivalent definitions of Lie∞-algebra structure on a graded
vector space E, both given by collections of n-ary brackets which are either
symmetric or skew-symmetric, depending on the definition we are consider-
ing, and must satisfy a kind of generalized Jacobi identities. One goes from
one to the other by shifting the degree of E and applying a décalage isomor-
phism. We use the definition in its symmetric version, where the brackets
have degree +1. Equivalently, this structure can be defined by a degree +1
coderivation ME of S̄(E), the reduced symmetric algebra of E, such that the
commutator [ME,ME]c vanishes.

Representations of Lie∞-algebras on graded vector spaces were introduced
in [7]. In [6], the authors consider a representation Φ of a Lie ∞-algebra E
on a graded vector space V and define an O-operator (homotopy relative
Rota-Baxter operator) on E with respect to Φ as a degree zero element T
of Hom(S̄(V ), E) satisfying a family of suitable identities. Inspired by the
notion of an action of a Lie ∞-algebra on a graded manifold [8], we define
an action of a Lie ∞-algebra (E,ME) on a Lie ∞-algebra (V,MV ) as a Lie
∞-morphism Φ between E and Coder(S̄(V ))[1], the symmetric DGLA of
coderivations of S̄(V ). An O-operator on E with respect to the action Φ is a
comorphism between S̄(V ) and S̄(E) that intertwines the coderivation ME

and a degree +1 coderivation of S̄(V ) built from MV and Φ, which turns out
to be a Lie ∞-algebra structure on V too.

As we said before, the two O-operator definitions, ours and the one in
[6], are different. However, since there is a close connection between Lie
∞-actions and representations of Lie ∞-algebras, the two definitions can be
related. On the one hand, any representation of (E,ME) on a complex (V, d)
can be seen as a Lie∞-action of (E,ME) on (V,D), with D the coderivation
given by the differential d, and for this very “simple” Lie∞-algebra structure
on V our O-operator definition recovers the one given in [6]. On the other
hand, any action Φ of (E,ME) on (V,MV ) yields a representation ρ on the
graded vector space S̄(V ) and an O-operator with respect to the action Φ is
not the same as an O-operator with respect to the representation ρ. However,
there is a way to relate the two concepts.
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A well-known Voronov’s construction [10] defines a Lie∞-algebra structure
on an abelian Lie subalgebra h of Coder(S̄(E ⊕ V )) and we show that O-
operators with respect to the action Φ are Maurer-Cartan elements of h.

In general, deformations of structures and morphisms are governed by
DGLA’s or, more generally, by Lie ∞-algebras. We do not intend to deeply
study deformations of O-operators on Lie ∞-algebras with respect to Lie
∞-actions. Still, we prove that deformations of an O-operator are controlled
by the twisting of a Lie∞-algebra, constructed out of a graded Lie subalgebra
of Coder(S̄(E ⊕ V )).

The paper is organized in four sections. In Section 1 we collect some
basic results on graded vector spaces, graded symmetric algebras and Lie
∞-algebras that will be needed along the paper. In Section 2, after recalling
the definition of a representation of a Lie ∞-algebra on a complex (V, d)
[7], we introduce the notion of action of a Lie ∞-algebra on another Lie
∞-algebra (Lie ∞-action) and we prove that a Lie ∞-action of E on V in-
duces a Lie ∞-algebra structure on E ⊕ V . We pay special attention to
the adjoint action of a Lie ∞-algebra. In Section 3 we introduce the main
notion of the paper – O-operator on a Lie ∞-algebra E with respect to an
action of E on another Lie ∞-algebra, and we give the explicit relation be-
tween these operators and O-operators on E with respect to a representation
on a graded vector space introduced in [6]. Given an O-operator T on E
with respect to a Lie ∞-action Φ on V , we show that V inherits a new Lie
∞-algebra structure given by a degree +1 coderivation which is the sum of
the initial one on V with a degree +1 coderivation obtained out of Φ and
T . We prove that symmetric and invertible comorphisms T : S̄(E∗)→ S(E)
are O-operators with respect to the coadjoint action if and only if a certain
element of S̄(E∗), which is defined using the inverse of T , is a cocycle for
the Lie ∞-algebra cohomology of E. Section 3 ends with the characteriza-
tion of O-operators as Maurer-Cartan elements of a Lie ∞-algebra obtained
by Voronov’s higher derived brackets construction. The main result in Sec-
tion 4 shows that Maurer-Cartan elements of a graded Lie subalgebra of
Coder(S̄(E ⊕ V )) encode a Lie ∞-algebra on E and an action of E on V .
Moreover, we obtain the Lie ∞-algebra that controls the deformation of O-
operators with respect to a fixed action.
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1. Lie ∞-algebras
We begin by reviewing some concepts about graded vector spaces, graded

symmetric algebras and Lie ∞-algebras.

1.1. Graded vector spaces and graded symmetric algebras. We will
work with Z-graded vector spaces with finite dimension over a field K = R
or C.

Let E = ⊕i∈ZEi be a finite dimensional graded vector space. We call Ei

the homogeneous component of E of degree i. An element x of Ei is said to
be homogeneous with degree |x| = i. For each k ∈ Z, one may shift all the
degrees by k and obtain a new grading on E. This new graded vector space
is denoted by E[k] and is defined by E[k]i = Ei+k.

A morphism Φ : E → V between two graded vector spaces is a degree
preserving linear map, i.e. a collection of linear maps Φi : Ei → Vi, i ∈ Z.
We call Φ : E → V a (homogeneous) morphism of degree k, for some k ∈ Z,
and we write |Φ| = k, if it is a morphism between E and V [k]. This way
we have a natural grading in the vector space of linear maps between graded
vector spaces:

Hom(E, V ) = ⊕i∈ZHomi(E, V ).

In particular, Hom(E,E) = End(E) = ⊕i∈Z Endi(E).
The dual E∗ of E is naturally a graded vector space whose component of

degree i is, for all i ∈ Z, the dual (E−i)
∗ of E−i. In equation: (E∗)i = (E−i)

∗.
Given two graded vector spaces E and V , their direct sum E⊕V is a vector

space with grading

(E ⊕ V )i = Ei ⊕ Vi
and their usual tensor product comes equipped with the grading

(E ⊗ V )i = ⊕j+k=iEj ⊗ Vk.

We will adopt the Koszul sign convention, for homogeneous linear maps
f : E → V and g : F → W the tensor product f ⊗ g : E ⊗ F → V ⊗W is
the morphism of degree |f |+ |g| given by

(f ⊗ g)(x⊗ y) = (−1)|x||g|f(x)⊗ g(y),

for all homogeneous x ∈ E and y ∈ F .
For each k ∈ N0, let T k(E) = ⊗kE, with T 0(E) = K, and let T (E) =
⊕kT k(E) be the tensor algebra over E. The graded symmetric algebra
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over E is the quotient

S(E) = T (E)/
〈
x⊗ y − (−1)|x||y|y ⊗ x

〉
.

The symmetric algebra S(E) = ⊕k≥0S
k(E) is a graded commutative algebra,

whose product we denote by �. For x = x1 � . . . � xk ∈ Sk(E), we set

|x| =
∑k

i=1 |xi|.
For n ≥ 1, let Sn be the permutation group of order n. For any homoge-

neous elements x1, . . . , xn ∈ E and σ ∈ Sn, the Koszul sign is the element in
{−1, 1} defined by

xσ(1) � . . .� xσ(n) = ε(σ)x1 � . . .� xn.

As usual, writing ε(σ) is an abuse of notation because the Koszul sign also
depends on the xi.

An element σ of Sn is called an (i, n − i)-unshuffle if σ(1) < . . . < σ(i)
and σ(i + 1) < . . . < σ(n). The set of (i, n − i)-unshuffles is denoted by
Sh(i, n − i). Similarly, Sh(k1, . . . , kj) is the set of (k1, . . . , kj)-unshuffles,
i.e., elements of Sn with k1 + . . . + kj = n such that the order is preserved
within each block of length ki, 1 ≤ i ≤ j.

The reduced symmetric algebra S̄(E) = ⊕k≥1S
k(E) has a natural coas-

sociative and cocommutative coalgebra structure given by the coproduct
∆ : S̄(E)→ S̄(E)⊗ S̄(E),

∆(x) = 0, x ∈ E;

∆(x1�. . .�xn)=
n−1∑
i=1

∑
σ∈Sh(i,n−i)

ε(σ)
(
xσ(1) � . . .� xσ(i)

)
⊗
(
xσ(i+1) � . . .� xσ(n)

)
,

for x1, . . . , xn ∈ E.
We will mainly use Sweedler notation: given x ∈ S̄(E),

∆(1)(x) = ∆(x) = x(1) ⊗ x(2),

and the coassociativity yields

∆(n)(x) = (id⊗∆(n−1))∆(x) = x(1) ⊗ . . .⊗ x(n+1), n ≥ 2.

Notice that

∆(n)(x) = 0, x ∈ S≤n(E).
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The cocommutativity of the coproduct is expressed, for homogeneous ele-
ments of S̄(E), as

x(1) ⊗ x(2) = (−1)|x(1)||x(2)|x(2) ⊗ x(1).

Let V be another graded vector space. A linear map f : S̄(E) → V is
given by a collection of maps fk : Sk(E)→ V , k ≥ 1, and is usually denoted
by f =

∑
k fk.

Remark 1.1. Every linear map f : Sk(E) → V corresponds to a graded
symmetric k-linear map f ∈ Hom(⊗kE, V ) through the quotient map pk :
⊗kE → Sk(E) i.e., f ≡ f ◦pk. In the sequel, we shall often write

f(x1 � . . .� xk) = f(x1, . . . , xk), xi ∈ E.

A coalgebra morphism (or comorphism) between the coalgebras (S̄(E),∆E)
and (S̄(V ),∆V ) is a morphism F : S̄(E) → S̄(V ) of graded vector spaces
such that

(F ⊗ F ) ◦∆E = ∆V ◦F.

There is a one-to-one correspondence between coalgebra morphisms
F : S̄(E)→ S̄(V ) and degree preserving linear maps f : S̄(E)→ V . Each f
determines F by

F (x) =
∑
k≥1

1

k!
f(x(1))� . . .� f(x(k)), x ∈ S̄(E),

and f = pV ◦F , with pV : S̄(V )→ V the projection map.
A degree k coderivation of S̄(E), for some k ∈ Z, is a linear map

Q : S̄(E)→ S̄(E) of degree k such that

∆ ◦Q = (Q⊗ id + id⊗Q) ◦∆.

We also have a one to one correspondence between coderivations of S̄(E) and
linear maps q =

∑
i qi : S̄(E)→ E:

Proposition 1.2. Let E be a graded vector space and pE : S̄(E) → E the
projection map. For every linear map q =

∑
i qi : S̄(E)→ E, the linear map

Q : S̄(E)→ S̄(E) given by

Q(x1� . . .�xn) =
n∑
i=1

∑
σ∈Sh(i,n−i)

ε(σ)qi
(
xσ(1), . . . , xσ(i)

)
�xσ(i+1)� . . .�xσ(n),

(1)
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is the unique coderivation of S̄(E) such that pE ◦Q = q.

In Sweedler notation, Equation (1) is written as:

Q(x) = q(x(1))� x(2) + q(x), x ∈ S̄(E).

When E is a finite dimensional graded vector space, we may identify S(E∗)
with (SE)∗. Koszul sign conventions yield, for each homogeneous elements
f, g ∈ E∗,

(f � g)(x� y) = (−1)|x||g|f(x) g(y) + f(y) g(x), x, y ∈ E.

1.2. Lie ∞-algebras. We briefly recall the definition of Lie ∞-algebra [5],
some basic examples and related concepts.

We will consider the symmetric approach to Lie ∞-algebras.

Definition 1.3. A symmetric Lie ∞-algebra (or a Lie[1] ∞-algebra) is
a graded vector space E = ⊕i∈ZEi together with a family of degree +1 linear
maps lk : Sk(E)→ E, k ≥ 1, satisfying∑

i+j=n+1

∑
σ∈Sh(i,j−1)

ε(σ) lj
(
li
(
xσ(1), . . . , xσ(i)

)
, xσ(i+1) . . . , xσ(n)

)
= 0, (2)

for all n ∈ N and all homogeneous elements x1, . . . , xn ∈ E.

The décalage isomorphism [10] establishes a one to one correspondence be-
tween skew-symmetric Lie∞-algebra structures {l′k}k∈N on E and symmetric
Lie ∞-algebra structures {lk}k∈N on E[1]:

lk(x1, . . . , xk) = (−1)(k−1)|x1|+(k−2)|x2|+...+|xk−1|l′k(x1, . . . , xk).

In the sequel, we frequently write Lie ∞-algebra, omitting the term sym-
metric.

Example 1.4 (Symmetric graded Lie algebra). A symmetric graded Lie
algebra is a symmetric Lie ∞-algebra E = ⊕i∈ZEi such that ln = 0 for
n 6= 2. Then the degree 0 bilinear map on E[−1] defined by

[[x, y]] := (−1)il2(x, y), for all x ∈ Ei, y ∈ Ej, (3)

is a graded Lie bracket. In particular, if E = E−1 is concentrated on degree
−1, we get a Lie algebra structure.
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Example 1.5 (Symmetric DGLA algebra). A symmetric differential graded
Lie algebra (DGLA) is a symmetric Lie ∞-algebra E = ⊕i∈ZEi such that
ln = 0 for n 6= 1 and n 6= 2.

Then, from (2), we have that d := l1 is a degree +1 linear map d : E → E
squaring zero and satisfies the following compatibility condition with the
bracket [·, ·] := l2(·, ·) :{

d [x, y] + [d(x), y] + (−1)|x| [x, d(y)] = 0,
[[x, y] , z] + (−1)|y||z| [[x, z] , y] + (−1)|x| [x, [y, z]] = 0,

Applying the décalage isomorphism, (E[−1], d, [[·, ·]]) is a (skew-symmetric)
DGLA, with [[·, ·]] given by (3).

Example 1.6. Let (E = ⊕i∈ZEi, d) be a cochain complex. Then End(E)[1]
has a natural symmetric DGLA structure with l1 = ∂ and l2 = [·, ·] given by:{

∂φ = −d ◦φ+ (−1)|φ|+1φ ◦d,
[φ, ψ] = (−1)|φ|+1

(
φ ◦ψ − (−1)(|φ|+1)(|ψ|+1)ψ ◦φ

)
,

for φ, ψ homogeneous elements of End(E)[1]. In other words, ∂φ = −[d, φ]c
and [φ, ψ] = (−1)deg(φ)[φ, ψ]c, with [·, ·]c the graded commutator on End(E)
and deg(φ) the degree of φ in End(E).

The symmetric Lie bracket [·, ·] on End(S̄(E))[1] preserves Coder(S̄(E))[1],
the space of coderivations of S̄(E), so that (Coder(S̄(E))[1], ∂, [·, ·]) is a sym-
metric DGLA.

The isomorphism between Hom(S̄(E), E) and Coder(S̄(E)) given by Propo-
sition 1.2, induces a Lie bracket on Hom(S̄(E), E) known as the Richardson-
Nijenhuis bracket:

[f, g]
RN

(x) = f(G(x))− (−1)|f ||g|g(F (x)), x ∈ S̄(E),

for each f, g ∈ Hom(S̄(E), E), where F and G denote the coderivations
defined by f and g, respectively. In other words, [F,G]c is the (unique)
coderivation of S̄(E) determined by [f, g]

RN
∈ Hom(S̄(E), E).

Elements l :=
∑

k lk of Hom(S̄(E), E) satisfying [l, l]
RN

= 0 define a Lie
∞-algebra structure on E. This way we have an alternative definition of Lie
∞-algebra [5]:

Proposition 1.7. A Lie ∞-algebra is a graded vector space E equipped with
a degree +1 coderivation ME of S̄(E) such that

[ME,ME]c = 2M 2
E = 0.
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The dual of the coderivation ME yields a differential d∗ on S̄(E∗). The
cohomology of the Lie ∞-algebra

(
E,ME ≡ {lk}k∈N

)
is the cohomology

defined by the differential d∗.
A Maurer-Cartan element of a Lie ∞-algebra (E, {lk}k∈N) is a degree

zero element z of E such that

∑
k≥1

1

k!
lk(z, . . . , z) = 0. (4)

The set of Maurer-Cartan elements of E is denoted by MC(E). Let z be a
Maurer-Cartan element of (E, {lk}k∈N) and set, for k ≥ 1,

lzk(x1, . . . , xk) :=
∑
i≥0

1

i!
lk+i(z, . . . , z, x1, . . . , xk). (5)

Then, (E, {lzk}k∈N) is a Lie ∞-algebra, called the twisting of E by z [3].
For filtered, or even weakly filtered Lie ∞-algebras, the convergence of the
infinite sums defining Maurer-Cartan elements and twisted Lie ∞-algebras
(Equations (4) and (5)) is guaranteed (see [3, 2, 6]).

For a symmetric graded Lie algebra (E, l2), the twisting by z ∈ MC(E) is
the symmetric DGLA (E, lz1 = l2(z, ·), lz2 = l2).

1.3. Lie ∞-morphisms. A morphism of Lie ∞-algebras is a morphism
between symmetric coalgebras that is compatible with the Lie∞-structures.

Definition 1.8. Let (E, {lk}k∈N) and (V, {mk}k∈N) be Lie ∞-algebras. A
Lie ∞-morphism Φ : E → V is given by a collection of degree zero linear
maps:

Φk : Sk(E)→ V, k ≥ 1,



10 RAQUEL CASEIRO AND JOANA NUNES DA COSTA

such that, for each n ≥ 1,∑
k+l=n

σ∈Sh(k,l)

l≥0, k≥1

ε(σ)Φ1+l

(
lk(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)

)
= (6)

=
∑

k1+...+kj=n

σ∈Sh(k1,...,kj)

ε(σ)

j!
mj

(
Φk1(xσ(1), . . . xσ(k1)),Φk2(xσ(k1+1), . . . xσ(k1+k2)), . . . ,

Φkj(xσ(k1+...+kj−1+1), . . . , xσ(n))
)
,

If Φk = 0 for k 6= 1, then Φ is called a strict Lie ∞-morphism.
A curved Lie ∞-morphism E → V is a degree zero linear map

Φ : S(E) → V satisfying, for n ≥ 0, an adapted version of (6) where the
indexes k1, . . . , kj on the right hand side of the equation run from 0 to n.
The zero component Φ0 : R → V0 gives rise to an element Φ0(1) ∈ V0,
which by abuse of notation we denote by Φ0. The curved adaptation of (6),
for n = 0, then reads 0 =

∑
j≥1

1
j! mj(Φ0, . . . ,Φ0). In other words, Φ0 is a

Maurer Cartan element of V [8].

Considering the coalgebra morphism Φ : S̄(E) → S̄(V ) defined by the
collection of degree zero linear maps

Φk : Sk(E)→ V, k ≥ 1,

we see that Equation (6) is equivalent to Φ preserving the Lie ∞-algebra
structures:

Φ ◦ME = MV ◦Φ.

2. Representations of Lie ∞-algebras
A complex (V, d) induces a natural symmetric DGLA structure in End(V )[1],

see Example 1.6.

Definition 2.1. A representation of a Lie ∞-algebra (E, {lk}k∈N) on a
complex (V, d) is a Lie ∞-morphism

Φ : (E, {lk}k∈N)→ (End(V )[1], ∂, [·, ·]),
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i.e., Φ ◦ME = MEnd(V )[1] ◦Φ, where ME is the coderivation determined by∑
k lk and MEnd(V )[1] is the coderivation determined by ∂ + [·, ·].

Equivalently, a representation of E is defined by a collection of degree +1
maps

Φk : Sk(E)→ End(V ), k ≥ 1,

such that, for each n ≥ 1,
n∑
i=1

σ∈Sh(i,n−i)

ε(σ)Φn−i+1

(
li
(
xσ(1), . . . , xσ(i)

)
, xσ(i+1), . . . , xσ(n)

)
(7)

=∂Φn(x1, . . . , xn)+
1

2

n−1∑
j=1

σ∈Sh(j,n−j)

ε(σ)
[
Φj(xσ(1), . . . , xσ(j)),Φn−j(xσ(j+1), . . . , xσ(n))

]
.

Remark 2.2. A representation on a complex (V, d) can be seen as a curved
Lie ∞-morphism Φ : E → End(V )[1], with Φ =

∑
k≥0 Φk and Φ0 = d. In

fact, the first term on the right hand-side of Equations (7) is given by

∂Φn(x1, . . . , xn) = [Φ0,Φn(x1, . . . , xn)] ,

and we have a curved Lie ∞-morphism

Φ : (E, {lk}k∈N)→ (End(V )[1], [·, ·])
between the Lie ∞-algebra E and the symmetric graded Lie algebra
(End(V )[1], [·, ·]) (see [8], Lemma 2.5). This is why sometimes a representa-
tion of a Lie ∞-algebra E on a complex (V, d) is called a representation on
the graded vector space V (compatible with the differential d of V ).

Any representation Φ : E → End(V )[1] of a Lie∞-algebra E on a complex
(V, d) has a dual one. Let

∗ : End(V )→ End(V ∗)

be the Lie ∞-morphism given by

〈f ∗(α), v〉 = −(−1)|α||f | 〈α, f(v)〉 , f ∈ End(V ), α ∈ V ∗, v ∈ V. (8)

The dual representation ∗Φ : E → End(V ∗)[1] is obtained by composition
of Φ with this Lie∞-morphism. It is a representation on the complex (V ∗, d∗)
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and is given by

〈∗Φ(e)(α), v〉 = −(−1)(|e|+1)|α| 〈α,Φ(e)(v)〉 , e ∈ S̄(E), α ∈ V ∗, v ∈ V. (9)

Remark 2.3. Given a representation Φ : E → End(V )[1] on a complex (V, d),
defined by the collection of degree +1 linear maps Φk : Sk(E) → End(V ),
k ≥ 1, one may consider the collection of degree +1 maps φk : Sk(E)⊗ V →
V , k ≥ 0, where φ0 = d : V → V and φk(x, v) = (Φk(x))(v), k ≥ 1.

The embedding S̄(E)⊕
(
S(E)⊗ V

)
↪→ S̄(E ⊕ V ), provides a collection of

maps
Φ̃k : Sk(E ⊕ V )→ E ⊕ V, k ≥ 1,

given by

Φ̃k ((x1, v1), . . . , (xk, vk))

=

(
lk(x1, . . . , xk),

k∑
i=1

(−1)|xi|(|xi+1|+...+|xk|)φk−1(x1, . . . , x̂i, . . . , xk, vi)

)
,

and we may express Equations (7) as

Φ̃•

(
Φ̃•(x(1))� x(2)

)
+ Φ̃1Φ̃•(x) = 0, x ∈ S̄(E ⊕ V ). (10)

Equation (10) means that Φ̃ equips E⊕V with a Lie∞-algebra structure.

Now suppose the graded vector space V has a Lie ∞-algebra structure
{mk}k∈N given by a coderivation MV of S̄(V ). By the construction in Exam-
ple 1.6, the coderivation MV of S̄(V ) defines a symmetric DGLA structure
in Coder(S̄(V ))[1]:

∂MV
Q = −MV ◦Q+ (−1)deg(Q)Q ◦MV ,

[Q,P ] = (−1)deg(Q)

(
Q ◦P − (−1)deg(Q) deg(P )P ◦Q

)
,

where deg(Q) and deg(P ) are the degrees of Q and P in Coder S̄(V ).
Generalizing the notion of an action of a graded Lie algebra on another

graded Lie algebra, we have the following definition of an action of a Lie
∞-algebra on another Lie ∞-algebra:

Definition 2.4. An action of the Lie ∞-algebra (E,ME ≡ {lk}k∈N) on
the Lie ∞-algebra (V,MV ≡ {mk}k∈N), or a Lie ∞-action of E on V , is a
Lie ∞-morphism

Φ : (E, {lk}k∈Z)→ (Coder(S̄(V ))[1], ∂MV
, [·, ·]).
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Remark 2.5. Being a Lie ∞-morphism, an action

Φ : E → Coder(S̄(V ))[1]

is univocally defined by a collection of degree +1 linear maps

Φk : Sk(E)→ Coder (S̄(V )), k ≥ 1.

By the isomorphism provided in Proposition 1.2, and since each Φk(x),
x ∈ Sk(E), is a coderivation of S̄(V ), we see that an action is completely
defined by a collection of linear maps

Φk,i : Sk(E)⊗ Si(V )→ V, i, k ≥ 1. (11)

We will denote the coderivation Φk(x) simply by Φx.

Remark 2.6. If we define Φ0 := MV , then an action is equivalent to a curved
Lie ∞-morphism between E and the graded Lie algebra Coder(S̄(V )) (com-
patible with the Lie ∞-structure in V ) [8]. In this case, Φ =

∑
k≥0 Φk is

called a curved Lie ∞-action.

There is a close relationship between representations and actions on Lie
∞-algebras.

First notice that each linear map l : V → V induces a (co)derivation of
S̄(V ). Hence we may see End(V )[1] as a Lie∞-subalgebra of Coder(S̄(V ))[1].
Therefore, given a representation Φ : E → End(V )[1] of the Lie ∞-algebra
E on the complex (V, d), we have a natural action of E on the Lie∞-algebra
(V,MV ), where MV is the coderivation defined by the map d : V → V . In
this case, we say the action is induced by a representation.

Moreover, for each action Φ : E → Coder (S̄(V ))[1] of E on the Lie
∞-algebra (V,MV ≡ {mk}k∈N), we have a representation of E on V given
by the collection of maps Φk,1 : Sk(E) ⊗ V → V , k ≥ 1, or equivalently,
Φk,1 ≡ ρk : Sk(E) → End(V ), k ≥ 1. The morphism ρ =

∑
k ρk is a rep-

resentation of the Lie ∞-algebra E on the complex (V, d = m1), called the
linear representation defined by Φ.

Finally one should notice that, given a Lie ∞-algebra (V,MV ), the graded
vector space Coder(S̄(V ))[1] is a Lie ∞-subalgebra of End(S̄(V ))[1]. There-
fore, any action Φ : E → Coder(S̄(V ))[1] of the Lie∞-algebra E on (V,MV )
yields a representation of E on the graded vector space S̄(V ). We call it the
representation induced by the action Φ. The coderivation MV defines
a (co)derivation of S̄(S̄(V )) and the representation is compatible with this
(co)derivation.
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Remark 2.7. In [8], the authors define an action of a finite dimensional Lie
∞-algebra E on a graded manifold M as a Lie ∞-morphism Φ : E →
X(M)[1]. As the authors point out, when M is the graded manifold defined
by a finite dimensional Lie ∞-algebra, we have an action of a Lie ∞-algebra
on another Lie ∞-algebra. The definition presented here is a particular
case of theirs because we are only considering coderivations of S̄(V ), i.e.
coderivations of S(V ) vanishing on the field S0(E). This restrictive case
reduces to the usually Lie algebra action on another Lie algebra (and its
semi-direct product) while the definition given in [8], gives rise to general Lie
algebra extensions. For our purpose, this definition is more adequate.

Next, with the identification Sn(E ⊕ V ) ' ⊕nk=0S
n−k(E) ⊗ Sk(V ), we see

that the action Φ determines a coderivation of S̄(E⊕V ). Together with ME

and MV we have a Lie ∞-algebra structure on E ⊕ V . Next proposition can
be deduced from [8].

Proposition 2.8. Let (E,ME ≡ {lk}k∈N) and (V,MV ≡ {mk}k∈N) be Lie
∞-algebras. An action

Φ : E → Coder(S̄(V ))[1]

defines a Lie ∞-algebra structure in E ⊕ V .

Proof : We consider the brackets {ln}n∈N on E ⊕ V given by:

ln(x1, . . . , xn) = ln(x1, . . . , xn), xi ∈ E
ln(v1, . . . , vn) = mn(v1, . . . , vn), vi ∈ V
lk+n(x1, . . . , xk, v1, . . . , vn) = Φk,n(x1, . . . , xk, v1, . . . , vn),

with Φk,n : Sk(E)⊗Sn(V )→ V the collection of linear maps defining Φ (see
Remark 2.5).

The collection of linear maps Φk,n defines a coderivation of S̄(E ⊕ V ),

Υ : S̄(E ⊕ V )→
(
S̄(E)⊗ S̄(V )

)
⊕ S̄(V ) ⊂ S̄(E ⊕ V )

related to the action Φ by

Υ(x⊗ v) = Φx(v), x ∈ E, v ∈ S̄(V )

and

Υ(x⊗ v) = Φx(v) + (−1)|x(1)|x(1) ⊗ Φx(2)(v), x ∈ S≥2(E), v ∈ S̄(V ).
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The degree +1 coderivation of S̄(E ⊕ V ) determined by {ln}n∈N is

ME⊕V = ME + Υ +MV .

Let us prove that M 2
E⊕V = 0. For x ∈ S̄(E) and v ∈ S̄(V ),

M 2
E⊕V (x) = M 2

E(x) = 0 and M 2
E⊕V (v) = M 2

V (v) = 0

while, for mixed terms, we have

ME⊕V (x⊗v) = ME(x)⊗v+(−1)|x|x⊗MV (v)+(−1)|x(1)|x(1)⊗Φx(2)(v)+Φx(v)

and

l(ME⊕V (x⊗ v)) =(ΦME(x))• (v) + (−1)|x|(Φx)• (MV (v))

+ (−1)|x(1)|(Φx(1))•(Φx(2)(v)) +m•(Φx(v)).

Since Φ is a Lie ∞-morphism, we have

ΦME(x) = −MV ◦Φx − (−1)|x|Φx ◦MV +
1

2

[
Φx(1),Φx(2)

]
,

which implies M 2
E⊕V = 0.

The Lie ∞-algebra structure in E ⊕ V presented in Remark 2.3, is a par-
ticular case of Proposition 2.8, with MV = d.

Adjoint representation and adjoint action. An important example of a
representation is given by a Lie ∞-algebra structure.

Let
(
E,ME ≡ {lk}k∈N

)
be a Lie ∞-algebra; thus (E, l1) is a complex. The

collection of degree +1 maps

adk : Sk(E) → End(E)
x1 � . . .� xk 7→ adx1�···�xk := lk+1 (x1, . . . , xk, − )

, k ≥ 1,

satisfies Equations (7). (Note that Equations (7) are equivalent to Equations
(2)). So, this collection of maps defines a representation ad =

∑
k adk of the

Lie ∞-algebra E on (E, l1).

Definition 2.9. The representation ad is called the adjoint representation
of the Lie ∞-algebra

(
E,ME ≡ {lk}k∈N

)
.

Moreover, notice that for each x ∈ Si(E), i ≥ 1, we may consider the
degree |x|+ 1 coderivation adDx of S̄(E) defined by the family of linear maps

(adx)k : Sk(E) → E
e 7→ li+k(x, e), k ≥ 1.
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So, we have a collection of degree +1 linear maps

adi : Si(E) → Coder(S̄(E))

x 7→ adDx
, i ≥ 1, (12)

and we set ad =
∑

i adi.

Proposition 2.10. The collection of degree +1 linear maps given by (12)
defines a Lie ∞-morphism

ad : (E, {lk}k∈N)→
(
Coder S̄(E)[1], ∂ME

, [·, ·]
)

from the Lie ∞-algebra E to the symmetric DGLA Coder S̄(E)[1].

Proof : For each x ∈ Si(E), let adx =
∑

k(adx)k and set l =
∑

k lk.
If x ∈ ⊕i≥2S

i(E) and e ∈ S̄(E), we have

ME(x� e) = ME(x)� e+ (−1)|x|x�ME(e) + (−1)|e||x(2)|l(x(1), e)� x(2)

+l(x, e(1))� e(2) + (−1)|e(1)||x(2)|l(x(1), e(1))� x(2) � e(2) + l(x, e)

and so,

adx(ME(e)) = l(x,ME(e))

= (−1)|x| l(ME(x� e))︸ ︷︷ ︸
=0 by (2)

−(−1)|x|l(ME(x), e)− (−1)|x|l(adDx (e))

− (−1)|x(1)|+|x(1)||x(2)|l(x(2), adDx(1)(e))

=
(
− (−1)|x| adME(x)−(−1)|x|l ◦ adDx −(−1)|x(2)| adx(1) ◦ adDx(2)

)
(e),

which is equivalent to

adME(x) = −l ◦ adDx −(−1)|x| adx ◦ME − (−1)|x(2)| adx(1) ◦ adDx(2)

or to

adME(x) = −[l, adx]RN −
1

2
(−1)|x(1)|[adx(1), adx(2)]RN . (13)

Note that the coderivation defined by the second member of (13) is

[ME, adDx ] +
1

2
[adDx(1), adDx(2)] = ∂ME

(adDx ) +
1

2
[adDx(1), adDx(2)].

If x ∈ E, a similar computation gives

adl1(x) = −l ◦ adDx −(−1)|x| adx ◦ME = −[l, adx]RN . (14)
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Equations (13) and (14) mean that the map ad : E → Coder S̄(E)[1] is a
Lie ∞-morphism.

Definition 2.11. The linear map ad : E → Coder(S̄(E))[1] is an action of
the Lie ∞-algebra E on itself, called the adjoint action of E.

3.O-operators on a Lie ∞-algebra
In this section we define O-operators on a Lie∞-algebra E with respect to

an action of E on a Lie ∞-algebra V . This is the main notion of the paper.

3.1.O-operators with respect to a Lie∞-action. Let (E,ME ≡ {lk}k≥1)

and (V,MV ≡ {mk}k≥1) be Lie ∞-algebras and Φ : E → Coder(S̄(V ))[1] a
Lie ∞-action of E on V . Remember we are using Sweedler’s notation: for
each v ∈ S̄(V ),

∆(v) = v(1) ⊗ v(2)

and

∆2(v) = (id⊗∆)∆(v) = (∆⊗ id)∆(v) = v(1) ⊗ v(2) ⊗ v(3).

Each degree zero linear map T : S̄(V ) → S̄(E) defines a degree +1 linear
map ΦT : S̄(V )→ S̄(V ) given by

ΦT (v) = 0, v ∈ V,
ΦT (v) = ΦT (v(1)) v(2), v ∈ S≥2(V ).

Lemma 3.1. The linear map ΦT : S̄(V )→ S̄(V ) is a degree +1 coderivation
of S̄(V ) and is defined by the collection of linear maps

∑
Φ•,•(T ⊗ id)∆.

Proof : For the linear map ΦT : S̄(V ) → S̄(V ) to be a coderivation it must
satisfy:

∆ΦT (v) =
(
ΦT ⊗ id + id⊗ ΦT

)
∆(v), v ∈ S̄(V ).

This equation is trivially satisfied for v ∈ V .
For each v = v1 � v2 ∈ S2(V ) we have ΦT (v) ∈ V and consequently,

∆ΦT (v) = 0. On the other hand, since ΦT
|V = 0, we see that(

ΦT ⊗ id + id⊗ ΦT
)

∆(v) = 0

and the equation is satisfied in S2(V ).
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Now let v ∈ S≥3(V ), then

∆ΦT (v) = ∆ΦT (v(1))v(2)

=
(

ΦT (v(1)) ⊗ id + id⊗ ΦT (v(1))

)
∆(v(2)).

The coassociativity of ∆ ensures that

∆ΦT (v) = ΦT (v(1))v(2) ⊗ v(3) + (−1)(|v(1)|+1)|v(2)|v(2) ⊗ ΦT (v(1))v(3)

= ΦT (v(1))v(2) ⊗ v(3) + (−1)|v(1)|v(1) ⊗ ΦT (v(2))v(3)

=
(
ΦT ⊗ id + id⊗ ΦT

)
∆(v).

Definition 3.2. Let (E,ME ≡ {lk}k≥1) and (V,MV ≡ {mk}k≥1) be Lie ∞-

algebras and Φ : E → Coder(S̄(V ))[1] an action. An O-operator on E with
respect to the action Φ is a (degree 0) morphism of coalgebras T : S̄(V ) →
S̄(E) such that

ME ◦T = T ◦
(
ΦT +MV

)
. (15)

Definition 3.3. A Rota Baxter operator (of weight 1) on a Lie ∞-
algebra (E,ME ≡ {lk}k≥1) is anO-operator with respect to the adjoint action.

An O-operator T : S̄(V ) → S̄(E) with respect to an action Φ : E →
Coder(S̄(V ))[1] of (E,ME ≡ {lk}k≥1) on (V,MV ≡ {mk}k≥1) is defined by a

linear map t =
∑

i ti : S̄(V )→ E satisfying:

(i) l1(t1(v)) = t1(m1(v)), v ∈ V
(ii) l(T (v)) = t

(
ΦT (v(1))v(2) +m(v(1))� v(2)

)
, v ∈ ⊕i≥2S

i(V ).

In particular, the O-operator T is a comorphism i.e., for each
v ∈ Sn(E), n ≥ 1,

T (v) =
∑

k1+...+kr=n

1

r!
tk1(v(k1))� . . .� tkr(v(kr)),

so, detailing (ii) for v = v1 � v2, we get

l1

(
t2(v1, v2)

)
+l2

(
t1(v1), t1(v2)

)
= t1

(
Φt1(v1)v2 + (−1)|v1| |v2|Φt1(v2)v1 +m2(v1, v2)

)
+ t2

(
m1(v1), v2)

)
+ (−1)|v1|t2

(
v1,m1(v2)

)
.
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Generally, for every v = v1 � . . .� vn ∈ Sn(V ), n ≥ 3, we have∑
k1+...+ki=n

σ∈Sh(k1,...,ki)

ε(σ)

i!
li

(
tk1(vσ(1), . . . , vσ(k1)), . . . , tki(vσ(k1+...+ki−1+1), . . . , vσ(n))

)

=
∑

k1+...+ki+2=n

σ∈Sh(k1,...,ki+2)

ε(σ)

i!

t1+ki+2

(
Φi,ki+1

(
tk1(vσ(1) . . . , vσ(k1))� . . .� tki(vσ(k1+...+ki−1+1), . . . , vσ(k1+...+ki)),

vσ(k1+...+ki+1) � · · · � vσ(k1+...+ki+1)

)
, vσ(k1+...+ki+1+1) � · · · � vσ(n)

)
+

n∑
i=1

∑
σ∈Sh(i,n−i)

ε(σ) tn−i+1

(
mi(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)

)
.

Remark 3.4. When MV = 0 we are considering V simply as a graded vector
space, with no Lie ∞-algebra attached and an O-operator must satisfy

ME ◦T = T ◦ΦT .

In this case, the terms of above equations involving the brackets mi on V
vanish.

Remark 3.5. When (E, [·, ·]E) and (V, [·, ·]V ) are Lie algebras, for degree rea-
sons, a morphism T = t1 must be a strict morphism. Moreover, our definition
coincides with the usual definition of O-operator (of weight 1) between Lie
algebras [4] :

[t1(v), t1(w)]E = t1
(
Φt1(v)w − Φt1(w)v + [v, w]V

)
, v, w ∈ V.

Remark 3.6. When (V, d) is just a complex and the action Φ : E → Coder(S̄(V ))[1]
is induced by a representation ρ : E → End(V )[1] we have that Φ(x) is the
(co)derivation defined by ρ(x). In this case, O-operators with respect to Φ co-
incide with O-operators with respect to ρ (or relative Rota Baxter operators)
given in [6].

In [6] the authors define O-operators with respect to representations of Lie
∞-algebras. Any action induces a representation and O-operators with re-
spect to an action are related with O-operators of with respect to the induced
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representation. We shall see that this relation is given by the comorphism

I =
∑
n≥1

in : S̄(V )→ S̄(S̄(V )),

defined by the family of inclusion maps in : Sn(V ) ↪→ S̄(V ), n ≥ 1.
Notice that any coderivation D of S̄(V ) induces a (co)derivation Dd of

S̄(S̄(V )). The comorphism I preserves these coderivations:

Lemma 3.7. Let V be a graded vector space and D a coderivation of S̄(V ).
The map I : S̄(V )→ S̄(S̄(V )) satisfies

I ◦D = Dd ◦I.

Proof : We will denote by · the symmetric product in S̄(S̄(V )), to distinguish
from the symmetric product � in S̄(V ).

Let v ∈ Sn(V ), n ≥ 1, and denote by {mk}k≥1 the family of linear maps

defining the coderivation D. For v ∈ V , we immediately have Dd ◦I(v) =
D ◦I(v) = I ◦D(v). For v ∈ S≥2(V ) we have

Dd ◦I(v) = Dd

( n∑
k=1

1

k!
v(1) · . . . · v(k)

)

=
n∑
k=1

1

k!

(
D(v(1)) · v(2) · . . . · v(k)

+ . . .+ (−1)|D|(|v(1)|+...+|v(k−1)|)v(1) · . . . · v(k−1) ·D(v(k))

)
=

n∑
k=1

1

(k − 1)!
D(v(1)) · v(2) · . . . · v(k)

= D(v(1)) · I(v(2)).

On the other hand

I ◦D(v) = I(m•(v(1))� v(2))

= m•(v(1)) · I(v(2)) + (m•(v(1))� v(2)) · I(v(3))

= D(v(1)) · I(v(2))

and the result follows.

Remark 3.8. In particular, if D defines a Lie∞-algebra structure on V , then
Dd defines a Lie ∞-algebra structure on S̄(V ) and I is a Lie ∞-morphism.
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Proposition 3.9. Let Φ : E → Coder(S̄(V ))[1] be an action of the Lie
∞-algebra

(
E,ME ≡ {lk}k≥1

)
on the Lie ∞-algebra

(
V,MV ≡ {mk}k≥1

)
and

T̃ : S̄(S̄(V ))→ E be an O-operator with respect to the induced representation
ρ : E → End(S̄(V ))[1]. Then T = T̃ ◦I is an O-operator with respect to the
action Φ.

Proof : For each x ∈ S̄(E), let us denote by

Φd
x := Φ(x)d = ρ(x)d,

the (co)derivation of S̄(S̄(V )) defined by ρ(x).
Let T̃ be an O-operator with respect to the induced representation. This

means that

ME ◦ T̃ (w) = T̃
(

Φd
T (w(1))

w(2) +MV
d(w)

)
, w ∈ S̄(S̄(V )).

Then, for each w = I(v), v ∈ S̄(V ), we have:

ME ◦ T̃ (I(v)) = T̃
(

Φd
T̃ (I(v)(1))

I(v)(2) +MV
d ◦I(v)

)
.

Using the fact that I is a comorphism and Lemma 3.7, we rewrite last equa-
tion as

ME ◦T (v) = T̃
(

Φd
T̃ (I(v(1)))

I(v(2)) +MV
d ◦I(v)

)
= T̃

(
I ◦ΦT (v(1))v(2) + I ◦MV (v)

)
= T

(
ΦT (v(1))v(2) +MV (v)

)
.

Taking into account this equation and that T is a comorphism, because is
the composition of two comorphisms, the result follows.

Proposition 3.10. Let T be an O-operator on
(
E,ME ≡ {lk}k≥1

)
with re-

spect to a Lie ∞-action Φ : E → Coder(S̄(V ))[1] on
(
V,MV ≡ {mk}k≥1

)
.

Then, V has a new Lie ∞-algebra structure

MV T = ΦT +MV

and T : (V,MV T )→ (E,ME) is a Lie ∞-morphism.

Proof : By Lemma 3.1 we know ΦT is a degree +1 coderivation of S̄(V ) hence
so is MV T .
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Since Φ is an action, so that Φ ◦ME = MCoder(S̄(V ))[1] ◦Φ, and T is a comor-

phism, we have, for each v ∈ S̄(V ),

ΦMET (v(1))v(2)=−MV ΦT (v(1))v(2) − (−1)|v(1)|ΦT (v(1))MV (v(2)) (16)

+(−1)|v(1)|+1ΦT (v(1))ΦT (v(2))v(3).

On the other hand, T is an O-operator:

ME ◦T (v) = T ◦ΦT (v(1))v(2) + T ◦MV (v)

and this yields

ΦMET (v(1))v(2) = ΦTΦT (v(1))
v(2)v(3) + ΦTMV (v(1))v(2). (17)

Moreover, due to the fact that both ΦT and MV are coderivations and
M 2

V = 0, we have

M 2
V T (v) = (ΦT )2(v) + ΦT ◦MV (v) +MV ◦ΦT (v)

= ΦT (ΦT (v(1))
v(2))v(3) + (−1)|v(1)|ΦT (v(1))ΦT (v(2))v(3)

+ ΦTMV (v(1))v(2) + (−1)|v(1)|ΦT (v(1))MV (v(2)) +MV (ΦT (v(1))v(2)).

Taking into account Equations (16) and (17) we conclude M 2
V T = 0. There-

fore, MV T defines a Lie ∞-algebra structure on V and Equation (15) means
that T : S̄(V ) → S̄(E) is a Lie ∞-morphism between the Lie ∞-algebras
(V,MV T ) and (E,ME).

The brackets of the Lie∞-algebra structure on V defined by the coderiva-
tion MV T are given by

mT
1 (v) = m1(v)

and, for n ≥ 2,

mT
n (v1, . . . , vn) = mn(v1, . . . vn)

+
∑

k1+...+ki=j

1≤j≤n−1

∑
σ∈Sh(k1,...,ki,n−j)

ε(σ)
1

n!
Φi,n−j

(
tk1(vσ(1), . . . , vσ(k1))

� . . .� tki(vσ(k1+···+ki−1+1), . . . , vσ(j)), vσ(j+1) � · · · � vσ(n)

)
,

with Φi,n−j , i ≥ 1, the linear maps determined by the action Φ (see (11)).
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O-operators for the coadjoint representation. Let (E,ME ≡ {lk}k≥1)
be a finite dimensional Lie ∞-algebra. Next, we consider the dual of the
adjoint representation of E (see (9)), called the coadjoint representation.

Definition 3.11. The coadjoint representation of E, ad∗ : E → End(E∗)[1],
is defined by

〈ad∗x(α), v〉 = −(−1)|α|(|x|+1) 〈α, adx v〉 , v ∈ E, x ∈ S̄(E), α ∈ E∗.

Notice that E∗ is equipped with the differential l∗1 (see (8)).

An O-operator on E with respect to the coadjoint representation ad∗ : E →
End (E∗)[1] is a coalgebra morphism T : S̄(E∗)→ S̄(E) given by a collection
of maps t =

∑
i ti : S̄(E∗)→ E satisfying

l(T (α)) =
∑

1≤i≤n−1

σ∈Sh(i,n−i)

ε(σ) tn−i+1(ad∗T (ασ(1)�...�ασ(i)) ασ(i+1), ασ(i+2), . . . , ασ(n))

+
n∑
i=1

(−1)|α1|+···+|αi−1|tn(α1, . . . , l
∗
1αi, . . . , αn), (18)

for all α = α1 � . . .� αn ∈ Sn(E∗), n ≥ 1.
We say that T is symmetric if

〈β, tn(α1, . . . , αn)〉 = (−1)|α||β|+|αn|(|α1|+...+|αn−1|) 〈αn, tn(α1, . . . , αn−1, β)〉 ,

for all α1, . . . , αn, β ∈ E∗ and n ≥ 1.
When T is invertible, its inverse T−1 : S̄(E) → S̄(E∗), given by t−1 =∑
n t
−1
n , is also symmetric:〈

t−1
n (x1, . . . , xn), y

〉
= (−1)|y||xn|

〈
t−1
n (x1, . . . , xn−1, y), xn

〉
,

for every x1, . . . xn, y ∈ E, n ≥ 1.
One should notice that t−1

n is not the inverse map of tn. It simply denotes
the n-component of the inverse T−1 of T .

For each n ≥ 1, let ω(n) ∈ ⊗nE∗ be defined by ω(1) = 0 and〈
ω(n), x1 ⊗ . . .⊗ xn

〉
=
〈
t−1
n−1(x1, . . . , xn−1), xn

〉
, x1, . . . , xn ∈ E.

The symmetry of T−1 guarantees that ω =
∑

n≥1 ω
(n) is an element of

S̄(E∗).
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Proposition 3.12. Let T : S̄(E∗) → S̄(E) be an invertible symmetric co-
morphism. The linear map T is an O-operator with respect to the coadjoint
action if and only if ω ∈ ⊕n≥2S

n(E∗), given by

〈ω, x1 � . . .� xk+1〉 =
〈
t−1
k (x1, . . . , xk), xk+1

〉
, x1, . . . , xk+1 ∈ E, k ≥ 1,

is a cocycle for the Lie ∞-algebra cohomology.

Proof : When T is invertible, Equation (18) is equivalent to equations

t−1
1 l1(x) = l∗1t

−1
1 (x), x ∈ E,

and
t−1ME(x) = ad∗x(1) t

−1(x(2)) + l∗1t
−1
n (x), x ∈ Sn(E), n ≥ 2.

Let x = x1 � . . .� xn ∈ Sn(E), n ≥ 1, and y ∈ E, such that |y| = |x|+ 1.
We have:

〈ω,ME(x� y)〉 =
〈
t−1(ME(x)), y

〉
+ (−1)|x|

〈
t−1(x1, . . . , xn), l1(y)

〉
+ (−1)|x(1)|

〈
t−1(x(1)), adx(2) y

〉
=
〈
t−1(ME(x)), y

〉
−
〈
l∗1t
−1(x), y

〉
−
〈

ad∗x(1) t
−1(x(2)), y

〉
and the result follows.

3.2. O-operators as Maurer-Cartan elements. Let (E,ME ≡ {lk}k≥1)
and (V,MV ≡ {mk}k≥1) be Lie ∞-algebras.

The graded vector space of linear maps between S̄(V ) and E will be denoted
by h := Hom(S̄(V ), E). It can be identified with the space of coalgebra
morphisms between S̄(V ) and S̄(E). On the other hand, since

Sn(E ⊕ V ) ' ⊕nk=0

(
Sn−k(E)⊗ Sk(V )

)
, n ≥ 1,

the space h can be seen as a subspace of Coder(S̄(E ⊕ V )), the space of
coderivations of S̄(E ⊕ V ). Its elements define coderivations that only act
on elements of S̄(V ), they are S(E)-linear.

The space S(E ⊕ V ) has a natural S(E)-bimodule structure. With the
above identification we have:

e · (x⊗ v) = (e� x)⊗ v = (−1)|e|(|x|+|v|)(x⊗ v) · e,
for e ∈ S(E), x⊗ v ∈ S(E ⊕ V ) ' S(E)⊗ S(V ).
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Let t : S̄(V ) → E be an element of h defined by the collection of maps
tk : Sk(V ) → E, k ≥ 1. Let us denote by T : S̄(V ) → S̄(E) the coalgebra
morphism and by t the coderivation of S̄(E ⊕ V ) defined by t. Notice that

t(v) = t1(v), v ∈ V
and

t(v) = t(v(1))⊗ v(2) + t(v), v ∈ S≥2(V ).

and also, for x ∈ S̄(E),

t(x⊗ v) = (−1)|x||t|x · t(v), v ∈ S̄(V ).

Proposition 3.13. The space h is an abelian Lie subalgebra of Coder(S̄(E⊕
V )).

Proof : Let t =
∑

i ti : S̄(V ) → E and w =
∑

iwi : S̄(V ) → E be elements
of h. Denote by t and w the coderivations of S̄(E ⊕ V ) defined by t and w,
respectively.

Let v ∈ S̄(V ). The Lie bracket of t and w is given by:

[t,w]c (v) = t ◦(w(v(1))⊗ v(2))− (−1)|t||w|w ◦(t(v(1))⊗ v(2))

= (−1)|t|(|w|+|v(1)|)w(v(1)) · t(v(2))− (−1)|t||w|(−1)|w|(|t|+|v(1)|)t(v(1)) ·w(v(2))

=
(

(−1)|t|(|w|+|v(1)|)w(v(1)) · t(v(2))

− (−1)|t||w|(−1)|w|(|t|+|v(1)|)t(v(1)) · w(v(2))
)
⊗ v(3)

+ (−1)|t|(|w|+|v(1)|)w(v(1)) · t(v(2))− (−1)|t||w|(−1)|w|(|t|+|v(1)|)t(v(1)) · w(v(2))

=
(

(−1)|t|(|w|+|v(1)|)w(v(1))� t(v(2))

− (−1)|t|(|w|+|v(2)|)+|v(1)||v(2)|w(v(2))� t(v(1))
)
⊗ v(3)

+ (−1)|t|(|w|+|v(1)|)w(v(1))� t(v(2))

− (−1)|t|(|w|+|v(2)|)+|v(1)||v(2)|w(v(2))� t(v(1)),

where we used the fact that t and w are S̄(E)-linear. Because of cocommu-
tativity of the coproduct, the last expression vanishes.

Now, let Φ : E → Coder(S̄(V ))[1] be an action of the Lie ∞-algebra E
on the Lie ∞-algebra V . By Proposition 2.8, Φ induces a coderivation Υ of
S̄(E⊕V ) and ME⊕V = ME +Υ+MV is a Lie∞-algebra structure on E⊕V .
Let P : Coder(S̄(E ⊕ V ))→ h be the projection onto h.
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Then we have:

Proposition 3.14. The quadruple
(
Coder(S̄(E ⊕ V )), h,P,ME⊕V

)
is a V -

data and h has a Lie ∞-algebra structure.

Proof : We already know that Coder(S̄(E ⊕ V )), equipped with the commu-
tator, is a graded Lie algebra and h is an abelian Lie subalgebra.

Let p : S̄(E ⊕ V ) → E be the projection and i : S̄(V ) → S̄(E ⊕ V ) the
inclusion.

Notice that, for each Q ∈ Coder(S̄(E ⊕ V )) we have P(Q) = p ◦Q ◦ i so

kerP =
{
Q ∈ Coder(S̄(E ⊕ V )) : Q ◦ i is a coderivation of S̄(V )

}
is clearly a Lie subalgebra of Coder(S̄(E ⊕ V )):

P([Q,P ]c) = p ◦ [Q,P ]c ◦ i = p ◦QP ◦ i− (−1)|Q||P |p ◦PQ ◦ i

= p ◦Q ◦ i ◦P ◦ i− (−1)|Q||P |p ◦P ◦ i ◦Q ◦ i = 0, P,Q ∈ kerP.

Moreover

ME⊕V ◦ i = MV , so ME⊕V ∈ (kerP)1

and, since ME⊕V defines a Lie ∞-structure in E ⊕ V , we have:

[ME⊕V ,ME⊕V ]c = 0.

Voronov’s construction [10] guarantees that h inherits a (symmetric) Lie
∞-structure given by:

∂k
(
t1, . . . , tk) = P([[. . . [ME⊕V , t1]RN . . .]RN , tk]RN

)
, t1, . . . , tk ∈ h, k ≥ 1.

Remark 3.15. A similar proof as in [6] shows that, with the above structure,
h is a filtered Lie ∞-algebra.

Lemma 3.16. Let p : S̄(E ⊕ V )→ E be the projection map and t a coderiva-
tion of S̄(E ⊕ V ) defined by a degree zero element t : S̄(V ) → E of h. For
each v ∈ S̄(V ),

∂1t(v) = l1t(v)− t ◦MV (v)

and

∂k(t, . . . , t)(v) = lk
(
t(v(1)), . . . , t(v(k))

)
− k t

(
Φt(v(1))�...�t(v(k−1))v(k)

)
, k ≥ 2.
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Proof : Notice that

p ◦ t = t

p ◦ tk = 0, k ≥ 2.

Consequently, for k = 1 we have

∂1t(v) = p ◦ME⊕V ◦ t(v)− p ◦ t ◦MV (v) = l1t(v)− t ◦MV (v), v ∈ S̄(V )

and, for k ≥ 2,

∂k(t, . . . , t) = p ◦ME⊕V ◦ tk − k p ◦ t ◦ME⊕V ◦ tk−1

= l ◦ tk − k t ◦ME⊕V ◦ tk−1

and the result follows.

Remark 3.17. Notice that ∂k(t, . . . , t)(v) = 0, for v ∈ S<k(V ), as a conse-
quence of tk(v) = 0 and Φ ◦ tk−1(v) ∈ S̄(E).

Next proposition realizes O-operators as Maurer-Cartan elements of this
Lie ∞-algebra h.

Proposition 3.18. O-operators on E with respect to an action Φ are Maurer-
Cartan elements of h.

Proof : Let t : S̄(V )→ E be a degree 0 element of h and t the corresponding
coderivation of S̄(E ⊕ V ). Maurer-Cartan equation yields

∂1t+
1

2
∂2(t, t) + · · ·+ 1

k!
∂k(t, . . . , t) + . . . = 0.

Using Lemma 3.16 we have, for each v ∈ Sk(V ),

∂1t(v)+
1

2
∂2(t, t)(v) + · · ·+ 1

k!
∂k(t, . . . , t)(v) =

= l1t(v)− t ◦MV (v)

+
1

2
l2
(
t(v(1)), t(v(2))

)
− t
(

Φt(v(1))v(2)

)
+ . . .+

+
1

k!
lk
(
t(v(1)), . . . , t(v(k))

)
− 1

(k − 1)!
t
(

Φt(v(1))�...�t(v(k−1))v(k)

)
.

Let T : S̄(V ) → S̄(E) be the morphism of coalgebras defined by
t : S̄(V )→ E. Maurer-Cartan equation can be written as

l ◦T (v)− t ◦MV (v)− tΦT (v(1))v(2) = 0,
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which is equivalent to T being an O-operator (see Equation (15)).

4. Deformation of O-operators
We prove that each Maurer-Cartan element of a special graded Lie subal-

gebra of Coder(S̄(E ⊕ V )) encondes a Lie ∞-algebra structure on E and a
curved Lie ∞-action of E on V . We study deformations of O-operators.

4.1. Maurer-Cartan element of Coder S̄(E⊕V). Let E and V be two
graded vector spaces and consider the graded Lie algebra L := (Coder(S̄(E⊕
V )), [·, ·]c). Since S̄(E⊕V ) ' S̄(E)⊕(S̄(E)⊗ S̄(V ))⊕ S̄(V ), the space M :=
Coder(S̄(E)) of coderivations of S̄(E) can be seen as a graded Lie subalgebra
of L. Also, the space R of coderivations defined by linear maps of the space
Hom((S̄(E) ⊗ S̄(V )) ⊕ S̄(V ), V ) can be embedded in L. We will use the
identifications M ≡ Hom(S̄(E), E) and R ≡ Hom((S̄(E)⊗S̄(V ))⊕S̄(V ), V ).
Given ρ ∈ R, we will denote by ρ0 the restriction of the linear map ρ to S̄(V )
and by ρx the linear map obtained by restriction of ρ to {x} ⊗ S̄(V ), with
x ∈ S̄(E). We set L′ := M ⊕R.

Proposition 4.1. The space L′ is a graded Lie subalgebra of L = Coder(S̄(E⊕
V )).

Proof : Given m⊕ ρ,m′ ⊕ ρ′ ∈ L′, let us see that

[m⊕ ρ,m′ ⊕ ρ′]
RN

= [m,m′]
RN
⊕ ([m, ρ′]

RN
+ [ρ,m′]

RN
+ [ρ, ρ′]

RN
)

is an element of L′. It is obvious that [m,m′]
RN
∈ Hom(S̄(E), E). Consider

mD and ρD the coderivations of S̄(E ⊕ V ) defined by the morphisms m and
ρ, respectively. For x ∈ S̄(E) and v ∈ S̄(V ) we have,

[m, ρ′]
RN

(x) = [m, ρ′]
RN

(v) = 0

[m, ρ′]
RN

(x⊗ v) =
(
m ◦ρ′D − (−1)|m||ρ

′|ρ′ ◦mD
)

(x� v)

= −(−1)|m||ρ
′|ρ′mD(x)(v) ∈ V
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and

[ρ, ρ′]
RN

(x) = 0

[ρ, ρ′]
RN

(v) = ρ ◦ρ′D(v)− (−1)|ρ||ρ
′|ρ′ ◦ρD(v) ∈ V

[ρ, ρ′]
RN

(x⊗ v) = (−1)|x||ρ
′|ρx(ρ

′D
0 (v)) + (−1)|x(1)||ρ

′|ρx(1)(ρ
′D
x(2)

(v)) + ρ0(ρ
′D
x (v))︸ ︷︷ ︸

∈V

− (−1)|ρ||ρ
′|( (−1)|x||ρ|ρ′x(ρ

D
0 (v)) + (−1)|x(1)||ρ|ρ′x(1)(ρ

D
x(2)

(v)) + ρ′0(ρ
D
x (v))︸ ︷︷ ︸

∈V

)
,

which proves that [m, ρ′]
RN

+ [ρ,m′]
RN

+ [ρ, ρ′]
RN
∈ Hom((S̄(E) ⊗ S̄(V )) ⊕

S̄(V ), V ).

Next theorem shows that an element m⊕ρ ∈ L′ which is a Maurer-Cartan
of L = Coder(S̄(E ⊕ V )) encodes a Lie ∞-algebra structure on E and an
action of E on the Lie ∞-algebra V .

Theorem 4.2. Let E and V be two graded vector spaces and m⊕ ρ ∈ L′ =
M ⊕ R. Then, m ⊕ ρ is a Maurer-Cartan element of L′ if and only if mD

defines a Lie ∞-structure on E and ρ is a curved Lie ∞-action of E on V .

Proof : We have

[m⊕ ρ,m⊕ ρ]
RN

= 0⇔

{
[m,m]

RN
= 0

2 [m, ρ]
RN

+ [ρ, ρ]
RN

= 0.
(19)

Similar computations to those in the proof of Proposition 4.1 give, for all
v ∈ S̄(V ) and x ∈ S̄(E),{(

2 [m, ρ]
RN

+ [ρ, ρ]
RN

)
(v) = 0(

2 [m, ρ]
RN

+ [ρ, ρ]
RN

)
(x⊗ v) = 0

⇔

{
ρ0 ◦ρD0 (v) = 0

ρmD(x)(v) =
(
− [ρ0, ρx]RN −

(−1)
|x(1)|

2

[
ρx(1), ρx(2)

]
RN

)
(v).

Since m⊕ρ is a degree +1 element of L′, the right hand-side of (19) means
that mD defines a Lie∞-algebra structure on E and ρ =

∑
k≥0 ρk is a curved

Lie∞-action of E on V . Notice that ρD0 : S̄(V )→ S̄(V ) equips V with a Lie
∞-structure.
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Reciprocally, if (E,mD) is a Lie ∞-algebra and ρ is a curved Lie ∞-action
of E on V , the degree +1 element m ⊕ ρ of L′ is a Maurer-Cartan element
of L′.

Next proposition gives the Lie ∞-algebra that controls the deformations
of the actions of E on V [3].

Proposition 4.3. Let m⊕ρ be a Maurer-Cartan element of L′ and m′⊕ρ′ a
degree +1 element of L′. Then, m⊕ρ+m′⊕ρ′ is a Maurer-Cartan element of
L′ if and only if m′ ⊕ ρ′ is a Maurer-Cartan element of L′ m⊕ρ. Here, L′ m⊕ρ

denotes the DGLA which is the twisting of L′ by m⊕ ρ.

4.2. Deformation of O-operators. Let h be the abelian Lie subalgebra of
L = Coder(S̄(E ⊕ V )) considered in Proposition 3.13 and P : L → h the
projection onto h. Let ∆ ∈ L′ be a Maurer-Cartan element of L. Then,
(L, h,P,∆) is a V -data and h has a Lie ∞-structure given by the brackets:

∂k(a1, . . . , ak) = P([[. . . [∆, a1]RN . . .]RN , ak]RN ), k ≥ 1.

We denote by h∆ the Lie ∞-algebra h equipped with the above structure.
The V -data (L, h,P,∆) also provides a Lie∞-algebra structure on L[1]⊕h,

that we denote by (L[1]⊕ h)∆, with brackets [10]:



q∆
1 ((x, a1)) = (− [∆, x]

RN
,P(x+ [∆, a1]RN ))

q∆
2 (x, x′) = (−1)deg(x) [x, x′]

RN

q∆
k (x, a1, . . . , ak−1) = P([. . . [[x, a1]RN , a2]RN . . . ak−1]RN ), k ≥ 2,

q∆
k (a1, . . . , ak) = ∂k(a1, . . . , ak), k ≥ 1,

(20)

x, x′ ∈ L[1] and a1, . . . , ak−1 ∈ h. Here, deg(x) is the degree of x in L.

Moreover, since L′ is a Lie subalgebra of L satisfying [∆,L′] ⊂ L′, the
brackets

{
q∆
k

}
k∈N restricted to L′[1]⊕ h define a Lie ∞-algebra structure on

L′[1]⊕ h, that we denote by (L′[1]⊕ h)∆. Notice that the restrictions of the
brackets

{
q∆
k

}
to L′[1]⊕h are given by the same expressions as in (20) except

for k = 1:

q∆
1 ((x, a1)) = (− [∆, x]

RN
,P([∆, a1]RN )) = (− [∆, x]

RN
, ∂1(a1)),

because P(L′) = 0. Of course, h∆ is a Lie ∞-subalgebra of (L′[1]⊕ h)∆.
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Remark 4.4. The brackets (20) that define the Lie ∞-algebra structure of
(L[1]⊕h)∆ coincide with those of h∆ for x = x′ = 0 . So, an easy computation
yields

t ∈ MC(h∆) ⇔ (0, t) ∈ MC(L′[1]⊕ h)∆.

Theorem 3 in [2] yields:

Proposition 4.5. Consider the V -data (L, h,P,∆), with ∆ ∈ MC(L′) and
let t be a degree zero element of h. Then,

t ∈ MC(h∆) ⇔ (∆, t) ∈ MC(L[1]⊕ h)∆.

Recall that, given an element t ∈ h = Hom(S̄(V ), E), the corresponding
morphism of coalgebras T : S̄(V )→ S̄(E) is an O-operator if and only if t is a
Maurer-Cartan element of h∆ (Proposition 3.18). Moreover, given a Maurer-
Cartan element m ⊕ ρ of L′, we know from Theorem 4.2 that (E,mD) is a
Lie ∞-algebra and ρ is a curved Lie ∞-action of E on V . So, an O-operator
can be seen as a Maurer-Cartan element of the Lie ∞-algebra (L′[1]⊕ h)∆:

Proposition 4.6. Let E and V be two graded vector spaces. Consider a
morphism of coalgebras T : S̄(V ) → S̄(E) defined by t ∈ Hom(S̄(V ), E),
and the V -data (L, h,P,∆), with ∆ := m ⊕ ρ ∈ MC(L′). Then, T is an
O-operator on E with respect to the curved Lie ∞-action ρ if and only if
(∆, t) is a Maurer-Cartan element of (L′[1]⊕ h)∆.

Corollary 4.7. If T is an O-operator on the Lie ∞-algebra (E,mD) with
respect to the curved Lie ∞-action ρ of E on V , then ((L′[1]⊕ h)m⊕ρ)

(m⊕ρ,t)

is a Lie ∞-algebra.

As a consequence of Theorem 3 in [2], we obtain the Lie ∞-algebra that
controls the deformation of O-operators on E with respect to a fixed curved
Lie ∞-action on V :

Corollary 4.8. Let E and V be two graded vector spaces and consider the
V -data (L, h,P,∆ := m ⊕ ρ). Let T be an O-operator on (E,mD) with
respect to the curved Lie ∞-action ρ and T ′ : S̄(V ) → S̄(E) a (degree zero)
morphism of coalgebras defined by t′ ∈ Hom(S̄(V ), E). Then, T + T ′ is an
O-operator on E with respect to the curved Lie ∞-action ρ if and only if

(∆, t′) is a Maurer-Cartan element of (L′[1]⊕ h)
(∆,t)
∆ .

Proof : Let t ∈ h be the morphism defined by T . Then [2],

(∆, t+ t′) ∈ MC(L′[1]⊕ h)∆ ⇔ (∆, t′) ∈ MC(L′[1]⊕ h)
(∆,t)
∆ .
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