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Abstract: Our main goal is to study the freeness of Schützenberger groups defined
by primitive substitutions. Our findings include a simple freeness test for these groups,
which is applied to exhibit a primitive invertible substitution with corresponding
non-free Schützenberger group. This constitutes a counterexample to a result of
Almeida dating back to 2005. We also give some early results concerning relative
freeness of Schützenberger groups, a question which remains largely unexplored.
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1. Introduction
In [4], Almeida unveiled a connection between symbolic dynamical systems, or

shift spaces, and maximal subgroups of free profinite monoids. More precisely,
he proved that the topological closure inside the free profinite monoid of the
language of a minimal shift space contains a unique regular J -class. By standard
results from semigroup theory, all the maximal subgroups contained in a regular
J -class define the same group up to isomorphism, known as its Schützenberger
group. In a profinite monoid, the Schützenberger group of a regular J -class is a
profinite group. Thus, Almeida’s correspondence associates to each minimal
shift space a profinite group, and this defines a conjugacy invariant [11].
In the study of Schützenberger groups corresponding to minimal shift spaces,

the freeness question has been a recurring theme [4, 5, 6, 12]. These groups
are known to be free for the family of dendric shift spaces, also known as
tree sets [6, Theorem 6.5]. Notably, these include Arnoux-Rauzy shift spaces
[8, Example 3.2], as well as shift spaces defined by regular interval exchange
[9, Theorem 4.3]. On the other hand, failure of freeness was also observed,
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for instance in the shift space defined by the Thue–Morse substitution [5,
Theorem 7.6]. This raises the general question: when is the Schützenberger
group defined by a minimal shift space free? At time of writing, this question
remains largely open. A partial answer was proposed early on by Almeida, which
argued that the Schützenberger group of a primitive invertible substitution must
be free [4, Corollary 5.7]. However, upon closer inspection, we noticed some gaps
in the proof. This prompted us to investigate more closely the freeness question
for Schützenberger groups of primitive substitutions, with an eye on the specific
case of invertible substitutions. This paper aims to present the results of this
investigation, which include a counterexample to [4, Corollary 5.7].
The paper is organized as follows. In Section 2, we review some relevant

background. In Section 3, we discuss the notion of ω-presentation (a type of
profinite presentation introduced in [5]) and we give a number of technical
results. In Section 4, we examine the link between freeness and ω-presentations.
The main result of this section, Theorem 4.1, provides a simple test for freeness
of Schützenberger groups of primitive substitutions. Several examples are
presented for which the test can be succesfully applied. In Section 5, we study
the Schützenberger groups of relatively invertible primitive substitutions, and
more precisely the pseudovarieties generated by the finite quotients of such
Schützenberger groups. The main result of this section has two consequences
that are of particular interest to us. First, if a primitive substitution is invertible,
then its Schützenberger group is relatively free if and only if it is absolutely
free. Second, if a primitive substitution is unimodular and its Schützenberger
group is relatively free, then it must be free with respect to a pseudovariety
containing at least all finite nilpotent groups. Finally, Section 6 presents our
counterexample to [4, Corollary 4.7], which consists of a primitive invertible
substitution whose Schützenberger group is not free, and in fact not relatively
free by the results of Section 5.

2. Preliminaries
This section aims to provide some context and present most of the relevant

background. Additional notions will be introduced in the course of the paper as
they are needed. The monograph [7] contains an in-depth treatment of most of
the material we need. Here is a list of more specialized documents that may also
be useful: on profinite groups and profinite presentations, [21, 26]; on profinite
semigroups and Schützenberger groups of primitive substitutions, [3, 4, 5]; on
return sets and return substitutions, [14, 16].
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By an alphabet, we mean a finite set A whose elements are called letters. We
use An as a shorthand for the alphabet {0, . . . , n − 1}, n ∈ N. Let F (A) be
the free group on the alphabet A and F̂ (A) be the free profinite group on A.
We use the notation ε to denote the identity element of both F (A) and F̂ (A),
as well as the empty word. We denote by End(F (A)) the set of endomorphisms
of F (A), and by End(F̂ (A)) the set of continuous endomorphisms of F̂ (A).
An endomorphism φ ∈ End(F (A)) admits a unique continuous extension
φ̂ ∈ End(F̂ (A)), called the profinite extension of φ.
In this paper, we deal with profinite presentations in the sense of [21]. Formally,

a presentation of a profinite group G is a pair formed by a set A and a subset
R ⊆ F̂ (A) such that G ∼= F̂ (A)/N , where N is the closed normal subgroup
of F̂ (A) generated by R. We call A the set of generators and R the set of
relations. The notation G ∼= 〈A | R〉 means that (A,R) is a presentation of G.
The minimal number of generators in a presentation of G is denoted d(G). A
presentation realizing this minimum is called a minimal presentation.
A substitution is an endomorphism ϕ of the free monoid A∗ over an alphabet

A. Assuming A has at least two letters, we say that ϕ is primitive if there
exists n ∈ N such that b occurs in ϕn(a), for all a, b ∈ A. On the other hand, if
A is a one-letter alphabet, then we say that ϕ is primitive if ϕ(a) = an with
n > 1. A substitution ϕ : A∗ → A∗ is called invertible if its natural extension to
an endomorphism of F (A) is an automorphism. Note that, if A is a singleton,
the only invertible substitution is the identity mapping, which is not primitive
according to our definition. Thus, a primitive invertible substitution is always
defined on at least two letters.
Following [7, Section 5.5], a primitive substitution ϕ : A∗ → A∗ defines a

minimal shift space X(ϕ) ⊆ AZ. The language of this shift space, which we
denote L(ϕ), is the subset of A∗ formed by the factors of the words ϕn(a) for
all n ∈ N and a ∈ A. Minimality of X(ϕ) means that L(ϕ) must be uniformly
recurrent. That is, L(ϕ) is infinite, closed under taking factors, and satisfies
the bounded gap property : for all u ∈ L(ϕ), there exists n ∈ N such that u is a
factor of every word w ∈ L(ϕ) with |w| ≥ n. We say that ϕ is periodic if X(ϕ)
is a periodic shift space, or equivalently if L(ϕ) is the language of factors in the
powers of a given word w ∈ A+. Otherwise, we say that ϕ is aperiodic.
Let Â∗ be the free profinite monoid over an alphabet A. A result of Almeida

shows that if L ⊆ A∗ is uniformly recurrent, then L \ A∗ is a J -maximal
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regular J -class of Â∗, where L is the topological closure of L in Â∗ [7, Proposi-
ton 5.6.14]. This in fact gives a bijective correspondence between uniformly
recurrent languages (and thus minimal shift spaces) and J -maximal regular
J -classes of Â∗ [7, Proposition 5.6.12]. Standard results from semigroup theory
imply that the maximal subgroups contained in L \A∗ are all isomorphic to the
same profinite group, which is called the Schützenberger group of the J -class
(see for instance [7, Section 3.6]). In case L = L(ϕ) is the language of a primitive
substitution, we denote this group by G(ϕ) and we call it the Schützenberger
group of ϕ. Note that if ϕ is periodic, then G(ϕ) is a free profinite group of
rank 1 [7, Exercise 5.20], so from now on we focus on the aperiodic case.
Two-sided return substitutions, introduced in [16], play an important role in

the study of Schützenberger groups of primitive substitutions [5]. It is based
on the notion of return words, which we recall now. Let ϕ be a primitive
substitution and u, v ∈ L(ϕ) be such that uv ∈ L(ϕ). By a return word
to (u, v) in L(ϕ), we mean a word r ∈ A∗ that separates two consecutive
occurrences of (u, v) in L(ϕ). More precisely, it is a word r ∈ A∗ such that urv
is in L(ϕ), starts and ends with uv, and contains exactly two occurrences of
uv. The set of such words is denoted Ru,v, and we call this a return set of ϕ.
For primitive substitutions, the return sets are always finite and non-empty (by
uniform recurrence of L(ϕ), see [10, Proposition 4.2]). Moreover, they generate
free submonoids of A∗, for which they form bases. In other words, the return
sets of primitive substitutions are codes [16, Lemma 17]. A further property
worth mentionning is that a primitive substitution is periodic if and only if one
of its return sets is a singleton, if and only if all but finitely many of its return
sets are singletons (see [14, Proposition 2.8] and [10, Proposition 4.4]).
By a connection∗ of a primitive substitution ϕ, we mean a pair of non-empty

words (u, v) such that uv ∈ L(ϕ) and, for some positive integer l, ϕl(u) ends
with u and ϕl(v) starts with v. The least positive integer l with that property
is called the order of the connection. If (u, v) is a connection of ϕ of order k,
then ϕk restricts to a primitive substitution of the free submonoid generated
by Ru,v [16, Lemma 21]. This substitution, which we denote ϕu,v, is said to
be a return substitution of ϕ. All primitive substitutions have at least one
connection, hence at least one return substitution [7, Proposition 5.5.10].
Following the convention used in [14], we relabel return substitutions using the

natural ordering of return words induced by leftmost occurrences. This ordering
∗The term connection was coined by Almeida in [4], where it was used under the condition

|u| = |v| = 1.
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may be defined as follows. Let (u, v) be a connection of order k of a primitive
substitution ϕ. First, by uniform recurrence of L(ϕ), there exists n ∈ N such
that the word uϕnk(v) contains every word of the form urv, r ∈ Ru,v. For
r, s ∈ Ru,v, we say that r precedes s in the leftmost occurrence ordering if the
leftmost occurrence of urv in uϕnk(v) is located to the left of every occurrence
of usv. Because uϕnk(v) is a prefix of uϕmk(v) whenever m ≥ n, this ordering
is independent of n. We view this as a bijection

θu,v : Au,v → Ru,v, where Au,v = {0, . . . ,Card(Ru,v)− 1}.

The return substitution ϕu,v can be defined as the unique substitution of A∗u,v
satisfying the relation

θu,v ◦ ϕu,v = ϕk ◦ θu,v,
where θu,v is extended to an homomorphism θu,v : A

∗
u,v → A∗.

3. ω-presentations
We recall that the continuous endomorphisms of a finitely generated profinite

group form a profinite monoid (see for instance [7, Section 3.12])†. This implies
that for every such continuous endomorphism ψ, the closure of {ψn : n ∈ N}
contains a unique idempotent element, which is denoted ψω. More information
about ω-powers, including basic properties, can be found in [7, Section 3.7]. We
now give the eponymous definition of this section.

Definition 3.1. Let G be a profinite group. An ω-presentation of G is a
profinite presentation of the form

G ∼= 〈A | φ̂ω(a)a−1 : a ∈ A〉,

where A is a finite set and φ ∈ End(F (A)). We then say that φ defines an
ω-presentation of G.

The number of generators of an ω-presentation of G defined by an endo-
morphism of F (A) is equal to Card(A). Hence, such an ω-presentation is
minimal as a presentation of G precisely when Card(A) = d(G). We call this a
minimal ω-presentation. We also note that the following alternative notation

†For historical context, Hunter proved in [19] that the monoid of continuous endomorphisms of a
finitely generated profinite semigroup is profinite for the compact-open topology. This result was
rediscovered by Almeida [3] and generalized by Steinberg [27].
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is sometimes used for ω-presentations, using relations instead of relators, for
instance in [5]:

G ∼= 〈A | φ̂ω(a) = a (a ∈ A)〉.
The next lemma gives a different way to interpret ω-presentations. We use

essentially the same argument as [21, Proposition 1.1], where it was attributed
to Kovács.

Lemma 3.2. If φ ∈ End(F (A)) defines an ω-presentation of a profinite group
G, then G ∼= Im(φ̂ω).

Proof : Let ψ = φ̂. It suffices to show that the closed normal subgroup K of
F̂ (A) generated by {ψω(a)a−1 : a ∈ A} is equal to ker(ψω). Since ψω is an
idempotent endomorphism, the following equalities hold:

ψω(ψω(a)a−1) = ψω(ψω(a))ψω(a−1) = ψω(a)ψω(a−1) = ψω(aa−1) = ε.

Therefore, K is contained in ker(ψω).
To prove the reverse inclusion, we show that K contains every element of

the form ψω(x)x−1 with x ∈ F̂ (A). The desired inclusion clearly follows since
x ∈ ker(ψω) implies x−1 = ψω(x)x−1. Consider the following subset of F̂ (A):

{x ∈ F̂ (A) : ψω(x)x−1 ∈ K}.

Routine arguments show that this set forms a closed subgroup of F̂ (A) which
contains A. Hence, it must be equal to F̂ (A), and this finishes the proof.

Our motivation for introducing ω-presentations is a key result due to Almeida
and Costa, which is stated below. It allows to effectively compute an ω-presen-
tation for the Schützenberger group of every primitive aperiodic substitution,
and will serve as our starting point in Section 6. The original statement is
restricted to connections (u, v) satisfying |u| = |v| = 1, but the proof works as
long as u, v 6= ε.

Theorem 3.3 ([5, Theorem 6.2]). Let ϕ be a primitive aperiodic substitution
and (u, v) be a connection of ϕ. Then G(ϕ) has the following ω-presentation:

G(ϕ) ∼= 〈Au,v | ϕ̂u,vω(a)a−1 : a ∈ Au,v〉.

In other words, every return substitution of ϕ defines an ω-presentation of
G(ϕ).
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Remark 3.4. Assume that ϕ is also proper, meaning that there are a1, a2 ∈ A
and n ∈ N such that ϕn(b) ∈ a1A∗∪A∗a2 for all b ∈ A. Then G(ϕ) has the more
straightforward ω-presentation G(ϕ) ∼= 〈A | ϕ̂ω(a)a−1 : a ∈ A〉 [5, Theorem 6.4].
That is to say, ϕ defines an ω-presentation of its own Schützenberger group.
Further noting that return substitutions are always proper [16, Lemma 21], it
follows that a return substitution ϕu,v defines an ω-presentation of both G(ϕ)
and G(ϕu,v). Hence, the two Schützenberger groups are isomorphic.

Example 3.5. The Thue–Morse substitution is the binary substitution τ defined
by

τ : 0 7→ 01
1 7→ 10.

This substitution is clearly primitive and it is well known to be aperiodic.
Moreover, it is easily verified that the pairs (0, 1), (0, 10) are connections of τ of
order 2. Computing the corresponding return substitutions (for instance using
the algorithm described in Section 6), one obtains the following substitutions,
both defined on the alphabet A4 = {0, 1, 2, 3}:

τ0,1 : 0 7→ 0123
1 7→ 013
2 7→ 02123
3 7→ 0213

τ0,10 : 0 7→ 01
1 7→ 023132
2 7→ 0232
3 7→ 0131.

By Theorem 3.3, the substitutions τ0,1 and τ0,10 define ω-presentations of the
Schützenberger group G(τ), which means

G(τ) ∼= 〈A4 | τ̂0,1ω(a)a−1 : a ∈ A4〉 ∼= 〈A4 | τ̂0,10ω(a)a−1 : a ∈ A4〉.

As it was observed in [5], the ω-presentations given by return substitutions
(or indeed by the substitution itself in the proper case) are not always minimal.
We now introduce a simple method for reducing the number of generators in
ω-presentations. Let φ be an element of End(F (A)). We denote by rn(φ) the
restriction of φ to an endomorphism of Im(φn).

Proposition 3.6. If φ ∈ End(F (A)) defines an ω-presentation of a profinite
group G, then, for every non-negative integer n, the endomorphism rn(φ) defines
an ω-presentation of G with at most Card(A) generators.

Proof : By the Nielsen–Schreier theorem, Im(φn) = F (B) for some finite set B.
Moreover, since F (B) is generated by φn(A), we have Card(B) ≤ Card(A). It
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remains to show that rn(φ) defines an ω-presentation of G, which by Lemma 3.2
amounts to showing that Im(r̂n(φ)

ω
) ∼= Im(φ̂ω).

Let η : F (B)→ F (A) be the homomorphism induced by the inclusion F (B) ⊆
F (A) and let η̂ : F̂ (B)→ F̂ (A) be its profinite extension. Since η is injective,
so is η̂ by [7, Theorem 4.6.7]. Moreover, from the equality φ ◦ η = η ◦ rn(φ), we
deduce that the following diagram is commutative:

F̂ (B) F̂ (A)

F̂ (B) F̂ (A).

η̂

r̂n(φ) φ̂
η̂

Hence, η̂ restricts to a continuous isomorphism Im(r̂n(φ)
ω
) ∼= φ̂ω(Im(η̂)). Noting

the equalities
Im(η̂) = Im(η) = Im(φn) = Im(φ̂n),

it then suffices to show that φ̂ω(Im(φ̂n)) = Im(φ̂ω). And indeed, we have

φ̂ω(Im(φ̂n)) ⊆ Im(φ̂ω) = φ̂ω(Im(φ̂ω)) ⊆ φ̂ω(Im(φ̂n)).

Note that the restriction operation satisfies rk(rn(φ)) = rn+k(φ). Therefore,
{rn(φ)}n∈N gives a sequence of ω-presentations of the same profinite group
with weakly decreasing numbers of generators. The next result tells us exactly
when the number of generators stabilizes. The proof mostly boils down to
the well-known fact that free groups of finite rank enjoy the Hopfian property,
which can be stated as follows: every surjective homomorphism between two
free groups of the same finite rank is an isomorphism. See for instance [24,
Theorem 41.52].

Proposition 3.7. Let φ define an ω-presentation of a profinite group G. For
every two non-negative integers m,n ∈ N with n < m, the ω-presentations of
G defined by rn(φ) and rm(φ) have the same number of generators if and only
if rn(φ) is injective.

Proof : We start by noting that rn(φ)m−n is a continuous surjective homomor-
phism from Im(φn) to Im(φm). If rn(φ) and rm(φ) define ω-presentations with
the same number of generators, then Im(φn) and Im(φm) are free groups of
the same rank, and by the Hopfian property, rn(φ)m−n is an isomorphism. In
particular, rn(φ)m−n is injective, and since m− n ≥ 1 so is rn(φ).
Conversely, if rn(φ) is injective, then rn(φ)

m−n : Im(φn) → Im(φm) is an
isomorphism. Thus, Im(φn) and Im(φm) are free groups of the same rank
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Figure 1. Stallings automaton of the image of the return substitu-
tion τ0,10 viewed as an endomorphism of F (A4). The distinguished
state is identified by a double circle and the dashed edges form a
spanning tree.

and the ω-presentations defined by rm(φ) and rn(φ) have the same number of
generators.

We immediately deduce the following.

Corollary 3.8. Let φ define an ω-presentation of a profinite group G. If
φ is not injective, then there exists an ω-presentation of G with strictly less
generators. In particular, if φ defines a minimal ω-presentation of G, then φ
must be injective.

The following example shows that injective endomorphisms can also define
non-minimal ω-presentations.

Example 3.9 (Continued from Example 3.5). One can show that the endomor-
phism of F (A4) induced by the return substitution τ0,1 is not injective. For
instance,

02−102−131−120−1 ∈ ker(τ0,1).

Hence, by Corollary 3.8, the ω-presentation defined by τ0,1 is not minimal.
On the other hand, τ0,10 extends to an injective endomorphism of F (A4). One

way to see this is to show that the set {03−1, 31−1, 3232, 2−112−13−1} is a basis
of Im(τ0,10). More precisely, it is the basis determined (as in [20, Lemma 6.1]) by
the spanning tree of the Stallings automaton of Im(τ0,10) given in Figure 1. Even
though τ0,10 is injective, it does not define a minimal ω-presentation of G(τ),
since it has the same number of generators as the non-minimal ω-presentation
defined by τ0,1.
According to Proposition 3.6, a shorter ω-presentation of G(τ) is defined by

the restriction r1(τ0,1). Here is the endomorphism r1(τ0,1) expressed in the basis
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{3−12, 20−1, 2−1302−11} of Im(τ0,1):

r1(τ0,1) : 0 7→ 02110
1 7→ 10021
2 7→ 2.

Another ω-presentation of G(τ) with 3 generators was obtained, by other
means, in [5], where it is also shown that d(G(τ)) = 3 [5, Theorem 7.7].
Therefore, the ω-presentation defined by r1(τ0,1) is minimal.

4. Freeness via ω-presentations
In this section, we present a few key results concerning freeness of profinite

groups with ω-presentations. Given an endomorphism φ of F (A), the incidence
matrix of φ is the matrix M(φ) ∈ ZA×A defined by M(φ)a,b = |φ(a)|b, where
| − |b : F (A)→ Z is the unique group homomorphism extending the Kronecker
delta function δb : A → Z. The main result of the section is the following
theorem, which provides a simple freeness test for Schützenberger groups of
primitive substitutions. We will make use of this test in Section 6 to exhibit a
primitive invertible substitution whose Schützenberger group is not free. Two
examples where this test can be applied are also presented at the end of the
current section.

Theorem 4.1. Let G be a profinite group with an ω-presentation defined by an
endomorphism φ such that det(M(φ)) 6= 0. Then G is a free profinite group if
and only if φ is an automorphism.

The following example shows why the theorem may fail without the assumption
that det(M(φ)) 6= 0.

Example 4.2. Let A be an alphabet and b a letter not in A. Consider the
endomorphism φ of F (A ∪ {b}) defined by

φ(a) =

{
a if a 6= b

ε if a = b.

It is straightforward to check that φ defines an ω-presentation of F̂ (A), but it
is clearly not an automorphism.

We split the proof of Theorem 4.1 into two propositions. The first one relates
freeness with minimal ω-presentations. The proof uses the fact that free profinite
groups of finite ranks satisfy a topological version of the Hopfian property: every
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continuous surjective homomorphism between two free profinite groups of the
same rank is an isomorphism [26, Proposition 2.5.2]. Also note the following
straightforward consequence of the Hopfian property, which is used in the proof:
the free profinite group over a finite set A cannot be generated by strictly less
than Card(A) elements, and therefore d(F̂ (A)) = Card(A).

Proposition 4.3. Let φ ∈ End(F (A)) define a minimal ω-presentation of
a profinite group G. Then G is a free profinite group if and only if φ is an
automorphism.

Proof : Suppose that φ is an automorphism. Noting that the profinite completion
is functorial [26, Lemma 3.2.3], it follows that φ̂ is also an automorphism, and
by [7, Proposition 3.7.4], φ̂ω is the identity. Since φ defines an ω-presentation
of G, we see that

G ∼= 〈A | φ̂ω(a)a−1 : a ∈ A〉 = 〈A | aa−1 : a ∈ A〉 = 〈A | ε〉 = F̂ (A).

Conversely, suppose that G is a free profinite group. Since the ω-presentation
of G defined by φ is minimal, we have d(G) = Card(A) and it follows that G
is isomorphic to F̂ (A). Moreover, by Lemma 3.2, G is isomorphic to Im(φ̂ω).
Therefore, φ̂ω : F̂ (A) → Im(φ̂ω) is a continuous surjective homomorphism
between free profinite groups of the same rank. By the Hopfian property,
it follows that φ̂ω is injective. Since it is idempotent, we conclude that φ̂ω

is the identity. By [7, Proposition 3.7.4], φ̂ is an automorphism and by [7,
Proposition 4.6.8], so is φ.

Remark 4.4. At time of writing, we are not aware of any reliable way to find
minimal ω-presentations for Schützenberger groups of primitive substitutions.
Example 3.9 gives some clues as to why this might be a difficult problem.

The second proposition, which completes the proof of Theorem 4.1, gives
a sufficient condition for an ω-presentation to be minimal. The minimal ω-
presentation of G(τ) given at the end of Example 3.9 shows that this condition
is not necessary.

Proposition 4.5. Let φ ∈ End(F (A)) define an ω-presentation of a profinite
group G such that det(M(φ)) 6= 0. Then the ω-presentation defined by φ is a
minimal presentation of G.

The proof relies on a result from [5] which is recalled in the next propo-
sition. Given ψ ∈ End(F̂ (A)) and a finite group H, we define an operator
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ψH : HA → HA as follows. A tuple t ∈ HA, viewed as a map A→ H, extends
uniquely to a continuous homomorphism t̂ : F̂ (A)→ H. We define ψH(t) ∈ HA

by
ψH(t)(a) = t̂(ψ(a)), a ∈ A.

This construction gives a contravariant continuous action of the profinite monoid
End(F̂ (A)) on HA [5, Lemma 3.1].
Let H be a finite group and t ∈ HA be a tuple. We say that t generates H if

its components form a generating set of H.

Proposition 4.6 ([5, Proposition 3.2]). Let φ ∈ End(F (A)) define an ω-
presentation of a profinite group G and H be a finite group. Then the following
are equivalent:

(1) H is a continuous homomorphic image of G.
(2) There exist t ∈ HA and n ≥ 1 such that t generates H and φ̂nH(t) = t.

With this, we are ready for the proof of Proposition 4.5, which also completes
the proof of Theorem 4.1.

Proof of Proposition 4.5: Since every continuous homomorphic image H of G
satisfies d(H) ≤ d(G), it suffices to show that one such image exists satisfying
d(H) = Card(A). To this end, fix a prime p that does not divide det(M(φ))
and let H = (Z/pZ)A. Clearly, d(H) = Card(A). Let Mp(φ) be the reduction
modulo p of the incidence matrix M(φ). Then, a direct computation shows
that for all t ∈ HA and a ∈ A,

φ̂H(t)(a) =
∑
b∈A

εb(φ(a))t(b) = (Mp(φ)t)(a),

where t is viewed as a column vector in the rightmost expression. By our choice
of p, the determinant of Mp(φ) is an invertible element of Z/pZ, hence Mp(φ)
is an invertible matrix over Z/pZ. Since invertible matrices of order Card(A)
over Z/pZ form a finite group, Mp(φ)

n is an identity matrix for some n ≥ 1. It
follows that

φ̂nH(t) =Mp(φ)
nt = t.

Hence, we may apply Proposition 4.6 with any tuple that generates H (for
instance, a tuple formed by a basis of H as a vector space over Z/pZ), and we
conclude that H is a continuous homomorphic image of G.

We finish this section by pointing out some interesting applications of Theo-
rem 4.1, starting with the following corollary:
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Corollary 4.7. Let G be a profinite group with an ω-presentation defined by
an endomorphism φ such that | det(M(φ))| > 1. Then G is not a free profinite
group.

Proof : Suppose that G is a free profinite group. By Theorem 4.1, φ is an
automorphism of F (A). But note that the incidence matrix defines a monoid
homomorphism from End(F (A)) equipped with reversed composition, to the
monoid of matrices of order Card(A) over Z. In particular, it follows that
the matrix M(φ) is invertible over Z. Therefore, | det(M(φ))| equals 1, a
contradiction.

Next, we present two examples of primitive substitutions where the previous
corollary may be used to show that the Schützenberger group is not free. The
first example is due to Almeida, who proved that the Schützenberger group is
non-free back in 2005 [4, Example 7.2].

Example 4.8 (Almeida’s example). Let α be the primitive binary substitution
defined by

α : 0 7→ 01
1 7→ 0001.

This substitution is aperiodic (using for instance [7, Exercise 5.15]) and proper.
It follows that α defines an ω-presentation of G(α) (see Remark 3.4). A quick
computation shows that det(M(α)) = −2, hence G(α) is not a free profinite
group by Corollary 4.7.

The second example is another well-known primitive substitution, although it
appears as though its Schützenberger group has not been studied.

Example 4.9. The period doubling substitution is the binary substitution %
defined as follows:

% : 0 7→ 01
1 7→ 00.

It is a primitive substitution which is also aperiodic (using again [7, Exer-
cise 5.15]). It admits (1, 0) as a connection of order 2. The return substitution
%1,0 is given by

%1,0 : 0 7→ 010
1 7→ 01110.

The incidence matrix of %1,0 has determinant 4. By Theorem 3.3, %1,0 defines
an ω-presentation of G(%), hence we may apply Corollary 4.7 to conclude that
G(%) is not free.
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5. Schützenberger groups of relatively invertible substitu-
tions
In this section, we examine the Schützenberger groups of relatively invertible

primitive substitutions, that is primitive substitutions that extend to auto-
morphisms of some relatively free profinite group. To this end, it is useful
to first recall a few basic things about pseudovarieties. A pseudovariety of
groups, or pseudovariety for short, is a class H of finite groups closed under
taking subgroups, quotients and finite direct products. Here are a few common
examples:

• the pseudovariety G of all finite groups;
• the pseudovariety Gp of finite p-groups, where p is a given prime;
• the pseudovariety Gnil of finite nilpotent groups;
• the pseudovariety Gsol of finite solvable groups;
• the pseudovariety Ab of finite Abelian groups.

A pseudovariety H is called extension-closed if for each N,K ∈ H, all extensions
of K by N are in H. Among the examples given above, G, Gp and Gsol are
extension-closed, while Gnil and Ab are not.
We denote by F̂H(A) the free pro-H group on a set A. As the name suggests,

these are the free objects in the category of pro-H groups (residually H compact
groups). A detailed construction of free pro-H groups can be found in [26,
Section 3]. We call groups of the form F̂H(A), where H is a non-trivial
pseudovariety, relatively free profinite groups. For emphasis, we say that the
groups F̂ (A) = F̂G(A) are absolutely free. It was shown in [5, Theorems 7.2
and 7.6] that the Schützenberger groups of the substitutions τ and α presented
in Examples 3.5 and 4.8 are not relatively free. In fact, at time of writing, there
is no known example of a primitive substitution whose Schützenberger group is
relatively free but not absolutely free. Part of our conclusion for this section,
which is presented in Corollary 5.10, states that the Schützenberger group of a
primitive invertible substitution is absolutely free if and only if it is relatively
free.
Let ϕ : A∗ → A∗ be a primitive substitution and H be a pseudovariety of

groups. We denote by ϕ̂H the continuous endomorphism of F̂H(A) naturally
induced by ϕ. We say that ϕ is H-invertible if ϕ̂H is an automorphism, or
equivalently if ϕ̂ωH is the identity [7, Proposition 3.7.4]. Note that G-invertibility
is equivalent to invertibility in the usual sense. More explicitly, a primitive
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substitution extends to an automorphism of F (A) if and only if it extends to
an automorphism of F̂ (A) [7, Proposition 4.6.8].
Primitive substitutions also determine pseudovarieties of their own, which have

been introduced in [5]: let V(ϕ) be the pseudovariety generated by the finite
quotients of G(ϕ), that is, by the finite groups that are continuous homomorphic
images of G(ϕ). Here is the main result of this section.

Theorem 5.1. Let H be a non-trivial extension-closed pseudovariety and ϕ be
a primitive, aperiodic and H-invertible substitution. Then, H is contained in
V(ϕ).

The proof of this theorem relies on a number of intermediate results, starting
with the technical lemma stated below. If H is a non-trivial extension-closed
pseudovariety, then free groups are residually H [26, Proposition 3.3.15], hence
there is a natural embedding F (A) ↪→ F̂H(A) for every alphabet A. The
induced topology on F (A) is called the pro-H topology. If X is a subset of
F (A), then we denote its topological closure in F̂H(A) by XH. On the other
hand, we denote by ClH(X) the closure of X in the pro-H topology of F (A).
The proof of the next lemma is mostly a matter of combining several known

results. We provide a proof for the sake of completeness. We chose to rely on
[22, 25, 26], but let us mention that results from [13] could be used as well.
Alternatively, one could adapt the proof of [7, Proposition 4.6.5], which can be
partly traced back to [1, Lemma 4.2].

Lemma 5.2. Let A be a finite set, K be a finitely generated subgroup of F (A)
and H be a non-trivial extension-closed pseudovariety. Then, KH is a free
pro-H group of rank at most that of K.

Proof : By [25, Proposition 3.4], ClH(K) is a subgroup of F (A) of rank at most
that of K, so we may write ClH(K) = F (B), where Card(B) ≤ Card(A).
Let ι : F (B) ↪→ F (A) be the inclusion, and denote by ι̂H its extension to a
continuous homormophism between the respective pro-H completions. By [26,
Proposition 3.3.6], the pro-H completion of a free group of finite rank is a
free profinite group of the same rank, hence we have ι̂H : F̂H(B) → F̂H(A).
Moreover, note that

Im(ι̂H) = Im(ι)H = ClH(K)H = KH,

where the leftmost equality follows from [26, Lemma 3.2.4]. Therefore, it suffices
to show that the pro-H extension ι̂H is injective. By [26, Lemma 3.2.6], this is
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equivalent to showing that the pro-H topology of ClH(K) coincides with the
subspace topology induced by the pro-H topology of F (A). This last statement
holds by the last part of [22, Proposition 2.9].

We now turn to the following proposition, which is one of the main ingredients
in the proof of Theorem 5.1.

Proposition 5.3. Let H be a non-trivial extension-closed pseudovariety and
ϕ be a primitive, aperiodic and H-invertible substitution. Then, G(ϕ) has a
continuous homomorphic image isomorphic to a free pro-H group of rank at
least 2.

Proof : Fix a connection (u, v) of ϕ. By Theorem 3.3, ϕu,v defines an ω-pre-
sentation of G(ϕ) and by Lemma 3.2, it follows that G(ϕ) ∼= Im(ϕ̂u,v

ω).
Let θ̃u,v be the natural extension of θu,v to a continuous homomorphism
θ̃u,v : F̂ (Au,v) → F̂H(A). Recall that θu,v ◦ ϕu,v = ϕk ◦ θu,v, where k is the
order of the connection (u, v), hence the following diagram is commutative:

F̂ (Au,v) F̂H(A)

F̂ (Au,v) F̂H(A).

θ̃u,v

ϕ̂u,v
ω ϕ̂ω

H

θ̃u,v

.

Since ϕ is H-invertible, ϕ̂ωH is the identity, hence Im(θ̃u,v) is a continuous homo-
morphic image of G(ϕ). But notice that Im(θ̃u,v) = Im(θu,v)H = KH, where
K is the subgroup of F (A) generated by the return set Ru,v. By Lemma 5.2,
KH is free pro-H group of finite rank. It remains only to show that this group
has rank at least 2, or alternatively that this group is not commutative. But
notice that KH contains the submonoid of A∗ generated by Ru,v, of which Ru,v

itself forms a basis by [16, Lemma 17]. Since ϕ is aperiodic, Ru,v must have at
least 2 elements, and therefore it generates a non-commutative submonoid of
A∗, thus concluding the proof.

Next is another lemma, which all but completes the proof of our main result.
This lemma is a consequence of an embedding result, due to Neumann and
Neumann, dating back to 1959 [23].

Lemma 5.4. Let H be a non-trivial extension-closed pseudovariety. Then H
is generated, as a pseudovariety, by its 2-generated members.
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Proof : Let L ∈ H be generated by non-identity elements x1, . . . , xd of respective
order n1, . . . , nd. The main construction of [23] implies that for all integers m,n
such that m ≥ 4d and lcm(n1, . . . , nd) | n, we may embed L in a 2-generated
subgroup of the following wreath product:

(L o Z/nZ) o Z/mZ.

Since H is extension-closed, such a wreath product is in H provided all the
factors are in H. Therefore, it suffices to show that m and n can be chosen
so that Z/mZ,Z/nZ ∈ H. For n, we may simply take n = lcm(n1, . . . , nd).
Indeed, it then follows that Z/nZ is a subgroup of Z/n1Z × · · · × Z/ndZ.
This last group in turn lies in H because, for i = 1, . . . , d, the subgroup of
L generated by xi is isomorphic to Z/niZ. For m, choose some prime p such
that Z/pZ ∈ H, for instance a prime that divides one of the ni. Since H is
extension-closed, it contains the extension-closed pseudovariety generated by
Z/pZ, which is in fact Gp. In particular, H contains Z/pkZ for all positive
integers k. Taking k ≥ logp(4d), we find that m = pk fulfills all the required
conditions.

The proof of Theorem 5.1 is now a straightforward matter.

Proof of Theorem 5.1: By Proposition 5.3, V(ϕ) contains all 2-generated mem-
bers of H. But by Lemma 5.4, these groups generate H, hence H ⊆ V(ϕ).

Next, we proceed to highlight some consequences of our main result. A result
of Almeida implies that a substitution is Gp-invertible if and only if det(M(ϕ))
is not divisible by p [2, Proposition 5.2]. Combining this with Theorem 5.1, we
immediately obtain the following:

Corollary 5.5. Let ϕ be a primitive aperiodic substitution. Then Gp is con-
tained in V(ϕ) for every prime p that does not divide det(M(ϕ)). In particular,
if det(M(ϕ)) is not 0, this must be the case for cofinitely many primes.

We now wish to show that Theorem 5.1 also holds for Gnil, even though it is
not extension-closed. By [2, Corollary 5.3], a substitution ϕ is Gnil-invertible if
and only if det(M(ϕ)) = ±1. Substitutions satisfying the latter condition are
called unimodular. It turns out that for primitive substitutions, unimodularity
implies aperiodicity. This is mostly thanks to a result of Holton and Zamboni
from [18], as we now proceed to show.

Proposition 5.6. A primitive unimodular substitution ϕ is aperiodic.
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Proof : First, note that the only unimodular substitution on a one-letter alphabet
is the identity, which is not primitive. Thus, we may assume that ϕ is defined
on an alphabet with at least two letters. By a result of Holton and Zamboni, it
suffices to show that the invertible matrix M(ϕ) has an eigenvalue of modulus
less than 1 [18, Corollary 2.7]. We argue by contradiction. Suppose that all
eigenvalues of M(ϕ) have modulus at least 1 and let ρ be the spectral radius of
M(ϕ). Since M(ϕ) is a primitive matrix, it follows from the Perron–Frobenius
theorem that ρ is a simple eigenvalue of M(ϕ) with strictly maximal modulus
[17, Theorem 1.2.6]. Since ϕ is defined on at least two letters, M(ϕ) has one
eigenvalue λ distinct from ρ, and therefore 1 ≤ |λ| < ρ. But det(M(ϕ)) is the
product of the eigenvalues of M(ϕ), all of which have modulus at least 1, hence
| det(M(ϕ))| ≥ ρ > 1. This contradicts the unimodularity of ϕ.

Tying up loose ends, we give a simple example showing that the conclusion of
the previous proposition may not hold for substitutions that are Gp-invertible
for cofinitely many primes.

Example 5.7. Consider the following primitive substitution:
ϕ : 0 7→ 02

1 7→ 21
2 7→ 10.

It is straightforward to check that det(M(ϕ)) = −2, hence ϕ is Gp-invertible
for all odd primes p. Yet, ϕ is periodic, as the language of ϕ consists of the
factors in powers of the word 021.

In the next corollary of Theorem 5.1, we are able to omit the assumption of
aperiodicity thanks to Proposition 5.6.

Corollary 5.8. If ϕ is a primitive unimodular substitution, then Gnil is con-
tained in V(ϕ).

Proof : Under our assumptions, ϕ is Gp-invertible for all primes p, hence V(ϕ)
contains Gp for all primes p by Corollary 5.5. Since Gnil is the join (in the
lattice of pseudovarieties ordered by inclusion) of the pseudovarieties Gp, where
p ranges over all primes, we find Gnil ⊆ V(ϕ).

For the next corollary, which is just Theorem 5.1 with H = G, it is useful
to note that invertible substitutions are unimodular. Indeed, recall from the
proof of Corollary 4.7 that the incidence matrix of an automorphism must be
invertible over Z. In particular, we may again omit the aperiodicity assumption.
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Corollary 5.9. If ϕ is a primitive invertible substitution, then V(ϕ) equals G.

Finally, we give an application of Theorem 5.1 to the relative freeness question.
For every pseudovariety H, all finite continuous homomorphic images of a pro-H
group lie in H [26, Theorem 2.1.3]. In particular, if G(ϕ) is a free pro-H group,
then V(ϕ) ⊆ H. Combining this observation with the three corollaries stated
above yields the following corollary, which is our conclusion for this section.

Corollary 5.10. Let H be a pseudovariety and ϕ be a primitive substitution
such that G(ϕ) is a free pro-H group.

(1) If ϕ is aperiodic, then Gp ⊆ H for every prime p that does not divide
the determinant of M(ϕ).

(2) If ϕ is unimodular, then Gnil ⊆ H.
(3) If ϕ is invertible, then H = G and therefore G(ϕ) is absolutely free.

6. An invertible substitution with a non-free Schützen-
berger group
The aim of this section is to present a primitive invertible substitution whose

Schützenberger group is not free, and thus not relatively free by Corollary 5.10.
This constitutes a counterexample to [4, Corollary 5.7]. Let us formally state
our conclusion.

Theorem 6.1. There exists an invertible primitive substitution whose Schützen-
berger group is not a relatively free profinite group.

Our example is the following substitution defined on A4 = {0, 1, 2, 3}:
ξ : 0 7→ 001

1 7→ 02
2 7→ 301
3 7→ 320.

Showing that ξ is primitive amounts to a straightforward computation. More-
over, one can show that ξ is invertible by directly checking that

ξ−1 : 0 7→ 1−102−13
1 7→ (3−120−11)20
2 7→ 3−120−111
3 7→ 20−11−102−13.

Since invertible substitutions are unimodular, it follows from Proposition 5.6
that ξ is aperiodic.
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We proceed to show that G(ξ) is not a free profinite group. In light of
Theorem 4.1, it suffices to show that G(ξ) admits an ω-presentation defined by
an endomorphism which is not an automorphism and whose incidence matrix has
a non-zero determinant. This boils down to a series of computations organized
as follows:
Step 1. We compute the return substitution of ξ with respect to the connection

(1, 0). This defines an ω-presentation of G(ξ) with 7 generators.
Step 2. We compute the restriction r1(ξ1,0). This defines an ω-presentation of

G(ξ) with 5 generators, and moreover the incidence matrix of r1(ξ1,0)
has non-zero determinant.

Step 3. We show that r1(ξ1,0) is not an automorphism of F (A5).

Step 1. Let us compute the return substitution of ξ with respect to the
connection (1, 0). Note that this connection has order 2. For this computation,
we use an algorithm described by Durand in [15, p.5]. A detailed implementation
of Durand’s algorithm written in pseudocode may be found in Algorithm 1.
Given a primitive substitution ϕ with a connection (u, v) of order k, Durand’s
algorithm simultaneously computes the return substitution ϕu,v and the bijection
θu,v : Au,v → Ru,v satisfying θu,v ◦ ϕu,v = ϕk ◦ θu,v. In particular, it can also be
used to compute the return set.
The first part of Algorithm 1 (lines 1-6) computes the value of θu,v(0). In the

case at hand, we find that 001 is the leftmost return word in 1ξ2(0) = 100100102,
so θ1,0(0) = 001. Carrying out the rest of the algorithm yields the following
result (see Table 1 for details):

θ1,0 : 0 7→ 001
1 7→ 02001
2 7→ 02001301
3 7→ 02320001
4 7→ 02001301320301
5 7→ 02320301
6 7→ 001320001

ξ1,0 : 0 7→ 00102
1 7→ 00310102
2 7→ 003101040002
3 7→ 003561010102
4 7→ 00310104000461050002
5 7→ 003561050002
6 7→ 0010461010102.

We recall that ξ is primitive and unimodular (since it is invertible), hence it
is aperiodic by Proposition 5.6. Therefore, Theorem 3.3 shows that ξ1,0 defines
an ω-presentation of G(ξ). This ω-presentation has 7 generators.

Step 2. We now compute r1(ξ1,0), which we recall is the restriction of ξ1,0 to
the subgroup Im(ξ1,0) of F (A7). First, we need to find a basis of Im(ξ1,0). To
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Data: A primitive substitution ϕ and a connection (u, v) of ϕ of order k.
Result: The ordering θu,v and the return substitution ϕu,v.

1 begin
2 w ← v;
3 repeat
4 w ← ϕk(w);
5 until uv occurs twice in uw;
6 let θu,v(0) = leftmost return word in uw;
7 i← 1 ; // least undefined letter of θu,v
8 j ← 0 ; // least undefined letter of ϕu,v
9 while j<i do

10 foreach return word r in uϕk(θu,v(j))v do
11 if r is not in Im(θu,v) then
12 let θu,v(i) = r;
13 i← i+ 1;
14 end if
15 end foreach
16 let ϕu,v(j) = θ−1u,v(ϕ

k(r));
17 j ← j + 1;
18 end while
19 end

Algorithm 1. Durand’s algorithm for computing return substitutions.

do this, it is convenient to recall some notions related with Stallings’ algorithm.
For a more exhaustive exposition of this topic, we point the reader to [20].
Let A be a non-deterministic automaton over the alphabet A with a distin-

guished state s0, serving as both initial and final state. Let us also suppose
that A is weakly connected. We allow A to also read words in (A ∪ A−1)∗ in
the natural way. More explicitly, if a ∈ A acts partially on the states of A by
x 7→ x · a, then we let a−1 act partially on the states of A by

x · a−1 = {y : x ∈ y · a}.

We say that A is folded if no two distinct transitions exist that share the same
label as well as the same origin or terminus. When A is folded, it defines a
subgroup HA of F (A) as follows: x ∈ F (A) belongs to HA if and only if the
reduced word of (A ∪ A−1)∗ representing x is accepted by A [20, Lemma 3.2].
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θ−1
1,0(r) r 1ξ2(r)0

0 001 1.001.001.02001.001.02001301.0

1 02001 1.001.001.02320001.02001.001.02001.001.02001301.0

2 02001301 1.001.001.02320001.02001.001.02001.001.02001301320301.
001.001.001.02001301.0

3 02320001 1.001.001.02320001.02320301.001320001.02001.001.02001.
001.02001.001.02001301.0

4 02001301320301 1.001.001.02320001.02001.001.02001.001.02001301320301.
001.001.001.02001301320301.001320001.02001.001.
02320301.001.001.001.02001301.0

5 02320301 1.001.001.02320001.02320301.001320001.02001.001.
02320301.001.001.001.02001301.0

6 001320001 1.001.001.02001.001.02001301320301.001320001.02001.001.
02001.001.02001.001.02001301.0

Table 1. Factorization of the words 1ξ2(r)0, r ∈ R1,0, used during
the computation of the return substitution ξ1,0.

Furthermore, we can obtain a basis for the subgroup HA as follows. Let T be a
spanning tree of A . Given two states x, y ∈ A , we denote by [x, y]T the unique
path between x and y in T . Let T ′ be the set of transitions of A that do not
belong to T . For each e ∈ T ′, let be be the label of the path [s0, x]Te[y, s0]T ,
where x and y are respectively the origin and terminus of e. Then, the set
XT = {be : e ∈ T ′} is a basis of HA [20, Lemma 6.1].
Let us use this to obtain a basis of Im(ξ1,0). First, note the two following

equalities, which can be checked with direct computations:

ξ1,0(6) = ξ1,0(02
−145−13), ξ1,0(4) = ξ1,0(21

−125−131−15).

It follows that Im(ξ1,0) is generated by ξ1,0(B), where B = {0, 1, 2, 3, 5}. Let
Y = {0, 10−1, 1−12, 1−125−131−130−1, 03−152−11}.

It is not hard to see that Y generates F (B) (it is even a basis of F (B) since Y
and B have the same number of elements). Therefore, Im(ξ1,0) is generated by
the set

ξ1,0(Y ) = {00102, 00310−1, 2−140002, 2−1461010−1, 01−154−12}.
Let X = ξ1,0(Y ). We claim that X is a basis of Im(ξ1,0). Indeed, consider the

automaton A over the alphabet A7 presented in Figure 2, where a spanning
tree T is highlighted. A direct verification reveals that A is folded and that
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Figure 2. An automaton over the alphabet A7. The distinguished
state is identified by a double circle and a spanning tree is highlighted
with dashed edges.

b ξ1,0(b)

00102 00102.00102.00310−1.00102.00102.00310−1.00102.2−140002

00310−1 00102.00102.00310−1.01−154−12.2−1461010−1.00102.00310−1

2−140002 2−1461010−1.01−154−12.2−140002.00102.00102.00102.00310−1.
00102.2−140002

2−1461010−1 2−1461010−1.01−154−12.2−140002.00102.2−1461010−1.00102.
00310−1.00102.00102.00310−1

01−154−12 01−154−12

Table 2. Factorization of the elements ξ1,0(b), b ∈ X, used to
compute the restriction r1(ξ1,0).

X = XT , so X is a basis of Im(ξ1,0) by [20, Lemma 6.1]. The restriction r1(ξ1,0),
written in the basis X ordered as above, is (see Table 2 for details):

r1(ξ1,0) : 0 7→ 00100102
1 7→ 0014301
2 7→ 342000102
3 7→ 3420301001
4 7→ 4.

By Proposition 3.6, we conclude that r1(ξ1,0) defines an ω-presentation of
G(ξ). The incidence matrix of r1(ξ1,0), which has determinant 1, is given by

M(r1(ξ1,0)) =


5 2 1 0 0
3 2 0 1 1
4 1 2 1 1
4 2 1 2 1
0 0 0 0 1

 .
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Figure 3. An automaton over the alphabet A5. The distinguished
state is identified by a double circle.

Step 3. To conclude the proof of Theorem 6.1, it remains only to show that
r1(ξ1,0) is not an automorphism of F (A5). Consider the automaton A over
the alphabet A5 presented in Figure 3. A simple inspection of each of its
17 states shows that A is folded, hence it defines a proper subgroup HA of
F (A5). Moreover, the words r1(ξ1,0)(a) for a ∈ A5 are all accepted by A , hence
Im(r1(ξ1,0)) ≤ HA . Therefore, Im(r1(ξ1,0)) is also a proper subgroup of F (A5)
and r1(ξ1,0) is not an automorphism of F (A5).
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