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ABSTRACT: We define O-operators on a Lie oc-algebra FE with respect to an ac-
tion of E on another Lie oo-algebra and we characterize them as Maurer-Cartan
elements of a certain Lie co-algebra obtained by Voronov’s higher derived brackets
construction. The Lie co-algebra that controls the deformation of O-operators with
respect to a fixed action is determined.

KEYWORDS: Lie co-algebra, O-operator, Maurer Cartan element.
MATH. SUBJECT CLASSIFICATION (2000): 17B10, 17B40, 17B70, 55P43.

Introduction

The first instance of Rota-Baxter operator appeared in the context of asso-
ciative algebras in 1960, in a paper by Baxter [1], as a tool to study fluctuation
theory in probability. Since then, these operators were widely used in many
branches of mathematics and mathematical physics.

Almost forty years later, Kupershmidt [4] introduced @-operators on Lie
algebras as a kind of generalization of classical r-matrices, thus opening a
broad application of @-operators to integrable systems. Given a Lie algebra
(E,[-,-]) and a representation ® of E on a vector space V', an O-operator on
E with respect to @ is a linear map 7' : V — FE such that [T'(z),T(y)] =
T(®(T(x))(y) — ®(T(y))(z)). When ® is the adjoint representation of E,
T is a Rota-Baxter operator (of weight zero). O-operators are also called
relative Rota-Baxter operators or generalized Rota-Baxter operators.

In recent years Rota-Baxter and @-operators, in different algebraic and geo-
metric settings, have deserved a great interest by mathematical and physical
communities.

In [9], a homotopy version of @-operators on symmetric graded Lie algebras
was introduced. This was the first step towards the definition of a @-operator
on a Lie oo-algebra with respect to a representation on a graded vector space
that was given in [0]. The current paper also deals with @-operators on Lie
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2 RAQUEL CASEIRO AND JOANA NUNES DA COSTA

oo-algebras, but with a different approach which uses Lie oco-actions instead
of representations of Lie oo-algebras. Our definition is therefore different
from the one given in [6] but there is a relationship between them.

There are two equivalent definitions of Lie oco-algebra structure on a graded
vector space F, both given by collections of n-ary brackets which are either
symmetric or skew-symmetric, depending on the definition we are consider-
ing, and must satisfy a kind of generalized Jacobi identities. One goes from
one to the other by shifting the degree of E' and applying a décalage isomor-
phism. We use the definition in its symmetric version, where the brackets
have degree +1. Equivalently, this structure can be defined by a degree +1
coderivation Mg of S(E), the reduced symmetric algebra of E, such that the
commutator [Mpg, Mp|. vanishes.

Representations of Lie co-algebras on graded vector spaces were introduced
in [7]. In [0], the authors consider a representation ® of a Lie oco-algebra F
on a graded vector space V and define an O-operator (homotopy relative
Rota-Baxter operator) on E with respect to ® as a degree zero element T
of Hom(S(V), E) satisfying a family of suitable identities. Inspired by the
notion of an action of a Lie oo-algebra on a graded manifold [8], we define
an action of a Lie oo-algebra (E, Mp) on a Lie oo-algebra (V, My ) as a Lie
oo-morphism @ between E and Coder(S(V))[1], the symmetric DGLA of
coderivations of S(V). An @-operator on E with respect to the action ® is a
comorphism between S(V) and S(E) that intertwines the coderivation Mg
and a degree +1 coderivation of S(V') built from My and ®, which turns out
to be a Lie oo-algebra structure on V' too.

As we said before, the two 0O-operator definitions, ours and the one in
[0], are different. However, since there is a close connection between Lie
oo-actions and representations of Lie oco-algebras, the two definitions can be
related. On the one hand, any representation of (FE, Mg) on a complex (V,d)
can be seen as a Lie co-action of (E, Mg) on (V, D), with D the coderivation
given by the differential d, and for this very “simple” Lie oo-algebra structure
on V our O-operator definition recovers the one given in [6]. On the other
hand, any action ® of (FE, Mp) on (V, My) yields a representation p on the
graded vector space S(V) and an O-operator with respect to the action ® is
not the same as an O-operator with respect to the representation p. However,
there is a way to relate the two concepts.
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A well-known Voronov’s construction [10] defines a Lie co-algebra structure

on an abelian Lie subalgebra b of Coder(S(E @ V')) and we show that O-
operators with respect to the action ® are Maurer-Cartan elements of .

In general, deformations of structures and morphisms are governed by
DGLA’s or, more generally, by Lie oo-algebras. We do not intend to deeply
study deformations of O-operators on Lie oo-algebras with respect to Lie
oo-actions. Still, we prove that deformations of an 0-operator are controlled
by the twisting of a Lie co-algebra, constructed out of a graded Lie subalgebra

of Coder(S(E & V)).

The paper is organized in four sections. In Section 1 we collect some
basic results on graded vector spaces, graded symmetric algebras and Lie
oo-algebras that will be needed along the paper. In Section 2, after recalling
the definition of a representation of a Lie oo-algebra on a complex (V,d)
[7], we introduce the notion of action of a Lie oo-algebra on another Lie
oo-algebra (Lie oo-action) and we prove that a Lie oo-action of F on V' in-
duces a Lie oo-algebra structure on £ & V. We pay special attention to
the adjoint action of a Lie oo-algebra. In Section 3 we introduce the main
notion of the paper — @-operator on a Lie oo-algebra E with respect to an
action of F on another Lie co-algebra, and we give the explicit relation be-
tween these operators and @-operators on E with respect to a representation
on a graded vector space introduced in [6]. Given an O-operator T on FE
with respect to a Lie oo-action ® on V', we show that V' inherits a new Lie
oo-algebra structure given by a degree 41 coderivation which is the sum of
the initial one on V with a degree 41 coderivation obtained out of ® and
T. We prove that symmetric and invertible comorphisms 7" : S(E*) — S(FE)
are O-operators with respect to the coadjoint action if and only if a certain
element of S(E*), which is defined using the inverse of T, is a cocycle for
the Lie oo-algebra cohomology of E. Section 3 ends with the characteriza-
tion of @-operators as Maurer-Cartan elements of a Lie oo-algebra obtained
by Voronov’s higher derived brackets construction. The main result in Sec-
tion 4 shows that Maurer-Cartan elements of a graded Lie subalgebra of
Coder(S(E @ V)) encode a Lie oco-algebra on £ and an action of E on V.
Moreover, we obtain the Lie oo-algebra that controls the deformation of O-
operators with respect to a fixed action.
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1. Lie oo-algebras

We begin by reviewing some concepts about graded vector spaces, graded
symmetric algebras and Lie co-algebras.

1.1. Graded vector spaces and graded symmetric algebras. We will
work with Z-graded vector spaces with finite dimension over a field K = R
or C.

Let £ = ®;czE; be a finite dimensional graded vector space. We call F;
the homogeneous component of E of degree i. An element x of F; is said to
be homogeneous with degree || = i. For each k € Z, one may shift all the
degrees by k£ and obtain a new grading on F. This new graded vector space
is denoted by F[k| and is defined by E[k]; = Fi.

A morphism ® : E — V between two graded vector spaces is a degree
preserving linear map, i.e. a collection of linear maps ®; : E; — V;, i € Z.
We call & : E — V a (homogeneous) morphism of degree k, for some k € Z,
and we write |®| = k, if it is a morphism between E and V'[k]. This way
we have a natural grading in the vector space of linear maps between graded
vector spaces:

Hom(E,V) = ®;ezHom;(E, V).
In particular, Hom(FE, F) = End(F) = ®;cz End;(F).
The dual £* of E is naturally a graded vector space whose component of
degree i is, for all ¢ € Z, the dual (E_;)* of E_;. In equation: (E*); = (E_;)*.
Given two graded vector spaces F and V, their direct sum F®V is a vector
space with grading
(EeV),=E®V,

and their usual tensor product comes equipped with the grading
(E X V)Z = Djtk=i Ej ® V..

We will adopt the Koszul sign convention, for homogeneous linear maps
f:E —Vand g: F — W the tensor product fRg: EQF — V & W is
the morphism of degree |f| + |g| given by

(feg)(zey) = (1" f@)gy),

for all homogeneous x € E and y € F'.
For each k € Ny, let T*(E) = ®@"FE, with T°(E) = K, and let T(E) =
@ T*(E) be the tensor algebra over E. The graded symmetric algebra
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over F is the quotient
S(E) = T(E)/ <:c ®y— (—1)klly @ :c> .

The symmetric algebra S(E) = @;>05"(E) is a graded commutative algebra,
whose product we denote by ®. For x = 2, ® ... ® 2 € S¥(E), we set
k
|| = > il
For n > 1, let S,, be the permutation group of order n. For any homoge-
neous elements x1,...,x, € E and o € 5, the Koszul sign is the element in

{—1,1} defined by
To() @ ... O Toy = €(0)T1 O ... O Ty,

As usual, writing €(¢) is an abuse of notation because the Koszul sign also
depends on the ;.

An element o of S, is called an (i,n — i)-unshuffle if (1) < ... < o(7)
and o(i + 1) < ... < o(n). The set of (i,n — i)-unshuffles is denoted by
Sh(i,n — ). Similarly, Sh(ki,...,k;) is the set of (ki,...,k;)-unshuffles,
i.e., elements of S, with k; + ... + k; = n such that the order is preserved
within each block of length k;, 1 <1 < J.

The reduced symmetric algebra S(E) = ®;>15%(E) has a natural coas-
sociative and cocommutative coalgebra structure given by the coproduct

A:S(E)— S(E)® S(E),
A(x) =0, = € E;

A(JHQ Oy, :Z Z - O T ))®($U(i—‘r1) ©...0 xa(n)) )

1=1 geSh(i,n—1i)

for x1,...,z, € E. )
We will mainly use Sweedler notation: given x € S(F),

AW (z) = Alz) = T(1) ® T(2),
and the coassociativity yields
AW (z) = (id @ APN)A(z) = Ty ®... @ T(ny1), N> 2.
Notice that
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The cocommutativity of the coproduct is expressed, for homogeneous ele-
ments of S(F), as

T(1) X T(g) = (_1)‘36(1)”30(2)‘33(2) X T(1).-

Let V be another graded vector space. A linear map f : S(E) — V is
given by a collection of maps f; : S¥(E) — V, k > 1, and is usually denoted

by f = Zkfk

Remark 1.1. Every linear map f : S¥(E) — V corresponds to a graded
symmetric k-linear map f € Hom(®"*E, V) through the quotient map py :
®FE — S¥(E) i.e., f = fopy. In the sequel, we shall often write

flr®...0xz) = f(x1,...,25), x; € E.

A coalgebra morphism (or comorphism) between the coalgebras (S(E), Ag)
and (S(V),Ay) is a morphism F : S(E) — S(V) of graded vector spaces
such that

(F@ F)eAp = Ay oF.
There is a one-to-one correspondence between coalgebra morphisms
F:S(E) — S(V) and degree preserving linear maps f : S(E) — V. Each f
determines F' by

1 _
T) = ng(@"u)) ©...0 f(zw), v € S(E),
k>1

and f = py o F, with py : S(V) — V the projection map.
A degree k coderivation of S (E), for some k € Z, is a linear map
Q: S(F) — S(F) of degree k such that

AOQ — (Q@ld—'—ld@Q)OA
We also have a one to one correspondence between coderivations of S(FE) and

linear maps ¢ =Y, ¢ : S(FE) — E:

Proposition 1.2. Let E be a graded vector space and pg : S(E) — E the

projection map. For every linear map q =, q; : S(E) — E, the linear map
Q:S(E) — S(E) given by

Q([IZl ©.. .@Qj’n Z Z €(O’>qi (370(1)7 cee SIZU(i)) OZg(i+1) O .. OZg(n),
=1 geSh(i,n—1i)
(1)
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is the unique coderivation of S(E) such that pp.Q = q.
In Sweedler notation, Equation (1) is written as:

Q(z) = q(z) © x2) + q(x), =€ S(E).

When F is a finite dimensional graded vector space, we may identify S(E™)
with (SE)*. Koszul sign conventions yield, for each homogeneous elements
f,9€E,

(fog@oy) =" @) gy) + f(y) g(z), z,y€E.

1.2. Lie co-algebras. We briefly recall the definition of Lie oco-algebra [7],
some basic examples and related concepts.
We will consider the symmetric approach to Lie co-algebras.

Definition 1.3. A symmetric Lie oo-algebra (or a Lie[l] co-algebra) is
a graded vector space F = @®;czF; together with a family of degree +1 linear
maps I, : S¥(E) — E, k > 1, satisfying

Z Z (@)l (L (To), - - -+ To(i)) » Tolit1) - - - To@my) =0, (2)
i+j=n+1geSh(ij—1)

for all n € N and all homogeneous elements z1,...,z, € E.

The décalage isomorphism [10] establishes a one to one correspondence be-
tween skew-symmetric Lie co-algebra structures {I}. },  on E and symmetric
Lie oco-algebra structures {l}, .y on E[1]:

Lz, ... ap) = (—1) kDl =Dleeltotlewalp (00 gy,

In the sequel, we frequently write Lie oo-algebra, omitting the term sym-
metric.

Example 1.4 (Symmetric graded Lie algebra). A symmetric graded Lie
algebra is a symmetric Lie oo-algebra E = @®;czF; such that [, = 0 for
n # 2. Then the degree 0 bilinear map on FE[—1] defined by

[2,9] := (—1)ls(x,y), for all x € E;, y € E;, (3)

is a graded Lie bracket. In particular, if £ = E_; is concentrated on degree
—1, we get a Lie algebra structure.
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Example 1.5 (Symmetric DGLA algebra). A symmetric differential graded
Lie algebra (DGLA) is a symmetric Lie co-algebra E = @;czFE; such that
l, =0 for n # 1 and n # 2.

Then, from (2), we have that d := [; is a degree +1 linear map d : £ — F

squaring zero and satisfies the following compatibility condition with the
bracket [-, ] := lo(, ) :

{ d [z, y] + [d(x), y] + (=1)" [z, d(y)] = 0,

9] 2] + (=D (2, 2] ) + (<1 [a [y, 2] = O,

Applying the décalage isomorphism, (E[—1],d,[-,-]) is a (skew-symmetric)
DGLA, with [-,-] given by (3).

Example 1.6. Let (F = @;czF;,d) be a cochain complex. Then End(FE)[1]
has a natural symmetric DGLA structure with [y = 0 and [y = [+, -] given by:

0p = —dop + (—=1)19H1pod,
(6,9 = (=1 (@ogp — (=) DIy o g)
for ¢,y homogeneous elements of End(FE)[1]. In other words, 0¢ = —[d, ¢].

and [, ¢] = (—1)%8)[p )], with [, -], the graded commutator on End(E)
and deg(¢) the degree of ¢ in End(F).

The symmetric Lie bracket [-, -] on End(S(E))[1] preserves Coder(S(E))[1],
the space of coderivations of S(E), so that (Coder(S(E))[1],0, [, ]) is a sym-
metric DGLA.

The isomorphism between Hom(S(E), E) and Coder(S(E)) given by Propo-
sition 1.2, induces a Lie bracket on Hom(S(E), E) known as the Richardson-
Nijenhuis bracket:

[f:9), (2) = [(G(2)) = (=) Wg(F(2)), = eS(E),

for each f,g € Hom(S(E), E), where F and G denote the coderivations
defined by f and g, respectively. In other words, [F,G], is the (unique)
coderivation of S(E) determined by [f, 9l € Hom(S(E), E).

Elements [ := ), [ of Hom(S(E), F) satisfying [l,],, = 0 define a Lie
oo-algebra structure on E. This way we have an alternative definition of Lie
oo-algebra [5]:

Proposition 1.7. A Lie co-algebra is a graded vector space E equipped with
a degree +1 coderivation Mg of S(E) such that

(Mg, Mg], = 2M3z = 0.
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The dual of the coderivation My yields a differential d, on S(E*). The
cohomology of the Lie cc-algebra (E, Mg = {lk}keN) is the cohomology
defined by the differential d,.

A Maurer-Cartan element of a Lie oc-algebra (E, {l;},.y) is a degree
zero element z of E such that

Z%lk(z,...,z)zo. (4)

The set of Maurer-Cartan elements of F is denoted by MC(FE). Let z be a
Maurer-Cartan element of (E, {l;},.y) and set, for k > 1,

1
o, m) = 30 2 e, (5)

i>0

Then, (E,{lj},cy) is a Lie oo-algebra, called the twisting of E by z [3].
For filtered, or even weakly filtered Lie oo-algebras, the convergence of the
infinite sums defining Maurer-Cartan elements and twisted Lie oo-algebras
(Equations (4) and (5)) is guaranteed (see [3, 2, (]).

For a symmetric graded Lie algebra (F,l), the twisting by z € MC(FE) is
the symmetric DGLA (E,lf = ls(z,-),15 = 1s).

1.3. Lie oo-morphisms. A morphism of Lie oo-algebras is a morphism
between symmetric coalgebras that is compatible with the Lie co-structures.

Definition 1.8. Let (E, {l;},cy) and (V,{mi},cy) be Lie oco-algebras. A
Lie co-morphism & : F — V is given by a collection of degree zero linear
maps:

O SHME) =V, k>1,
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such that, for each n > 1,

Z elo (I)l—i—l (lk; To(1)s - - - ,xg(k)), To(k+1)s - - - Ig(n)) = (6)

k+l=n
oeSh(k,l)
1>0,k>1

e(o)
=2 TR (‘I’kl(%uw (k) Pho (Ta(ri1)s - Tothiay)) o

k1—|—...—|—k:j=n
O'GSh(kl,...,kj)

Dy (T (hytothy 1 41)5 - - - ,xa(n))),

If &, =0 for k # 1, then ® is called a strict Lie co-morphism.

A curved Lie oo-morphism E — V is a degree zero linear map
¢ : S(E) — V satisfying, for n > 0, an adapted version of (6) where the
indexes ki,...,k; on the right hand side of the equation run from 0 to n.
The zero component &5 : R — Vf gives rise to an element ®y(1) € V,
which by abuse of notation we denote by ®y. The curved adaptation of (6),
for n = 0, then reads 0 = > .., %mj(cbo, ..., ®g). In other words, @y is a
Maurer Cartan element of V' [3].

Considering the coalgebra morphism ® : S(E) — S(V) defined by the
collection of degree zero linear maps

O, SHME) =V, k>1,

we see that Equation (6) is equivalent to ® preserving the Lie oc-algebra
structures:

@oME - MVoq).

2. Representations of Lie co-algebras

A complex (V, d) induces a natural symmetric DGLA structure in End(V)[1],
see Example 1.6.

Definition 2.1. A representation of a Lie oc-algebra (E, {l;},.y) on a
complex (V,d) is a Lie co-morphism

D : (E, {lk}keN) — (End(V)[l], 87 ['7 ])7
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e, ®oMp = Mgy P, where Mg is the coderivation determined by
> il and Meyqqvyp is the coderivation determined by 9 + [+, -].

Equivalently, a representation of E' is defined by a collection of degree +1
maps
@y : SY(E) = End(V), k>1,
such that, for each n > 1,

n

28(0)@”—”1 (L (Zo1)s - - > To(i)) + To(i+1)s - - -+ To(n)) (7)

1=1
oeSh(i,n—i)

n—1
1
:8@n($1, ce ,xn)+§ ZE<U)[(I)]'<5UU(1)7 ce ,xa(j)), (I)nfj(xa(j—l—l); ce ,ajg(n))] .
j=1

JESh(jan_j)

Remark 2.2. A representation on a complex (V,d) can be seen as a curved
Lie oo-morphism & : £ — End(V)[1], with & = 7, ,®; and &y = d. In
fact, the first term on the right hand-side of Equations (7) is given by

0V, (x1,...,x,) = [Py, Pp(z1,...,2,)],
and we have a curved Lie oo-morphism
P - (E7 {lk}kEN> — (End(v)[l]u [’7 ])

between the Lie oc-algebra E and the symmetric graded Lie algebra
(End(V)[1], [, +]) (see [¢], Lemma 2.5). This is why sometimes a representa-
tion of a Lie oco-algebra E on a complex (V,d) is called a representation on
the graded vector space V' (compatible with the differential d of V).

Any representation ® : £ — End(V)[1] of a Lie co-algebra E on a complex
(V,d) has a dual one. Let

*:End(V) — End(V7)
be the Lie co-morphism given by
(f(@),v) = =(=1)"Wa, f(v)), feEnd(V),aeV,veV. (8

The dual representation *® : £ — End(V*)[1] is obtained by composition
of ® with this Lie co-morphism. It is a representation on the complex (V*, d*)
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and is given by
Fd(e) (), v) = — (=)l de)(v)), e € S(E), a e V¥, veV. (9)

Remark 2.3. Given a representation ® : F — End(V')[1] on a complex (V,d),
defined by the collection of degree +1 linear maps ®; : S¥(F) — End(V),
k > 1, one may consider the collection of degree 4+1 maps ¢, : SK(E) @V —
V, k>0, where g =d : V — V and ¢r(x,v) = (P(z))(v), k > 1.

The embeddmg S(E)® (S(E)®V) < S(E® V), provides a collection of
maps

O, SHE@V)=SE®V, k>1,

given by
&)k ((1’1, Ul), cee (I’k, Uk))
k
= <lk:(x1; ey ), Z(—1)|xi|(|xi+1|+"'+|zk‘)¢k—1(371, o Ty T Uz’));
i=1

and we may express Equations (7) as
&). (@.(x(l)) ® 37(2)) + &)1&).(3}) =0, ze€ S(E S¥ V) (10)
Equation (10) means that ® equips E® V with a Lie oo-algebra structure.

Now suppose the graded vector space V has a Lie oo-algebra structure
{my},.cy given by a coderivation My of S(V). By the construction in Exam-
ple 1.6, the coderivation My of S(V) defines a symmetric DGLA structure
in Coder(S(V))[1]:

O, Q = —My oQ + (—1)%eQQ o My,

Q7] = (-1 @ QP - (-1 @rIp.Q),

where deg(Q) and deg(P) are the degrees of Q and P in Coder S(V).

Generalizing the notion of an action of a graded Lie algebra on another
graded Lie algebra, we have the following definition of an action of a Lie
oo-algebra on another Lie oo-algebra:

Definition 2.4. An action of the Lie co-algebra (E, Mg = {l;},cy) on
the Lie oco-algebra (V, My = {my},y), or a Lie co-action of £/ on V, is a
Lie co-morphism

©: (B, {li}yez) = (Coder(S(V))[1], Oy, [+, ])-
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Remark 2.5. Being a Lie oo-morphism, an action

¢ : E — Coder(S(V))[1]
is univocally defined by a collection of degree +1 linear maps
®;, : SH(E) — Coder (S(V)), k>1.

By the isomorphism provided in Proposition 1.2, and since each O (z),
x € S¥(E), is a coderivation of S(V), we see that an action is completely
defined by a collection of linear maps

i SHE)YRS(V) =V, i k>1. (11)
We will denote the coderivation ®(x) simply by ®,.

Remark 2.6. If we define @, := My, then an action is equivalent to a curved
Lie co-morphism between E and the graded Lie algebra Coder(S(V)) (com-
patible with the Lie oo-structure in V) [5]. In this case, ® =}, , P} is

called a curved Lie oo-action.

There is a close relationship between representations and actions on Lie
oo-algebras.
_ First notice that each linear map # : V' — V induces a (co)derivation of

S(V'). Hence we may see End(V')[1] as a Lie co-subalgebra of Coder(S(V))[1].
Therefore, given a representation ® : £ — End(V)[1] of the Lie oo-algebra
FE on the complex (V,d), we have a natural action of F on the Lie oco-algebra
(V, My), where My is the coderivation defined by the map d : V. — V. In
this case, we say the action is induced by a representation.

Moreover, for each action ® : E — Coder (S(V))[1] of E on the Lie
oo-algebra (V, My = {mu},cy), We have a representation of £ on V' given
by the collection of maps ®;; : S¥(E)® V — V, k > 1, or equivalently,
®p1 = pr 2 S¥(E) — End(V), k > 1. The morphism p = >, pi is a rep-
resentation of the Lie oo-algebra E on the complex (V,d = my), called the
linear representation defined by &.

Finally one should notice that, given a Lie oco-algebra (V, My ), the graded

vector space Coder(S(V))[1] is a Lie oo-subalgebra of End(S(V))[1]. There-
fore, any action ® : £ — Coder(S(V))[1] of the Lie oc-algebra E on (V, My)
yields a representation of E on the graded vector space S(V). We call it the
representation induced by the action ®. The coderivation My defines
a (co)derivation of S(S(V)) and the representation is compatible with this

(co)derivation.
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Remark 2.7. In [8], the authors define an action of a finite dimensional Lie
oo-algebra E on a graded manifold .# as a Lie co-morphism & : F —
X(A)[1]. As the authors point out, when  is the graded manifold defined
by a finite dimensional Lie oco-algebra, we have an action of a Lie oo-algebra
on another Lie oo-algebra. The definition presented here is a particular
case of theirs because we are only considering coderivations of S(V), i.e.
coderivations of S(V) vanishing on the field S°(E). This restrictive case
reduces to the usually Lie algebra action on another Lie algebra (and its
semi-direct product) while the definition given in [3], gives rise to general Lie
algebra extensions. For our purpose, this definition is more adequate.

Next, with the identification S"(E & V) ~ @}_S" *(E) @ S*(V), we see
that the action ® determines a coderivation of S(E@® V). Together with Mg

and My we have a Lie oo-algebra structure on £ & V. Next proposition can
be deduced from [3].

Proposition 2.8. Let (E, Mg = {l1},cn) and (V, My = {my},oy) be Lie
oco-algebras. An action

® : E — Coder(S(V))[1]
defines a Lie oco-algebra structure in £ d V.
Proof: We consider the brackets {[,},eny on E @ V' given by:
(21, .. xn) =l(2, .. x0), 2, €F
(v, .oy vn) = myg(vg, ..y 0n), v €V

e (@1, ooy Ty V1, ooy Un) = Ppn(T1, . ooy Thy UL, -« oo, U),

with @, : S¥(E) ® S"(V) — V the collection of linear maps defining ® (see
Remark 2.5). .
The collection of linear maps @y, defines a coderivation of S(E & V),

T:S(E0V)— (S(E)yoS(V)eSV)cSE@V)
related to the action ® by
Y(z®@v)=>,(v), z€E, veSV)
and

T(zr®v)=>,(v)+ (—1)|x<1>|x(1) ® by, (v), T € S=(E), v e S(V).



O-OPERATORS ON LIE co-ALGEBRAS W.R.T. LIE co-ACTIONS 15

The degree +1 coderivation of S(E @ V) determined by {I,, }nen is
Mgey = Mg + T + My.
Let us prove that M7, = 0. For x € S(E) and v € S(V),
My (2) = Mg(z) =0 and Mgy (v) = Mi(v) =0
while, for mixed terms, we have
Mpay(z®@v) = ME(:U)®U—|—(—1)|x‘:C®MV(v)+(—1)|x(1>|:c(1)®(I>x(2)(v)+@x(v)
and
(Mo (o ® ) =(agy0)e (0) + (~1)(,)0 (My (1)
+ (= DFON @, )e( @i, (0)) + (@ (v)).

Since P is a Lie oo-morphism, we have

1
Pptp(o) = —My 2@y — (—1)10p 0 My +

which implies M%@V = 0. |

[@,,,®

Z(1)> x(2)} ’

The Lie oo-algebra structure in £/ & V presented in Remark 2.3, is a par-
ticular case of Proposition 2.8, with My = d.

Adjoint representation and adjoint action. An important example of a
representation is given by a Lie co-algebra structure.
Let (E, Mg = {ly},cn) be a Lie oo-algebra; thus (E,11) is a complex. The
collection of degree +1 maps
ady : S*(E) — End(E)
r1O...0x — adye.om =l (T1,.. ., T8, — )
satisfies Equations (7). (Note that Equations (7) are equivalent to Equations

(2)). So, this collection of maps defines a representation ad = ), ad; of the
Lie oo-algebra E on (F, ).

Definition 2.9. The representation ad is called the adjoint representation
of the Lie co-algebra (E, Mg = {l}},cn)-

Moreover, notice that for each T € SY(E), i > 1, we may consider the
degree |z| + 1 coderivation ad? of S(E) defined by the family of linear maps

(adg)r: SYE) — E
e — lip(z,e), k>1.
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So, we have a collection of degree +1 linear maps

ad; : SY(E) — Coder(S(E))

) >
r — ad? otz (12)

and we set ad =) ad;.

Proposition 2.10. The collection of degree +1 linear maps given by (12)
defines a Lie co-morphism

d: (E,{li},cn) — (Coder S(E)[1], Oy, [+, ])
from the Lie oco-algebra E to the symmetric DGLA Coder S(E)[1].

Proof: For each z € S'(E), let ad, = Y, (ad, ) and set [ = 3", Ij.
If 2 € @25 (F) and e € S(F), we have

Mz ®¢) = Mi(a) © e + (=) © Ma(e) + (- 1) li(z ), ¢) ©
+I(x, 6(1)) © e + (—1)‘6(1)Hx(2>|l(3§(1), 6(1)) O x2) ©e) + [(x,e)
and so,
ad,(Mg(e)) = I(z, Mg(e))
= (=D I(Mp(x © €) (=) 1(Mp(x),e) = (~=1)"i(ad? (¢))
—0 by (2)
— (-1 )\93<1>|+|$<1>|\93<2)|l(x() adx(l)( e))
= (— (-1 1)l ad,,, (@) —(— D, adf—(—l)'x@)'adm(l) 0 adf(z) )(e),

which is equivalent to

D x (9 D
adyr,(z) = —load, —(=1)llad, « Mg — (—1)ke ady,, o ady,
or to {
adME [l ad ] 2( 1>‘x(1)‘[adm(1)7adI(g)]RN (13)
Note that the coderivation defined by the second member of (13) is
1
(Mg, ad?] + —[adx(l), ad]) | = O, (ad?) + : Slady ady) .

If x € E/, a similar computation gives

ady () = —load) —(=1)"lad, c Mp = —[1,ad,] - (14)
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Equations (13) and (14) mean that the map ad : E — Coder S(E)[1] is a
Lie co-morphism. |

Definition 2.11. The linear map ad : E — Coder(S(£))[1] is an action of
the Lie oc-algebra E on itself, called the adjoint action of E.

3. O-operators on a Lie oco-algebra

In this section we define O-operators on a Lie oo-algebra E with respect to
an action of F on a Lie oo-algebra V. This is the main notion of the paper.

3.1. O-operators with respect to a Lie co-action. Let (E, Mg = {l;};>)

and (V, My = {my},~,) be Lie oc-algebras and ® : £ — Coder(S(V))[1] a
Lie oc-action of £/ on V. Remember we are using Sweedler’s notation: for
each v € S(V),

A(v) = va) ® v
and
A2(v) = (14 ® A)A() = (A @ id)A() = vy © vz © vy,
Each degree zero linear map T : S(V) — S(E) defines a degree +1 linear
map &7 : S(V) — S(V) given by
dT(w)=0, veV,
' (v) = Oy V), v E STEV).

Lemma 3.1. The linear map ® : S(V)) — S(V) is a degree +1 coderivation
of S(V)) and is defined by the collection of linear maps > Qoo T @ id)A.

Proof: For the linear map ®7 : S(V) — S(V) to be a coderivation it must
satisfy:
AP (v) = (" ®@id+id® @) A(v), veS(V).
This equation is trivially satisfied for v € V.
For each v = v; ® vy € S?(V) we have ®T(v) € V and consequently,
A®T(v) = 0. On the other hand, since CIDT‘V = 0, we see that
(" ®id+id®@®") A(v) =0

and the equation is satisfied in S?(V/).
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Now let v € §=3(V), then
A@T(v) = A@T(U(l))?)(g)
= (Prgy ®id+id ® iy ) Alv).
The coassociativity of A ensures that
ADT(v) = Py 0e) © vg) + (—1) Ol @ B, o)
= B,V @ V() + (1Ol @ By,
= (¢" @id +id® @) A(v).
|

Definition 3.2. Let (E, Mg = {l.};>,) and (V, My = {my},,) be Lie oo-

algebras and ® : F — Coder(S(V))[1] an action. An O-operator on F with
respect to the action ® is a (degree 0) morphism of coalgebras T : S(V) —
S(E) such that

MpoT =To (o1 + My). (15)
Definition 3.3. A Rota Baxter operator (of weight 1) on a Lie oco-
algebra (E, Mg = {l;},~,) is an O-operator with respect to the adjoint action.

An O-operator T : S(V) — S(E) with respect to an action ® : £ —

Coder(S(V))[1] of (E, Mg = {lx};>,) on (V, My = {my.},>,) is defined by a
linear map t =) .t; : S(V) — E satisfying:

() h(ti(v)) =t1(mi(v), veV

(ii)) (T (v)) =t ((I)T(v(l))U(Q) + m(v(l)) © U(g)) , VE @izQSi(V).

In particular, the @-operator T is a comorphism i.e., for each
veS"E),n>1,

1
T(v) = Z rl by (U(k1)> ©... Oy, (U(kr))’
kit 4ke=n

so, detailing (ii) for v = v; ® v, we get

h(ta(vr, v2)) 4o (B (1), ()
=11 (q)tl(vl)UQ + (=1 ml@tl(w)m + ma(v1, 02))
+ 19 (ml(vl), v2)> + (—1)'”1‘752 (Ul, ml(vg)).
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Generally, for every v = v © ... ® v, € S"(V), n > 3, we have
€(o)
Z T lz (tkl (U0(1)7 s 7710'(]41))7 s 7tki (UO'(kl—‘r‘..—«—ki_l-‘rl)u v ,'Ug(n)>>

ki+..4kito=n
O’ESh(k‘l ..... k‘i+2)

t1+ki+2 <(Pi,k‘i+1 (tkl (UO'(].) e 7U0'(k1)) @ e @ tk‘l (UO'(kl-‘r...-‘rk’i,l-ﬁ—l)a e 7UU(kJ1+...+ki))7

Vo (ky+..thi+1) @ 00 O Uo(k1+..‘+ki+1)) s Vo(ky+otkigr+1) © 0 O Uo(n))

+Z Z E(O‘) tn—i+1 (mi(vg(l), e ,Ug(i)), UJ(H_l), . ,Ua(n)>.

=1 o€Sh(i,n—1i)

Remark 3.4. When My = 0 we are considering V' simply as a graded vector
space, with no Lie co-algebra attached and an O-operator must satisfy

MEOT — To(bT.

In this case, the terms of above equations involving the brackets m; on V
vanish.

Remark 3.5. When (E, [-,-]5) and (V,[-,-],,) are Lie algebras, for degree rea-
sons, a morphism 7" = ¢; must be a strict morphism. Moreover, our definition
coincides with the usual definition of @-operator (of weight 1) between Lie
algebras [1] :

t1(v), t1(w)]p = t1 (Pt (yw — Pry v + [0, 0]y) . v,w e V.

Remark 3.6. When (V, d) is just a complex and the action ® : £ — Coder(S(V))[1]
is induced by a representation p : E — End(V)[1] we have that ®(x) is the
(co)derivation defined by p(x). In this case, O-operators with respect to ® co-
incide with @-operators with respect to p (or relative Rota Baxter operators)
given in [0].

In [6] the authors define O-operators with respect to representations of Lie
oo-algebras. Any action induces a representation and O-operators with re-
spect to an action are related with @-operators of with respect to the induced
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representation. We shall see that this relation is given by the comorphism

I = Zin :S(V) = S(S(V)),
n>1
defined by the family of inclusion maps i, : S"(V)) < S(V), n > 1.
~Notice that any coderivation D of S(V) induces a (co)derivation D? of
S(S(V)). The comorphism I preserves these coderivations:

Lemma 3.7. Let V' be a graded vector space and D a coderivation of S(V).
The map I : S(V) — S(S(V)) satisfies

I.D=D%.T.

Proof: We will denote by - the symmetric product in S(S(V)), to distinguish
from the symmetric product @ in S(V).

Let v € S"(V), n > 1, and denote by {my},., the family of linear maps
defining the coderivation D. For v € V, we immediately have DY.1(v) =
DoI(v) = IoD(v). For v € SZ3(V) we have

n

1
Ddo](v) = Dd<ZEU(1) : U(k)>

k=1
—~ 1
= ZE D(vn)) - vz) U(k)
k=1
F o4 (= 1) Pl e ) - V(k-1) D(U(k))>

= D(U(l)) : ](U(g)).
On the other hand
IoD(v) = I(me(v) © v)
=ma(v()) - L(v2)) + (Me(v(1)) © v2)) - 1(v(3)
= D(v)) - I(ve)
and the result follows. |

Remark 3.8. In particular, if D defines a Lie oo-algebra structure on V', then
DY defines a Lie oo-algebra structure on S(V') and I is a Lie oo-morphism.
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Proposition 3.9. Let & : E — Coder(S(V))[1] be an action of the Lie
oco-algebra (E, Mg = {lk}k21) on the Lie co-algebra (V, My = {mk}k21) and
T : S(S(V)) = E be an O-operator with respect to the induced representation
p:E — End(S(V)[1]. Then T =TI is an O-operator with respect to the
action ®.

Proof: For each x € S(E), let us denote by
;= 0(2)! = p(a)?,
the (co)derivation of S(S(V)) defined by p(z).

Let T be an O-operator with respect to the induced representation. This
means that

Mo T(w) = T( B, ) + My (w)), w e S(S(V)).
Then, for each w = I(v), v € S(V), we have:
Mg oT(I(v)) = f(@dm(vwf(v)@ + Mvdo](v)>.

Using the fact that [ is a comorphism and Lemma 3.7, we rewrite last equa-
tion as

Mg oT(v) = T(@df(](v(l)))l(v(g)) + My of(v)>
= T(Lo® 00 + 1o My(v))

— T(@T(U(l))v(g) + MV(U)).

Taking into account this equation and that 7' is a comorphism, because is
the composition of two comorphisms, the result follows. |

Proposition 3.10. Let T be an O-operator on (E, Mg = {lk}kzl) with re-
spect to a Lie co-action ® : E — Coder(S(V))[1] on (V. My = {mi};5).
Then, V' has a new Lie oco-algebra structure

Myr = &7 + My
and T : (V, Myr) — (E, Mg) is a Lie oco-morphism.

Proof: By Lemma 3.1 we know ®T is a degree +1 coderivation of S(V') hence
so is My r.
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Since @ is an action, so that ® o Mg = Mcoger(5(v))p) o P, and 1" is a comor-
phism, we have, for each v € S(V),

D sy (o) V() =— My Pru Vi) — (= 1) 01 q, ) My (v2) (16)
+(_1)|v(1)|+1(I)T(v(1))q)T(U(2))U(3)'
On the other hand, T" is an O-operator:
ME oT(U) = TO(I)T(U(U)U(Q) + Ton(U)
and this yields

PrteT () V@) = PT0r, 00 V3) T PTa (0) V) (17)

(
Moreover, due to the fact that both ®” and My are coderivations and
Mz = 0, we have
M2 (v) = (O7)2(0) + &7« My (v) + My o0 ()
- (I)T(@T(U(l))v(z))v@) + <_1)|v(1)‘(I)T(U(l))(bT(U(Q))U(g)

+ (I)TMV(UQ))U(?) + (_1)|v(1)|CI)T(U(1))MV(U(2)) + MV(CDT(U(D)U(Q))'

Taking into account Equations (16) and (17) we conclude M+ = 0. There-
fore, Myr defines a Lie co-algebra structure on V' and Equation (15) means
that T : S(V) — S(E) is a Lie oo-morphism between the Lie oo-algebras
(V, Myr) and (E, Mp). .

The brackets of the Lie oco-algebra structure on V' defined by the coderiva-
tion My are given by
my (v) = mi(v)
and, for n > 2,

mg(vl, ceyUp) = my (v, .. vp)

1
+ Y S €(0) — i (tk, (Va(1)s - -+ s V()

k1++k1:] U€Sh(k1 ..... ki,n—j)

1<j<n-1

O Ot (Vo (kg tthir 1) - - -5 Vo(4))s Vo) @+ o O Ua(n)) ;
with ®;,,_;,¢ > 1, the linear maps determined by the action ® (see (11)).
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O-operators for the coadjoint representation. Let (£, Mg = {l}.};>;)
be a finite dimensional Lie oo-algebra. Next, we consider the dual of the
adjoint representation of E (see (9)), called the coadjoint representation.

Definition 3.11. The coadjoint representation of £, ad® : F — End(E™)[1],
is defined by

(adi(a),v) = — (=)= (q ad,v), ve B, z € S(E), acE"
Notice that E* is equipped with the differential I7 (see (8)).

An O-operator on E with respect to the coadjoint representation ad* : ' —
End (E*)[1] is a coalgebra morphism 7" : S(E*) — S(FE) given by a collection

of maps t = >, t; : S(E*) = E satisfying

Z(T(Oé)) = Z 6(0) tn—i+1(ad;(ag(l)Q.Oag(i)) Qo (i+1)) Co(i+2)y -+ Qo(n))
1<i<n—1
o€Sh(in—i)

£ ()l (0, ), (18)
=1

forala =1 ®...0a, € S"(E*),n > 1.
We say that T is symmetric if

(B, tolan, ... ap)) = (_1)Ia\|ﬁ|+|an|(\a1|+m+lan71I) (o, tn(on, ... o 1, B)),

for all aq,...,q,, 8 € E* and n > 1. ) )
When T is invertible, its inverse 77! : S(E) — S(E*), given by t1 =
>, b, is also symmetric:

<t;1($17 . '7$n)7y> = (_1)|y||$n| <t;1($1, s 7xn—lay)7xn> )

for every xq,...x,,y € E, n > 1.

One should notice that ¢! is not the inverse map of ¢,. It simply denotes
the n-component of the inverse 7! of T.

For each n > 1, let w™ € ®@"E* be defined by w") = 0 and

<w(”),x1 R...Q :Cn> = <t;}1(x1, . ,:z:nfl),xn>, x1,...,0, € F.

The symmetry of T-! guarantees that w = 2@1“’(”) is an element of

S(EY).
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Proposition 3.12. Let T : S(E*) — S(E) be an invertible symmetric co-
morphism. The linear map T is an O-operator with respect to the coadjoint
action if and only if w € @,>25"(E*), given by

(W, 21O ... O Tpy1) = <t,;1(a:1, . ,:z:k),a:k+1> . T1,...,Tp1 € B E>1,
15 a cocycle for the Lie oco-algebra cohomology.
Proof: When T is invertible, Equation (18) is equivalent to equations
tr'h(z) =Lty (z), =€k,
and

t ' Mp(z) = ad} t zwg)+ 4t (z), x€S"(E),n>2.

1"(1)

Let t=210...0x, € S"(E), n>1, and y € E, such that |y| = || + 1.
We have:

(W, Mp(z ®y)) = <t y> + ( |x| <t*1(x1, . ,xn),ll(y)>
+ (=1 )'x“)'< 1(90( ), adx<2 y>

= (t " (Mg(z)),y) — (Gt (2),y) — <ad;ﬁ(1 B (2)),y>

and the result follows. ]

3.2. O-operators as Maurer-Cartan elements. Let (E, Mg = {l1.},-,)
and (V, My = {my},-,) be Lie co-algebras.
The graded vector space of linear maps between S(V) and E will be denoted

by b := Hom(S(V), E). It can be identified with the space of coalgebra
morphisms between S(V) and S(E). On the other hand, since

S EaV)~a)_ (" "E)®S"(V)), n>1,

the space h can be seen as a subspace of Coder(S(E @ V)), the space of
coderivations of S(E @ V). Its elements define coderivations that only act
on elements of S(V), they are S(FE)-linear.

The space S(F @ V') has a natural S(F)-bimodule structure. With the
above identification we have:

e (2®V) = (o) ®v = (~1)FEHD(5 @) e
foree S(E),z@veSEadV)~SE)SV).
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Let ¢ : S(V) — E be an element of b defined by the collection of maps
tp : S¥(V) — E, k > 1. Let us denote by T : S(V) — S(E) the coalgebra
morphism and by t the coderivation of S(E @ V') defined by t. Notice that

tlv) =t1(v), veV
and
t(v) = t(v) @ Ve +tv), veSTZ(V).
and also, for z € S(F),
tx@v) = (=) s tv), vesV).
Proposition 3.13. The space b is an abelian Lie subalgebra of Coder(S(E @
V).

Proof: Let t =, t; : S(V) = E and w = >_,w; : S(V) — E be elements
of h. Denote by t and to the coderivations of S(E @ V) defined by t and w,
respectively.

Let v € S(V). The Lie bracket of t and  is given by:

[t 1], (v) = to (w(vg)) ® viz) — (=)Mo (t(v) @ vi)
— (_1)It|(\w|+\v<1>l)w(v(1)) -t(v(g)) _ (_1)Itllw|(_1)\w|(|t|+|v<1>l)t(v(1>) ) m(v(g))

_ ((_1)It(lw+|v(1>)w(v(1)) t(vg)
_ (_1)|t||w|(_1)|w|(|t\+|v(1)\)t(v(1)) . w(U(Q))> ® v(3)
+ (=) R @Dy (v4) -t (o) — (—D)H (D)0 () - w (o)
= ((—1)|t(|w+|v(”)w(v(1)) O t(v())
— (=1)ltitabHollvely (yy) © t(“(l))) ® v(3)
+ (=)0 Dw(v) © o)
— (=)lwrrebtrmlvely (vy) © tv),

where we used the fact that t and w are S(E)-linear. Because of cocommu-
tativity of the coproduct, the last expression vanishes. |

Now, let @ : E — Coder(S(V))[1] be an action of the Lie co-algebra E
on the Lie oo-algebra V. By Proposition 2.8, ® induces a coderivation T of

S(E®V)and Mpgy = Mg+ Y+ My is a Lie oo-algebra structure on E@ V.

Let & : Coder(S(E & V)) — b be the projection onto b.
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Then we have:

Proposition 3.14. The quadruple (Coder(g(E @®V)),b, 2, ME@V) is aV-
data and Y has a Lie co-algebra structure.

Proof: We already know that Coder(S(E @ V)), equipped with the commu-
tator, is a graded Lie algebra and b is an abelian Lie subalgebra.
Let p: S(E® V) — E be the projection and i : S(V) — S(E @ V) the
inclusion.
Notice that, for each Q € Coder(S(E @ V)) we have P(Q) = poQ i so
) @

ker # = {Q € Coder(S(E @ V) o1 is a coderivation of S(V)}
is clearly a Lie subalgebra of Coder(S(E @ V)):
P([Q. Pl,) =po [Q, P], oi = poQPoi — (—1)19"p. PQ.i
= poQoioPoi— (=1)9Flp.PoicQoei=0, P,Q €ker .
Moreover
Mpggy oi = My, so Mpey € (ker P);
and, since Mpqgy defines a Lie oco-structure in £ & V', we have:

Mgy, Mpey], = 0.

Voronov’s construction [10] guarantees that b inherits a (symmetric) Lie
oo-structure given by:

8k(t1, . ,tk) = @([[ .. [ME@V’tl]RN .. .]RN,tk]RN), tl, . ,tk - h, k > 1.

Remark 3.15. A similar proof as in [0] shows that, with the above structure,
b is a filtered Lie oo-algebra.

Lemma 3.16. Letp : S(E®V) — E be the projection map and t a coderiva-
tion of S(E @ V) defined by a degree zero element t : S(V) — E of h. For
each v € S(V),

8175(0) = llt(v) — ton(U)

O(t, ..., t)(v) = L(tlvqy), ... tlog)) — kt (q)t(v(l))Q...@t(v(k_l))v(k)> k> 2.
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Proof: Notice that
pot =1
potf =0, k>2.

Consequently, for £ = 1 we have

01t(v) = poMpgy ot(v) — poto My (v) = l1t(v) — to My (v), v e S(V)
and, for k > 2,
O(t,....t) = poMpay ot —kpotoMpgy ot
= loth — ktoMpay ot 1
and the result follows. |

Remark 3.17. Notice that dy(t,...,t)(v) = 0, for v € S<¥(V), as a conse-
quence of t*(v) = 0 and ®.t*"1(v) € S(E).

Next proposition realizes @-operators as Maurer-Cartan elements of this
Lie oo-algebra §.

Proposition 3.18. O-operators on E with respect to an action ® are Maurer-
Cartan elements of b.

Proof: Let t : S (V) — E be a degree 0 element of h and t the corresponding
coderivation of S(E @ V). Maurer-Cartan equation yields

1 1
81t+Eﬁg(t,t)+---+E(9k(t,...,t)+... = 0.
Using Lemma 3.16 we have, for each v € S¥(V),
1 1
81t(v)+§82(t, t)(v) + -+ Eak(t, ) (v) =
= lit(v) — to My (v)

1
+ §l2 (t(v(l)), t(v(g))) —1 (q)t(v(l))v(2)> + ...+

1 1
+ Elk (tvay), - tlow)) — i 1)1 t (q)t(v(l))@..@t(v(k1))U(k)> :

Let T : S(V) — S(E) be the morphism of coalgebras defined by

t:S(V)— E. Maurer-Cartan equation can be written as
loT(U) — ton(U) — t(I)T(U(l))U(Q) = 0,
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which is equivalent to 7" being an O-operator (see Equation (15)). n

4. Deformation of O-operators

We prove that each Maurer-Cartan element of a special graded Lie subal-

gebra of Coder(S(E @ V)) encondes a Lie oo-algebra structure on £ and a
curved Lie oco-action of £ on V. We study deformations of @-operators.

4.1. Maurer-Cartan element of Coder S(E ® V). Let E and V be two
graded vector spaces and consider the graded Lie algebra £ := (Coder(S(E®
), [,].)- Since S(E®V) ~ S(E)®(S(E) @ S(V)) & S(V), the space M :=
Coder(S(E)) of coderivations of S(E) can be seen as a graded Lie subalgebra
of £. Also, the space R of coderivations defined by linear maps of the space

Hom((S(E) ® S(V)) @ S(V),V) can be embedded in £ We will use the

identifications M = Hom(S(F), E) and R = Hom((S(E)®@S(V))®S(V),V).
Given p € R, we will denote by py the restriction of the linear map p to S(V)
and by p, the linear map obtained by restriction of p to {z} ® S(V), with
v € S(E). Weset &£ :=M®R.

Proposition 4.1. The space £ is a graded Lie subalgebra of £ = Coder(S(E®
V).

Proof: Given m & p,m' @ p' € £/, let us see that

/ / / / / /
me&p.m &p],  =mm]  &(mp], +Ipm],  +lprl,)

is an element of £'. It is obvious that [m,m'] € Hom(S(E), E). Consider

m? and pP the coderivations of S(E @® V') defined by the morphisms m and
p, respectively. For z € S(F) and v € S(V') we have,

[m’ pl]RN (iL’) - [ma p/]RN <U) =0
[mapl]m\, (x®@v) = (mop’D — (_1)|m||p’|plomD) (z ©v)
= —(—1)|m||P/|p;nD(I)(U) cv
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and

[0, 0], () =0

0,0y (0) = pepP () = (1)W1 e pP(0) € V

920 (2 @ 0) = (=)W (P () + (= 1) o (A7, () + o (v)
ev

—-(—1)pmq(f—1Y”mUé(P§(UD-+(—4J”“mmpém(ﬂ£m(vﬂ-+P60é70)2%

ev
which proves that [m, o], =+ [p,m/]  +[p,0],, € Hom((S(E) @ S(V)) @
S(V), V). m

Next theorem shows that an element m @ p € £' which is a Maurer-Cartan

of £ = Coder(S(E @ V)) encodes a Lie oo-algebra structure on F and an
action of F/ on the Lie oo-algebra V.

Theorem 4.2. Let E and V' be two graded vector spaces and m @ p € £ =
M @ R. Then, m @ p is a Maurer-Cartan element of £ if and only if m”
defines a Lie co-structure on E and p is a curved Lie oo-action of E on V.

Proof: We have

[m, m] o

=0
2m, pl, +lp:pl,, = 0.

Similar computations to those in the proof of Proposition 4.1 give, for all
veS(V)and z € S(E),

{@mmmf+mmmﬂmo
)

[m@p,m@p]RNO@{ (19)

(2[m,p] . +[p.p] ) (z@0) =0

- poepy (v) =0 .
1"
me(l")(v) - (_ [p()’px]RN o % [px(l)’px(Q)]RN> (U)

Since m @ p is a degree +1 element of £, the right hand-side of (19) means
that m” defines a Lie oo-algebra structure on F and p = >, px is a curved
Lie co-action of E on V. Notice that pf : S(V) — S(V) equips V with a Lie
oo-structure.
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Reciprocally, if (E, m”) is a Lie oo-algebra and p is a curved Lie co-action
of E on V, the degree +1 element m & p of £ is a Maurer-Cartan element
of £. |

Next proposition gives the Lie oc-algebra that controls the deformations
of the actions of £ on V' [3].

Proposition 4.3. Let m® p be a Maurer-Cartan element of £ and m'@p' a
degree +1 element of £'. Then, m®p+m'®p’ is a Maurer-Cartan element of
£ if and only if m' @ p' is a Maurer-Cartan element of £ %P, Here, £ "%P
denotes the DGLA which is the twisting of £ by m & p.

4.2. Deformation of 0O-operators. Let h be the abelian Lie subalgebra of
£ = Coder(S(E @ V)) considered in Proposition 3.13 and & : £ — b the
projection onto h. Let A € £ be a Maurer-Cartan element of £. Then,

(£,h,2,A) is a V-data and h has a Lie co-structure given by the brackets:

Ok(ar, ..., ap) = P [Aa1] - x> Wklpy)s k2> 1

We denote by ha the Lie oco-algebra h equipped with the above structure.
The V-data (£, h, P, A) also provides a Lie co-algebra structure on £[1]@Bh,
that we denote by (£[1] & h)a, with brackets [10]:

(¢ (v, 1)) = (= [A 2], Pl + A ai, )
A N — (_1)deg(x) /

g5 (x,x’) = (—1)%9 [x,a:]RN

1 (20)
q(zyar, ... ap-1) = P([. .. [[r,a1] oy @2) sy - - - Q1 iy )s K > 2,

g2 (ay, ... a) = O(ar, ... ax), k>1,

z,2’ € £[1] and ay,...,a;_1 € h. Here, deg(x) is the degree of = in £.

Moreover, since £ is a Lie subalgebra of £ satisfying [A, £] C £/, the
brackets {qkA} Loy Testricted to £[1] @ b define a Lie oo-algebra structure on
£'[1] & b, that we denote by (£'[1] & h)a. Notice that the restrictions of the
brackets {qkA} to £'[1] @b are given by the same expressions as in (20) except
for k = 1:

QIA((xu al)) - (_ [A7 x]RN 7‘@([A7 al]RN)> — (_ [A7 'T]RN 7al(a1))7
because P(L') = 0. Of course, ha is a Lie co-subalgebra of (£'[1] @ h)a.
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Remark 4.4. The brackets (20) that define the Lie oo-algebra structure of
(£[1]@®bh)a coincide with those of ha for x = 2’ = 0. So, an easy computation
yields

t € MC(ha) & (0,t) € MC(L'[1] @ h)a.

Theorem 3 in [2] yields:

Proposition 4.5. Consider the V-data (£,5, P, A), with A € MC(£') and
let t be a degree zero element of . Then,

t € MC(ha) < (A,t) € MC(L[1] @ h)a.

Recall that, given an element ¢ € h = Hom(S(V), E), the corresponding
morphism of coalgebras T : S(V') — S(E) is an O-operator if and only if ¢ is a
Maurer-Cartan element of ha (Proposition 3.18). Moreover, given a Maurer-
Cartan element m @ p of £, we know from Theorem 4.2 that (E,mP) is a
Lie oo-algebra and p is a curved Lie oo-action of ' on V. So, an O-operator
can be seen as a Maurer-Cartan element of the Lie co-algebra (£/[1] @ h)a:

Proposition 4.6. Let E and V' be two graded vector spaces. Consider a
morphism of coalgebras T : S(V) — S(E) defined by t € Hom(S(V), E),
and the V-data (£,5, P, A), with A == m & p € MC(L'). Then, T is an
O-operator on E with respect to the curved Lie oco-action p if and only if
(A,t) is a Maurer-Cartan element of (£'[1] & h)a.

Corollary 4.7. If T is an O-operator on the Lie co-algebra (E,mP”) with
respect to the curved Lie co-action p of E on 'V, then ((£/[1] @ b)ma,) ™
15 a Lie oco-algebra.

As a consequence of Theorem 3 in [2], we obtain the Lie co-algebra that
controls the deformation of @O-operators on E with respect to a fixed curved
Lie oo-action on V:

Corollary 4.8. Let E and V' be two graded vector spaces and consider the
V-data (£,5, P, A = m @ p). Let T be an O-operator on (E, mP) with
respect to the curved Lie oco-action p and T' : S(V) — S(E) a (degree zero)
morphism of coalgebras defined by t' € Hom(S(V), E). Then, T + T" is an
O-operator on E with respect to the curved Lie oco-action p if and only if

(A,t') is a Maurer-Cartan element of (£'[1] & h)(AA’t).
Proof: Let t € h be the morphism defined by 7. Then [2],
(At +¢) e MC(E[] @ h)a & (A, ¢) e MC(ET] @ 5)P). m
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