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Abstract: While finding a path between two nodes is the basis for several ap-
plications, the need for alternative paths also may have various motivations. For
instance, this can be of interest for ensuring reliability in a telecommunications
network, for reducing the consequences of possible accidents in the transportation
of hazardous materials, or to decrease the risk of robberies in money distribution.
Each of these applications has particular characteristics, but they all have the com-
mon purpose of searching for a set of paths which are as dissimilar as possible with
respect to the nodes/arcs that compose them.

In this work we present linear integer programming formulations for finding K
dissimilar paths, with the main goal of preventing the overlap of arcs in the paths
for a given integer K. The different formulations are tested for randomly generated
general networks and for grid networks. The obtained results are compared in terms
of the solutions’ dissimilarity and of the run time. Two of the new formulations are
able to find 10 paths with better average and minimum dissimilarity values than an
iterative approach in the literature, in less than 20 seconds, for random networks
with 500 nodes and 5000 arcs.

Keywords: K alternative paths, Dissimilarity, Integer linear programming formu-
lations.
Math. Subject Classification (2020): 90C05, 90C10, 90C90.

1. Introduction
Let (N,A) denote a given directed network consisting of a setN = {1, . . . , n}

of nodes and a set A ⊆ N ×N of m arcs. Let s and t be two different nodes
of N , called the source node and the target node, respectively. Finding a
path in the network (N,A) between the nodes s and t is one of the most
classical and widely used network optimization problems, and the basis for
several applications in operations research. Studying the determination of
alternative paths, on the other hand, is an interesting problem by itself that
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stems from different real-life problems but has been considerably less studied
than the former. For instance, in a modern and industrialized society, rout-
ing hazardous materials like poisonous gases or radioactive materials is an
important issue, so the need for alternative safe routes is crucial for reducing
the risk of disaster in case of accidents or if the best route becomes infeasible
due to road construction [1, 4, 9, 16]. Repeating paths is also avoided in
money collection, where having alternative paths/routes decreases the risk
of robberies and can be used in case of danger of robberies [3, 7]. Addition-
ally, in telecommunications, a backup path is often replaced by a primary
one if a failure occurs along it or if it can be used simultaneously to spread
information transmitted at a specific time [14, 15].

Let K ∈ N be a given number of alternative paths to be found. The
definition of alternative paths may vary depending on the application, the
common denominator being that the paths in the solution should share the
least possible network resources. Several works use dissimilarity measures
between two paths as the metric for achieving this purpose, nevertheless,
also this notion is not uniquely defined, nor would that be desirable provided
that the metrics are often tailored to the application. For instance, [12] de-
veloped four indices for measuring the similarity between two paths, defined
as follows:

Index 1: S1(p, q) =
1

2

(
L(p ∩ q)
L(p)

+
L(p ∩ q)
L(q)

)

Index 2: S2(p, q) =

√
L2(p ∩ q)
L(p)L(q)

Index 3: S3(p, q) =
L(p ∩ q)

max{L(p), L(q)}

Index 4: S4(p, q) =
L(p ∩ q)
L(p ∪ q)

where p and q are two paths and L(p) denotes the length of path p, that is, its
number of arcs. The dissimilarity between p and q is then given by Di(p, q) =
1−Si(p, q), for i = 1, 2, 3, 4. The dissimilarities vary between 0 and 1, the first
when the two paths coincide and the latter when they are arc disjoint. The
authors also showed that there is a strong correlation between these indices.
Other works have extended these concepts by including information about
the underlying area affected by the paths or the distance between them, once
again depending on the problem [9, 25].
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Additionally, in concrete applications the problem has frequently been han-
dled from a bi-objective point of view, having the goals of optimizing both the
total paths length/cost as well as the dissimilarity of the set of paths. Now,
while the shortest path problem or the ranking of K shortest paths problem
are well-known and well-studied problems, the same is not true when the
objective function represents paths dissimilarity. Many of these bi-objective
problems have been addressed from an algorithmic approach whose primary
goal is not to optimize the dissimilarity and, to our knowledge, there are no
published studies considering the paths dissimilarity problem from an integer
programming point of view.
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(a) Solution with one repeated arc,
shared by several paths
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(b) Solution with many repeated arcs,
shared by few paths

Figure 1. Different sets of K = 4 paths

Filling this gap and deepening the understanding of such problems are the
main motivations for the present work, also because this may be a relevant
contribution for an efficient treatment of a bi-objective problem involving
paths dissimilarity.

As mentioned earlier, it is not uncommon to find different understandings
of the term “dissimilarity” in the literature. In this work, we focus on the
conception of dissimilarity as defined by D1. Thus, the presented models aim
at producing sets of K paths with good scores in terms of D1.

However, modeling D1 as the objective function of an integer linear pro-
gramming (ILP) model, presents some difficulties as this is a non linear met-
ric involving an underlying combinatorial problem. On the other hand, it
is intuitive that minimizing the number of arcs shared by the K paths or
minimizing the number of paths that share a common arc in the K paths,
favor the dissimilarity of the solution. Furthermore, these problems can be
modeled quite easily, obviating the above mentioned difficulties. Thus these
alternative ways of looking into the K dissimilar paths problem seem promis-
ing and are worth exploring.

In the present work we introduce and compare three families of ILP formu-
lations, each one addressing one of the strategies mentioned before. Figure 1
illustrates their differences and emphasizes some of their limitations.

For simplicity, assume that all the paths represented in Figure 1 have the
same length. There are 6 arc overlaps for every pair of paths in Figure 1a
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(that is, the sum of L(p ∩ q) for every pair of paths p, q in the solution is
equal to 6), while in the solution depicted in Figure 1b there are only 2.
Therefore, the second is a better solution than the first with regard to their
dissimilarity. However, if one chooses to count the arcs shared by more than
one path, there is only 1 in the solution in Figure 1a and there are 2 in the
solution in Figure 1b. Thus, the first solution is the best with regard to this
metric. This situation illustrates the major drawback of the strategy devised
by this approach – the lack of control over the number of overlaps associated
to arcs that are used by more than one path. By contrast, if counting the
number of arc repetitions in the solution (given by the number of times an
arc is present in the solution, besides its first use), there are 3 in the solution
depicted in Figure 1a and 2 in the solution depicted in Figure 1b, favoring the
solution that seems to be the most dissimilar one. Still, this third approach
is not exempted of drawbacks, as it does not distinguish between alternative
solutions with different dissimilarities.

To (partially) overcome the drawbacks of the two approaches a set of ad-
ditional constraints is proposed, which imposes a bound on the number of
paths that use each arc in the solution. Formal definitions of each of these
problems and concepts are introduced later on.

The remainder of this work is structured as follows. Section 2 gives a
literature overview of problems related with finding alternative paths. In
Section 3 the problem of finding K dissimilar paths between two nodes is
presented, and in the next three sections ILP formulations are introduced to
provide solutions based on the approaches described above. Computational
results for different variants of each formulation are presented at the end of
each section. A set of constraints which help the new formulations to obtain
more dissimilar solutions is introduced in Section 7. Overall computational
experiments for all approaches are presented in Section 8. The performance
of the proposed formulations is analyzed and this is compared to an intuitive
and classical approach in the literature of finding alternative paths, the it-
erative penalty method (IPM) [21]. The formulations are compared both in
terms of the run time and of the dissimilarity of the output solutions, derived
from D1. Some conclusions and future directions for research are outlined in
Section 9.

2. Literature review
Several problems focus on finding a single path between two nodes in a

network, which optimizes either a certain criterion or several criteria simul-
taneously, while others aim at finding a set with a given number of paths,
again with respect to one, or several, criteria. The single path problems
have practical interest by themselves, but finding a set of paths may still be
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relevant, for instance to ensure reliability and having a replacement path in
case of failure in the primary one, or simply if several alternatives should
avoid sharing resources with other paths. In this case ranking paths provides
a pre-defined number of paths from the source node to the target node by
increasing order of the objective function.

Several network optimization problems search for a path between two nodes
which optimizes a certain criterion. In many cases it is of interest to extend
this problem by searching not only for the best solution but also for the
second best, the third best and so on, that is, to rank paths by increasing
order of the objective function. In practice this is useful, for instance, when
the paths need to satisfy additional constraints, which can be checked as new
solutions are found. This problem, known as the K shortest paths problem,
was first proposed in 1959, by Hoffman [18], and is usually classified into
two variants, one that aims at the determination of unconstrained paths and
another one for which the nodes in each solution cannot appear more than
once. Despite the first being easier to solve than the second, both can be
solved in polynomial space and time, depending on the number K of paths to
be found and on the size of the network. See for example [10, 20, 26, 28] for
works on ranking unconstrained paths and [22, 27, 32] for works on ranking
loopless paths.

The search for solutions when ranking paths is guided by the objective
function, therefore, very often the solutions which are close in terms of the
cost are also similar in terms of their composition. In the K disjoint paths
problem, a cost objective function of K paths is minimized, while the overlaps
between them are forbidden. The problem can be classified into arc disjoint
or node disjoint, the second one being a particular case of the first (for
instance, if every node is split into two nodes that are linked by an arc). The
disjointness of the paths is often a requirement in telecommunications, in
order to ensure the reliability of communications. In practice this is managed
by the computation of a pair of paths connecting two given nodes, a primary
path to be used as a first option and a backup path to replace the first one
if there is a failure along its arcs or nodes. The determination of K disjoint
simple paths has been studied by [2, 29, 30]. Their approaches consist of
formulating the problem as a minimum cost flow problem and propose the
application of a labeling algorithm, changing the given network. The arc
disjoint version of the problem has been studied in [13, 17, 31]. A review on
disjoint path problems can be found in [19].

A handicap of the K disjoint paths problem is that the disjointness condi-
tion may be too demanding for some instances and no solution is returned in
those cases. The dissimilar paths problem has been studied in the context of
hazardous materials transportation, where the alternative paths should not
share a large number of arcs and they should be relatively short in length.
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Different methods have been proposed for approaching this problem. The
IPM [21] is one of the most intuitive methods, based on the iterative applica-
tion of shortest path algorithms. At each iteration, a cost penalty is associ-
ated to each selected arc to discourage them of appearing in the forthcoming
iteration; hence, generating dissimilar paths. Another proposed method is
the Gateway Shortest Path, [24]. In this case, the generated shortest paths
should go through a given set of nodes called a “gateway”. Additionally,
the concept of “area under a path” is used to evaluate the similarity be-
tween two paths. The minimax method, by Kuby et al. [23], selects paths
starting from K assigned paths using some dissimilarity indices. Akgün et
al. [1] review the three mentioned methods for generating dissimilar paths,
and proposes another dissimilar path model that makes use of a p-dispersion
location model, [11]. Erkut [12] presents four indices to measure the dissim-
ilarity among two paths, one of which will be used later. In [5], the authors
introduce a model for generating dissimilar paths that takes into account also
the risk induced on the arcs in the neighborhood of a selected path. Another
work, [6], also considers the need to distribute the risk of the paths in an
equitable way with respect to both the space and the time, avoiding as much
as possible the presence of more than one hazardous vehicle at the same time
on the same zone. Later on Dell’Olmo et al. [9] study the problem from a
multi-objective perspective. They introduce the concept of “buffer zone” in
the measure of similarity. Mart́ı et al. [25] choose approaches different from
the previous and consider a spatial point of view in their dissimilarity in-
dex. More recently, Zajac [33] works on the bi-objective K dissimilar vehicle
routing problem (kd-VRP). The work considers two dissimilarity indices: the
“grid metric”, which treats spatial dissimilarity, as well as the “edge metric”,
which defines dissimilarity via shared arcs between different routes.

3. The K dissimilar paths problem
Let (N,A) be a directed graph with |N | = n nodes and |A| = m arcs, where

s denotes a given source node and t denotes a given target node, s, t ∈ N .
Let also P denote the set of paths in (N,A) from node s to node t and K be
a given positive integer. The goal of the K dissimilar paths problem from s
to t is to find a set of K paths in P , such that the paths in the set are fairly
distributed throughout the network. Considering dissimilarity based in the
index S1 introduced in Section 1, the problem can be defined as

max
K−1∑
i=1

K∑
j=i+1

D1(pi, pj)/

(
K

2

)
subject to p1, p2, . . . , pK ∈ P
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where

D1(p, q) = 1− S1(p, q) = 1− 1

2

(
L(p ∩ q)
L(p)

+
L(p ∩ q)
L(q)

)
,

for any paths p, q ∈ P , and this is equivalent to minimizing the similarity of
the set of K paths,

K−1∑
i=1

K∑
j=i+1

(
L(pi ∩ pj)
L(pi)

+
L(pi ∩ pj)
L(pj)

)
.

This objective function is fractional and difficult to handle directly. There-
fore, we will consider simplifications of the problem.

The next sections introduce three formulations, simpler than this one, but
which try to capture the main characteristic of this problem based on different
assumptions.

4. Minimization of the number of arc overlaps for each
pair of paths

The length of the paths overlap is a common term to the several similarity
indices described in Section 1. For now we focus on that length and, by doing
so, the objective function becomes linear and simpler to handle. Thus, the
current goal is to find solutions for

min
K−1∑
i=1

K∑
j=i+1

L(pi ∩ pj)

subject to p1, p2, . . . , pK ∈ P
(1)

Given two paths p, q ∈ P , it is said that there is an overlap whenever there
is an arc (i, j) ∈ A that belongs to both p and q, that is, if (i, j) ∈ p and
(i, j) ∈ q. Thus, the number of overlaps between those paths is the number
of arcs that appear in both, OL(p, q) = |{(i, j) ∈ A : (i, j) ∈ p ∧ (i, j) ∈ q}|,
which coincides with L(p ∩ q). The number of overlaps in a given set of K
paths is the total number of overlaps for each pair of paths, that is,

OL({p1, p2, . . . , pK}) =
K−1∑
i=1

K∑
j=i+1

OL(pi, pj),

which is the objective function in problem (1). To illustrate these concepts,
we recall the example in Figure 1. The arc (i, j) belongs to all four paths in
Figure 1a. Therefore, the number of overlaps for those paths is 6. In Figure
1b the arc (i, j) appears in the paths in red and green, while the arc (k, l)
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appears in the blue and orange paths. So, there are 2 arc overlaps in the 4
paths. This latter solution is better than the first with respect to problem
(1).

The first formulation intends to model problem (1) as an integer linear
program. Considering the decision variables xkij equal to 1 if the arc (i, j)
lies in the k-th path from s to t, or 0 otherwise, for any (i, j) ∈ A and
k = 1, . . . , K, the problem is formulated as follows:

min f1(x, z, v) =
∑

(i,j)∈A

vij (2a)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =

 1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . , K(2b)

zklij ≤ xkij, (i, j) ∈ A, k, l = 1, . . . , K, l > k (2c)

zklij ≤ xlij, (i, j) ∈ A, k, l = 1, . . . , K, l > k (2d)

zklij ≥ xkij + xlij − 1, (i, j) ∈ A, k, l = 1, . . . , K, l > k (2e)

vij =
K−1∑
k=1

K∑
l=k+1

zklij , (i, j) ∈ A (2f)

xkij, z
kl
ij ∈ {0, 1}, (i, j) ∈ A, k, l = 1, . . . , K, l > k (2g)

This formulation may considerably big for problems of modest size, given
that the variables z are related with any pair of paths from s to t. Thus, it
has O(mK2) variables and O(mK2 + nK) constraints.

The flow conservation constraints (2b) ensure the existence of K paths
from node s to node t; the constraints (2c) – (2e) guarantee that variables
zklij ∈ {0, 1} are equal to 1 if and only if the arc (i, j) is used both in the

paths defined by the variables xkij and xlij, for (i, j) ∈ A, k ∈ {1, . . . , K − 1},
l ∈ {k + 1, . . . , K}. In fact:

• If xkij = 0 or xlij = 0, then (2c) or (2d) imply that zklij = 0, for any
(i, j) ∈ A, k ∈ {1, . . . , K − 1}, l ∈ {k + 1, . . . , K}.
• If xkij = xlij = 1, then both (2c) and (2d) imply that zklij ≤ 1, whereas

(2e) imply that zklij ≥ 1. Thus, zklij = 1 for (i, j) ∈ A, k ∈ {1, . . . , K −
1}, l ∈ {k + 1, . . . , K}.

The constraints (2f) state that the auxiliary variables vij correspond to the
number of paths that use arc (i, j) ∈ A and constraints (2g) define the
variables. Observe that because the xkij are binary variables, then by (2c)
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– (2e), the variables zklij are binary as well and, consequently, by (2f), the
variables vij are implicitly defined as non-negative integers, for any (i, j) ∈
A, k ∈ {1, . . . , K − 1}, l ∈ {k + 1, . . . , K}. The objective function (2a)
corresponds to OL({p1, p2, . . . , pK}), the total number of arcs that are shared
by at least two paths from s to t.

s

t

(a) Network (N ′, A′)

s

t

(b) Path x1

s

t

(c) Updated network (N ′, A′)

s

t

(d) Path x2

s

t

(e) Updated network (N ′, A′)

Figure 2. Application of Algorithm 1 to a solution with loops

Formulation (2) may admit optimal solutions that contain subtours. For
instance, the network depicted in Figure 2a shows a possible solution for
finding K = 2 paths from node s to node t. In this case, the solution
has objective value 0, given that the paths represented in red and in blue
do not have any arcs in common. However, each of those paths contains
one subtour. Nevertheless, if the problem is feasible, there always exists a
loopless optimal solution to the problem, and this is easy to compute after
a first optimal solution has been found. Solutions with loops can be avoided
by adding subtour elimination constraints to the formulation or by adding a
term to the objective function that penalizes the utilization of arcs. Another
alternative is to apply a post processing algorithm that allows to extract one
loopless optimal solution from a given optimal solution. Algorithm 1 outlines
the procedure to obtain such a loopless solution, when given a solution x.
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Algorithm 1: Algorithm for removing loops from a given solution x

1 N ′ ← {i ∈ N : xkij = 1 for some j ∈ N ∧ k = 1, . . . , K} ∪ {t}
2 A′ ← {(i, j) ∈ A : xkij = 1 for some k = 1, . . . , K}
3 for (i, j) ∈ A′ do uij ←

∑K
k=1 x

k
ij

4 for k = 1, . . . , K do
5 for (i, j) ∈ A do x̄ij ← 0

6 x̄k ← shortest path from s to t in terms of the number of arcs in
network (N ′, A′)

7 for (i, j) ∈ A′ such that x̄kij = 1 do
8 uij ← uij − 1
9 if uij = 0 then Delete arc (i, j) from A′

In lines 1 and 2 of Algorithm 1 the network corresponding to the arcs in
the given solution x is built. Line 3 assigns each arc (i, j) ∈ A′ with the
number of times it appears in x, uij. This value works like the arc (i, j)’s
capacity. Then, in each iteration of the loop in lines 4 to 9, one path is
determined and the capacity of an arc is updated every time it is used. The
loop runs K times exactly, so that K paths are found. Moreover, the paths
determined on line 5 are always loopless. These paths can be found by means
of breadth-first search, [8], and therefore the algorithm runs in O(Km) time.
Also, the empirical tests reported later showed that its run time is very small
when compared to solving any of the formulations here presented.

Proposition 4.1. Let (x, z, v) be a feasible solution for formulation (2) and
x̄ be the corresponding vector output by Algorithm 1. Then, x̄ defines K
loopless paths from s to t.

Proof : The remarks above show that the result holds. Shortly, every path
defined by x̄k is loopless, for any k = 1, . . . , K, because it is the solution of
a shortest path problem with all costs positive (unitary). Additionally, x is
the characteristic vector of K paths from s to t, given that it satisfies the
constraints (4b). Therefore, x̄k defines K loopless paths from s to t.

Proposition 4.2. Let (x, z, v) be an optimal solution for formulation (2). Let
x̄ be the vector output by Algorithm 1 when applied to x, and z̄ ∈ {0, 1}mK2

and v̄ ∈ Nm
0 be vectors which satisfy the constraints (2c) – (2f). Then, (x̄, z̄, v̄)

is a loopless optimal solution for problem (2).
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Proof : Suppose (x̄, z̄, v̄) is obtained from (x, z, v) according to Algorithm 1
and the directions above. Then, xkij, x̄

k
ij ∈ {0, 1} and

xkij ≥ x̄kij, (i, j) ∈ A, k = 1, . . . , K. (3)

Two aspects need to be considered:

(1) According to Proposition 4.1, x̄ corresponds to K paths, so the con-
straints (2b) hold. Moreover, z̄ and v̄ satisfy (2c) and (2f), therefore
(x̄, z̄, v̄) is a feasible solution of (2).

(2) Because of condition (3), it also holds that

zklij ≥ z̄klij , (i, j) ∈ A, k = 1, . . . , K − 1, l = k + 1, . . . , K,

vij ≥ v̄ij, (i, j) ∈ A,
therefore f1(x, z, v) ≥ f1(x̄, z̄, v̄), which shows that the new solution
is optimal.

It can then be concluded that (x̄, z̄, v̄) is an optimal loopless solution of
(2).

In the next section we describe some computational experiments performed
on formulation (2). Results will show that formulation (2) outputs solutions
with very good dissimilarity scores, indicating that problem (1) might be a
good approach to the K dissimilar paths problem, even though it neglects the
role of the length of the paths in the dissimilarity of the K paths. However,
the high run times required to solve even problems of modest dimension
compromise its usability in practical applications. These results are not at all
unexpected, due to the combinatorial nature of the model, but they reinforce
the need for recurring to alternative models, as mentioned in Section 1.

4.1. Computational experiments. The purpose of the tests presented
in the following is to study the behavior of formulation (2) in terms of the
solutions it outputs, its run times and its integer programming gaps.

The code designated by MAO, standing for the implementation for mini-
mizing the number of arcs overlaps for each pair of paths, formulation (2),
was implemented in C. This code uses IBM ILOG CPLEX version 12.7 as
the ILP solver. The Algorithm 1, also coded in C, was applied to the re-
sult of this implementation, in order to remove the loops from the obtained
solutions. The tests were carried out on a 64-bit PC with an Intel®Core™
i7-6700 Quad core at 3.40GHz with 64GB of RAM.

In the performed tests K = 3, 4, . . . , 10 paths were computed in directed
networks. Two types of instances were considered:
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Figure 3. Grid network

• Random networks, denoted by Rn,m, with n = 100, 300, 500 nodes,
and m = dn arcs, for average degrees d = 5, 10. A Hamiltonian
cycle is created for all the nodes in the network, and afterwards the
remaining arcs are generated randomly. This Hamiltonian cycle is
directed, therefore the strong connectivity of the graph is not fully
ensured. There are no parallel arcs between pairs of nodes. For each
size of these networks, 30 instances were generated based on different
seeds. The reported results are based only on the 22, out of the 30,
that originated feasible problems.
• Grid networks, denoted by Gp,q, with p = 3, 4, 6, 12 rows, q = 6, 12, 36

columns and n = pq = 36, 144 nodes, arranged in a planar grid,
numbered consecutively from left to right and top to bottom – as
shown in Figure 3. Any pair of adjacent nodes is connected by an arc,
thus m = 2pq − p− q = 57, 60, 248, 264.

In both cases the source and the target nodes are s = 1 and t = n, re-
spectively, with no loss of generality. It is worth noting that the considered
grid networks are acyclic, therefore Algorithm 1 was not applied for such
instances. Moreover, the run times of Algorithm 1 were small (at most 4%
of the total run times, that is, up to 50 milliseconds), therefore they are not
included in the results reported in the following.

We begin by observing that in a non negligible number of the random
instances, K disjoint paths can be found. This happens for 274 of the 1056
instances. Table 1 exhibits the distribution of those instances.
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Table 1. Number of instances with K disjoint paths in random
networks

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 12 2 1 0 0 0 0 0
R100,1000 22 18 14 12 7 4 2 1

R300,1500 14 7 1 0 0 0 0 0
R300,3000 21 18 13 9 7 4 2 1

R500,2500 14 4 3 1 1 0 0 0
R500,5000 17 14 12 8 5 3 0 0

Unless otherwise stated, hereafter only the instances with no disjoint solu-
tions are considered. There are two reasons for this:

• the main goal of this work is to find good methods to obtain dissim-
ilar paths in networks where finding those paths is not easy (finding
disjoint paths can be formulated as a minimum cost flow problem
[29, 30]);
• such instances are not evenly distributed throughout the set of in-

stances, thus their presence in different numbers in each group could
skew the results.

The drawback of this decision is that each set Rn,m now has a smaller and
different number of instances. Table 2 indicates the final number for each
type of instances. It should be remarked that there are no disjoint solutions
in the grid instances.

Table 2. Final number of random network instances

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 10 20 21 22 22 22 22 22
R100,1000 0 4 8 10 15 18 20 21

R300,1500 8 15 21 22 22 22 22 22
R300,3000 1 4 9 13 15 18 20 21

R500,2500 8 18 19 21 21 22 22 22
R500,5000 5 8 10 14 17 19 22 22
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An upper bound of 300 seconds was set for the elapsed time when running
the solver. The results presented in the following for random networks are
average values for solving the instances with the same characteristics except
for a seed, and with no disjoint solutions. The results shown for grid networks
are based on a single instance, again with no disjoint solutions.

Approximately 84% of the random instances were solved to optimality
(corresponding to 659 out of 782 instances) and 44% of the grid instances
(corresponding to 14 out of 32 instances).

Table 3. Number of instances solved to optimality by MAO (%)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 100 100 100 96 77 50 27 23
R100,1000 – 100 100 100 100 100 100 95

R300,1500 100 100 100 100 95 80 59 41
R300,3000 100 100 100 100 100 100 100 86

R500,2500 100 100 100 100 86 73 55 32
R500,5000 100 100 100 100 100 100 86 82

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 100 100 100 100 0 0 0 0
G4,36 100 100 0 0 0 0 0 0
G6,6 100 100 100 100 0 0 0 0
G12,12 100 100 100 100 0 0 0 0

Due to the combinatorial nature of the model, it would be expected that
the results of its application depended heavily on the size of the network.
However, according to Tables 3∗ and 4 many of the instances that were not
solved within the time limit are actually associated to the smaller networks.
In fact, the results behaved as expected only for the first values of K ≤ 4,
for both the random and the grid networks. As K increases, other features
seem to have a more decisive influence. A finer analysis of the results allows
to enumerate three possible explanations for that situation: the layout of the
network; the sparsity of the network; and the relation between the number
of paths K and the size of the network.

The differences in the layout of the network account for the fact that grid
instances are, in general, harder to solve than random instances, even though

∗There is only one grid instance of each kind, therefore, the listed values are either 0% or 100%.
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they are much smaller (recall that 36 ≤ n ≤ 144 and 57 ≤ m ≤ 264 for the
grid instances, whereas 100 ≤ n ≤ 500 and 500 ≤ m ≤ 5000 for the random
instances). Furthermore, even among grid networks, there are differences
related to the layout, as the problem seems to be more difficult to solve in
rectangular grids rather than in square grids – see Table 4 and Figure 4.

Table 4. Run times of MAO (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.124 0.490 1.135 32.149 76.488 175.405 222.937 249.626
R100,1000 – 0.854 3.245 2.910 5.067 10.116 18.692 48.099

R300,1500 0.391 1.611 2.637 10.127 37.499 111.854 174.106 212.429
R300,3000 0.745 1.934 5.063 11.508 23.537 35.912 63.022 132.342

R500,2500 0.793 2.179 4.579 12.781 66.327 121.559 196.307 238.856
R500,5000 1.888 1.491 7.253 17.309 34.013 57.627 118.488 196.436

Average 0.788 1.426 3.985 14.464 40.488 85.412 132.258 179.631 57.306

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.072 2.665 10.150 52.917 300 300 300 300
G4,36 0.218 0.684 300 300 300 300 300 300
G6,6 0.096 0.265 2.776 11.783 300 300 300 300
G12,12 0.240 0.464 5.212 19.772 300 300 300 300

Average 0.156 1.019 79.534 96.118 300 300 300 300 172.103

Moreover, the effect of the sparseness of the network is particularly clear
in the results of the random instances. According to Figure 4, the run times
decrease as the density of the network† increases when K ≥ 5, in all sets
of instances but one, and that this factor overcomes the one of the size
of the network. The only exception is the smallest of the instances. In
spite of its density, second only to R100,1000, R100,500 instances have proven
to be, in average, the hardest of the random instances to solve. Another
interesting conclusion is that the impact of sparseness in grid networks is
not so significant as it is in random networks. This finding becomes evident
when comparing the run times for the G4,36 and G12,12 networks, which have
the lowest of the densities of the grid networks.

†The density of a network is defined as m/(n(n− 1)).
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As for the third of the reasons presented: the proportion between the value
ofK and the size of the network, findingK dissimilar paths in a given network
becomes more difficult as the value of K grows and this difficulty is increased
in very small networks. This is a plausible reason why the results obtained
for the R100,500 cases do not follow the pattern of the remaining random
instances. Moreover, it is also expected that this factor has an impact on the
results for the grid instances. However, results for more grid networks would
be recommended for a sound conclusion.
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Figure 4. Run times of MAO (seconds)

For the sake of completeness, the lower bounds obtained by solving the lin-
ear programming relaxation of the model are also presented. Table 5 presents
the average integer programming gaps, as well as the run times for solving the
corresponding linear programming relaxations, for each group of instances.
The integer programming gaps are computed as 100(f ∗1 −f ∗LR1

)/|f ∗1 |%, where
f ∗1 denotes the optimum value of (2) and f ∗LR1

denotes the optimum value
of its linear programming relaxation. Whenever the optimum value f ∗1 is
unknown, the best known integer is used to compute these gaps. The gaps
associated with the grid instances were all 100%, therefore no such table is
presented.
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Table 5. Average integer programming gaps of MAOL (%)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 43 73 75 77 78 78 79 79
R100,1000 – 100 100 100 100 100 100 100

R300,1500 75 89 92 93 93 93 93 93
R300,3000 100 100 100 100 100 100 100 100

R500,2500 91 96 96 97 97 97 97 97
R500,5000 60 75 80 86 87 90 91 91

As it can be observed from Table 5, the linear programming relaxation
of formulation (2) produces very weak lower bounds. This often happens
in models that use the same type of linking constraints (2e) used in this
formulation.

5. Minimization of the number of repeated arcs
While taking into account all the overlaps in the pairs of paths in the

solutions, the formulation (2) is not easy to handle from a practical point of
view, as shown by the experiments reported in Section 4.1. In the following
an alternative, and simpler, approach to problem (1) is introduced.

A given arc (i, j) ∈ A is said to be repeated in a set of K paths if it
belongs to more than one of them. A way to ensure that the K paths
are sufficiently different from each other is to consider a relaxed version of
the K disjoint paths problem, where instead of forbidding the occurrence
of repeated arcs, the number of arcs in those conditions is minimized. This
concept was explored in the example illustrated in Figure 1, given in the
introductory section. Because this approach simply privileges the number of
repeated paths, it favors the solution depicted in Figure 1a, rather than the
one in Figure 1b.

In order to model such a problem, let us consider, as before, the decision
variables xkij equal to 1 if the arc (i, j) lies in the k-th path from s to t, or 0
otherwise, for any (i, j) ∈ A and k = 1, . . . , K. The problem of minimizing
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the number of repeated arcs can then be formulated as follows:

min f2(x, y) =
∑

(i,j)∈A

yij (4a)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =

 1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . , K(4b)

yij ≤
K∑
k=1

xkij, (i, j) ∈ A (4c)

(K − 1)yij ≥
K∑
k=1

xkij − 1, (i, j) ∈ A (4d)

xkij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K (4e)

This formulation has O(Km) binary variables and O(Kn + m) constraints.
The constraints (4b) are flow conservation constraints that model K paths
from node s to node t. The constraints (4c) and (4d) relate the x and the y
variables, in a way that yij is 1 if and only if the arc (i, j) is used in more
than one path, that is, if this arc is repeated, and 0 otherwise. In fact, given
the arc (i, j) ∈ A:

(1) If xkij = 0 for every k = 1, . . . , K, then by (4c) we have yij = 0,
whereas (4d) has no implications on the value of yij.

(2) If xkij = 1 for exactly one k ∈ {1, . . . , K}, then neither (4c) nor (4d)
have implications on the value of yij.

(3) If xkij = 1 for more than one k ∈ {1, . . . , K}, then (4c) has no impli-
cations on the value of yij, whereas by (4d) we have yij = 1.

When in situation 2., that is, if only one variable xkij has value 1, the value of
yij can be arbitrary. However, the objective function minimizes the sum of
all these variables and this minimization is achieved if the arbitrary yij’s are
equal to 0, as intended. Therefore, the objective function counts the number
of repeated arcs, that is the number of arcs that are used more than once.

The same reasoning can be used to prove that the set of constraints (4c)
can be dropped. In fact, because the goal of this formulation is to minimize∑

A yij, the values of yij are 0 by default.
Just like for the formulation presented in the previous section, an optimal

solution of formulation (4) may contain loops, as long as they do not include
any arc that is common to several paths. However, given any such opti-
mal solution, Algorithm 1 can be applied in order to remove its loops. The



FINDING K DISSIMILAR PATHS USING INTEGER LINEAR FORMULATIONS 19

arguments for proving Proposition 5.1 are similar to those used for Proposi-
tion 4.2, therefore its proof is omitted.

Proposition 5.1. Let (x, y) be an optimal solution for problem (4). Let
x̄ ∈ {0, 1}Km be the corresponding vector output by Algorithm 1 when applied
to x, and ȳ ∈ {0, 1}m be such that the constraints (4c) and (4d) are satisfied.
Then, (x̄, ȳ) is a loopless optimal solution for problem (4).

5.1. Computational experiments. In the following, formulation (4), which
minimizes the number of repeated arcs, is analyzed empirically. The code
that implements this formulation is designated by MRA. It was written in
C and uses IBM ILOG CPLEX version 12.7 to solve the integer programs.
The variant of the same formulation obtained by removing the constraints
(4c) was also implemented. Note that both models are valid formulations of
the problem, the later being a weaker (in terms of its linear programming
bound) but smaller variant of the first. Because the differences in the run
times obtained with both variants were not significant, only the original one
is presented below.

The experimental setup was as described in Section 4.1. Algorithm 1 was
applied to the results of the code MRA to remove the loops from the obtained
solutions in the random instances.

Table 6. Number of instances solved to optimality by MRA (%)

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 100 100 100 100 100 100 100 100
G4,36 100 100 100 100 100 0 0 0
G6,6 100 100 100 100 100 100 100 100
G12,12 100 100 100 100 100 0 0 0

MRA was able to solve to optimality all the random network instances, within
the 300 seconds time window. Additionally, Table 6 shows the same number
but for grids. It was possible to solve 81% of these instances, corresponding
to 26 out of the 32 instances. The interruptions after 300 seconds occurred in
problems of finding 8 or more paths in the 144 node grids. Finally, it is worth
noting that even though formulations (2) and (4) model different problems
it is still of interest to compare them, since they both are relaxations of the
K dissimilar paths problem, and that far more instances were solved by MRA
than by MAO.
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Table 7. Run times of MRA (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.051 0.061 0.098 0.173 0.254 0.657 0.981 2.092
R100,1000 – 0.108 0.145 0.189 0.206 0.351 0.373 0.385

R300,1500 0.138 0.204 0.279 0.312 0.432 0.539 1.057 2.144
R300,3000 0.280 0.347 0.411 0.485 0.614 0.723 0.855 0.949

R500,2500 0.256 0.323 0.457 0.557 0.723 0.964 1.458 1.586
R500,5000 0.394 0.542 0.770 0.944 1.074 1.271 1.488 1.836

Average 0.223 0.261 0.360 0.443 0.550 0.750 1.053 1.498 0.640

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.054 0.154 0.455 0.859 0.696 0.902 1.078 1.235
G4,36 0.103 0.107 1.833 5.047 221.466 300 300 300
G6,6 0.019 0.093 0.327 1.200 11.392 3.075 2.176 1.441
G12,12 0.166 0.239 1.070 4.359 47.101 300 300 300

Average 0.085 0.148 0.921 2.866 70.163 150.994 150.813 150.669 65.832

The run times of code MRA are summarized in Table 7 and depicted in
Figure 5. The results were particularly sensitive to the number of paths.
However, other features have negative repercussions as well.

First, the results depend greatly on the layout of the network. In fact,
unsolved instances were only found solo in the case of grids. Furthermore,
the magnitude of the run times associated to the solved grid instances is
several times higher than the run times for solving the random instances (up
to 221.5 seconds in the former case and to 2.2 seconds in the latter). Another
evidence of the difficulty associated to solving the grid instances, is the fact
that between 4 and 256 arcs have to be repeated in these instances, against
between 1 and 24 for random networks. In this way, both formulations (2)
and (4) are very sensitive to the layout of the network and both work worse
in the case of grid networks. In the case of the grid networks, the run times
of MRA vary both with the shape of the grid and with K. Further conclusions
would require more exhaustive tests.

Second, as made evident by analyzing Table 7 and Figure 5, the patter
behaviour of the MRA run times for random networks changes for K ≥ 7.
Prior to that value, the run times vary with the size of the networks; after-
wards other factors become dominant. This type of behavior was identified
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in Section 4.1, when analyzing MAO results. Then, the density of the network
and the proportion between the value of K and the size of the network were
identified as determinant factors of the observed deviation. The correspond-
ing MRA results, seem to be affected in a similar way – the density of the
network smooths the growth of the run times, whereas the increase of K
causes abrupt increases from a certain threshold for the R100,500 and R300,1500

instances.
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Figure 5. Run times of MRA (seconds)

Table 8. Average integer programming gaps of MRAL (%)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 10 40 36 38 36 42 43 43
R100,1000 – 12 23 25 40 46 48 49

R300,1500 14 33 45 41 39 39 47 47
R300,3000 2 11 25 35 38 44 49 47

R500,2500 17 42 35 37 35 42 45 45
R500,5000 7 14 17 30 38 41 48 42

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 50 61 50 46 41 37 35 32
G4,36 50 67 72 59 51 46 41 37
G6,6 50 67 67 70 70 66 60 56
G12,12 50 67 67 70 70 71 71 72

Finally, Table 8 presents the average integer programming gaps determined
by the lower bound produced by the linear relaxation of the formulation
(4). These gaps are computed as explained in Section 4.1. In the random
instances the gap values are at most 49%. The gaps are even bigger for the
grid networks, between 32% ad 72%.
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6. Minimization of the number of arc repetitions
The goal of formulation (4), presented in the previous section, is to mini-

mize the number of arcs which are repeated in the solutions. The undesired
effect of this single objective may be that few arcs appear in many different
paths. This situation is illustrated in Figure 1. Another example is depicted
by the two sets of K = 3 paths in Figure 6. Both the solutions in Figure 6
have a single repeated arc. However, the paths in the solution in Figure 6b
are more dissimilar than the paths in Figure 6a, the reason being that in the
first case the arc (i, j), which is repeated, appears only twice, while it ap-
pears in all the three paths in the latter case. In the following two approaches
are presented which intend to model a more complete understanding of how
dissimilar paths should look like.
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(a) Solution with one repeated arc,
shared by several paths
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(b) Solution with two repeated arcs,
shared by few paths

Figure 6. Different sets of K = 3 paths

According to the example above, the way how paths spread in a network
is affected by the number of repeated arcs as well as by the number of times
that the repeated arcs appear in the paths. This issue will be addressed with
two approaches in the following. First, by minimizing the number of times
the repeated arcs appear in the set of the paths. Later, by minimizing the
number of times they are repeated, which accounts also for the number of
paths where they appear.

The number of occurrences of the arc (i, j) ∈ A in a set of K paths PK is
defined as:

Occ(i, j;PK) =

{
0 if |{p ∈ Pk : (i, j) ∈ p}| ≤ 1

|{p ∈ Pk : (i, j) ∈ p}| otherwise

and the number of repeated arc occurrences in Pk is given by

RO(PK) =
∑

(i,j)∈A

Occ(i, j;PK).

This value is RO(P3) = 3 in Figure 6a, and RO(P ′3) = 2 in Figure 6b, which
makes the solution in the second plot better than the first with respect to the
number of repeated arc occurrences. The purpose of the next formulation
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is to find a set of K paths which minimizes the number of repeated arc
occurrences, RO(PK).

Let xkij be decision variables defined as before and let us consider the for-
mulation:

min f3(x, y, u) =
∑

(i,j)∈A

uij (5a)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =

 1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . , K(5b)

yij ≤
K∑
k=1

xkij, (i, j) ∈ A (5c)

(K − 1)yij ≥
K∑
k=1

xkij − 1, (i, j) ∈ A (5d)

uij ≤ K yij, (i, j) ∈ A (5e)

uij ≤
K∑
k=1

xkij, (i, j) ∈ A (5f)

uij ≥ yij +
K∑
k=1

xkij − 1, (i, j) ∈ A (5g)

xkij, yij ∈ {0, 1}, uij ∈ N0, (i, j) ∈ A, k = 1, . . . , K (5h)

This formulation has O(Km) variables and O(Kn + m) constraints. For
any (i, j) ∈ A, the variable yij is defined as in the previous formulation.
Additionally, for a given (i, j) ∈ A:

• If xkij = 0 for any k = 1, . . . , K, then the constraints (5f) imply that
uij = 0.
• If xkij = 1 for exactly one k ∈ {1, . . . , K}, then by constraints (5f),
uij ≤ 1, and by constraints (5g), uij ≥ 0. Because the goal of the
problem is to minimize

∑
A uij, then uij = 0.

• If xkij = 1 for more than one k ∈ {1, . . . , K}, because in the last section

we saw that then yij = 1, then by constraints (5f), uij ≤
∑K

k=1 x
k
ij,

and by constraints (5g), uij ≥
∑K

k=1 x
k
ij. Combining the two conditions

implies that uij =
∑K

k=1 x
k
ij.
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Thus, the variable uij counts the number of times the arc (i, j) appears in
the solution, or is equal to 0 if (i, j) is not repeated in that solution, for
any (i, j) ∈ A. According to these points it can also be concluded that the
variables uij can be relaxed as uij ≥ 0, without changing the solution. The
constraints (5e) and (5f) can be dropped, because by default the minimization
of the objective function implies that uij = 0. Moreover, also the constraints
(5c) can be skipped because the variables yij are only useful when the arc
(i, j) appears in more than one path and this constraint is not affected in
that case.
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Figure 7. Different sets of K = 4 paths

In the case shown in Figure 7, counting the number of times that the
repeated arcs appear in the solution is not enough to distinguish between
the two depicted solutions. In fact, Figures 7a and 7b we have RO(P4) =
RO(P ′4) = 4, where the repeated arcs are (i, j) in the first case, and (i, j)
and (k, l) in the second. Nevertheless, the fact that the repetitions happen in
different arcs should be valued, given that this is reflected in the dissimilarity
of these two sets of paths. Therefore, a new concept will be introduced, the
number of repetitions for any arc that appears in the solution more than
once.

Let the number of repetitions of an arc (i, j) ∈ A in the set PK be the
number of paths it belongs to, excluding its first utilization, that is,

Rep(i, j;PK) =

{
0 if |{p ∈ Pk : (i, j) ∈ p}| ≤ 1

Occ(i, j;PK)− 1 otherwise



FINDING K DISSIMILAR PATHS USING INTEGER LINEAR FORMULATIONS 25

Then, the number of arc repetitions in Pk is given by

Rep(PK) =
∑

(i,j)∈A

Rep(i, j;PK).

The number of arc repetitions defined above reflects two aspects: the num-
ber of arcs shared by more than one paths as well as the number of paths
that share them. Recalling the example in Figure 1, for the solution P4 in
Figure 1a we have Rep(P4) = 3, because the arc (i, j) is repeated 3 times,
whereas for the solution P ′4 in Figure 1b we have Rep(P ′4) = 2, because both
the arcs (i, j) and (k, l) are repeated once. The next formulation aims at
minimizing Rep(PK).

Like before, for modeling the problem of finding K paths from s to t which
minimize the number of arc repetitions, the variables xkij represent K paths
and have value 1 if the arc (i, j) is in the k-th path from s to t or are 0
otherwise, for any (i, j) ∈ A. The formulation is as follows:

min f4(x,w, u) =
∑

(i,j)∈A

uij (6a)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =

 1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . , K(6b)

xkij ≤ wij, (i, j) ∈ A, k = 1, . . . , K (6c)

wij ≤
K∑
k=1

xkij, (i, j) ∈ A (6d)

uij =
K∑
k=1

xkij − wij, (i, j) ∈ A (6e)

xkij, wij ∈ {0, 1}, uij ≥ 0 (i, j) ∈ A, k = 1, . . . , K (6f)

This formulation has O(Km) variables and O(K(m+n)) constraints. The
constraints (6b) are flow conservation constraints that define a set of K paths
from node s to node t. The constraints (6c) and (6d) are used to define the
variables wij ∈ {0, 1}, each one equal to 1 if and only if the arc (i, j) is used
in at least one path, or 0 otherwise, for any (i, j) ∈ A. Additionally, the
constraints (6e) define the auxiliary variables uij, which corresponds to the
number of times that arc (i, j) ∈ A is repeated in different paths. For a given
(i, j) ∈ A:
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• If xkij = 0 for any k = 1, . . . , K, then the constraints (6d) imply that
wij = 0. Therefore the constraints (6e) imply that uij = 0.
• If xkij = 1 for exactly one k ∈ {1, . . . , K}, then by constraints (6c),
wij ≥ 1 which together with (6f) imply wij = 1, and by constraints
(6e), uij = 0.
• If xkij = 1 for more than one k ∈ {1, . . . , K}, then by constraints

(6c), wij ≥ 1 which together with (6f) imply that wij = 1, and by

constraints (6e), uij =
∑K

k=1 x
k
ij − 1.

Because both xkij and wij are binary variables, the variables uij are implic-
itly defined as integers for any (i, j) ∈ A, k = 1, . . . , K. Additionally, (6e)
together with the non-negative constraints of the variables uij imply (6d).
Therefore, the constraints (6d) can be skipped from the formulation.

Finally, we observe that constraints (6c) can be aggregated as

K∑
k=1

xkij ≤ K wij, (i, j) ∈ A. (7)

Like for formulations (2) and (4), both formulations (5) and (6) admit op-
timal solutions with loops. However, in such cases Proposition 6.1 holds and
the Algorithm 1 can be applied in order to obtain loopless optimal solutions.

Proposition 6.1. (1) Let (x, y, u) be an optimal solution for problem (5).
Let x̄ ∈ {0, 1}Km be the vector output by Algorithm 1 when applied to
x, ȳ ∈ {0, 1}m and ū ∈ Nm

0 be such that the constraints (5c) to (5h)
are satisfied. Then, (x̄, ȳ, ū) is a loopless optimal solution for problem
(5).

(2) Let (x,w, u) be an optimal solution for problem (6). Let x̄ ∈ {0, 1}Km

be the vector output by Algorithm 1 when applied to x, and w̄ ∈ {0, 1}m
and ū be such that the constraints (6c) to (6f) are satisfied. Then,
(x̄, w̄, ū) is a loopless optimal solution for problem (6).

6.1. Computational experiments. The tests setup presented in the fol-
lowing for experimentally assessing formulations (5) and (6) is similar to
what was described in Section 4.1.

While a number of relaxations of formulation (5) were tested, only the
results for the one with the best behavior with regard to the run times are
reported. These correspond to the variant that omits the set of constraints
(5c) from the original model, (5). For simplicity, we keep the same designa-
tion and in the following refer to the new model as formulation (5). Likewise,
several variants of (6) were tested. The model obtained from (6) by replacing
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constraints (6c) with its aggregated version, constraints (7), was significantly
faster than the others. Thus, only the results for this new model are pre-
sented. Again, for simplicity, we keep the same designation and hereafter
refer to this new model as formulation (6).

The following codes were written in C, while using IBM ILOG CPLEX
version 12.7 for solving the integer programs:

• MRO: Implementation for minimizing the number of repeated arc oc-
currences, formulation (5).
• MAR: Implementation for minimizing the number of arc repetitions,

formulation (6).

Table 9. Run times of MRO (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.051 0.067 0.108 0.183 0.274 0.572 0.836 1.322
R100,1000 – 0.123 0.157 0.220 0.238 0.307 0.386 0.497

R300,1500 0.161 0.214 0.253 0.331 0.439 0.706 0.998 1.601
R300,3000 0.303 0.370 0.444 0.508 0.677 0.724 0.846 1.000

R500,2500 0.280 0.382 0.485 0.594 0.757 1.035 1.326 1.687
R500,5000 0.486 0.603 0.746 0.906 1.083 1.285 1.500 1.781

Average 0.256 0.293 0.365 0.457 0.578 0.771 0.892 1.314 0.627

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.037 0.251 0.815 1.041 5.496 15.547 8.673 11.894
G4,36 0.094 0.293 2.204 43.209 140.598 300 300 300
G6,6 0.165 0.009 0.276 0.752 2.409 3.930 23.715 14.426
G12,12 0.075 0.274 0.880 3.660 15.674 9.391 87.845 146.961

Average 0.092 0.206 1.043 12.165 41.044 82.217 150.058 118.320 45.018

Unlike the code MAR, which was able to find the optimal solution for all the
instances, the code MRO resumed after the 300 seconds limit for the 4 × 36
grids when seeking for more than 7 paths. This can be seen in Table 9, which
reports their average run times, depicted in Figure 8.

The code MAR outperformed the previous in almost all cases in terms of
run time. Figure 9 illustrates the results summarized in Table 10. The
major differences are found in the results associated to the grid networks
(where run times fall, in average, by 99.6%) and in the subset of the random



28 ALI MOGHANNI, MARTA PASCOAL AND M. TERESA GODINHO

3 4 5 6 7 8 9 10

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

K

R100,500 R100,1000 R300,1500

R300,3000 R500,2500 R500,5000

3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

K

G3,12 G4,36 G6,6 G12,12

Figure 8. Run times of MRO (seconds)

networks previously identified as the harder to solve (which has reductions
of 48% for the R100,500 instances, 41% for the R300,1500 instances and 25% for
the R300,1500 instances). Still, more than emphasizing the relative reductions
towards MRO, it is important to point out that MAR solved all instances, in
less than 2 seconds. Moreover, results suggest that MAR is far less susceptible
to the effect of the variables that have been identified as inhibiting to other
models (the layout of the network, its sparseness and the proportion between
the value of K and the size of the network), indicating that this model can
be used in a wider range of situations. As a final remark, there was some
instability in the run time of the grid networks that should be clarified in a
future work.
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Figure 9. Run times of MAR (seconds)

The average integer programming gaps produced by the linear relaxation
of (5), in Table 11, range between 1% ad 18% for the random instances and
between 7% and 33% for the grid instances. The same values were all 0 for
the linear relaxation of formulation (6).
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Table 10. Run times of MAR (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.051 0.078 0.116 0.172 0.181 0.301 0.342 0.519
R100,1000 – 0.097 0.140 0.143 0.193 0.265 0.236 0.316

R300,1500 0.139 0.193 0.222 0.259 0.313 0.426 0.486 0.717
R300,3000 0.226 0.323 0.391 0.458 0.609 0.706 0.773 0.905

R500,2500 0.249 0.318 0.374 0.442 0.593 0.733 1.003 1.172
R500,5000 0.384 0.571 0.825 1.024 1.211 1.369 1.576 1.730

Average 0.209 0.263 0.344 0.416 0.516 0.633 0.736 0.893 0.501

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.010 0.016 0.012 0.017 0.020 0.021 0.023 0.054
G4,36 0.047 0.083 0.126 0.157 0.215 0.250 0.620 0.382
G6,6 0.010 0.004 0.114 0.012 0.018 0.214 0.157 0.020
G12,12 0.034 0.049 0.142 0.242 0.124 0.383 0.323 1.292

Average 0.025 0.038 0.098 0.107 0.094 0.217 0.280 0.437 0.162

Table 11. Average integer programming gaps of MROL (%)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 5 18 12 11 8 9 9 10
R100,1000 – 6 10 9 15 15 14 12

R300,1500 7 15 18 12 10 8 11 11
R300,3000 1 5 11 13 12 14 14 12

R500,2500 8 19 11 11 9 11 12 11
R500,5000 3 6 7 11 13 12 14 10

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 25 28 17 13 11 10 9 9
G4,36 25 33 36 21 14 11 8 7
G6,6 25 33 29 28 25 24 22 21
G12,12 25 33 29 28 25 24 22 21

7. Bounding the number of arc presences
Formulation (4) aims at minimizing the number of arcs which appear in

more than one path. The undesired consequence of the simplicity of this
objective function may be that few arcs appear in many different paths, a
situation which is illustrated in Figure 1. This was the motivation to con-
sider the number of times that each repeated arc appears in the objective
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function of formulations (5) and (6), presented in Section 6. In the following
we propose an intermediate solution, consisting of overcoming this handicap
by adding a constraint over the number of times that each arc is present in
the solution. In addition, we found that this approach also had an interesting
side effect in the paths dissimilarity of the solutions generated by formula-
tions (5) and (6): when in the presence of multiple optimal solutions with
respect to the number of arc repetitions, bounding the number of times that
each arc appears gives an extra condition for untying those solutions, thus
increasing their dissimilarity. Therefore, the new set of constraints will also
be considered in the context of formulations (5) and (6). Naturally, on the
downside, the new models may be more time consuming.

The new set of constraints are very similar to the set of constraints proposed
by Constantino et al. [7] to prevent repetitions of the arcs over the time
horizon. However, whereas in [7] the bound is an external parameter, in our
case the bound is fixed by solving a simple problem that optimizes the worst
case in terms of the number of times that each arc is present in the solution.

The new formulation aims at finding a set of K paths with the minimum
maximum number of arc presences. It is as follows

min max
(i,j)∈A

{
K∑
k=1

xkij

}
(8a)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =

 1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . , K(8b)

xkij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K (8c)

where the decision variables are xkij ∈ {0, 1} equal to 1 if and only if the arc
(i, j) appears in path k, (i, j) ∈ A, k = 1, . . . , K. This formulation can be
linearized as

min r (9a)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =

 1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . , K(9b)

r ≥
K∑
k=1

xkij, (i, j) ∈ A (9c)

xkij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K (9d)

which is equivalent to its linear programming relaxation.
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Now, let R∗ be the optimal value for problem (9) computed in advance.
Then a new constraint can be added to formulations (4), (5) and (6) in order
to prevent the number of arc presences from exceeding that value,

K∑
k=1

xkij ≤ R∗, (i, j) ∈ A. (10)

The problems modeled by the resulting formulations are constrained and,
therefore, different versions of the original ones. To assess whether the new
problems produce better solutions to the K dissimilar paths problem, a set
of computational experiments was performed. Results are discussed in Sec-
tions 7.1 and 8.2.

7.1. Computational experiments. In this section we analyze the impact
of adding the constraints (10) to formulations (4), (5) and (6) on the run
times. Considering the experimental setup described in Section 4, the fol-
lowing codes were tested:

• MRAA: implementation of formulation (4) including the constraints
(10);
• MROA: implementation of formulation (5) including the constraints

(10);
• MARA: implementation of formulation (6) including the constraints

(10).
Like before, the codes were written in C, calling the integer programming
solver IBM ILOG CPLEX version 12.7. The impact of adding the con-
straints (10) to the formulations introduced before on the several parameters
is measured as 100× (MA−M)/M%, where M stands for each of the codes listed
above.

Of the new codes, MARA was the only one able of finding the optimal solution
for all the instances within the time limit of 300 seconds. Both MRAA and
MROA resumed after that limit for the 4× 36 grids and K = 10.

According to Table 12, in most cases the constrained problems require
more time to solve when the networks are denser, while the run times do
not change much for the sparser instances. In some of the latter cases there
is even a speed up. The speed up happens mostly for MRA and MRO, and
is particularly relevant in grids, which are instances where finding solutions
is difficult. It should be added that the run times required for solving the
problem (9) are included in the values on Table 12. The results regarding
the run times for the grid networks were uneven.
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The integer programming gap associated with MARA was equal to 0 in all the
tested instances. In general these values increased for the remaining formu-
lations after adding the new constraints, specially in the random instances
and in the smaller grids and big K’s. However, this variation is not very
meaningful, as the unconstrained and the constrained problems are different.

8. Application to finding K dissimilar paths
In the previous sections, integer formulations were presented for the prob-

lems of finding K paths between a given pair of nodes, such that:

• the number of arc overlaps for each pair of paths is minimized;
• the number of repeated arcs is minimized;
• the number of occurrences of repeated arcs, or the number of arc

repetitions, is minimized.

These problems were suggested with the purpose of capturing characteristics
of sets of K dissimilar paths. Therefore in the current section the behavior
of the presented approaches is discussed and compared from the perspective
of the dissimilarity, based on the metric D1 defined in Section 1. In addition,
these approaches are also compared with the classical method known as the
IPM and proposed in [21]. As mentioned in Section 2, the idea behind this
method is to solve K shortest path problems and penalize the cost of the
selected arcs every time one of those paths is computed, in order to prevent
their overlap as much as possible. This approach has often been used for
comparisons in the literature due to its flexibility to incorporate features of
various problems as well as the simplicity of its implementation.

While a relative comparison of the dissimilarities produced by the different
approaches is possible, an absolute assessment of the results requires the
optimal value of D1 to be known for each instance. As that is the case
only for some of the grid instances, the analysis is based on a description
of the results of each model followed by a relative overall comparison. For
that purpose, both the average dissimilarity between the pairs of paths in
the solution (AvDi) and their minimum dissimilarity (MiDi) are calculated
for each instance. Then, the averages of AvDi and of MiDi for each set of
instances are calculated.

The test bed used for this study and the testing conditions are the same
described in Section 4. Furthermore, the IPM code implements the method
with the same name, in C and calling the CPLEX solver for solving the
shortest path problems. A set of preliminary tests was run, in order to decide
how to parametrize the IPM. IPM works with unitary arc costs and was tested
with the additive penalizations α = 0.25, 0.50, 0.75, 1.00, applied to the cost
of the arcs of the most recently found path. Since considering the penalization
α = 1.00 produced better results than the remaining penalties for AvDi and
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MiDi in all random instances, this was the value fixed in the rest of the
experiments. Tables 28 and 29 in Appendix C present the dissimilarities
and the run times of this implementation, which will be used for comparison
with the introduced formulations. The dissimilarity results are far better for
grids than for random networks. This is due to the fact that all paths in the
used grids of a certain size have the same length. In effect, IPM naturally
avoids the arcs previously used, unless the cost associated to the increase
in the number of arcs exceeds the penalty. When applied to the random
networks, the length of the paths varies and so does the dissimilarity of the
solutions found by the method. Because this method essentially solves K
shortest path problems, it has polynomial complexity of O(Km+Kn log n)
and it run fast for any of the considered instances: in less than 0.70 seconds
in random networks and in less than 0.05 seconds in grid networks.

The rest of the section is organized as follows: first, the results for the four
initial formulations and the IPM are compared; then the effect of adding the
constraints (10) to the original models is discussed.

8.1. Unconstrained formulations. The average and minimum dissimilar-
ities of MAO, MRA, MRO, and MAR are compared in the following. The detailed
results for each formulation can be found in Appendix A.
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IPM 0.812 0.870 0.891 0.896 0.903 0.907 0.906 0.904

Figure 10. Average AvDi values of the unconstrained formula-
tions in random networks

We begin by analysing the results for the random networks. Figure 10
depicts the variation of the average AvDi for each model. In general, the
highest values of the average AvDi are associated to the code MAO, which is
followed closely by MAR (the difference between the values associated to the
two models does not exceed 2%). Nevertheless, MAR surmounts MAO for K = 3
and K = 4. On the other hand, IPM has the worst performance with this
regard, except for K ≥ 8, where it outperforms MAR. In fact, the average
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dissimilarity obtained by IPM tends to improve when K grows, whereas it
tends to worsen for all the formulations but MAO.

Figure 11 summarizes the average AvDi results for each random instance.
The variation of the dissimilarities follows closely the pattern identified in
Sections 4.1, 5.1 and 6.1 for the run times of the formulations: the instances
recognised as harder to solve, namely R100,500, are associated to the worst
AvDi values.

Figure 12 allows a comparison of the dispersion of the results. The best
scores are associated to MAO, followed by MAR and MRO, whereas the IPM is
the code with more disperse values. In terms of the formulations, MRA was
worse than the others. The box-plots in Figures 24 – 27, in Appendix A,
allow a thorough analysis of the dispersion of the average AvDi values for
each formulation. In general, the dispersion of the dissimilarities increases
with K. It can also be concluded that, as expected, the hardest instances
have smaller dissimilarities and a bigger dispersion of values.

The values of MiDi allow to study the worst case in terms of dissimilarity.
Figure 13 depicts a summary of the average MiDi for random networks. In
this case, the best results are found for the MRO and the MAR models. IPM is
worse than all formulations with this regard, while all the latter show very
similar performances (the inner differences do not exceed 5%). Also worthy of
note, is the significant decrease of the MiDi values observed with the increase
of K.

To summarize, the best and least disperse average AvDi’s are associated
to the MAO model. However, its high run times undermine its application.
In contrast, MAR produced solutions with good average and dispersion dis-
similarities in less than 2 seconds, for all instances. Furthermore, the MiDi
analysis indicates that MAR is less likely to produce solution with very poor
dissimilarities.

Next, the results for the grid networks are analyzed. As already mentioned,
for some grid networks it is possible to know the optimal value of D1. In fact,
the length of the paths in a grid network Gp,q is constant, namely q + p− 2.
Consequently, maximizing D1 is equivalent to minimizing only the numerator
of the fractions in its expression, which is precisely the goal of formulation (2).
Thus, the values of AvDi for all the instances solved to optimality by MAO are
optimal dissimilarities. Figure 14 illustrates the main differences between the
five codes. Like what happened for the random networks, MAO produces the
best results. However, this model is now followed by IMP, and the differences
towards MAR have become wider and go as high as 10% whereas they do not
exceed 2% for IPM. MRA still provides the worst results. Despite the good
dissimilarities obtained by MAO, it is worth noting that these are affected by
the fact that most of these instances were not solved to optimality within
the time limit.
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Figure 11. Average dissimilarity of the unconstrained formu-
lations in random networks

Figure 15 allows a more comprehensive comparison of the AvDi values
produced by each code. The results highlight the greater difficulty of solving
the square instances, as pointed out in sections 4.1, 5.1 and 6.1, and also some
inconsistency in the values associated to MRA. Figure 16 allows the analysis
of the dispersion of these results. MAO is the formulation with the more
uniform values, followed by IPM. On the other hand, the models MAR, MRO and
MRA present the smallest dispersion (in this order). Overall, the differences
between the models lay in the low quartiles, thus MAO and IPM offer less
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Max. value 0.979 0.979 0.978 0.977 0.947

Figure 12. AvDi dispersion of the unconstrained formulations
in random networks
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Figure 13. Average MiDi values of the unconstrained formula-
tions in random networks

chances of obtaining solutions with low values AvDi for this type of networks.
The figures and the tables in Appendix A, show that the trends discussed
above regarding Figure 15 are also present when studying the dissimilarity.

As shown in Figure 17, there is no clear dominance regarding the values of
MiDi. Nevertheless, the worst results are associated to the IPM for K = 3, 4
and to MRA model for K ≥ 5. It should be mentioned that, in all cases, the
results follow heavily with the increase of K. In fact, the new formulations
only look for good average dissimilarities between the pairs of paths in the
solution, which may hide solutions with pairs of paths with very different
dissimilarities.

In conclusion, the dissimilarity results suggest the use of MAO model when
dealing with grid networks. However, once again, its run times limit its
application. On the other hand, IPM was also able of finding good solutions
and has the strong advantage of running in little time. Therefore, IPM seems
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Figure 14. Average AvDi values of the unconstrained formula-
tions in grid networks

3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1.0

K

G6,6

MAO MRA MRO MAR IPM

3 4 5 6 7 8 9 10
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

K

G3,12

MAO MRA MRO MAR IPM

3 4 5 6 7 8 9 10
0.75

0.80

0.85

0.90

0.95

1.00

K

G12,12

3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1.0

K

G4,36

Figure 15. Average dissimilarity of the unconstrained formu-
lations in grid networks

a sound approach for this specific type of networks. As to the remaining
formulations, the AvDi values associated to MAR are smaller but close to
the above mentioned methods (with an average difference of 5%, to both).
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Max. value 0.982 0.982 0.982 0.982 0.982

Figure 16. AvDi dispersion of the unconstrained formulations
in grid networks
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MRA 0.938 0.766 0.437 0.419 0.376 0.182 0.193 0.080
MRO 0.920 0.805 0.539 0.501 0.464 0.410 0.342 0.334
MAR 0.906 0.805 0.533 0.495 0.463 0.439 0.348 0.322
IPM 0.911 0.633 0.524 0.517 0.483 0.353 0.314 0.314

Figure 17. Average MiDi of the unconstrained formulations in
grid networks

Moreover, the MiDi results favor MAR. This information together with the
good run times associated to this method, suggest that MAR is also worth
considering in this context.

8.2. Constrained formulations. As shown in Table 13, the models ob-
tained by adding the constraints (10) to formulations (4), (5) and (6) produce
solutions with better dissimilarity results, with few exceptions. Furthermore,
the increase in the dissimilarities is bigger when more paths need to be found
and bigger in the grids than in the random networks. As expected, the most
significant differences occurred to the pair MRA–MRAA, with dissimilarity im-
provements of up to 10% for the random networks and up to 244% for the
grid networks. As to the pair MRO–MROA, Table 13 indicates also an improve-
ment of the average dissimilarity of the solutions. However, the differences
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were smaller both in the cases of the random and of the grid networks (up to
6% in the first case and to 24% in the later). There were no changes in the
dissimilarities obtained on the square grids. Finally, the smallest difference
was found for MAR and MARA. Even so, the improvements on the rectangu-
lar grids were quite significant. Again, no differences were registered in the
dissimilarity results for square grids. Detailed information about the three
models can be found in Appendix B.

Table 13. Average dissimilarity variation for MRAA, MROA and
MARA (%)

MRAA MROA MARA

K K K

Rn,m 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

R100,500 1 1 2 4 6 7 7 12 0 1 2 4 3 6 6 5 −1 1 1 2 2 2 2 2
R100,1000 – 2 2 3 2 3 3 10 – 0 1 2 2 3 4 4 – 1 1 0 0 1 1 1

R300,1500 1 0 2 2 3 4 4 5 0 0 2 3 3 3 3 3 −2 0 0 1 1 1 2 2
R300,3000 0 5 1 10 9 9 9 8 0 −1 1 1 2 3 3 4 −1 1 1 1 1 1 1 1

R500,2500 0 1 1 3 2 4 5 6 1 0 0 2 2 3 2 2 1 0 0 1 0 1 1 1
R500,5000 2 2 1 1 2 2 3 4 1 1 1 0 1 1 2 2 0 0 1 1 0 1 1 1

MRAA MROA MARA

K K K

Gp,q 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

G3,12 0 3 37 138 158 202 218 244 0 3 4 16 18 23 22 24 0 2 1 11 6 10 13 15
G4,36 0 0 24 38 31 16 73 28 0 0 0 0 0 16 14 24 0 0 0 0 −2 14 19 15
G6,6 0 8 13 0 0 64 60 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G12,12 0 0 0 0 0 1 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the following, we analyze the trade-off between the improvements in the
dissimilarities and the variations in the run time, identified in Section 7.1, to
assess to what extent the constrained models are worth considering. The new
models are compared to IPM and MAO. The code MROA was ruled out of the
study, because it follows closely MARA but always with some disadvantage.

Figure 18 depicts the variation of the average AvDi for MRAA, MRAA and
IPM in the random networks. In spite of the improvement on the average
dissimilarities associated to the MRAA when compared to MRA (see Figures 10
and 18), the constrained version of MAR is still the best, in average. The
differences, however, are now very tenuous.
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Figure 18. Average AvDi values of the constrained formulations
in random networks
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Figure 19. AvDi dispersion of the constrained formulations in
random networks

Comparing Figures 12 and 19 reveals a reduction in the dispersion of the
results of both MARA and MRAA. Nevertheless, MARA outperforms MRAA and per-
forms even better than MAO regarding the worst cases. Again, IPM produces
the poorest results.

Figure 20 reports the average run times of the models. As shown in Sec-
tion 7.1, adding the constraints (10) affected MAR more than MRA. In fact,
MARA and MRAA are now very close – MRAA runs faster for the smaller net-
works and MARA for the larger. It is worth mentioning the increase of the
run times from 1 to 5 seconds for the biggest instances. As expected, IPM is
faster than the other codes.

In short, both MRAA and MARA seem tailored for this type of network: the
average difference in the dissimilarities towards MAO is of 0.50% for MRAA and
of 0.08% for MARA; as to the run times, MRAA is in advantage for K ≤ 7
and MARA for the remaining values of K. However, taking into account the
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IPM 0.100 0.118 0.147 0.176 0.207 0.240 0.266 0.300

Figure 20. Run times of the constrained formulations in ran-
dom networks (seconds)
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Figure 21. Average AvDi values of the constrained formulations
in grid networks

earlier good dissimilarities and run times of MAR, it not is clear whether its
constrained model is the best option.

Figure 21 presents the average AvDi for MRAA, MARA, IPM and MOA in grid
networks. In spite of the significant improvement for the pair MRA–MRAA (see
Figure 14), MARA still produced solutions with higher average dissimilarities.
In addition, it solved all the instances to optimality, which did not happen
for MRAA (it was not possible to find 10 paths in G4,36 within 300 seconds).
Nevertheless, MAO provides the solutions with the best average dissimilarities,
now followed closely by IPM. On the other hand, there are reductions in the
dispersion of the results for the pairs MRA–MRAA and MAR–MARA, when compar-
ing Figures 16 and 22. Furthermore, as the most significant improvements
occurred in the lower quartiles, it can be concluded that both MRAA and MARA
are less likely to produce solutions with low dissimilarities than MRA and MAR
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Figure 22. AvDi dispersion of the constrained formulations in
grid networks

for this type of network. Nevertheless, the best results are, again, associated
to MAO and IPM.
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Figure 23. Run times for the constrained formulations in grid
networks (seconds)

According to Figure 23, MRAA is much slower than MARA for this type of
instances, which is, in turn, much slower than IPM. Thus, even though MARA
has good run times it is clearly overtaken by IPM. As mentioned earlier, in
general, the run times associated to MAO are very high. Tables 24 and 25 in
Appendix B give detailed run times of the MRAA and MARA models.

The previous discussion confirms IPM as the most suitable method for solv-
ing instances in grid networks. IPM is the fastest of the codes being compared
and produced the solutions with the highest overall average dissimilarity. On
the other hand, the results associated to MARA are also to be considered. In
average the difference towards MAO is 2%. This, together with the very rea-
sonable run times, makes MARA also interesting for this type of network. In
Section 8.1 we also pointed out MAR as an interesting option for this type
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of network. However, comparing to MARA, we realize that MAR offers worse
dissimilarities in the same amount of time.

9. Concluding remarks
This manuscript addresses the search for K dissimilar paths connecting

a given pair of nodes in a directed graph. Four integer formulations were
introduced. The formulations have different motivations, but their general
goal is to minimize the number of arcs that appear in more than one path
or the total number of those overlaps, while searching for sets of paths with
good dissimilarity. The inclusion of an additional set of constraints to the
previous formulations, with the goal of improving the solutions dissimilarity,
was also proposed. The performance of the new formulations and of a tra-
ditional method in the literature, the iterative penalty method, was tested
over random and grid networks, assessing the required run time as well as the
average and the minimum dissimilarities of the solutions. The dissimilarity
of a given solution is the average of the pairwise dissimilarity between their
paths, which is measured based on the ratios between the number of overlaps
of the pair of paths and the length of the involved paths. Three classes can
be considered with this respect:

• The code IPM, which not surprisingly is the fastest, given that it simply
solves K shortest path problems. Besides being the fastest code, IPM
provided solutions with good dissimilarity for the grid networks. On
the other hand, the solutions produced by this method for the random
networks are very poor as to the dissimilarity of the K paths.
• The code MAO, clearly the slowest of the five codes and often unable

of finding an optimal solution within the established 300 seconds. In
spite of this drawback, in general, MAO produced the solutions with
the best dissimilarity, both for the random and the grid networks.
• And the final group, composed of codes MAR, MRAA and MARA, which also

provide solutions of good quality with regard to the dissimilarity. The
three codes have similar behaviors for the random networks, however,
for the grid networks, the latter unequivocally outperforms the others.
Unlike MRAA, both MAR and MARA were able to find the optimum within
the time bound for all instances. Furthermore, the run times of MAR
and MARA are much smaller than the run times of the remaining codes
in this group.

It is worth noting that, the introduced formulations can still be extended
to a case where the overlaps are penalized according to a given cost for the
involved arcs, with no significant difference of the implementation.

In the future it would be interesting to investigate a simpler/smaller al-
ternative formulation to MAO, accounting for the number of overlaps between
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each pair of paths, given that this is more in accordance with the dissimilarity
measure that was used for assessing the solutions.

Another important line of research, would be to clarify the relation between
the dissimilarity and run time results of the formulations and some influenc-
ing characteristics of the networks, such as the density, average degree and
topology. This aspect would allow a better use of the new models, particu-
larly in the context of real world applications of the problem, for, in those
cases, a wider variety of networks can arise. Finally, also the extension of the
introduced formulations to bi-objective problems involving the minimization
of a cost function besides the minimization of the arc repetitions seems to be
of interest.

Appendix A.Dissimilarities for the unconstrained for-
mulations

Table 14. Average AvDi and MiDi of MAO in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.855 0.913 0.911 0.904 0.902 0.891 0.887 0.886
R100,1000 – 0.942 0.965 0.967 0.968 0.973 0.970 0.970

R300,1500 0.922 0.947 0.952 0.954 0.946 0.947 0.940 0.937
R300,3000 0.979 0.970 0.976 0.972 0.971 0.972 0.975 0.973

R500,2500 0.957 0.967 0.961 0.961 0.956 0.958 0.952 0.947
R500,5000 0.900 0.948 0.940 0.953 0.956 0.957 0.967 0.958

Average 0.923 0.948 0.951 0.951 0.952 0.950 0.950 0.950 0.944

MiDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.855 0.763 0.720 0.691 0.650 0.615 0.555 0.547
R100,1000 – 0.654 0.750 0.740 0.700 0.698 0.682 0.684

R300,1500 0.822 0.813 0.801 0.782 0.763 0.745 0.704 0.705
R300,3000 0.938 0.850 0.829 0.751 0.723 0.691 0.721 0.707

R500,2500 0.887 0.882 0.822 0.814 0.774 0.792 0.730 0.720
R500,5000 0.819 0.862 0.819 0.794 0.778 0.760 0.780 0.756

Average 0.864 0.804 0.790 0.761 0.731 0.731 0.717 0.696 0.687
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Figure 24. AvDi dispersion of MAO

Table 15. Average AvDi and MiDi of MRA in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.852 0.895 0.885 0.862 0.826 0.803 0.794 0.741
R100,1000 – 0.933 0.951 0.939 0.944 0.940 0.937 0.877

R300,1500 0.915 0.942 0.933 0.925 0.913 0.904 0.901 0.884
R300,3000 0.979 0.924 0.971 0.886 0.891 0.892 0.897 0.896

R500,2500 0.952 0.950 0.945 0.935 0.929 0.907 0.904 0.889
R500,5000 0.879 0.929 0.927 0.938 0.940 0.934 0.933 0.922

Average 0.915 0.929 0.935 0.914 0.907 0.897 0.894 0.868 0.909

MiDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.772 0.735 0.720 0.666 0.603 0.532 0.513 0.416
R100,1000 – 0.726 0.746 0.753 0.743 0.727 0.723 0.652

R300,1500 0.817 0.824 0.815 0.766 0.750 0.729 0.695 0.642
R300,3000 0.938 0.833 0.850 0.744 0.741 0.704 0.722 0.710

R500,2500 0.888 0.866 0.848 0.803 0.804 0.742 0.738 0.704
R500,5000 0.798 0.831 0.811 0.806 0.795 0.791 0.766 0.734

Average 0.843 0.802 0.798 0.756 0.739 0.704 0.693 0.643 0.751
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Figure 25. AvDi dispersion of MRA
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Table 16. Average AvDi and MiDi of MRO in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.866 0.906 0.885 0.865 0.849 0.828 0.815 0.808
R100,1000 – 0.978 0.957 0.944 0.951 0.943 0.932 0.931

R300,1500 0.931 0.947 0.938 0.929 0.916 0.912 0.907 0.904
R300,3000 0.963 0.974 0.971 0.968 0.956 0.951 0.941 0.931

R500,2500 0.942 0.965 0.952 0.942 0.932 0.929 0.929 0.923
R500,5000 0.919 0.941 0.935 0.950 0.948 0.944 0.942 0.938

Average 0.924 0.952 0.940 0.933 0.925 0.918 0.911 0.906 0.926

MiDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.763 0.758 0.719 0.674 0.632 0.577 0.533 0.525
R100,1000 – 0.869 0.757 0.749 0.755 0.711 0.703 0.710

R300,1500 0.835 0.836 0.792 0.789 0.746 0.740 0.707 0.687
R300,3000 0.889 0.899 0.858 0.831 0.759 0.763 0.736 0.707

R500,2500 0.851 0.893 0.862 0.837 0.814 0.787 0.780 0.710
R500,5000 0.841 0.849 0.832 0.833 0.805 0.809 0.777 0.793

Average 0.836 0.851 0.803 0.785 0.752 0.731 0.706 0.689 0.768
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Figure 26. AvDi dispersion of MRO
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Figure 27. AvDi dispersion of MAR
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Table 17. Average AvDi and MiDi of MAR in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.876 0.903 0.895 0.878 0.871 0.858 0.849 0.845
R100,1000 – 0.962 0.957 0.958 0.964 0.957 0.955 0.955

R300,1500 0.950 0.949 0.950 0.940 0.936 0.930 0.920 0.913
R300,3000 0.977 0.969 0.970 0.973 0.968 0.965 0.965 0.960

R500,2500 0.956 0.962 0.957 0.954 0.951 0.945 0.942 0.934
R500,5000 0.925 0.948 0.938 0.949 0.954 0.948 0.957 0.952

Average 0.937 0.949 0.945 0.942 0.941 0.934 0.931 0.926 0.938

MiDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.820 0.751 0.720 0.657 0.635 0.567 0.537 0.503
R100,1000 – 0.773 0.739 0.725 0.727 0.717 0.732 0.685

R300,1500 0.895 0.827 0.818 0.780 0.762 0.722 0.713 0.678
R300,3000 0.930 0.868 0.833 0.842 0.808 0.748 0.730 0.712

R500,2500 0.891 0.869 0.841 0.836 0.806 0.774 0.779 0.716
R500,5000 0.875 0.866 0.820 0.813 0.806 0.777 0.809 0.754

Average 0.882 0.825 0.795 0.775 0.757 0.717 0.717 0.675 0.766

Table 18. Average AvDi and MiDi of MAO in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.949 0.833 0.800 0.787 0.762 0.745 0.741 0.730
G4,36 0.982 0.982 0.892 0.859 0.848 0.845 0.819 0.811
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.844 0.840
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.929 0.927

Average 0.959 0.930 0.887 0.874 0.854 0.854 0.833 0.827 0.875

MiDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.846 0.538 0.231 0.154 0.154 0.154 0.000 0.000
G4,36 0.974 0.947 0.526 0.158 0.105 0.105 0.105 0.053
G6,6 0.900 0.900 0.700 0.700 0.600 0.500 0.500 0.500
G12,12 0.955 0.909 0.909 0.864 0.773 0.818 0.818 0.727

Average 0.919 0.824 0.592 0.469 0.408 0.394 0.356 0.320 0.535
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Table 19. Average AvDi and MiDi of MRA in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.949 0.808 0.538 0.308 0.264 0.231 0.205 0.185
G4,36 0.982 0.982 0.718 0.584 0.560 0.570 0.414 0.506
G6,6 0.933 0.867 0.800 0.893 0.867 0.521 0.519 0.511
G12,12 0.970 0.970 0.955 0.952 0.939 0.929 0.924 0.758

Average 0.959 0.907 0.753 0.684 0.657 0.563 0.516 0.490 0.691

MiDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.923 0.462 0.308 0.000 0.000 0.000 0.000 0.000
G4,36 0.974 0.947 0.132 0.158 0.132 0.000 0.000 0.000
G6,6 0.900 0.700 0.400 0.600 0.000 0.000 0.000 0.000
G12,12 0.955 0.955 0.909 0.818 0.773 0.727 0.773 0.318

Average 0.938 0.766 0.437 0.419 0.376 0.182 0.193 0.080 0.424

Table 20. Average AvDi and MiDi of MRO in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.949 0.808 0.708 0.641 0.597 0.569 0.551 0.542
G4,36 0.982 0.982 0.892 0.804 0.729 0.650 0.621 0.581
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.833 0.822
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.924 0.919

Average 0.959 0.927 0.864 0.822 0.783 0.753 0.732 0.716 0.819

MiDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.923 0.538 0.462 0.308 0.308 0.308 0.308 0.231
G4,36 0.947 0.974 0.132 0.132 0.132 0.158 0.132 0.132
G6,6 0.900 0.800 0.700 0.700 0.600 0.400 0.200 0.200
G12,12 0.909 0.909 0.864 0.864 0.818 0.773 0.727 0.773

Average 0.920 0.805 0.539 0.501 0.464 0.410 0.342 0.334 0.539
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Table 21. Average AvDi and MiDi of MAR in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.949 0.821 0.769 0.708 0.670 0.654 0.607 0.610
G4,36 0.982 0.982 0.892 0.814 0.759 0.690 0.643 0.652
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.833 0.822
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.924 0.919

Average 0.959 0.926 0.879 0.842 0.809 0.784 0.752 0.751 0.839

MiDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.923 0.538 0.231 0.385 0.231 0.308 0.308 0.231
G4,36 0.947 0.974 0.237 0.132 0.158 0.132 0.158 0.132
G6,6 0.800 0.800 0.600 0.600 0.600 0.500 0.200 0.200
G12,12 0.955 0.909 0.864 0.864 0.864 0.818 0.727 0.727

Average 0.906 0.805 0.533 0.495 0.463 0.439 0.348 0.322 0.539
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Appendix B.Dissimilarities and run times for the con-
strained formulations

Table 22. Average AvDi and MiDi of MRAA in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.864 0.910 0.907 0.893 0.873 0.859 0.851 0.828
R100,1000 – 0.951 0.968 0.967 0.968 0.968 0.968 0.966

R300,1500 0.923 0.943 0.952 0.947 0.941 0.943 0.934 0.932
R300,3000 0.979 0.973 0.977 0.972 0.968 0.973 0.974 0.971

R500,2500 0.952 0.961 0.955 0.959 0.949 0.948 0.948 0.942
R500,5000 0.896 0.944 0.939 0.952 0.954 0.954 0.960 0.958

Average 0.923 0.947 0.949 0.948 0.942 0.941 0.939 0.933 0.941

MiDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.774 0.742 0.723 0.669 0.625 0.582 0.515 0.498
R100,1000 – 0.704 0.754 0.743 0.720 0.680 0.675 0.670

R300,1500 0.811 0.790 0.799 0.766 0.747 0.730 0.702 0.701
R300,3000 0.938 0.855 0.837 0.738 0.719 0.709 0.728 0.707

R500,2500 0.888 0.860 0.819 0.790 0.769 0.743 0.739 0.680
R500,5000 0.798 0.841 0.810 0.802 0.803 0.766 0.771 0.761

Average 0.842 0.799 0.790 0.752 0.731 0.702 0.688 0.670 0.745
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Table 23. Average AvDi and MiDi of MARA in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.867 0.911 0.904 0.900 0.885 0.873 0.864 0.862
R100,1000 – 0.970 0.962 0.962 0.969 0.969 0.969 0.965

R300,1500 0.929 0.951 0.949 0.951 0.944 0.941 0.935 0.933
R300,3000 0.966 0.977 0.976 0.979 0.976 0.976 0.972 0.973

R500,2500 0.960 0.967 0.961 0.963 0.955 0.955 0.950 0.947
R500,5000 0.922 0.948 0.948 0.960 0.957 0.958 0.966 0.961

Average 0.929 0.954 0.950 0.952 0.948 0.945 0.943 0.940 0.945

MiDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.794 0.752 0.718 0.671 0.636 0.582 0.540 0.497
R100,1000 – 0.819 0.731 0.719 0.740 0.706 0.710 0.671

R300,1500 0.832 0.819 0.793 0.770 0.763 0.721 0.714 0.697
R300,3000 0.899 0.883 0.833 0.822 0.785 0.752 0.707 0.705

R500,2500 0.905 0.867 0.845 0.831 0.793 0.759 0.756 0.723
R500,5000 0.867 0.848 0.803 0.836 0.802 0.764 0.796 0.755

Average 0.859 0.831 0.787 0.775 0.753 0.714 0.714 0.675 0.760
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Figure 28. Average dissimilarity in random networks
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Table 24. Run times of MRAA (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.068 0.095 0.135 0.216 0.301 0.564 0.815 1.048
R100,1000 – 0.177 0.218 0.261 0.353 0.499 0.594 0.601

R300,1500 0.204 0.285 0.372 0.451 0.637 0.741 1.028 1.702
R300,3000 0.414 0.561 0.682 0.805 1.039 1.241 1.455 6.490

R500,2500 0.382 0.480 0.661 0.787 1.131 1.468 1.625 2.109
R500,5000 0.567 0.755 1.171 1.432 1.924 2.283 5.247 19.440

Average 0.327 0.329 0.540 0.659 0.898 1.133 1.794 5.320 1.394

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.047 0.024 0.137 0.253 0.272 0.514 0.842 0.905
G4,36 0.078 0.117 0.197 19.864 42.651 3.999 4.611 300
G6,6 0.022 0.012 0.103 0.097 0.370 0.493 2.487 1.093
G12,12 0.073 0.082 0.456 0.227 1.484 1.802 5.142 5.582

Average 0.055 0.059 0.667 5.111 11.194 1.702 3.270 76.915 12.371

Table 25. Run times of MARA (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.073 0.112 0.156 0.206 0.313 0.422 0.508 0.639
R100,1000 – 0.178 0.245 0.267 0.341 0.395 0.466 0.588

R300,1500 0.220 0.309 0.370 0.466 0.599 0.710 0.806 1.021
R300,3000 0.398 0.517 0.671 0.787 1.075 1.496 1.567 1.814

R500,2500 0.398 0.517 0.671 0.787 1.075 1.496 1.567 1.814
R500,5000 0.588 0.891 1.276 1.540 2.055 2.447 5.342 19.563

Average 0.333 0.429 0.566 0.681 0.906 1.119 1.693 5.014 1.364

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.016 0.022 0.022 0.027 0.029 0.036 0.039 0.092
G4,36 0.074 0.112 0.153 0.188 0.231 0.276 0.357 0.377
G6,6 0.017 0.016 0.024 0.025 0.116 0.030 0.083 0.036
G12,12 0.063 0.065 0.204 0.130 0.558 0.277 0.561 1.111

Average 0.043 0.054 0.101 0.093 0.233 0.155 0.260 0.404 1.364
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Table 26. Average AvDi and MiDi of MRAA in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.949 0.833 0.738 0.703 0.714 0.681 0.656 0.641
G4,36 0.982 0.982 0.892 0.804 0.732 0.759 0.702 0.718
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.833 0.822
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.924 0.919

Average 0.959 0.930 0.871 0.838 0.813 0.808 0.779 0.775 0.847

MiDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.923 0.538 0.231 0.231 0.154 0.154 0.000 0.000
G4,36 0.974 0.947 0.237 0.053 0.105 0.105 0.079 0.105
G6,6 0.900 0.800 0.800 0.700 0.500 0.500 0.300 0.200
G12,12 0.955 0.909 0.818 0.818 0.727 0.727 0.727 0.682

Average 0.938 0.805 0.521 0.450 0.372 0.372 0.277 0.247 0.498

Table 27. Average AvDi and MiDi of MARA in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.949 0.833 0.777 0.785 0.711 0.720 0.686 0.699
G4,36 0.982 0.982 0.982 0.812 0.747 0.787 0.767 0.748
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.833 0.822
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.924 0.919

Average 0.959 0.930 0.881 0.860 0.816 0.825 0.803 0.797 0.859

MiDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.846 0.308 0.308 0.154 0.231 0.154 0.154 0.154
G4,36 0.974 0.947 0.211 0.184 0.079 0.184 0.105 0.132
G6,6 0.800 0.800 0.800 0.700 0.700 0.500 0.200 0.200
G12,12 0.909 0.955 0.909 0.818 0.727 0.818 0.727 0.773

Average 0.876 0.752 0.557 0.464 0.434 0.414 0.297 0.315 0.514
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Figure 29. Run times in random networks (seconds – log scale)
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Figure 30. Minimum dissimilarity in random networks
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Figure 31. Average dissimilarity in grid networks
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Figure 32. Run times in grid networks (seconds – log scale)
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Appendix C.Dissimilarities and run times for the IPM

Table 28. Average AvDi and MiDi of IPM in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.712 0.823 0.841 0.847 0.839 0.846 0.830 0.830
R100,1000 – 0.857 0.910 0.918 0.941 0.943 0.947 0.941

R300,1500 0.774 0.868 0.892 0.895 0.890 0.886 0.888 0.885
R300,3000 0.917 0.913 0.937 0.919 0.929 0.942 0.942 0.941

R500,2500 0.896 0.911 0.904 0.907 0.911 0.911 0.906 0.904
R500,5000 0.764 0.853 0.867 0.894 0.909 0.917 0.927 0.927

Average 0.812 0.870 0.891 0.896 0.903 0.907 0.906 0.904 0.886

MiDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.429 0.485 0.484 0.428 0.373 0.301 0.212 0.158
R100,1000 – 0.145 0.312 0.316 0.430 0.419 0.423 0.369

R300,1500 0.613 0.642 0.621 0.621 0.491 0.347 0.338 0.251
R300,3000 0.750 0.531 0.550 0.541 0.503 0.521 0.500 0.464

R500,2500 0.736 0.640 0.634 0.576 0.569 0.526 0.498 0.448
R500,5000 0.525 0.588 0.539 0.530 0.564 0.564 0.580 0.580

Average 0.610 0.505 0.523 0.502 0.488 0.446 0.425 0.378 0.484
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Table 29. Run times of IPM (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.021 0.028 0.034 0.040 0.046 0.057 0.063 0.070
R100,1000 – 0.053 0.065 0.076 0.089 0.101 0.113 0.126

R300,1500 0.064 0.087 0.110 0.129 0.150 0.176 0.197 0.219
R300,3000 0.116 0.151 0.181 0.210 0.244 0.279 0.311 0.344

R500,2500 0.109 0.139 0.174 0.207 0.245 0.285 0.317 0.351
R500,5000 0.191 0.251 0.322 0.395 0.469 0.545 0.599 0.691

Average 0.100 0.118 0.147 0.176 0.207 0.240 0.266 0.300 0.194

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.000 0.002 0.003 0.004 0.005 0.003 0.005 0.005
G4,36 0.008 0.013 0.016 0.012 0.021 0.026 0.030 0.033
G6,6 0.003 0.003 0.001 0.002 0.004 0.000 0.007 0.008
G12,12 0.005 0.007 0.010 0.013 0.011 0.018 0.017 0.014

Average 0.004 0.006 0.007 0.007 0.010 0.011 0.014 0.015 0.009

Table 30. Average AvDi and MiDi of IPM in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.948 0.833 0.800 0.769 0.758 0.741 0.732 0.728
G4,36 0.892 0.912 0.982 0.859 0.830 0.817 0.805 0.798
G6,6 0.933 0.933 0.900 0.893 0.866 0.857 0.844 0.840
G12,12 0.969 0.969 0.954 0.951 0.939 0.935 0.929 0.926

Average 0.958 0.911 0.886 0.868 0.848 0.837 0.827 0.823 0.870

MiDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.846 0.153 0.153 0.153 0.153 0.000 0.000 0.000
G4,36 0.947 0.526 0.526 0.500 0.500 0.131 0.078 0.078
G6,6 0.900 0.900 0.600 0.600 0.600 0.600 0.500 0.500
G12,12 0.954 0.954 0.818 0.818 0.681 0.681 0.681 0.681

Average 0.911 0.633 0.524 0.517 0.483 0.353 0.314 0.314 0.506
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