
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 21–36

CHAD FOR EXPRESSIVE TOTAL LANGUAGES

FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Abstract: We show how to apply forward and reverse mode Combinatory Ho-
momorphic Automatic Differentiation (CHAD) to total functional programming
languages with expressive type systems featuring the combination of
• tuple types;
• sum types;
• inductive types;
• coinductive types;
• function types.

We achieve this by analysing the categorical semantics of such types in Σ-types
(Grothendieck constructions) of suitable categories. Using a novel categorical logical
relations technique for such expressive type systems, we give a correctness proof of
CHAD in this setting by showing that it computes the usual mathematical derivative
of the function that the original program implements. The result is a principled,
purely functional and provably correct method for performing forward and reverse
mode automatic differentiation (AD) on total functional programming languages
with expressive type systems.

Keywords: automatic differentiation, program correctness, denotational seman-
tics, variant types, inductive types, coinductive types, extensive indexed categories,
Artin glueing, logical relations.
Math. Subject Classification (2020): 68Nxx, 68Txx, 68Wxx, 18Cxx, 18A25,
18D30, 18B50.

Introduction
Automatic differentiation (AD) is a popular technique for computing deriva-

tives of functions implemented by computer programs, essentially by applying
the chain-rule across program code. It is typically the method of choice for
computing derivatives in machine learning and scientific computing because
of its efficiency and numerical stability. AD has two main variants: forward
mode AD, which calculates the derivative of a function, and reverse mode AD,
which calculates the (matrix) transpose of the derivative. Roughly speaking,

Received October 04, 2021.
This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Marie Sk lodowska-Curie grant agreement No. 895827. This
research was partially supported by the Centre for Mathematics of the University of Coimbra -
UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

1

2 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

for a function f : Rn → Rm, reverse mode is the more efficient technique if
n≫ m and forward mode is if n≪ m. Seeing that we are usually interested
in computing derivatives (gradients) of functions f : Rn → R with very large
n, reverse AD tends to be the more important algorithm in practice.
While the study of AD has a long history in the numerical methods commu-

nity, which we will not survey (see, for example, [16]), there has recently been
a proliferation of work by the programming languages community examin-
ing the technique from a new angle. New goals pursued by this community
include

• giving a concise, clear and easy-to-implement definition of various AD
algorithms;
• expanding the languages and programming techniques that AD can be
applied to;
• relating AD to its mathematical foundations in differential geometry
and proving that AD implementations correctly calculate derivatives;
• performing AD at compile time through source-code transformation,
to maximally expose optimization opportunities to the compiler and
to avoid interpreter overhead that other AD approaches can incur;
• providing formal complexity guarantees for AD implementations.

We provide a brief summary of some of this more recent work in section 10.
The present paper adds to this new body of work by advancing the state of
the art of the first four goals. We leave the fifth goal when applied to our
technique mostly to future work (with the exception of Cor. 9.1). Specif-
ically, we extend the scope of the Combinatory Homomorphic Automatic
Differentiation (CHAD) method of forward and reverse AD [40, 39] (from
the previous state of the art: a simply typed λ-calculus) to apply to total
functional programming languages with expressive type systems, i.e. the
combination of:

• tuple types, to enable programs that return or take as an argument
more than one value;
• sum types, to enable programs that define and branch on variant data
types;
• inductive types, to include programs that operate on labeled-tree-like
data structures;
• coinductive types, to deal with programs that operate on lazy infinite
data structures such as streams;

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 3

• function types, to encompass programs that use popular higher order
programming idioms such as maps and folds.

This conceptually simple extension requires a considerable extension of ex-
isting techniques in denotational semantics. The pay-off of this challenging
development are a surprisingly simple AD algorithm as well as reusable ab-
stract semantic techniques.
The main contributions of this paper are:

• developing an abstract categorical semantics (§1) of such expressive
type systems in suitable Σ-types of categories (§3);
• presenting, as the initial instantiation of this abstract semantics, an
idealised target language for CHAD when applied to such type systems
(§4);
• deriving the forward and reverse CHAD algorithms when applied to
expressive type systems as the uniquely defined homomorphic functors
(§5) from the source (§2) to the target language (§4);
• introducing (categorical) logical relations techniques (aka sconing) for
reasoning about expressive functional languages that include both in-
ductive and coinductive types (§7)
• using such a logical relations construction over the concrete denota-
tional semantics of the source and target languages (§6) that demon-
strates that CHAD correctly calculates the usual mathematical deriv-
ative (§8);
• discussing applied considerations around implementing this extended
CHAD method in practice (§9).

We start by giving a high-level overview of the key insights and theorems
in this paper in §.

Key ideas
Origins in semantic derivatives and chain rules. CHAD starts from
the observation that for a smooth function

f : Rn → Rm

it is useful to pair the primal function value f(x) with f ’s derivative Df(x)
at x (where we underline the spaces Rn of tangent vectors to emphasize their
algebraic structure and we write a linear function type for the derivative to

4 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

indicate its linearity in its tangent vector argument):

Tf :Rn → Rm × (Rn ⊸ Rm)

x 7→ (f(x), Df(x))

if we want to calculate derivatives in a compositional way. Indeed, the chain
rule for derivatives teaches us that we compute the derivative of a composition

g ◦ f of functions as follows, where we write Tif
def
= πi ◦ Tf , for i = 1, 2:

T(g ◦ f)(x) = (T1g(T1f(x)), T2g(T1f(x)) ◦ T2f(x)).

We make two observations:

(1) the derivative of g ◦ f does not only depend on the derivatives of g
and f but also on the primal value of f ;

(2) the primal value of f is used twice: once in the primal value of g ◦ f
and once in its derivative; we want to share these repeated subcom-
putations.

Insight 1. This shows that it is wise to pair up computations of primal
function values and derivatives and to share computation between both if we
want to calculate derivatives of functions compositionally and efficiently.

Similar observations can be made for f ’s transposed (adjoint) derivative
Df t, which propagates not tangent vectors but cotangent vectors and which
we can pair up as

T ∗f :Rn → Rm × (Rm ⊸ Rn)

x 7→ (f(x), Df t(x))

to get the following chain rule

T ∗(g ◦ f)(x) = (T ∗1 g(T ∗1 f(x)), T ∗2 f(x) ◦ T ∗2 g(T ∗1 f(x))).

CHAD directly implements the operations T and T ∗ as source code trans-
formations

−→
D and

←−
D on a functional language to implement forward and

reverse mode AD, respectively. These code transformations are defined com-
positionally through structural induction on the syntax, by making use of
the chain rules above.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 5

CHAD on a first-order functional language. We first discuss what the
technique looks like on a standard typed first-order functional language. De-
spite our different presentation in terms of a λ-calculus rather than Elliott’s
categorical combinators, this is essentially the algorithm of [13]. Types τ, σ, ρ
are either statically sized arrays of n real numbers realn or tuples τ∗σ of
such primitive types τ, σ. We consider programs t of type σ in typing con-
text Γ = x1 : τ1, . . . , xn : τn, where xi are identifiers. We write such a typing
judgement for programs in context as Γ ⊢ t : σ. As long as our language has
certain primitive operations (which we represent schematically)

Γ ⊢ t1 : real
n1 · · · Γ ⊢ tk : real

nk

Γ ⊢ op(t1, . . . , tk) : real
m

such as constants (as nullary operations), (elementwise) addition and mul-
tiplication of arrays, inner products and certain non-linear functions like
sigmoid functions, we can write complex programs by sequencing together
such operations. For example, writing real for real1, we can write a program
x1 : real, x2 : real, x3 : real, x4 : real ⊢ s : real by

let y = x1 ∗ x4 + 2 ∗ x2 in

let z = y ∗ x3 in

letw = z + x4 in sin(w),

where we indicate shared subcomputations with let-bindings.
CHAD observes that we can define for each language type τ associated

types of

• forward mode primal values
−→
D (τ)1;

we define
−→
D (realn) = realn and

−→
D (τ∗σ)1 =

−→
D (τ)1∗

−→
D (σ)1; that is, for

now
−→
D (τ)1 = τ ;

• reverse mode primal values
←−
D (τ)2;

we define
←−
D (realn) = realn and

←−
D (τ∗σ)1 =

←−
D (τ)1∗

←−
D (σ)1; that is, for

now
←−
D (τ)1 = τ ;

• forward mode tangent values
−→
D (τ)2;

we define
−→
D (realn)2 = realn and

−→
D (τ∗σ) = −→D (τ)2∗

−→
D (σ)2;

• reverse mode cotangent values
←−
D (τ)2;

we define
←−
D (realn)2 = realn and

←−
D (τ∗σ) = ←−D (τ)2∗

←−
D (σ)2.

We write the (co)tangent types associated with realn as realn to emphasize
that it is a linear type and to distinguish it from the Cartesian type realn.

6 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

In particular, we will see that tangent and cotangent values are linear types
that are equipped with a commutative monoid structure (0,+). Indeed,
(transposed) derivatives are linear functions: homomorphisms of this monoid
structure. We extend these operations

−→
D and

←−
D to act on typing contexts Γ:

−→
D (x1 : τ1, . . . , xn : τn)1 = x1 :

−→
D (τ1)1, . . . , xn :

−→
D (τn)1

←−
D (x1 : τ1, . . . , xn : τn)1 = x1 :

←−
D (τ1)1, . . . , xn :

←−
D (τn)1

−→
D (x1 : τ1, . . . , xn : τn)2 =

−→
D (τ1)2∗ · · ·∗

−→
D (τn)2

←−
D (x1 : τ1, . . . , xn : τn)2 =

←−
D (τ1)2∗ · · ·∗

←−
D (τn)2.

To each program Γ ⊢ t : σ, CHAD associates programs calculating the
forward mode and reverse mode derivatives

−→
D (Γ)t and

←−
D (Γ)t, which are

indexed by the list Γ of identifiers that occur in Γ:
−→
D (Γ)1 ⊢

−→
DΓ(t) :

−→
D (σ)∗(−→D (Γ)2 ⊸

−→
D (σ))

←−
D (Γ)1 ⊢

←−
DΓ(t) :

←−
D (σ)∗(←−D (Γ)2 ⊸

←−
D (σ)).

Observing that each program t computes a smooth (infinitely differentiable)
function JtK between Euclidean spaces, as long as all primitive operations op
are smooth, the key property that we prove for these code transformations
is that they actually calculate derivatives:

Theorem A (Correctness of CHAD, Thm. 8.1). For any well-typed program

x1 : real
n1, . . . , xk : real

nk ⊢ t : realm

we have that J−→D (t)K = TJtK and J←−D (t)K = T ∗JtK.

Once we fix a semantics for the source and target languages, we can show
that this theorem holds if we define

−→
D and

←−
D on programs using the chain

rule. The proof works by plain induction on the syntax. For example, we
can correctly define reverse mode CHAD on a first-order language as follows:

←−
DΓ(op(t1, . . . , tk))

def
= let ⟨x1, x

′
1⟩ =

←−
DΓ(t1) in · · ·

let ⟨xk, x′k⟩ =
←−
DΓ(tk) in

⟨op(x1, . . . , xk), λv.let v = Dopt(x1, . . . , xk; v) in

x′1 • proj1 v + · · ·+ x′k • projk v⟩

←−
DΓ(x)

def
= ⟨x, λv.coprojidx(x;Γ) (v)⟩

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 7

←−
DΓ(letx = t in s)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in

let ⟨y, y′⟩ = ←−
DΓ,x(s) in

⟨y, λv.let v = y′ • v in fst v + x′ • (snd v)⟩

←−
DΓ(⟨t, s⟩)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in

let ⟨y, y′⟩ = ←−
DΓ(s) in

⟨⟨x, y⟩, λv.x′ • (fst v)⟩+ y′ • (snd v)

←−
DΓ(fst t)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in ⟨fstx, λv.x′ • ⟨v, 0⟩⟩

←−
DΓ(snd t)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in ⟨sndx, λv.x′ • ⟨0, v⟩⟩

Here, we write λv.t for a linear function abstraction (merely a notational
convention – it can simply be though of as a plain function abstraction) and
t • s for a linear function application (which again can be thought of as a
plain function application). Further, given Γ; v : τ ⊢ t : (σ1∗ · · ·∗σn), we
write Γ; v : τ ⊢ proji (t) : σi for the i-th projection of t. Similarly, given
Γ; v : τ ⊢ t : σi, we write the i-th coprojection Γ; v : τ ⊢ coproji (t) =
⟨0, . . . , 0, t, 0, . . . , 0⟩ : (σ1∗ · · ·∗σn) and we write idx(xi;x1, . . . , xn) = i for
the index of an identifier in a list of identifiers. Finally, Dopt here is a
linear operation that implements the transposed derivative of the primitive
operation op.
Note, in particular, that CHAD pairs up primal and (co)tangent values

and shares common subcomputations. We see that what CHAD achieves
is a compositional efficient reverse mode AD algorithm that computes the
(transposed) derivatives of a composite program in terms of the (transposed)
derivatives Dopt of the basic building blocks op.

CHAD on a higher-order language: a categorical perspective saves
the day. So far, this account of CHAD has been smooth sailing: we can
simply follow the usual mathematics of (transposed) derivatives of functions
Rn → Rm and and implement it in code. A challenge arises when trying
to extend the algorithm to more expressive languages with features that do
not have an obvious counterpart in multivariate calculus, like higher-order
functions.

8 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

In [40, 39], we solve this problem by observing that we can understand
CHAD through the categorical structure of Grothendieck constructions (aka
Σ-types of categories). In particular, they observe that the syntactic cate-
gory of the target language for CHAD, a language with both Cartesian and
linear types, forms a locally indexed category LSyn : CSynop → Cat, i.e.
functor to the category of categories and functors for which obLSyn(τ) =
obLSyn(σ) for all τ, σ ∈ obCSyn and

LSyn(τ
t−→ σ) : LSyn(σ)→ LSyn(τ)

is identity on objects. Here, CSyn is the syntactic category whose objects
are Cartesian types τ, σ, ρ and morphisms τ → σ are programs x : τ ⊢ t : σ,
up to a standard program equivalence. Similarly, LSyn(τ) is the syntactic
category whose objects are linear types τ , σ, ρ and morphisms σ → ρ are
programs x : τ ; v : σ ⊢ t : ρ of type ρ that have a free variable x of Cartesian
type τ and a free variable v of linear type σ. The key observation then is the
following.

Theorem B (CHAD from a universal property, Cor. 5.1). Forward and
reverse mode CHAD are the unique structure preserving functors

−→
D (−) : Syn→ ΣCSynLSyn
←−
D (−) : Syn→ ΣCSynLSyn

op

from the syntactic category Syn of the source language to (opposite)
Grothendieck construction of the target language LSyn : CSynop → Cat
that send primitive operations op to their derivative Dop and transposed
derivative Dopt, respectively.

In particular, they prove that this is true for the unambiguous definitions
of CHAD for a source language that is the first-order functional language
we have considered above, which we can see as the freely generated category
Syn with finite products, generated by the objects realn and morphisms op.
That is, for this limited language, “structure preserving functor” should be
interpreted as “finite product preserving functor”.
This leads [40, 39] to the idea to try to use Thm. B as a definition of

CHAD on more expressive programming languages. In particular, they con-
sider a higher-order functional source language Syn, i.e. the freely generated
Cartesian closed category on the objects realn and morphisms op and try
to define

−→
D (−) and

←−
D (−) as the (unique) structure preserving (meaning:

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 9

Cartesian closed) functors to ΣCSynLSyn and ΣCSynLSyn
op for a suitable

linear target language LSyn : CSynop → Cat. The main contribution then
is to identify conditions on a locally indexed category L : Cop → Cat that
guarantee that ΣCL and ΣCLop are Cartesian closed and to take the target
language LSyn : CSynop → Cat as a freely generated such category.

Insight 2. To understand how to perform CHAD on a source language with
language feature X (e.g., higher-order functions), we need to understand the
categorical semantics of language feature X (e.g., categorical exponentials)
in categories of the form ΣCL and ΣCLop. Giving sufficient conditions on L
for such a semantics to exist yields a suitable target language for CHAD,
with the definition of the algorithm falling from the universal property of the
source language.

Further, we observe in these papers that Thm. A again holds for this ex-
tended definition of CHAD on higher-order languages. However, to prove
this, plain induction no longer suffices and we instead need to use a logical
relations construction over the semantics (in the form of categorical sconing)
that relates smooth curves to their associated primal and (co)tangent curves.

Insight 3. To obtain a correctness proof of CHAD on source languages with
language feature X, it suffices to give a concrete denotational semantics for
the source and target languages as well as a categorical semantics of lan-
guage feature X in a category of logical relations (a scone) over these con-
crete semantics. The main technical challenge is to analyse logical relations
techniques for language feature X.

Finally, these papers observe that the resulting target language can be
implemented as a shallowly embedded DSL in standard functional languages,
using a module system to implement the required linear types as abstract
types, with a reference Haskell implementation available at

https://github.com/VMatthijs/CHAD.

In fact, [41] had proposed the same CHAD algorithm for higher-order lan-
guages, arriving at it from practical considerations rather than abstract cat-
egorical observations.

Insight 4. The code generated by CHAD naturally comes equipped with
very precise (e.g., linear) types. These types emphasize the connections to
its mathematical foundations and provide scaffolding for its correctness proof.

https://github.com/VMatthijs/CHAD

10 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

However, they are unnecessary for a practical implementation of the algo-
rithm: CHAD can be made to generate standard functional (e.g., Haskell)
code; the type safety can even be rescued by implementing the linear types
as abstract types.

CHAD for sum types: a challenge – (co)tangent spaces of varying
dimension. A natural approach, therefore, when extending CHAD to yet
more expressive source languages is to try to use Thm. B as a definition.
In the case of sum types (aka variant types), therefore, we should consider
their categorical equivalent, distributive coproducts, and seek conditions on
L : Cop → Cat under which ΣCL and ΣCLop have distributive coproducts. A
difficulty is that these categories tend not to have coproducts if L is locally
indexed. Instead, the desire to have coproducts in ΣCL and ΣCLop naturally
leads us to consider more general strictly indexed categories L : Cop → Cat.
In fact, this is compatible with what we know from differential geometry:

coproducts allow us to construct spaces with multiple connected components,
each of which may have a distinct dimension. To make things concrete: the
tangent space Tx(R2 + R3) is either R2 or R3 depending on whether the base
point x is chosen in the left or right component of the coproduct. If the types
−→
D (τ)2 and

←−
D (τ)2 are to represent spaces of tangent and cotangent vectors

to the spaces that
−→
D (τ)1 and

←−
D (τ)1 represent, we would expect them to be

types that vary with the particular base point (primal) we choose. This leads
to a refined view of CHAD: while ⊢ −→D (τ)1 : type and ⊢ ←−D (τ)1 : type can
remain (closed/non-dependent) Cartesian types, p :

−→
D (τ)1 ⊢

−→
D (τ)2 : ltype

and p :
←−
D (τ)1 ⊢

←−
D (τ)2 : ltype are, in general, linear dependent types.

Insight 5. To accommodate sum types in CHAD, it is natural to consider
a target language with dependent types: this allows the dimension of the
spaces of (co)tangent vectors to vary with the chosen primal. In categorical
terms: we need to consider general strictly indexed categories L : Cop → Cat
instead of merely locally indexed ones.

The CHAD transformations of program now becomes typed in the following
more precise way:

−→
D (Γ)1 ⊢

−→
DΓ(t) : Σp :

−→
D (τ)1.

−→
D (Γ)2 ⊸

−→
D (τ)2←−

D (Γ)1 ⊢
←−
DΓ(t) : Σp :

←−
D (τ)1.

←−
D (τ)2 ⊸

←−
D (Γ)2,

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 11

where the action of
−→
D (−)2 and

←−
D (−)2 on typing contexts Γ = x1 : τ1, . . . , xn :

τn has been refined to
−→
D (Γ)2

def
= (

−→
D (τ1)2[

x1/p]∗ · · ·∗
−→
D (τn)2[

xn/p])
←−
D (Γ)2

def
= (

←−
D (τ1)2[

x1/p]∗ · · ·∗
←−
D (τn)2[

xn/p]).

All given definitions remain valid, where we simply reinterpret some tuples
at having a Σ-type rather than the more limited original tuple type.
We prove the following novel results.

Theorem C (Bi-Cartesian closed structure of Σ-categories, Prop. 3.1 and
3.2, Thm. 3.1, 3.2 and 3.4 and Cor. 3.6 and 3.7). For a category C and a
strictly indexed category L : Cop → Cat, ΣCL and ΣCLop have

• (fibred) finite products, if C has finite coproducts and L has strictly
indexed products and coproducts;
• (fibred) finite coproducts, if C has finite coproducts and L is extensive;
• exponentials, if L is a biadditive model of the dependently typed en-
riched effect calculus (we intentially keep this vague here to aid legi-
bility – the point is that these are relatively standard conditions).

Further the coproducts in ΣCL and ΣCLop are distribute over the products,
as long as those in C do, even in absence of exponentials. Notably, the
exponentials are not generally fibred over C.
The crucial notion here is our (novel) notion of extensivity of an indexed cat-
egory, which generalizes well-known notions of extensive categories. In par-
ticular, we call L : Cop → Cat extensive if the canonical functor L(⊔ni=1Ci)→∏n

i=1L(Ci) is an equivalence. Further, we note that we need to re-establish
the product and exponential structures of ΣCL and ΣCLop due to the gener-
alization from locally indexed to arbitrary strictly indexed categories L.
Using these results, we construct a suitable target language

LSyn : CSynop → Cat

for CHAD on a source language with sum types (and tuple and function
types), derive the forward and reverse CHAD algorithms for such a language
and reestablish Thms. B and A in this more general context. This tar-
get language is a standard dependently typed enriched effect calculus with
Cartesian sum types and extensive families of linear types (i.e., dependent
linear types that can be defined through case distinction). Again, the cor-
rectness proof of Thm. A uses the universal property of Thm. B and a logical

12 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

relations (categorical sconing) construction over the denotational semantics
of the source and target languages. This logical relations construction is
relatively straightforward and relies on well-known sconing methods for bi-
cartesian closed categories. In particular, we obtain the following formulas
for a sum type {ℓ1τ1 | · · · | ℓnτn} with constructors ℓ1, . . . , ℓn that take argu-
ments of type τ1, . . . , τn:

−→
D ({ℓ1τ1 | · · · | ℓnτn})1

def
=
{
ℓ1
−→
D (τ1)1 | · · · | ℓn

−→
D (τn)1

}
−→
D ({ℓ1τ1 | · · · | ℓnτn})2

def
= case pof {ℓ1p→

−→
D (τ1)2 | · · · | ℓnp→

−→
D (τn)2}

←−
D ({ℓ1τ1 | · · · | ℓnτn})1

def
=
{
ℓ1
←−
D (τ1)1 | · · · | ℓn

←−
D (τn)1

}
←−
D ({ℓ1τ1 | · · · | ℓnτn})2

def
= case pof {ℓ1p→

←−
D (τ1)2 | · · · | ℓnp→

←−
D (τn)2},

mirroring our intuition that the (co)tangent bundle to a coproduct of spaces
decomposes (extensively) into the (co)tangent bundles to the component
spaces.

CHAD for (co)inductive types: where do we begin? If we are to really
push forward the dream of differentiable programming, we need to learn how
to perform AD on programs that operate on data types. To this effect,
we analyse CHAD for inductive and coinductive types. If we are to follow
our previous methodology to find suitable definitions and correctness proofs,
we first need a good categorical axiomatization of such types. It is well-
known that inductive types correspond to initial algebras of functors, while
coinductive types are precisely terminal coalgebras. The question, however,
is what class of functors to consider. That choice makes the vague notion of
(co)inductive types precise.
Following [36], we work with the class of µν-polynomials, a relatively stan-

dard choice: i.e. functors that can be defined inductively through the com-
bination of

• constants for primitive types realn;
• type variables α;
• unit and tuple types 1 and τ∗σ of µν-polynomials;
• sum types {ℓ1τ1 | · · · | ℓnτn} of µν-polynomials;
• initial algebras µα.τ of µν-polynomials;
• terminal coalgebras να.τ of µν-polynomials.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 13

Notably, we exclude function types, as the non-fibred nature of exponentials
in ΣCL and ΣCLop would significantly complicate the technical development.
While this excludes certain examples like the free state monad (which, for
type σ state would be the intial algebra µα. {Get(σ → α) | Put(σ∗α)}), it
still includes the vast majority of examples of eager and lazy types that one
uses in practice: e.g., lists µα. {Empty 1 | Cons(σ∗α)}, (finitely branching)
labelled trees like µα. {Leaf 1 | Node(σ∗α∗α)}, streams να.σ∗α, and many
more.
We characterize conditions on a strictly indexed category L : Cop → Cat

that guarantee that ΣCL and ΣCLop have this precise notion of inductive
and coinductive types. The first step is to give a characterization of ini-
tial algebras and terminal coalgebras of split fibration endofunctors on ΣCL
and ΣCLop. For legibility, we state the results here for simple endofunc-
tors and (co)algebras, but they generalize to parameterized endofunctors
and (co)algebras.

Theorem D (Characterization of initial algebras and terminal coalgebras in
Σ-categories, Cor. F.1 and Thm. G.2). Let E be a split fibration endofunctor
on ΣCL (resp. ΣCLop) and let (E, e) be the corresponding strictly indexed
endofunctor on L. Then, E has a (fibred) initial algebra if

• E : C → C has an initial algebra inE : E(µE)→ µE;
• L(inE)−1eµE : L(µE) → L(µE) has an initial algebra (resp. terminal
coalgebra);
• L(f) preserves initial algebras (resp. terminal coalgebras) for all mor-
phisms f ∈ C;

and E has a (fibred) terminal coalgebra if

• E : C → C has a terminal coalgebra outE : νE → E(νE);
• L(outE)eµE : L(νE) → L(νE) has a terminal coalgebra (resp. initial
algebra)
• L(f) preserves terminal coalgebras (resp. initial algebras) for all mor-
phisms f ∈ C.

We use this result to give sufficient conditions for (fibred) µν-polynomials
(including their fibred initial algebras and terminal coalgebras) to exist in
ΣCL and ΣCLop. In particular, we show that it suffices to extend the target
language LSyn : CSynop → Cat with both Cartesian and linear inductive
and coinductive types to perform CHAD on a source language Syn with
inductive and coinductive types. Again, an equivalent of Thm. B holds.

14 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

We write roll x for the constructor of inductive types (applied to an iden-

tifier x), unrollx for the destructor of coinductive types, and τ.roll−1 x
def
=

foldxwith y → τ [y⊢roll y/α], where we write τ [y⊢roll y/α] for the functorial ac-
tion of the parameterized type τ with type parameter α on the term roll y
in context y. This yields the following formula for spaces of primals and
(co)tangent vectors to (co)inductive types, where:

−→
D (α)1

def
= α

−→
D (α)2 = α

−→
D (µα.τ)1

def
= µα.

−→
D (τ)1

−→
D (µα.τ)2

def
= µα.

−→
D (τ)2[

−→
D (τ)1.roll

−1 p/p]

−→
D (να.τ)1

def
= να.

−→
D (τ)1

−→
D (να.τ)2

def
= να.

−→
D (τ)2[

unroll p/p]

←−
D (α)1

def
= α

←−
D (α)2 = α

←−
D (µα.τ)1

def
= µα.

←−
D (τ)1

←−
D (µα.τ)2

def
= να.

←−
D (τ)2[

←−
D (τ)1.roll

−1 p/p]

←−
D (να.τ)1

def
= να.

←−
D (τ)1

←−
D (να.τ)2

def
= µα.

←−
D (τ)2[

unroll p/p]

Insight 6. Types of primals to (co)inductive types are (co)inductive types
of primals, types of tangents to (co)inductive types are linear (co)inductive
types of tangents, and types of cotangents to inductive types are linear coin-
ductive types of cotangents and vice versa.

For example, for a type τ = µα. {Empty 1 | Cons(σ∗α)} of lists of elements
of type σ, we have a cotangent space

←−
D (τ)2 = να.case roll −1pof {Empty → 1 | Cons p→ ←−

D (σ)2[
fst p/p]∗α} where

roll−1p = fold pwith y → case y of {Empty y → Empty y | Cons y → Cons⟨fst y, roll(snd y)⟩}

and, for a type τ = να.σ∗α of streams, we have a cotangent space

←−
D (τ)2 = µα.

←−
D (σ)2[

fst (unroll p)/p]∗α.

We demonstrate that the strictly indexed category FVect : Setop → Cat
of families of vector spaces also satisfies our conditions, so it gives a concrete
denotational semantics of the target language LSyn : CSynop → Cat, by
Thm. B. To reestablish the correctness theorem A, existing logical relations
techniques do not suffice, as far as we are aware. Instead, we achieve it
by developing a novel theory of categorical logical relations (sconing) for
languages with expressive type systems like our AD source language.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 15

Insight 7. We can obtain powerful logical relations techniques for reasoning
about expressive type systems by analysing when the forgetful functor from
a category of logical relations to the underlying category is comonadic and
monadic.

In almost all instances, the forgetful functor from a category of logical
relations to the underlying category is comonadic and in many instances,
including ours, it is even monadic. This gives us the following logical relations
techniques for expressive type systems:

Theorem E (Logical relations for expressive types, §7). Let G : C → D be
a functor. We observe

• If D has binary products, then the forgetful functor from the scone
(the comma category) D ↓ G→ D × C is comonadic.
• If G has a left adjoint and C has binary coproducts, then D ↓ G →
D × C is monadic.

This is relevant because:

• comonadic functors create initial algebras;
• monadic functors create terminal coalgebras;
• monadic-comonadic functors create µν-polynomials;
• if E is monadic-comonadic over E ′, then E is finitely complete cartesian
closed if E ′ is.

These logical relations techniques are suffient to yield the correctness theo-
rem A. Indeed, as long as derivatives of primitive operations are correctly
implemented in the sense that JDopK = Dop and JDoptK = DJopKt, Thm. E
tells us that the unique structure preserving functors

(J−K, J−→D (−)K) : Syn→ Set× ΣSetFVect

(J−K, J←−D (−)K) : Syn→ Set× ΣSetFVectop

lift to the scones of Hom((R, (R,R)),−) : Set × ΣSetFVect → Set and
Hom((R, (R,R)),−) : Set × ΣSetFVectop → Set where we lift the image of
realn, respectively, to the logical relations{

(f, (g, h)) | f = g and h = Df
}
↪→ (Set× ΣSetFVect) ((R, (R,R)), (Rn, (Rn,Rn))){

(f, (g, h)) | f = g and h = Df t} ↪→ (Set× ΣSetFVectop) ((R, (R,R)), (Rn, (Rn,Rn))) .

We see that J−→D (t)K and J←−D (t)K propagate derivatives and transposed deriva-
tives of smooth curves, correctly, for all programs t. This is sufficient as

16 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

every tangent/cotangent vector to Rn can be represented as the deriva-
tive/transposed derivative of a smooth curve.
Our novel logical relations machinery is in no way restricted to the context

of CHAD, however. In fact, it is widely applicable for reasoning about total
functional languages with expressive type systems.

How does CHAD for expressive types work in practice? The CHAD
code transformations we describe in this papers are well-behaved in practical
implementations in the sense of the following compile-time complexity result.

Theorem F (No code blow-up, Cor. 9.1). The size of the code of the CHAD
transformed programs

−→
DΓ(t) and

←−
DΓ(t) grows linearly with the size of the

original source program t.

We have ensured to pair up the primal and (co)tangent computations in
our CHAD transformation and to exploit any possible sharing of common
subcomputations, using let-bindings. However, we leave a formal study of
the run-time complexity of our technique to future work.
As formulated in this paper, CHAD generates code with linear dependent

types. This seems very hard to implement in practice. However, this is an
illusion: we can use the code generated by CHAD and interpret it as less
precise types. We sketch how all type dependency can be erased and how all
linear types other than the linear (co)inductive types can be implemented
as abstract types in a standard functional language like Haskell. In fact, we
describe three practical implementation strategies for our treatment of sum
types, none of which require linear or dependent types. All three strategies
have been shown to work in the CHAD reference implementation. We suggest
how linear (co)inductive types might be implemented in practice, based on
their concrete denotational semantics, but leave the actual implementation
to future work.

1. Background: categorical semantics of expressive total
languages
In this section, we fix some notation and recall the well-known abstract cat-

egorical semantics of total functional languages with expressive type systems
[34, 36], which builds on the usual semantics of the simply typed λ-calculus
in Cartesian closed categories [24]. In this paper, we will be interested in

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 17

a few particular instantiations (or models) of such an abstract categorical
semantics C:

• the initial model Syn (§2), which represents the programming lan-
guage under consideration, up to βη-equivalence; this will be the
source language of our AD code transformation;
• the concrete denotational model Set (§6) in terms of sets and func-
tions, which represents our default denotational semantics of the source
language;
• models ΣCL and ΣCLop (§3) in the the Σ-types of suitable indexed
categories L : Cop → Cat;
• in particular, the models ΣCSynLSyn and ΣCSynLSyn

op (§4) built out
of the target language, which yield forward and reverse mode CHAD
code transformations, respectively;

• sconing (categorical logical relations) constructions
−−−−→
Scone and

←−−−−
Scone

(§7) over the models Set × ΣSetFVect and Set × ΣSetFVectop that
yield the correctness arguments for forward and reverse mode CHAD,
respectively, where FVect : Setop → Cat is the strictly indexed cat-
egory of families of real vector spaces.

We deem it relevant to discuss the abstract categorical semantic framework
for our language as we need these various instantiations of the framework.

1.1. Basics. A category C can be seen as a semantics for a typed functional
programming language, whose types correspond to objects of C and whose
programs that take an input of type A and produce an output of type B
are represented by the homset C(A,B). Identity morphisms idA represent
programs that simply return their input (of type A) unchanged as output
and composition g ◦ f (also written f ; g) of morphisms f and g represents
running the program g after the program f . Notably, the equations that
hold between morphisms represent program equivalences that hold for the
particular notion of semantics that C represents. Some of these program
equivalences are so fundamental that we demand them as structural equalities
that need to hold in any categorical model (such as the associativity law
f ◦ (g ◦ h) = (f ◦ g) ◦ h). In programming languages terms, these are known
as the β- and η-equivalences of programs.

1.2. Tuple types. Tuple types represent a mechanism for letting programs
take more than one input or produce more than one output. Categorically, a

18 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

tuple type corresponds to a product
∏

i∈I Ai of a collection of types {Ai}i∈I ,
which we also write 1 or A1×A2 in the case of nullary and binary products.
We write (fi)i∈I : C →

∏
i∈I Ai for the product pairing of {fi : C : Ai}i∈I

and πj :
∏

i∈I Ai → Aj for the j-th product projection. As such, we say
that a categorical semantics C models (finite) tuples if C has (chosen) finite
products.

1.3. Primitive types and operations. Often, we are interested in pro-
gramming languages that have support for a certain set Ty of basic types
such as integers and (floating point) real numbers as well as certain sets
Op(T1, . . . , Tn;S), for T1, . . . , Tn, S ∈ Ty, of operations on these basic types
such as addition, multiplication, sine functions, etc.. We model such primi-
tive types and operations categorically by demanding that our category has
a distinguished object CT for each T ∈ Ty to represent the primitive types
and a distinguished morphism fop ∈ C(CT1

× . . .× CTn
, CS) for all primitive

operations op ∈ Op(T1, . . . , Tn;S).

1.4. Function types. Function types let us type popular higher order pro-
gramming idiom such as maps and folds, which capture common control flow
abstractions. Categorically, a type of functions from A to B is modelled as
an exponential A ⇒ B. We write ev : (A ⇒ B) × A → B (evaluation) for
the co-unit of the adjunction (−) × A ⊣ A ⇒ (−) and Λ for the Currying
natural isomorphism C(A×B,C)→ C(A,B ⇒ C). We say that a categorical
semantics C with tuple types models function types if C has a chosen right
adjoint (−)× A ⊣ A⇒ (−).

1.5. Sum types (aka variant types). Sum types (aka variant types) let
us model data that exists in multiple different variants and branch in our
code on these different possibilities. Categorically, a sum type is modelled
as a coproduct

∐
i∈I Ai of a collection of types {Ai}i∈I , which we also write

0 or A1 ⊔A2 in the case of nullary and binary coproducts. We write [fi]i∈I :∐
i∈I Ci → A for the copairing of {fi : Ci → A}i∈I and ιj : Aj →

∐
i∈I Ai

for the j-th coprojection. In fact, in presence of tuple types, a more useful
programming interface is obtained if one restricts to distributive coproducts,
i.e. coproducts

∐
i∈I Ai such that the map [(π1; ιi, π2)]i∈I :

∐
i∈I(Ai × B) →

(
∐

i∈I Ai) × B is an isomorphism. Note that in presence of function types,
coproducts are automatically distributive. As such, we say that a categorical

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 19

semantics C models (finite) sum types if C has (chosen) finite distributive
coproducts.

1.6. Inductive and coinductive types. We employ the usual semantic
interpretation of inductive and coinductive types as, respectively, initial alge-
bras and final coalgebras of a certain class of functors. Most of this section is
dedicated to describing precisely of which class of functors we consider initial
algebras and final coalgebras, a class we call µν-polynomials. We briefly es-
tablish the terminology below, and refer to Appendix D for a more detailed
review.
Let E : D → D be an endofunctor. We denote, respectively, by (µE, inE)

and (νE, outE) the initial E-algebra and the final E-coalgebra, assuming
their existence. Given any E-algebra (Y, ξ) and any E-coalgebra (X, ϱ), we
respectively denote by

foldE(Y, ξ) : µE → Y, unfoldE(X, ϱ) : X → νE (1.1)

the underlying morphisms inD of the unique E-algebra morphism (µE, inE)→
(Y, ξ) and the unique E-coalgebra morphism (X, ϱ)→ (νE, outE). By abuse
of language, whenever it is clear from the context, we denote foldE(Y, ξ) by
foldEξ, and unfoldE(X, ϱ) by unfoldEϱ.
In this setting, given a functor

H : D′ ×D → D, (1.2)

for each object X of D′, we denote by HX the endofunctor

H(X,−) : D → D. (1.3)

In this setting, if µHX exists for any object X ∈ D′, the initial algebras’
universal properties induce a functor, denoted by µH : D′ → D, given by

µH : D′ → D
X 7→ µHX

(f : X → Y) 7→ foldHX

(
inHY ◦H(f, µHY)

)
.

Dually, we have an induced functor νH : D′ → D, given by

νH : D′ → D
X 7→ νHX

(f : X → Y) 7→ unfoldHY

(
H(f, νHX) ◦ outHX

)
,

20 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

provided that the suitable final coalgebras exist. See Proposition D.1 for
more details.

Definition 1.1 (µν-polynomials). Assuming that D has finite coproducts
and finite products, the category µνPolyD is the smallest subcategory of Cat
satisfying the following.

– The objects are defined inductively by:
O1. the terminal category 1 is an object of µνPolyD;
O2. the category D is an object of µνPolyD;
O3. for any pair of objects (D′,D′′) ∈ µνPolyD×µνPolyD, the product
D′ ×D′′ is an object of µνPolyD.

– The morphisms satisfy the following properties:
M1. for any object D′ of µνPolyD, the unique functor D′ → 1 is a

morphism of µνPolyD;
M2. for any object D′ of µνPolyD, all the functors 1 → D′ are mor-

phisms of µνPolyD;
M3. the binary product × : D ×D → D is a morphism of µνPolyD;
M4. the binary coproduct ⊔ : D ×D → D is a morphism of µνPolyD;
M5. for any pair of objects (D′,D′′) ∈ µνPolyD×µνPolyD, the projec-

tions

π1 : D′ ×D′′ → D′, π2 : D′ ×D′′ → D′′

are morphisms of µνPolyD;
M6. given objects D′,D′′,D′′′ of µνPolyD, if E : D′ → D′′ and J : D′ →

D′′′ are morphisms of µνPolyD, then so is the induced functor
(E, J) : D′ → D′′ ×D′′′;

M7. if D′ is an object of µνPolyD, H : D′ × D → D is a morphism
of µνPolyD and µH : D′ → D exists, then µH is a morphism of
µνPolyD;

M8. if D′ is an object of µνPolyD, H : D′ × D → D is a morphism
of µνPolyD and νH : D′ → D exists, then νH is a morphism of
µνPolyD.

We say that D has µν-polynomials if D has finite coproducts and products
and, for any endomorphism (E : D → D) of µνPolyD, µE and νE exist. We
say that D has chosen µν-polynomials if we have additionally made a choice
of initial algebras and terminal coalgebras for all µν-polynomials.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 21

Another suitably equivalent way of defining µνPolyD is the following. The
category µνPolyD is the smallest subcategory of Cat such that:

- the inclusion µνPolyD → Cat creates finite products;
- D is an object of the subcategory µνPolyD;
- for any object D′ of µνPolyD, all the functors 1→ D′ are morphisms
of µνPolyD;

- and the binary product × : D ×D → D is a morphism of µνPolyD;
- the binary coproduct ⊔ : D ×D → D is a morphism of µνPolyD;
- if D′ is an object of µνPolyD, H : D′ × D → D is a morphism of
µνPolyD and µH : D′ → D exists, then µH is a morphism of µνPolyD;

- if D′ is an object of µνPolyD, H : D′ × D → D is a morphism of
µνPolyD and νH : D′ → D exists, then νH is a morphism of µνPolyD.

Lemma 1.2. Assume that C has µν-polynomials. In this case, if D is an
object of µνPolyC and H : D × C → C is a morphism of µνPolyC, then
µH : D → C and νH : D → C exist (and, hence, they are morphisms of
µνPolyC).

Proof : By Proposition D.1, it is enough to show that, for each X ∈ D, µHX

and νHX exist.
In fact, denoting by X : 1 → D the functor constantly equal to X ∈ D,

the functor HX is the composition below.

C 1× C D × C C(1,idC)

HX

(X◦π1,idC◦π2) H

Since all the horizontal arrows above are morphisms of µνPolyC, we con-
clude that HX is an endomorphism of µνPolyC. Therefore, since C has µν-
polynomials, µHX and νHX exist.

Definition 1.3. Let D be a category µν-polynomials. We say that a functor
G : D → C (strictly) preserves µν-polynomials if it (strictly) preserves finite
coproducts, finite products, initial algebras of µν-polynomials and terminal
coalgebras of µν-polynomials (see Definitions E.3 and E.7).

We say that a categorical semantics C with (finite) sum and tuple types
supports inductive and coinductive types if C has chosen µν-polynomials.

22 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Note that we do not consider the more general notion of (co)inductive types
defined by endofunctors that may contain function types in their construc-
tion.

2. An expressive functional language as a source lan-
guage for AD
We describe a source language for our AD code transformations. We con-

sider a standard total functional programming language with an expressive
type system, over ground types realn for arrays of real numbers of static
length n, for all n ∈ N, and sets Opmn1,...,nk

of primitive operations op, for all
k,m, n1, . . . , nk ∈ N. These operations op will be interpreted as C∞-smooth
functions (Rn1 × · · · × Rnk) → Rm and the reader can keep the following
examples in mind:

• constants c ∈ Opn for each c ∈ Rn, for which we slightly abuse notation
and write c(⟨⟩) as c;
• elementwise addition and product (+), (∗)∈Opnn,n and matrix-vector
product (⋆)∈Opnn·m,m;

• operations for summing all the elements in an array: sum ∈ Op1
n;

• some non-linear functions like the sigmoid function ς ∈ Op1
1.

Its kinds, types and terms are generated by the grammar in Fig. 1. We
write ∆ ⊢ τ : type to specify that the type τ is well-kinded in kinding context
∆, where ∆ is a list of the form α1 : type, . . . , αn : type. The idea is that the
type variables identifiers α1, . . . , αn can be used in the formation of τ . These
kinding judgements are defined according to the rules displayed in Fig. 2. We
write ∆ | Γ ⊢ t : τ to specify that the term t is well-typed in the typing context
Γ, where Γ is a list of the form x1 : τ1, . . . , xn : τn for variable identifiers xi and
types τi that are well-kinded in kinding context ∆. These typing judgements
are defined according to the rules displayed in Fig. 3. As Fig. 5 displays, we
consider the terms of our language up to the standard βη-theory. To present
this equational theory, we define in Fig. 4, by induction, some syntactic sugar
for the functorial action ∆,∆′ | Γ, x : τ [σ/α] ⊢ τ [x⊢t/α] : τ [

ρ/α] in argument α
of parameterized types ∆, α : type ⊢ τ : type on terms ∆′ | Γ, x : σ ⊢ t : ρ.
We employ the usual conventions of free and bound variables and write

τ [σ/α] for the capture-avoiding substitution of the type σ for the identifier α
in τ (and similarly, t[s/x] for the capture-avoiding substitution of the term s
for the identifier x in t).

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 23

κ, κ′, κ′′ ::= kinds
type kind of types

τ, σ, ρ ::= (Cartesian) types
α type variable

| realn real arrays
| 1 nullary product
| τ∗σ binary product
| τ → σ function
| {ℓ1τ1 | · · · | ℓnτn} variant
| µα.τ inductive type
| να.τ coinductive type

t, s, r ::= terms
x variable

| letx = t in s let-bindings
| op(t1, . . . , tk) k-ary operations
| ⟨⟩ | ⟨t, s⟩ product tuples
| fst t | snd t product projections
| λx.t function abstraction
| t s function application
| ℓt variant constructor
| case tof {ℓ1x1 → s1 | · · · | ℓnxn → sn} variant match
| roll t inductive constructor
| fold twithx→ s inductive destructor
| gen from twithx→ s coinductive constructor
| unroll t coinductive destructor

Figure 1. Grammar for the kinds, types and terms of the
source language for our AD transformations.

((α : type) ∈ ∆)

∆ ⊢ α : type ∆ ⊢ realn : type ∆ ⊢ 1 : type

∆ ⊢ τ : type ∆ ⊢ σ : type

∆ ⊢ τ∗σ : type

· ⊢ τ : type · ⊢ σ : type

· ⊢ τ → σ : type

{∆ ⊢ τi : type ℓi label}1≤i≤n

∆ ⊢ {ℓ1τ1 | · · · | ℓnτn} : type

∆, α : κ ⊢ τ : type

∆ ⊢ µα.τ : type

∆, α : κ ⊢ τ : type

∆ ⊢ να.τ : type

Figure 2. Kinding rules for the AD source language. Note
that we only consider the formation of function types of non-
parameterized types (shaded in grey).

This standard language is equivalent to the freely generated bi-Cartesian
closed category Syn with µν-polynomials on the directed polygraph (com-
putad) given by the ground types realn as objects and primitive opera-
tions op as arrows. Equivalently, we can see it as the initial category that

24 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

((x : τ) ∈ Γ)

∆ | Γ ⊢ x : τ

∆ | Γ ⊢ t : τ ∆ | Γ, x : τ ⊢ s : σ

∆ | Γ ⊢ letx = t in s : σ

{∆ | Γ ⊢ ti : real
ni}ki=1 (op ∈ Opmn1,...,nk

)

∆ | Γ ⊢ op(t1, . . . , tk) : real
m

∆ | Γ ⊢ ⟨⟩ : 1
∆ | Γ ⊢ t : τ ∆ | Γ ⊢ s : σ

∆ | Γ ⊢ ⟨t, s⟩ : τ∗σ
∆ | Γ ⊢ t : τ∗σ
∆ | Γ ⊢ fst t : τ

∆ | Γ ⊢ t : τ∗σ
∆ | Γ ⊢ snd t : σ

∆ | Γ, x : τ ⊢ t : σ

∆ | Γ ⊢ λx.t : τ → σ

∆ | Γ ⊢ t : σ → τ ∆ | Γ ⊢ s : σ

∆ | Γ ⊢ t s : τ

∆ | Γ ⊢ t : τi

∆ | Γ ⊢ ℓit : {ℓ1τ1 | · · · | ℓnτn}
∆ | Γ ⊢ t : {ℓ1τ1 | · · · | ℓnτn} {∆ | Γ, xi : τi ⊢ si : ρ}1≤i≤n

∆ | Γ ⊢ case tof {ℓ1x1 → s1 | · · · | ℓnxn → sn} : ρ

∆ | Γ ⊢ t : τ [µα.τ/α]

∆ | Γ ⊢ roll t : µα.τ

∆ | Γ ⊢ t : µα.τ ∆ | x : τ [σ/α] ⊢ s : σ

∆ | Γ ⊢ fold twithx→ s : σ

∆ | Γ ⊢ t : σ ∆ | x : σ ⊢ s : τ [σ/α]

∆ | Γ ⊢ gen from twithx→ s : να.τ

∆ | Γ ⊢ t : να.τ

∆ | Γ ⊢ unroll t : τ [να.τ/α]

Figure 3. Typing rules for the AD source language.

α[x⊢t/α] = t

β[x⊢t/α] = x if α ̸= β

realn[x⊢t/α] = x

1[x⊢t/α] = x

(τ∗σ)[x⊢t/α] = ⟨τ [x⊢t/α][
fst x/x], σ[

x⊢t/α][
snd x/x]⟩

{ℓ1τ1 | · · · | ℓnτn} [x⊢t/α] = casexof {ℓ1x→ ℓ1τ1[
x⊢ℓ1t/α] | · · · | ℓnx→ ℓnτn[

x⊢ℓnt/α]}

(µα.τ)[x⊢t/α] = x

(µβ.τ)[x⊢t/α] = foldxwithx→ roll τ [x⊢t/α] if α ̸= β

(να.τ)[x⊢t/α] = x

(νβ.τ)[x⊢t/α] = gen fromxwithx→ τ [x⊢t/α][
unroll x/x] if α ̸= β

Figure 4. Functorial action ∆,∆′ | Γ, x : τ [σ/α] ⊢ τ [x⊢t/α] : τ [
ρ/α]

in argument α of parameterized types ∆, α : type ⊢ τ : type on
terms ∆′ | Γ, x : σ ⊢ t : ρ of the source language.

supports tuple types, function types, sum types, inductive and coinductive
types and primitive types Ty = {realn | n ∈ N} and primitive operations
Op(realn1, . . . , realnk; realm) = Opmn1,...,nk

(in the sense of §1). Syn effectively
represents programs as (categorical) combinators, also known as “point-free
style” in the functional programming community. Concretely, Syn has types
as objects, homsets Syn(τ, σ) consist of (α)βη-equivalence classes of terms

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 25

letx = t in s = s[t/x] t = ⟨⟩ fst ⟨t, s⟩ = t snd ⟨t, s⟩ = s t = ⟨fst t, snd t⟩

(λx.t) s = t[s/x] t
#x
= λx.t x case ℓitof {ℓ1x1 → s1 | · · · | ℓnxn → sn} = si[

t/xi]

s[t/y]
#x1,...,xn

= case tof {ℓ1 x1 → s[ℓ1 x1/y]
∣∣ · · · ∣∣ ℓn xn → s[ℓn xn/y]}

fold roll twithx→ s
#y
= s[τ [

y⊢fold y with x→s/α][t/y]/x]

r[roll x/x] = s[τ [
x⊢r/α]/z]⇒ r[t/x] = fold twith z → s

unroll (gen from twithx→ s)
#y
= τ [y⊢gen from ywith x→s/α][

s/y,
t/x]

unroll r = τ [x⊢r/α][
s/x]⇒ r[t/x] = gen from twithx→ s

Figure 5. We consider the standard βη-laws above for our lan-

guage. We write
#x1,...,xn

= to indicate that the variables x1, . . . , xn
need to be fresh in the left hand side. Equations hold on pairs of
terms of the same type. As usual, we only distinguish terms up
to α-renaming of bound variables.

· | x : τ ⊢ t : σ, identities are · | x : τ ⊢ x : τ , and the composition of
· | x : τ ⊢ t : σ and · | y : σ ⊢ s : ρ is given by · | x : τ ⊢ let y = t in s : ρ.

Corollary 2.1 (Universal property of Syn). Given any bi-Cartesian closed
category with µν-polynomials C, any consistent assignment of

F (realn) ∈ ob C
and F (op) ∈ C(F (realn1) × · · · × F (realnk), F (realm)) for op ∈ Opmn1,...,nk

extends to a unique µν-polynomial preserving bi-Cartesian closed functor

F : Syn→ C.

3.Modelling expressive functional languages in
Grothendieck constructions
In this section, we present a novel construction of categorical models (in

the sense of §1) ΣCL and ΣCLop of expressive functional languages (like our
AD source language of §2) in Σ-types of suitable indexed categories

L : Cop → Cat.

In particular, the problem we solve in this section is to identify suitable
sufficient conditions to put on an indexed category L : Cop → Cat, whose
base category we think of as the semantics of a Cartesian type theory and

26 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

whose fibre categories we think of as the semantics of a dependent linear
type theory, such that ΣCL and ΣCLop are categorical models of expressive
functional languages in this sense. We call such an indexed category a Σ-
bimodel of language feature X if it satifies our sufficient conditions for ΣCL
and ΣCLop to be categorical models of language feature X.
This abstract material in many ways forms the theoretical crux of this

paper. We consider two particular instances of this idea later:

• the case where L is the syntactic category LSyn : CSynop → Cat of a
suitable target language for AD translations (§4); the universal prop-
erty of the source language Syn then yields unique structure preserv-
ing functors

−→
D : Syn → ΣCSynLSyn and

←−
D : Syn → ΣCSynLSyn

op

implementing forward and reverse mode AD;
• the case where L is the indexed category of families of real vector
spaces FVect : Setop → Cat (§6); this gives a concrete denotational
semantics to the target language, which we use in the correctness proof
of AD.

3.1. Basics: the categories ΣCL and ΣCLop. Recall that for any strictly
indexed category, i.e. a (strict) functor L : Cop → Cat, we can consider its
total category (or Grothendieck construction) ΣCL, which is a fibred category
over C (see [20, sections A1.1.7, B1.3.1]). We can view it as a Σ-type of
categories, which generalizes the Cartesian product. Further, given a strictly
indexed category L : Cop → Cat, we can consider its fibrewise dual category

Lop : Cop → Cat, which is defined as the composition Cop L−→ Cat
op−→ Cat.

Thus, we can apply the same construction to Lop to obtain a category ΣCLop.
Concretely, ΣCL is the following category:

• objects are pairs (A1, A2) of an object A1 of C and an object A2 of
L(A2);
• morphisms (A1, A2) → (B1, B2) are pairs (f1, f2) with f1 : A1 → B1

in C and f2 : A2 → L(f1)(B2) in L(A1);
• identities id(A1,A2) are (idA1

, idA2
);

• composition of (A1, A2)
(f1,f2)−−−→ (B1, B2) and (B1, B2)

(g1,g2)−−−→ (C1, C2) is
given by
(f1; g1, f2;L(f1)(g2)).

Concretely, ΣCLop is the following category:

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 27

• objects are pairs (A1, A2) of an object A1 of C and an object A2 of
L(A1);
• morphisms (A1, A2) → (B1, B2) are pairs (f1, f2) with f1 : A1 → B1

in C and f2 : L(f1)(B2)→ A2 in L(A1);
• identities id(A1,A2) are (idA1

, idA2
);

• composition of (A1, A2)
(f1,f2)−−−→ (B1, B2) and (B1, B2)

(g1,g2)−−−→ (C1, C2) is
given by
(f1; g1,L(f1)(g2); f2).

3.2. Product structure. We say that a strictly indexed category L has
strictly indexed finite (co)products if

• each fibre L(C) has chosen finite (co)products (1,×);
• change of base strictly preserves these (co)products in the sense that
L(f)(1) = 1 and L(f)(A×B) = L(f)(A)×L(f)(B) for all morphisms
f in C.

We recall below that ΣCL has finite products if C has finite products and L
has finite indexed products.

Proposition 3.1. Assuming that C has finite products (1,×) and L has
indexed finite products (1,×), ΣCL has (fibred) terminal object 1 = (1, 1)
and (fibred) binary product (W,w)× (Y, y) = (W × Y,L(π1)(w)×L(π2)(y)).

Proof : We have (natural) bijections

ΣCL((X, x), (1, 1))

= Σf1∈C(X,1)L(X)(x,L(f1)(1))
∼= Σf1∈C(X,1)L(X)(x, 1) { indexed 1 }
∼= 1× 1 { 1 terminal in C and L(X) }
∼= 1

ΣCL ((X, x), (W × Z,L(π1)(w)× L(π2)(z)))

= Σ(f1,g1)∈C(X,W×Y)L(X)(x,L((f1, g1))(L(π1)(w)× L(π2)(z)))
∼= Σ(f1,g1)∈C(X,W×Z)L(X)(x,L((f1, g1))(L(π1)(w))× L((f1, g1))(L(π2)(z))) { indexed × }
= Σ(f1,g1)∈C(X,W×Z)L(X)(x,L(f1)(w)× L(g1)(z)) { functoriality L }
∼= Σ(f1,g1)∈C(X,W×Z)L(X)(x,L(f1)(w))× L(X)(x,L(g1)(z)) { × product in L(A1) }
∼= Σf1∈C(X,W)Σg1∈C(X,Z)L(X)(x,L(f1)(w))× L(X)(x,L(g1)(z)) { × product in C }
∼=
(
Σf1∈C(X,W)L(X)(x,L(f1)(w))

)
×
(
Σg1∈C(X,Z)L(X)(x,L(g1)(z))

)
{ Beck-Chevalley for Σ in Set }

= ΣCL((X, x), (W,w))× ΣCL((X, x), (Z, z)).

28 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

In particular, finite products in ΣCL are fibred in the sense that the pro-
jection functor ΣCL → C preserves them, on the nose.
Codually, we have:

Proposition 3.2. Assuming that C has finite products (1,×) and L has
finite indexed coproducts (0,⊔), we have that ΣCLop has (fibred) terminal
object 1 = (1, 0) and (fibred) binary product (A1, A2) × (B1, B2) = (A1 ×
B1,L(π1)(A2) ⊔ L(π2)(B2)).

That is, in our terminology, L : Cop → Cat is a Σ-bimodel of tuple types if
C has chosen finite products and L has finite strictly indexed products and
coproducts.
We will, in particular, apply these the results in this section in the situation

where L has indexed finite biproducts (products that are simultaneously
coproducts), in which case the finite product structures of ΣCL and ΣCLop

coincide.

3.3. Generators. In this section, we establish the obvious sufficient (and
necessary) conditions for ΣCL and ΣCLop to model primitive types and oper-
ations in the sense of §1. These conditions are an immediate consequence of
the structure of ΣCL and ΣCLop as Cartesian categories.
That is, we say that L : Cop → Cat is a Σ-bimodel of primitive types Ty

and operations Op if

• we have, for all T ∈ Ty, a choice of objects CT ∈ ob C and LT , L
′
T ∈

obL(CT);
• we have, for all op ∈ Op(T1, . . . , Tn;S), a choice of morphisms

fop ∈ C(CT1
× . . .× CTn

, CS)

gop ∈ L(CT1
× . . .× CTn

)(L(π1)(LT1
)× · · · × L(πn)(LTn

),L(fop)(LS))

g′op ∈ L(CT1
× . . .× CTn

)(L(fop)(L
′
S),L(π1)(L

′
T1
) ⊔ · · · ⊔ L(πn)(L′Tn

)).

We say that such a model has self-dual primitive types in case LT = L′T for
all T ∈ Ty.

3.4. Closed structure. In this section, we use standard definitions from
the semantics of dependent type theory and the dependently typed enriched
effect calculus. An interested reader can find background on this material in
[38, Chapter 5] and [3].

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 29

We briefly recall some of the usual vocabulary here. Given an indexed
category D : Cop → Cat, we say

• it satisfies the comprehension axiom if C has a chosen terminal object ·,
D has strictly indexed terminal objects 1 (i.e. chosen terminal objects
1 ∈ D(C), such that C(f)(1) = 1 for all f : C ′ → C in C) and the
functors

(C/A)op → Set

(C
f−→ A) 7→ D(C)(1,D(f)(B))

are representable by a chosen object pA,B : A.B → A of C/A:
D(C)(1, C ′(f)(B)) ∼= C/A(f,pA,B)

b 7→ (f, b);

we write vA,B for the unique element of D(A.B)(1,D(pA,B)(B)) such
that (pA,B,vA,B) = idpA,B

(the universal element of the representa-
tion); further, given f : A′ → A, we write qf,B for the unique mor-
phism (pA′,D(f)(B); f,vA′,D(f)(B)) making the square below a pullback;
we henceforth call such squares p-squares;

A′.D(f)(B) A.B

A′ A

qf,B

pA′,D(f)(B) pA,B

f

• it supports (weak) Σ-types if we have left adjoint functors ΣB ⊣ D(pA,B) :
D(A.B) ⇆ D(A) satisfying the left Beck-Chevalley condition for p-
squares in the sense that the canonical maps D(qf,B); ΣD(f)(B) →
ΣB;D(f) are isomorphisms;
• it supports Π-types if Dop supports (weak) Σ-types; explicitly, that is
the case iff we have right adjoint functors D(pA,B) ⊣ ΠB : D(A) ⇆
D(A.B) satisfying the right Beck-Chevalley condition for p-squares in
the sense that the canonical maps ΠB;D(f) → D(qf,B); ΠD(f)(B) are
isomorphisms.

In case D satisfies the comprehension axiom, we further say that

• it satisfies democratic comprehension if the comprehension functor

D(A)(B′, B)
pA,−−−→ C/A(pA,B′,pA,B)

d 7→ (pA,B′,vA,B′;D(pA,B′)(d))

30 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

defines an equivalence of categories D(·) ∼= C/· ∼= C;
• it satisfies full/faithful comprehension if the comprehension functor is
full/faithful;
• it supports (strong) Σ-types (i.e. Σ-types with a dependent elimination
rule, which in particular makes D support weak Σ-types) if dependent
projections compose: for all B,C,D, we have for some objects ΣCD
of D(B) such that pB.C,D;pB,C = pB,ΣCD .

Definition 3.3 (Σ-bimodel of function types). We call a strictly indexed
category L : Cop → Cat a Σ-bimodel of function types if it is a biadditive
model of the dependently typed enriched effect calculus in the sense that it
comes equipped with

• a model of Cartesian dependent type theory in the sense of a strictly
indexed category C ′ : Cop → Cat that satisfies full, faithful, demo-
cratic comprehension with Π-types and strong Σ-types;
• strictly indexed finite biproducts (1,×) and Σ- and Π-types in L;
• a strictly indexed functor ⊸: Lop×L → C ′ and a natural isomorphism

L(A)(B,C) ∼= C ′(A)(1, B ⊸ C).

We can immediately note that a our notion of Σ-bimodel of function types is
also a Σ-bimodel of tuple types. Indeed, strong Σ-types and comprehension
give us, in particular, chosen finite products in C.
We next show why this name is justified in the sense that it also gives

us Cartesian closure of the corresponding Grothendieck constructions. We
generalize the proofs from [39] here, to make sure that they also apply to
the case where L is a general strictly indexed category rather than a locally
indexed one.
In the following, we will slightly abuse notation to aid legibility:

• we will sometimes conflate B ∈ ob C ′(·) and ·.B ∈ ob C as well as f ∈
C ′(C)(1, C ′(!C)(B)) and (!C , f) ∈ C(C, ·.B)); this is justified because
of the democracy of the comprehension;
• we will sometimes simply write C for D(pA,B)(C) where the weakening
map D(pA,B) is clear from context.

Given A1, B1 ∈ C we will write ev1 for the obvious morphism

ev1 : ΠA1
ΣB1

D.A1 → B1.

With these notational conventions in place, we can describe the Cartesian
closed structure of Grothendieck constructions.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 31

Theorem 3.1. For a Σ-bimodel L of function types, ΣCL has exponential

(A1, A2)⇒ (B1, B2) = (ΠA1
ΣB1
L(π1)(A2) ⊸ L(π2)(B2),ΠA1

L(ev1)(B2)).

Proof : We have (natural) bijections

ΣCL((A1, A2)× (B1, B2), (C1, C2)) =

= ΣCL((A1 ×B1,L(π1)(A2)× L(π2)(B2)), (C1, C2))

= Σf1∈C(A1×B1,C1)L(A1 ×B1)(L(π1)(A2)× L(π2)(B2),L(f1)(C2))
∼= Σf1∈C(A1×B1,C1)L(A1 ×B1)(L(π1)(A2),L(f1)(C2))× L(A1 ×B1)(L(π2)(B2),L(f1)(C2)) { × coproduct in L(A1 ×B1) }
∼= Σf1∈C(A1×B1,C1)L(A1)(A2,ΠB1

L(f1)(C2))× L(A1 ×B1)(L(π2)(B2),L(f1)(C2)) { Π-types in L }
∼= Σf1∈C(A1×B1,C1)L(A1)(A2,ΠB1

L(f1)(C2))× C ′(A1 ×B1)(1,L(π2)(B2) ⊸ L(f1)(C2)) { ⊸-types in C′ }
∼= Σ(f1,g1)∈Σf1∈C(A1×B1,C1)

C′(A1×B1)(1,L(π2)(B2)⊸L(f1)(C2))L(A1)(A2,ΠB1
L(f1)(C2)) { Σ-types in Set }

∼= Σ(f1,g1)∈Σf1∈C′(A1×B1)(1,C1)
C′(A1×B1)(1,L(π2)(B2)⊸L(f1)(C2))L(A1)(A2,ΠB1

L(f1)(C2)) { comprehension }
∼= Σ(f1,g1)∈C′(A1×B1)(1,ΣC1

L(π1;π2)(B2)⊸L(π2)(C2))L(A1)(A2,ΠB1
L(f1)(C2)) { strong Σ-types in C′ }

∼= Σ(f1,g1)∈C′(A1×B1)(1,ΣC1
L(π1;π2)(B2)⊸L(π2)(C2))L(A1)(A2,L((f1, g1))(ΠB1

L(ev1)(C2))) { Beck-Chevalley for Π-types }
∼= Σh1∈C′(A1×B1)(1,ΣC1

L(π1;π2)(B2)⊸L(π2)(C2))L(A1)(A2,L(h1)(ΠB1
L(ev1)(C2))) { strong Σ-types in C′ }

∼= Σh1∈C′(A1×B1)(L(π1)(1),ΣC1
L(π1;π2)(B2)⊸L(π2)(C2))L(A1)(A2,L(h1)(ΠB1

L(ev1)(C2))) { indexed 1 in C′ }
∼= Σh1∈C′(A1)(1,ΠB1

ΣC1
L(π1;π2)(B2)⊸L(π2)(C2))L(A1)(A2,L(h1)(ΠB1

L(ev1)(C2))) { Π-types in C′ }
∼= Σh1∈C(A1,ΠB1

ΣC1
L(π1)(B2)⊸L(π2)(C2))L(A1)(A2,L(h1)(ΠB1

L(ev1)(C2))) { comprehension }
= ΣCL((A1, Am2), (ΠB1

ΣC1
L(π1)(B2) ⊸ L(π2)(C2),ΠB1

L(ev1)(C2)))

= ΣCL((A1, A2), (B1, B2)⇒ (C1, C2)).

Codually, we have:

Theorem 3.2. For a Σ-bimodel L of function types, ΣCLop has exponential
(A1, A2)⇒ (B1, B2) = (ΠA1

ΣB1
L(π2)(B2) ⊸ L(π1)(A2),ΣA1

L(ev1)(B2)).

Note that these exponentials are not fibred over C in the sense that the
projection functors ΣCL → C and ΣCLop → C are generally not Cartesian
closed functors. This is in contrast with the interpretation of all other type
formers we consider in this paper.

3.5. Coproduct structure. We introduce another special property that
fits our context well. We call this property extensivity because it generalizes
the concept of extensive categories.

• We assume that the category C has finite coproducts. Given W,X ∈ C,
we denote by

W W ⊔X X
ι1=ιW ι2=ιX (3.1)

the coproduct (and coprojections) in C, and by 0 the initial object of
C.

32 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Definition 3.4 (Extensive indexed categories). We call an indexed category
L : Cop → Cat extensive if, for any (W,X) ∈ C × C, the unique functor

L(W ⊔X) L(W)× L(X)
(L(ιW),L(ιX))

(3.2)

induced by the functors

L(W) L(W ⊔X) L(X)
L(ιX)L(ιW)

(3.3)

is an equivalence.In this case, for each (W,X) ∈ C × C, we denote by

S(W,X) : L(W)× L(X)→ L(W ⊔X) (3.4)

an inverse equivalence of (L(ιW),L(ιX)).

Since the products of Cop are the coproducts of C, the extensive condition
described above is equivalent to say that the (pseudo)functor L : Cop → Cat
preserves binary (bicategorical) products (up to equivalence).
Since our cases of interest are strict, this leads us to consider strict ex-

tensivity, that is to say, whenever we talk about extensive strictly indexed
categories, we are assuming that (3.2) is invertible. In this case, it is even
clearer that extensivity coincides with the well-known notion of preservation
of binary products.
Recall that preservation of binary products does imply preservation of preter-

minal objects. Indeed, an object X is a preterminal object if and only if the
projection πX : X×X → X is invertible. Hence, since a binary product pre-
serving functor should preserve the projections, we get the result. Lemma
3.5 is the appropriate analogue of this observation suitably applied to the
context of extensive indexed categories.∗

Lemma 3.5 (Preservation of terminal objects). Let L : Cop → Cat be an
extensive indexed category which is not (naturally isomorphic to the functor)
constantly equal to 0. The unique functor

L(0)→ 1 (3.5)

is an equivalence. If, furthermore, (3.2) is an isomorphism, then (3.5) is
invertible.

∗On the one hand, as mentioned above, Lemma 3.5 is actually part of a general fact: if a
functor preserves binary (bicategorical) products, then it preserves preterminal objects as well
(see, for instance, [28, Remark 4.5]). On the other hand, seeing our extensivity property as a
generalization of that of extensive categories, the reader might want to compare Lemma 3.5 with
[10, Proposition 2.8].

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 33

Proof : Firstly, given any X ∈ C such that L(X) is not (isomorphic to) the
initial object of Cat, we have that L(iX : 0→ X) is a functor from L(X) to
L(0). Hence L(0) is not isomorphic to the initial category as well.
Secondly, since ι0 : 0 → 0 ⊔ 0 is an isomorphism, (L(ι0),L(ι0)) is an

equivalence and

L(0 ⊔ 0) L(0)× L(0) L(0),

L(ι0)

(L(ι0),L(ι0)) πL(0)
(3.6)

we conclude that πL(0) is an equivalence. This proves that L(0) → 1 is an
equivalence by Appendix A, Lemma A.1.

Now, we proceed to study the cocartesian structure of ΣCL. In order to do
so, we show in Theorem 3.3 that, in the case of extensive indexed categories,
the hypothesis of Proposition C.1 always holds.

Theorem 3.3. Let L : Cop → Cat be an extensive (strictly) indexed category.
Assume that X is an object of C such that L(X) has initial object 0. In this
case, for any W ∈ C, we have an adjunction

L(W ⊔X) ⊥ L(W)

L(ιW)

S(W,X)◦(idL(W),0)

(3.7)

in which, by abuse of language, 0 : L(W) → L(X) is the functor constantly
equal to 0. Dually, we have an adjunction

L(W) ⊥ L(W ⊔X)

S(W,X)◦(idL(W),1)

L(ιW)

(3.8)

provided that L(X) has terminal object 1 and, by abuse of language, we
denote by 1 : L(W)→ L(X) the functor constantly equal to 1.

34 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Proof : Assuming that L(X) has initial object 0, we have the adjunction

L(W)× L(X) ⊥ L(W)

πL(W)

(idL(W),0)

(3.9)

whose unit is the identity and counit is pointwise given by ε(w,x) = (idw, 0→
x). Therefore we have the composition of adjunctions

L(W ⊔X) ⊥ L(W)× L(X) ⊥ L(W).

L(ιW)

(L(ιW),L(ιX))

S(W,X)

πL(W)

(idL(W),0)

S(W,X)◦(idL(W),0)

Corollary 3.6 (Cocartesian structure of ΣCL). Let L : Cop → Cat be an ex-
tensive strictly indexed category, with initial objects 0 ∈ L(W) for each W ∈
C. In this case, the category ΣCL has initial object 0 = (0, 0) ∈ ΣCL, and
(fibred) binary coproduct given by (W,w) ⊔ (X, x) =

(
W ⊔X,S(W,X)(w, x)

)
.

Proof : In fact, by Proposition C.1, we have that (0, 0) is the initial object of
ΣCL. Moreover, given ((W,w), (X, x)) ∈ ΣCL × ΣCL, we have that

S(W,X) ◦
(
idL(W), 0

)
= L(ιW)! ⊣ L(ιW)

S(W,X) ◦
(
0, idL(X)

)
= L(ιX)! ⊣ L(ιX)

by Theorem 3.3. Therefore we get that(
W ⊔X,S(W,X) (w, x)

)
∼=

(
W ⊔X,S(W,X) (w,0) ⊔ S(W,X) (0, x)

)
{ S(W,X) preserves coproducts }

∼=
(
W ⊔X,S(W,X) ◦

(
idL(W), 0

)
(w) ⊔ S(W,X) ◦

(
0, idL(X)

)
(x)

)
∼= (W ⊔X,L(ιW)!(w) ⊔ L(ιX)!(x)) { Theorem 3.3 }
∼= (W,w) ⊔ (X,x). { Proposition C.1 }

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 35

In particular, finite coproducts in ΣCL are fibred in the sense that the
projection functor ΣCL → C preserves them, on the nose.
Codually, we have:

Corollary 3.7 (Cocartesian structure of ΣCLop). Let L : Cop → Cat be
an extensive strictly indexed category, with terminal objects 1 ∈ L(W) for
each W ∈ C. In this case, the category ΣCLop has (fibred) initial object
0 = (0, 1) ∈ ΣCLop, and (fibred) binary coproduct given by

(W,w) ⊔ (X, x) =
(
W ⊔X,S(W,X)(w, x)

)
. (3.10)

Definition 3.8 (Σ-bimodel for sum types). A strictly indexed category L :
Cop → Cat is a Σ-bimodel for sum types if L is an extensive strictly indexed
category such that L(W) has initial and terminal objects.

3.6. Distributive property. It is clear that ΣCL is bi-Cartesian closed
provided that L : Cop → Cat is Σ-bimodel for function types and sum types.
Therefore, in this case, we get that ΣCL is distributive.
However, even without the assumptions concerning closed structures, when-

ever we have a Σ-bimodel for sum types, we can inherit distributivity from
C. Namely, we have Theorem 3.4.
Recall that a category C with finite products and coproducts is a distributive

category if, for each triple (W,Y, Z) of objects in C, the canonical morphism〈
W × ιY ⊔ZY ,W × ιY ⊔ZZ

〉
: (W × Y) ⊔ (W × Z)→ W × (Y ⊔ Z) , (3.11)

induced by W ×L(ιY) and W ×L(ιZ), is invertible. It should be noted that,
in a such a distributive category C, for any such a triple (W,Y, Z) of objects
in C, the diagrams

W × (Y ⊔ Z)

(W × Y) ⊔ (W × Z) W

π
W×(Y ⊔Z)
W

〈
πW×Y
W , πW×Z

W

〉
∼=⟨W × ιY ,W × ιZ⟩

36 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

W × (Y ⊔ Z)

(W × Y) ⊔ (W × Z) (Y ⊔ Z)

π
W×(Y ⊔Z)
(Y ⊔Z)

⟨ιY ◦πW×Y
Y

,ιZ◦πW×Z
Z ⟩

πW×Y
Y ⊔ πW×Z

Z

∼=⟨W × ιY ,W × ιZ⟩

commute. Therefore we have:

Lemma 3.9. Let L : Cop → Cat be an extensive strictly indexed category,
in which C is a distributive category. For each triple (W,Y, Z) of objects in
C, the diagrams

L (W × (Y ⊔ Z))

L (W × Y)× L (W × Z)

L (W)L ((W × Y) ⊔ (W × Z))

∼=L (⟨W × ιY ,W × ιZ⟩)

S(W×Y,W×Z) (L(ιW×Y),L(ιW×Z))

L
(〈
πW×Y
W , πW×Z

W

〉)
L(πW×(Y ⊔Z)

W)

(L(πW×Y
W),L(πW×Z

W))

(3.12)

L (W × (Y ⊔ Z))

L (W × Y)× L (W × Z)

L (Y ⊔ Z)L ((W × Y) ⊔ (W × Z))

L (Y)× L (Z)

∼=L (⟨W × ιY ,W × ιZ⟩)

S(W×Y,W×Z) (L(ιW×Y),L(ιW×Z))

L
(〈
πW×Y
Y , πW×Z

Z

〉)
L(πW×(Y ⊔Z)

(Y ⊔Z))

S(Y,Z)(L(ιY),L(ιZ))

L
(
πW×Y
Y

)
× L

(
πW×Z
Z

)
(3.13)

commute.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 37

Theorem 3.4. Let L : Cop → Cat be Σ-bimodel for sum and tuple types,
in which C is a distributive category. The category ΣCL is a distributive
category.

Proof : By Proposition 3.1 and Corollary 3.6, we have that ΣCL indeed has
finite coproducts and finite products.
Let D be a category with finite coproducts and products. A category

is distributive if the canonical morphisms (3.11) are invertible. However,
by [23, Theorem 4], the existence of any natural isomorphism (W × Y) ⊔
(W × Z) ∼= W × (Y ⊔ Z) implies that D distributive. Hence, we proceed
to prove below that such a natural isomorphism exists in the case of ΣCL,
leaving the question of canonicity omitted.
We indeed have the natural isomorphisms in ((W,w) , (Y, y) , (Z, z)) ∈ ΣCL×

ΣCL × ΣCL
(W,w)× ((Y, y) ⊔ (Z, z))

∼= (W,w)×
(
Y ⊔ Z,S(Y,Z)(y, z)

)
{ Corollary 3.6 }

∼=
(
W × (Y ⊔ Z) ,L(πW)(w)× L(πY ⊔Z)S(Y,Z)(y, z)

)
, { Proposition 3.1 }

which, by the distributive property of C, is (naturally) isomorphic to(
(W × Y) ⊔ (W × Z) ,L (⟨W × ιY ,W × ιZ⟩)

(
L(πW)(w)× L(πY ⊔Z)S(Y,Z)(y, z)

))
.

(3.14)
Moreover, we have the natural isomorphisms

L(⟨W×ιY ,W×ιZ⟩)(L(πW)(w)×L(πY ⊔Z)S(Y,Z)(y,z))
∼=L(⟨W×ιY ,W×ιZ⟩)(L(πW)(w))×L(⟨W×ιY ,W×ιZ⟩)(L(πY ⊔Z)S(Y,Z)(y,z)) { L (⟨W × ιY ,W × ιZ⟩) invertible }
=S(W×Y,W×Z)(L(πW)(w),L(πW)(w))×L(⟨W×ιY ,W×ιZ⟩)◦L(πY ⊔Z)◦S(Y,Z)(y,z) { Diagram (3.12) }
=S(W×Y,W×Z)(L(πW)(w),L(πW)(w))×S(W×Y,W×Z)(L(πY)(y),L(πZ)(z)), { Diagram (3.13) }
which is naturally isomorphic to

S(W×Y,W×Z) (L(πW)(w)× L(πY)(y),L(πW)(w)× L(πZ)(z)) . (3.15)

since S(W×Y,W×Z) is invertible. Therefore we have the natural isomorphisms

(W,w)× ((Y, y) ⊔ (Z, z))

∼=((W×Y)⊔(W×Z),L(⟨W×ιY ,W×ιZ⟩)(L(πW)(w)×L(πY ⊔Z)S(Y,Z)(y,z))) { Eq. (3.14) }
∼=((W×Y)⊔(W×Z),S(W×Y,W×Z)(L(πW)(w)×L(πY)(y),L(πW)(w)×L(πZ)(z))) { Eq. (3.15) }

38 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

∼=(W×Y,L(πW)(w)×L(πY)(y))⊔(W×Z,L(πW)(w)×L(πZ)(z)) { Corollary 3.6 }
((W,w)× (Y, y)) ⊔ ((W,w)× (Z, z)) , { Proposition 3.1 }

which completes our proof.

Codually, we have:

Theorem 3.5. Let L : Cop → Cat be a Σ-bimodel for sum and tuple types,
in which C is a distributive category. Then we conclude that ΣCLop is a
distributive category.

3.7. Distributive and extensive properties. Recall that C is extensive
if the basic indexed category

C/− : Cop → Cat

is extensive (see [10, Definition 2.1]). Since free cocompletions under (finite)∗

coproducts and free distributive categories† are extensive, categorical models
for variant types are usually extensive.
Recall that extensive categories with finite products are distributive‡, so,

assuming that C is extensive (which we claim to not be a wild assumption
for our context), the following result is a generalization of Thm. 3.4.

Theorem 3.6. Let L : Cop → Cat be an extensive strictly indexed category,
in which C is a extensive category. Assume that we have initial objects 0 ∈
L (W). In this case, the category ΣCL is extensive.

Proof : We denote by S(W,X)
L : L(W)×L(X)→ L(W ⊔X) the isomorphisms§

of the extensive strictly indexed category L.
The first step is to see that, indeed, ΣCL has coproducts by Corollary 3.6.

We, then, note that, for each pair (W,w) and (X, x) of objects in ΣCL, we
note that, in fact, we have indded have that

S((W,w),(X,x))
ΣCL/− : ΣCL/(W,w)× ΣCL/(X, x)→ ΣCL/ ((W,w) ⊔ (X, x)) (3.16)

defined by the coproduct of the morphisms is an equivalence. Explicitly, given
objects A = ((W0, w0), (f : W0 → W, f ′ : w0 → L (f)w)) of ΣCL/(W,w) and

∗The proof given for [10, Proposition 2.4] also applies to the finite case.
†See [10, Proposition 3.6].
‡See [10, Proposition 4.5].
§The result also holds for the non-strict scenario.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 39

B = ((X0, x0), (g : X0 → X, g′ : x0 → L (g)x)), S((W,w),(X,x))
ΣCL/− (A,B) is given

by((
W0 ⊔X0,S(W,X)

L (w0, x0)
)
,
(
f ⊔ g : W0 ⊔X0 → W ⊔X,S(W,X)

L (f ′, g′)
))

which is clearly an equivalence given that the functor

((W0, f), (X0, g)) 7→ (W0 ⊔X0, f ⊔ g)

is an equivalence C/W × C/X → C/W ⊔X.

Theorem 3.7. Let L : Cop → Cat be an extensive strictly indexed category,
in which C is a extensive category. Assume that we have terminal objects
1 ∈ L (W). In this case, the category ΣCLop is extensive.

3.8. µν-polynomials. We examine the existence of µν-polynomials in ΣCL
and ΣCLop. In order to do so, we employ the results and terminology estab-
lished in Appendices F and G. We also need the following definitions.

Definition 3.10 (µνPolyL). Let C be a category with µν-polynomials, and
L : Cop → Cat an extensive strictly indexed category with finite biproducts.
We define the category µνPolyL as the smallest subcategory of Cat satisfying
the following.

– The objects are defined inductively by:
O1. the terminal category 1 is an object of µνPolyL;
O2. if D and D′ are objects of µνPolyL, then so is D ×D′;
O3. for each objectW ∈ C, the category L(W) is an object of µνPolyL.

– The morphisms satisfy the following properties:
M1. for any object D of µνPolyL, the unique functor D → 1 is a

morphism of µνPolyL;
M2. for any object D of µνPolyL, all the functors 1 → D are mor-

phisms of µνPolyL;
M3. for each (W,X) ∈ C × C, the projections π1 : D × D′ → D and

π2 : D ×D′ → D′ are morphisms of µνPolyL;
M4. for each W ∈ C, the biproduct + : L(W) × L(W) → L(W) is a

morphism of µνPolyL;
M5. for each (W,X) ∈ C × C, the functor

S(W,X) : L(W)× L(X)→ L(W ⊔X)

of the extensive structure (see (3.4)) is a morphism of µνPolyL;

40 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

M6. given an object D of µνPolyC, a morphism H : D × C → C of
µνPolyC and any object X ∈ D′,

L(in
H

X)−1 : L
(
H

X
(
µH

X
))
→ L

(
µH

X
)
,

L(out
H

X) : L
(
H

X
(
νH

X
))
→ L

(
νH

X
)

are morphisms of µνPolyL;
M7. for each (W,X) ∈ C × C, the functors induced by the projections

L(π1) : L (W)→ L (W ×X) , L(π2) : L (X)→ L (W ×X)

are morphisms of µνPolyL;
M8. if E : D → D′ and J : D → D′′ are morphisms of µνPolyL, then

so is (E, J) : D → D′ ×D′′;
M9. if D′,D are objects of µνPolyL, h : D′ × D → D is a morphism

of µνPolyL and µh : D′ → D exists, then µh is a morphism of
µνPolyL;

M10. if D′,D are objects of µνPolyL, h : D′ × D → D is a morphism
of µνPolyL and νh : D′ → D exists, then νh is a morphism of
µνPolyL.

Recall that a strictly indexed category L : Cop → Cat respects terminal
coalgebras and initial algebras if, for any morphism f of C, L(f) preserves
terminal coalgebras and initial algebras.∗

Definition 3.11 (Σ-bimodel for inductive and coinductive types). We say
that L : Cop → Cat is a Σ-bimodel for inductive and coinductive types if:

∗1) C has µν-polynomials;
∗2) L is a strictly indexed category;
∗3) L : Cop → Cat has indexed biproducts, denoted by + with zero object

denoted by 1 = 0;
∗4) L is extensive;
∗5) whenever D is an object of µνPolyL and e : D → D is a morphism of

µνPolyL, µe and νe exist;
∗6) L respects terminal coalgebras and initial algebras.

For short, in this section, such an indexed category is called a ∗-indexed
category.

∗See Definitions E.5, E.8, and E.9.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 41

Lemma 3.12. Let L : Cop → Cat be a ∗-indexed category. If D,D′ are
objects of µνPolyL then, whenever h : D′×D → D is a morphism of µνPolyL,

µh : D′ → D and νh : D′ → D
exist.

Proof : By Proposition D.1, it is enough to show that, for each x ∈ D′, µhx

and νhx exist.
In fact, denoting by x : 1→ D′ the functor constantly equal to x ∈ D′, the

functor hx is the composition below.

D 1×D D′ ×D D(1,idD)

hx

(x◦π1,idD◦π2) h

Since all the horizontal arrows above are morphisms of µνPolyL, we conclude
that hx is an endomorphism of µνPolyL. Therefore, since L is a ∗-indexed
category, µhx and νhx exist.

Definition 3.13 (µνL-indexed category and indexed functor). Let L : Cop →
Cat, L′ : Dop → Cat be strictly indexed categories. We say that L′ is a µνL-
indexed category if:

µνL1) D is an object of µνPolyC;
µνL2) L′(W) is an object of µνPolyL for any W in D.
A strictly indexed functor (H, h) between L′ : Dop → Cat and L′′ : Eop →
Cat is a µνL-indexed functor if:

µνL3) L′,L′′ are µνL-indexed categories;
µνL4) H : D → E is a morphism of µνPolyC;
µνL5) for each X ∈ D, hX : L′ (X)→ L′′ ◦H(X) is a morphism of µνPolyL.

Theorem 3.8. Let L′ : Dop → Cat be a strictly indexed category and
L : Cop → Cat a ∗-indexed category. Assume that (H, h) is a µνL-indexed
functor, and H : ΣE×D (L′×L) ∼= (ΣEL′)× (ΣDL)→ ΣDL is the correspond-
ing split fibration functor. We have that:

– µH : ΣEL′ → ΣDL exists and is the split fibration functor induced by
the µνL-indexed functor(

µH : E → D, µ
(
h(−)

))
(3.17)

42 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

in which

µ
(
h(X)

)
= µhX = µ

(
L(in

H
X)−1h(

X,µH
X
)) : L′(X)→ L(µHX

). (3.18)

– νH : ΣEL′ → ΣDL exists and is the split fibration functor induced by
the µνL-indexed functor(

νH : E → D, ν
(
h(−)

))
(3.19)

in which

ν
(
h(X)

)
= νhX = ν

(
L(out

H
X)h(

X,νH
X
)) : L′′(X)→ L′(νHX

). (3.20)

Furthermore, both µH and νH are µνL-indexed functors.

Proof : Since C has µν-polynomials, D is an object of µνPolyC and H is a
morphism of µνPolyC, we have that µH and νH exist by Lemma 1.2 (and,
hence, are morphisms in µνPolyC). Moreover, we have that L(out

H
X) and

L(in
H

X)−1 are morphisms of µνPolyL by M6. of Definition 3.10.

For any X ∈ D, since
(
H, h

)
is a µνL-indexed functor, we have that,

L′ (X) is an object of µνPolyL and

h(
X,µH

X
) : L′ (X)× L

(
µH

X
)
→ L ◦H

(
X,µH

X
)

h(
X,νH

X
) : L′ (X)× L

(
νH

X
)
→ L ◦H

(
X, νH

X
)

are morphisms of µνPolyL.
We conclude, then, that the compositions

hX = L(in
H

X)−1h(
X,µH

X
) : L′ (X)× L

(
µH

X
)
→ L

(
µH

X
)

hX = L(out
H

X)h(
X,νH

X
) : L′ (X)× L

(
νH

X
)
→ L

(
νH

X
)

are also morphisms of µνPolyL. Thus, we have that µhX and νhX exist (and
are morphisms of µνPolyL) by Lemma 3.12.
Finally, since L respects initial algebras and terminal coalgebras, we have

that (H, h) satisfies the hypotheses of Corollary F.1 and Theorem G.2. There-
fore µH and νH exist and are induced by (3.17) and (3.19) respectively.
The fact that (3.17) and (3.19) are also µνL-indexed functors follows from

the fact that L′ is a µνL-indexed category by hypothesis, µH is a morphism

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 43

of µνPolyC (as observed above) and µhX , νhX are morphisms of µνPolyL (also
observed above).

In particular, we see that initial algebras and terminal coalgebras of µν-
polynomials in ΣCL (and, codually, ΣCLop) are fibred over C.
Before proving Theorem 3.9, our main theorem about µν-polynomials in

ΣCL, we prove Lemma 3.16 which establishes a bijection between objects of
µνPolyΣCL and indexed categories.

Definition 3.14. Let L : Cop → Cat be a strictly indexed category. We
inductively define the set ×L of indexed categories as follows:

×L1. the terminal indexed category 1 : 1→ Cat belongs to ×L;
×L2. L belongs to ×L;
×L3. if L′ and L′′ belong to ×L, then (L′×L′′) ∈ ×L.

Lemma 3.15. Let L : Cop → Cat be a strictly indexed category. Then all
the elements of ×L are µνL-indexed categories.

Proof : The terminal indexed category 1 : 1 → Cat is a µνL-indexed cate-
gory since 1 ∈ µνPolyC and 1 ∈ µνPolyL. Furthermore, L : Cop → Cat is a
µνL-indexed category by the definition of µνPolyL.
Finally, if L′ : Dop → Cat and L′′ : Eop → Cat are µνL-indexed categories,

then:

– we have that (D, E) ∈ µνPolyC × µνPolyC. Thus

(D × E) ∈ µνPolyC; (3.21)

– for any (W,W ′) ∈ D×E , the categories L′(W) and L′′(W ′) are objects
of µνPolyL. Thus

L′×L′′ (W,W ′) = L′(W)× L′′(W ′) ∈ µνPolyL. (3.22)

By (3.21) and (3.22), we conclude that L′×L′′ : (D × E)op → Cat is a
µνL-indexed category.

Lemma 3.16. Let L : Cop → Cat be a strictly indexed category. We define
a bijection ∂ between the set of objects of µνPolyΣCL and ×L.

Proof : We define the bijection ∂ : obj
(
µνPolyΣCL

)
→ ×L inductively as

follows:

∂1. terminal respecting: ∂ (1) := (1 : 1→ Cat);
∂2. basic element: ∂ (ΣCL) := (L : Cop → Cat);

44 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

∂3. product respecting: given (D,D′) ∈ µνPolyΣCL × µνPolyΣCL,

∂ (D ×D′) := ∂ (D) × ∂ (D′) .
The inverse of ∂ is clearly given by the Grothendieck construction. More
precisely, the inverse is denoted herein by Σ and can be inductively defined
as follows:

Σ1. terminal respecting: Σ (1 : 1→ Cat) := 1;
Σ2. basic element: Σ (L : Cop → Cat) := ΣCL;
Σ3. product respecting: given (L′ : Dop → Cat,L′′ : Eop → Cat) ∈ ×L×
×L,

Σ (L′×L′′) := Σ (L′)× Σ (L′′) .
By the inductive definitions of the sets obj

(
µνPolyΣCL

)
and ×L, we conclude

that

Σ ◦ ∂ = idobj(µνPolyΣCL)
and ∂ ◦ Σ = id×L.

Lemma 3.17. Let L : Cop → Cat be a strictly indexed category. The ob-
jects of µνPolyΣCL with the functors that are induced by µνL-indexed functors
between objects of ×L form a subcategory of Cat.

Proof : Let A be an object of µνPolyΣCL. By Lemma 3.16, we have the
associated strictly indexed category

∂ (A) = L′ : Dop → Cat.

The identity idA on A clearly comes from the identity

(idD : D → D, id) : L′ → L′

which is a µνL-indexed category, since L′ is a µνL-indexed category by
Lemma 3.15.
Finally, if E : A → A′ and H : A′ → A′′ are functors induced, respectively,

by the µνL-indexed functors(
E, e

)
: L′ → L′′ and

(
H, h

)
: L′′ → L′′′,

then H ◦ E is induced by the composition(
H ◦ E, hE

op ◦ e
)

which is a µνL-indexed functor as well, since H, E are morphisms of µνPolyC
and, for any W ∈ D, hE(W) and eW are morphisms of µνPolyL.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 45

Definition 3.18. We denote by µνPolyΣCL the category defined in Lemma
3.17.

Theorem 3.9. Let L : Cop → Cat be a ∗-indexed category. The category
ΣCL has µν-polynomials.

Proof : By Theorem 3.8, since L is a ∗-indexed category, any endomorphism
E : ΣCL → ΣCL of the subcategory µνPolyΣCL has an initial algebra and a
terminal coalgebra. Therefore, in order to complete the proof, it is enough
to show that the morphisms of µνPolyΣCL satisfy the inductive properties of
Definition 1.1.
Let A, A′ and A′′ be objects of µνPolyΣCL. By Lemma 3.16, we have the

associated strictly indexed categories

∂ (A) = L′ : Dop → Cat,

∂ (A′) = L′′ : Eop → Cat,

∂ (A′′) = L′′′ : Fop → Cat.

Recall that L′,L′′ and L′′′ are µνL-indexed categories by Lemma 3.15.

1. The unique functor A → 1 is induced by the unique indexed functor(
D → 1, (L′ (W)→ 1)W∈D

)
between L and the terminal indexed category 1 : 1 → Cat. Since
D → 1 is a morphism of µνPolyC and (for any W ∈ D) L′ (W)→ 1 is
a morphism of µνPolyL, we have that the unique indexed functor is a
µνL-indexed functor.

2. Given a functor F : 1 → A ∼= ΣCL′, it corresponds to an object
(W ∈ D, x ∈ L′(W)) ∈ ΣCL′. In other words, F is induced by the
strictly indexed functor

(W : 1→ D, w : 1→ L′(W))

in which W and w denote the obvious functors. Since any functor

1→ D
is a morphism of µνPolyC and (for any W ∈ D) any functor

1→ L′(W)

is a morphism of µνPolyL, we have that

(W : 1→ D, w : 1→ L′(W))

46 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

is a µνL-indexed functor.
3. By Proposition 3.1, the binary product × : ΣCL × ΣCL → ΣCL is

induced by the strictly indexed functor

(× : C × C → C, p) : L×L → L

in which p(W,W ′) is given by the composition

L (W)× L (W ′) L (W ×W ′)× L (W ×W ′)

L (W ×W ′)

L (π1)× L (π2)

+
p(W,W ′)

We prove below that (× : C × C → C, p) is a µνL-indexed functor.
Since × : C × C → C is a morphism of µνPolyC, it is enough to prove
that p(W,W ′) is a morphism of µνPolyL for any (W,W ′) ∈ C × C.
Since, for any (W,W ′) ∈ C × C, we have that

πL(W) : L (W)× L (W ′)→ L (W),
πL(W ′) : L (W)× L (W ′)→ L (W ′)

L (π1) : L (W)→ L (W ×W ′), L (π2) : L (W ′)→ L (W ×W ′)

are morphisms of µνPolyL, we conclude that(
L (π1) ◦ πL(W),L (π2) ◦ πL(W ′)

)
= L (π1)× L (π2)

is a morphism of µνPolyL. Thus, since

× : L (W ×W ′)× L (W ×W ′)→ L (W ×W ′)

is a morphism of µνPolyL as well, we conclude that the composition
p(W,W ′) is a morphism of µνPolyL.

4. By Corollary 3.6, the coproduct ⊔ : ΣCL×ΣCL → ΣCL is induced by
the strictly indexed functor

(⊔ : C × C → C, s) : L×L → L

in which s(W,W ′) is given by the functor

S(W,W ′) : L(W)× L(X)→ L(W ⊔X)

of the extensive structure (see (3.4)) is a morphism of µνPolyL.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 47

We have that (⊔ : C × C → C, s) : L×L → L is a µνL-indexed
functor, since ⊔ : C × C → C is a morphism of µνPolyC and S(W,W ′) is
a morphism of µνPolyL (for any (W,W ′) ∈ C × C).

5. The projections

π1 : A×A′ → A, π2 : A×A′ → D′

are, respectively, induced by the strictly indexed functors(
π1 : D × E → D, (π1 : L(W)× L(W ′)→ L(W))(W,W ′)∈D×E

)
: L′×L′′ → L′(

π2 : D × E → E , (π2 : L(W)× L(W ′)→ L(W ′))(W,W ′)∈D×E

)
: L′×L′′ → L′′

which are µνL-indexed functors, since

π1 : D × E → D, π2 : D × E → E

are morphisms of µνPolyC and, for any (W,W ′) ∈ D × E ,

π1 : L(W)× L(W ′)→ L(W), π2 : L(W)× L(W ′)→ L(W ′)

are morphisms of µνPolyL.
6. Assuming that E : A → A′ and J : A → A′′ are functors induced by

the µνL-indexed functors(
E, e : L′ → L′′ ◦ Eop)

: L′ → L′′ and(
J, j : L′ → L′′′ ◦ Jop)

: L′ → L′′′,
the functor (E, J) : A → A′ × A′′ is induced by the strictly indexed
functor ((

E, J
)
, (e, j)

)
: L′ → L′′×L′′′.

which is a µνL-indexed functor as well since:
– E, J are morphisms of µνPolyC and, hence, so is

(
E, J

)
;

– eW , jW are morphisms of µνPolyL for any W ∈ D and, hence, so
is (eW , jW).

Finally, assuming that H : A× ΣCL → ΣCL is a functor induced by a µνL-
functor (

H, h
)
: L′×L → L,

we have, by Theorem 3.8, that

8. µH is induced by the µνL-indexed functor(
µH : E → D, µ

(
h(−)

))
: L′ → L.

48 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

9. νH is induced by the µνL-indexed functor(
νH : E → D, ν

(
h(−)

))
: L′ → L.

Codually, we have:

Theorem 3.10. Let L : Cop → Cat be a ∗-indexed category. The category
ΣCLop has µν-polynomials.

3.9.Σ-bimodel for function types, inductive and coinductive types.
By Theorem 3.4, the Grothendieck construction of any Σ-bimodel for in-
ductive and coinductive types is distributive. Moreover, we get the closed
structure if L satisfies the conditions of 3.4. More precisely:

Corollary 3.19. Let L : Cop → Cat be a Σ-bimodel for inductive and coin-
ductive types. The categories ΣCL and ΣCLop are distributive categories with
µν-polynomials.

Corollary 3.20. Let L : Cop → Cat be a Σ-bimodel for function types,
inductive and coinductive types. The categories ΣCL and ΣCLop are closed
categories with µν-polynomials.

4. Linear λ-calculus as an idealised AD target language
We describe a target language for our AD code transformations, a variant of

the dependently typed enriched effect calculus [38, Chapter 5]. Its Cartesian
types, linear types, and terms are generated by the grammar of Fig. 1 and
6, making the target language a proper extension of the source language.
We note that we use a special symbol v for the unique linear identifier. We
introduce kinding judgements ∆ | Γ ⊢ τ : type and ∆ | Γ ⊢ τ : ltype for
Cartesian and linear types, where ∆ = α1 : type, . . . , αn : type is a list of
(Cartesian) type identifiers and Γ = x1 : τ1, . . . , xn : τn is a list of identifiers
xi with Cartesian type τi. These kinding judgements are defined according
to the rules displayed in Fig. 2 and 7.
We use typing judgements ∆ | Γ ⊢ t : τ and ∆ | Γ; v : τ ⊢ s : σ for terms of

well-kinded Cartesian types ∆ | Γ ⊢ τ : type and linear type ∆ | Γ ⊢ σ : ltype,
where ∆ = α1 : type, . . . , αn : type is a list of Cartesian type identifiers,
Γ = x1 : τ1, . . . , xn : τn is a list of identifiers xi of well-kinded Cartesian type
∆ | x1 : τ1, . . . , xi−1 : τi−1 ⊢ τi : type and v is the unique linear identifier
of well-kinded linear type ∆ | Γ ⊢ τ : ltype. Note that terms of linear type

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 49

κ, κ′, κ′′ ::= kinds
type kind of Cartesian types

| ltype kind of linear types

τ , σ, ρ ::= linear types

α linear type variable
| realn real array
| 1 unit type
| τ∗σ binary product
| Πx : τ .σ power
| Σx : τ .σ copower
| case tof {ℓ1x1 → τ1 | · · · | ℓnxn → τn} case distinction
| µα.τ inductive type

| να.τ coinductive type

τ, σ, ρ ::= Cartesian types
. . . as in Fig. 1

| τ ⊸ σ linear function
| Πx : τ.σ dependent function
| Σx : τ.σ dependent pair

t, s, r ::= terms
. . . as in Fig. 1

| v linear identifier
| let v = t in s linear let-binding
| lop(t1, . . . , tk; s) linear operation
| !t⊗ s | case tof !y ⊗ v→ s copower intro/elim
| λv.t | t • s abstraction/application
| 0 | t+ s monoid structure
| bunch (t, s)of {(ℓ1x1, v)→ r1 | · · · | (ℓnxn, v)→ rn} extensive families

Figure 6. A grammar for the kinds, types and terms of the
target language, extending that of Fig. 1.

always contain the unique linear identifier v in the typing context. These
typing judgements are defined according to the rules displayed in Fig. 3, 8
and 9.
We work with linear operations lop ∈ LOpm1,...,mr

n1,...,nk;n′
1,...,n

′
l
, which are intended

to represent functions that are linear (in the sense of respecting 0 and +) in
the last l arguments but not in the first k. To serve as a practical target lan-
guage for the automatic derivatives of all programs from the source language,
we work with the following linear operations: for all op ∈ Opm1,...,mr

n1,...,nk
,

Dop ∈ LOpmn1,...,nk;n1,....,nk
Dopt ∈ LOpn1,....,nk

n1,...,nk;m.

50 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

∆ ⊢ τ : type

∆ | Γ ⊢ τ : type

((α : type) ∈ ∆)

∆ | Γ ⊢ α : ltype

∆ | Γ ⊢ realn : ltype ∆ | Γ ⊢ 1 : ltype

∆ | Γ ⊢ τ : ltype ∆ | Γ ⊢ σ : ltype

∆ | Γ ⊢ τ∗σ : ltype

· | Γ ⊢ τ : type · | Γ, x : τ ⊢ σ : ltype

· | Γ ⊢ Πx : τ.σ : ltype

· | Γ ⊢ τ : type · | Γ, x : τ ⊢ σ : ltype

· | Γ ⊢ Σx : τ.σ : ltype

∆ | Γ ⊢ t : {ℓ1τ1 | · · · | ℓnτn} {∆ | Γ, xi : τi ⊢ σi : ltype}1≤i≤n

∆ | Γ ⊢ case tof {ℓ1x1 → σ1 | · · · | ℓnxn → σn} : ltype

∆, α : type | Γ ⊢ τ : ltype

∆ | Γ ⊢ µα.τ : ltype

∆, α : type | Γ ⊢ τ : ltype

∆ | Γ ⊢ να.τ : ltype

· | Γ ⊢ τ : ltype · | Γ ⊢ σ : ltype

· | Γ ⊢ τ ⊸ σ : type

· | Γ ⊢ τ : type · | Γ, x : τ ⊢ σ : type

· | Γ ⊢ Πx : τ.σ : type

· | Γ ⊢ τ : type · | Γ, x : τ ⊢ σ : type

· | Γ ⊢ Σx : τ.σ : type

Figure 7. Kinding rules for the AD target language that we
consider on top of those of Fig. 2, where our first rule specifies
how kinding judgements of the source language imply kinding
of types in the target language. Observe that, according to the
second rule, type variables α from the kinding context Γ can be
used as a linear type α. Note that we only consider the formation
of Σ- and Π-types and linear function types of non-parameterized
types (shaded in grey).

We will use these linear operations Dop and Dopt as the forward and reverse
derivatives of the corresponding primitive operations op∗. We write

LDom(lop)
def
= realn

′
1∗ . . .∗realn′

l and CDom(lop)
def
= realm1∗ . . .∗realmr

for lop ∈ LOpm1,...,mr

n1,...,nk;n′
1,...,n

′
l
.

Fig. 5 and 11 display the equational theory we consider for the terms and
types, which we call (α)βη+-equivalence. To present this equational theory,

∗Nothing would stop us from defining the derivative of a primitive operations as a more general
term, rather than a linear operation. In fact, that is what we considered in [40, 39]. However, we
believe that treating derivatives of operations as linear operations slightly simplifies the develop-
ment and is no limitation, seeing that we are free to implement linear operations as we please in a
practical AD system.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 51

∆ | Γ; v : τ ⊢ v : τ

∆ | Γ ⊢ t : τ ∆ | Γ, v : τ ⊢ s : σ

∆ | Γ ⊢ let v = t in s : σ

∆ | Γ ⊢ t : τ ∆ | Γ, x : τ ; v : σ ⊢ s : ρ

∆ | Γ; v : σ ⊢ letx = t in s : ρ

{∆ | Γ ⊢ ti : real
ni}ki=1 ∆ | Γ; v : τ ⊢ s : LDom(lop) (lop ∈ LOpm1,...,mr

n1,...,nk;n
′
1,...,n

′
l
)

∆ | Γ; v : τ ⊢ lop(t1, . . . , tk; s) : CDom(lop)

∆ | Γ; v : τ ⊢ ⟨⟩ : 1
∆ | Γ; v : τ ⊢ t : σ ∆ | Γ; v : τ ⊢ s : ρ

∆ | Γ; v : τ ⊢ ⟨t, s⟩ : σ∗ρ
∆ | Γ; v : τ ⊢ t : σ∗ρ
∆ | Γ; v : τ ⊢ fst t : σ

∆ | Γ; v : τ ⊢ t : σ∗ρ
∆ | Γ; v : τ ⊢ snd t : ρ

∆ | Γ, y : σ; v : τ ⊢ t : ρ

∆ | Γ; v : τ ⊢ λy.t : Πy : σ.ρ

∆ | Γ; v : τ ⊢ t : Πy : σ.ρ ∆ | Γ ⊢ s : σ

∆ | Γ; v : τ ⊢ t s : ρ[s/y]

∆ | Γ ⊢ t : σ ∆ | Γ; v : τ ⊢ s : ρ[t/y]

∆ | Γ; v : τ ⊢!t⊗ s : Σy : σ.ρ

∆ | Γ; v : τ ⊢ t : Σy : σ.ρ ∆ | Γ, y : σ; v : ρ ⊢ s : ρ′ ∆ | Γ | · ⊢ ρ′ : ltype

∆ | Γ; v : τ ⊢ case tof !y ⊗ v→ s : ρ′
∆ | Γ; v : τ ⊢ t : σ

∆ | Γ ⊢ λv.t : τ ⊸ σ

∆ | Γ ⊢ t : ρ ⊸ σ ∆ | Γ; v : τ ⊢ s : ρ

∆ | Γ; v : τ ⊢ t • s : σ ∆ | Γ; v : τ ⊢ 0 : σ

∆ | Γ; v : τ ⊢ t : σ ∆ | Γ; v : τ ⊢ s : σ

∆ | Γ; v : τ ⊢ t+ s : σ

∆ | Γ ⊢ t : {ℓ1τ1 | · · · | ℓnτn}
∆ | Γ; v : σ ⊢ s : case tof {ℓ1x1 → σ1 | · · · | ℓnxn → σn}{
∆ | Γ, xi : τi; v : σi ⊢ ri : ρ

i

}
1≤i≤n

∆ | Γ; v : σ ⊢ bunch (t, s)of {(ℓ1x1, v)→ r1 | · · · | (ℓnxn, v)→ rn}
: case tof {ℓ1x1 → ρ

1
| · · · | ℓnxn → ρ

n
}

∆ | Γ; v : ρ ⊢ t : τ [µα.τ/α]

∆ | Γ; v : ρ ⊢ roll t : µα.τ

∆ | Γ; v : ρ ⊢ t : µα.τ ∆ | Γ; v : τ [σ/α] ⊢ s : σ

∆ | Γ; v : ρ ⊢ fold twith v→ s : σ

∆ | Γ; v : ρ ⊢ t : σ ∆ | Γ; v : σ ⊢ s : τ [σ/α]

∆ | Γ; v : ρ ⊢ gen from twith v→ s : να.τ

∆ | Γ; v : ρ ⊢ t : να.τ

∆ | Γ; v : ρ ⊢ unroll t : τ [να.τ/α]

Figure 8. Typing rules for the AD target language that we
consider on top of the rules of Fig. 3 and 9.

∆ | Γ, x : τ ⊢ t : σ

∆ | Γ ⊢ λx.t : Πx : τ.σ

∆ | Γ ⊢ t : Πx : τ.σ ∆ | Γ ⊢ s : τ

∆ | Γ ⊢ t s : σ[t/x]

∆ | Γ ⊢ t : τ ∆ | Γ ⊢ s : σ[t/x]

∆ | Γ ⊢ ⟨t, s⟩ : Σx : τ.σ

∆ | Γ ⊢ t : Σx : τ.σ

∆ | Γ ⊢ fst t : τ

∆ | Γ ⊢ t : Σx : τ.σ

∆ | Γ ⊢ snd t : σ[fst t/x]

Figure 9. Typing rules for the AD target language that we
consider on top of the rules of Fig. 3 and 8.

52 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

we define in Fig. 10, by induction, some syntactic sugar for the functorial
action ∆,∆′ | Γ; v : τ [σ/α] ⊢ τ [v⊢t/α] : τ [

ρ/α] in argument α of parameterized
types ∆, α : type ⊢ τ : ltype on terms ∆′ | Γ; v : σ ⊢ t : ρ.

α[v⊢t/α] = t

β[v⊢t/α] = v if α ̸= β

realn[v⊢t/α] = v

1[v⊢t/α] = v

(τ∗σ)[v⊢t/α] = ⟨τ [v⊢t/α][
fst v/v], σ[

v⊢t/α][
snd v/v]⟩case sof

ℓ1x1 → τ1

| · · ·
| ℓnxn → τn

 [v⊢t/α] = bunch (s, v)of

(ℓ1x1, v)→ τ1[

v⊢t/α]
| · · ·
| (ℓnxn, v)→ τn[

v⊢t/α]

(µα.τ)[v⊢t/α] = v

(µβ.τ)[v⊢t/α] = fold vwith v→ roll τ [v⊢t/α] if α ̸= β

(να.τ)[v⊢t/α] = v

(νβ.τ)[v⊢t/α] = gen from vwith v→ τ [v⊢t/α][
unroll v/v] if α ̸= β

Figure 10. Functorial action ∆,∆′ | Γ; v : τ [σ/α] ⊢ τ [v⊢t/α] :
τ [ρ/α] in argument α of parameterized types ∆, α : type ⊢ τ : type
on terms ∆′ | Γ; v : σ ⊢ t : ρ of the target language.

This target language can be viewed as defining a strictly indexed category
LSyn : CSynop → Cat:

• CSyn extends its full subcategory Syn with the newly added Carte-
sian types; its objects are Cartesian types and CSyn(τ, σ) consists of
(α)βη-equivalence classes of target language programs · | x : τ ⊢ t : σ.
• Objects of LSyn(τ) are linear types · | p : τ ⊢ σ : ltype up to (α)βη+-
equivalence.
• Morphisms in LSyn(τ)(σ, ρ) are terms · | x : τ ; v : σ ⊢ t : ρ modulo
(α)βη+-equivalence.
• Identities in LSyn(τ) are represented by the terms · | x : τ ; v : σ ⊢ v :
σ.
• Composition of · | x : τ ; v : σ1 ⊢ t : σ2 and · | x : τ ; v : σ2 ⊢ s : σ3 in
LSyn(τ) is defined as · | x : τ ; v : σ1 ⊢ let v = t in s : σ3.
• Change of base LSyn(t) : LSyn(τ)→ LSyn(τ ′) along (· | x′ : τ ′ ⊢ t :

τ) ∈ CSyn(τ ′, τ) is defined LSyn(t)(· | x : τ ; v : σ ⊢ s : ρ)
def
= · | x′ :

τ ′; v : σ ⊢ letx = t in s : ρ.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 53

let v = t in s = s[t/v]

case !t⊗ sof !x⊗ v→ r = r[t/x,
s/v] t[s/v]

#y
= case sof !y ⊗ v→ t[!y⊗v/v]

(λv.t) • s = t[s/v] t = λv.t • v

t+ 0 = t 0 + t = t (t+ s) + r = t+ (s+ r) t+ s = s+ t

(Γ; v : τ ⊢ t : σ)⇒ t[0/v] = 0 (Γ; v : τ ⊢ t : σ)⇒ t[s+r/v] = t[s/v] + t[r/v]

case ℓitof {ℓ1x1 → τ1 | · · · | ℓnxn → τn} = τ i[
t/xi]

τ [t/y]
#x1,...,xn

= case tof {ℓ1 x1 → τ [ℓ1 x1/y]
∣∣ · · · ∣∣ ℓn xn → τ [ℓn xn/y]}

bunch (ℓit, s)of {(ℓ1x1, v)→ r1 | · · · | (ℓnxn, v)→ rn} = ri[
t/xi ,

s/v]

r[t/x,
s/v]

#x1,...,xn
= bunch (t, s)of {(ℓ1x1, v)→ r[ℓ1x1/x] | · · · | (ℓnxn, v)→ r[ℓnxn/x]}

fold roll twith v→ s = s[τ [
v⊢fold v with v→s/α][t/v]/v]

r[roll v/v] = s[τ [
v⊢r/α]/v]⇒ r[t/v] = fold twith v→ s

unroll (gen from twith v→ s) = τ [v⊢gen from vwith v→s/α][
s/v,

t/v]

unroll r = τ [v⊢r/α][
s/v]⇒ r[t/v] = gen from twith v→ s

Figure 11. Equational rules for the idealised, linear AD lan-
guage, which we use on top of the rules of Fig. 5. In addition
to standard βη-rules for !(−)⊗ (−)- and ⊸-types, we add rules
making (0,+) into a commutative monoid on the terms of each
linear type as well as rules which say that terms of linear types
are homomorphisms in their linear variable. Equations hold on
pairs of terms of the same type/types of the same kind. As usual,
we only distinguish terms up to α-renaming of bound variables.

• All type formers are interpreted as one expects based on their notation,
using introduction and elimination rules for the required structural
isomorphisms.

Corollary 4.1. ΣCSynLSyn and ΣCSynLSyn
op are both bi-Cartesian closed

categories with µν-polynomials.

In fact, LSyn : CSynop → Cat is the initial Σ-bimodel of tuples, self-
dual primitive types and primitive operations, function types, sum types
and inductive and coinductive types, in the sense that for any other such a

54 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Σ-bimodel L : Cop → Cat, we have a unique homomorphism (J−K, J−K) :
(CSyn,LSyn)→ (C,L).

Corollary 4.2 (Universal property of (CSyn,LSyn)). For any Σ-bimodel
L : Cop → Cat of tuples, self-dual primitive types and primitive operations,
function types, sum types and inductive and coinductive types, we obtain
canonical bi-Cartesian closed functors that preserve µν-polynomials

ΣJ−KJ−K : ΣCSynLSyn→ ΣCL, ΣJ−KJ−Kop : ΣCSynLSyn
op → ΣCLop.

5. Novel AD algorithms as source-code transformations
As ΣCSynLSyn and ΣCSynLSyn

op are both bi-Cartesian closed categories
with µν-polynomials, by Corollary 4.1, the universal property of Syn (Corol-
lary 2.1) yields unique structure-preserving functors

−→
D (−) : Syn→ ΣCSynLSyn

and
←−
D (−) : Syn→ ΣCSynLSyn

op implementing source-code transformations
for forward and reverse AD, respectively, once we fix a compatible definition
for the code transformations on primitive types realn and operations op.

Corollary 5.1 (CHAD). Once we fix the derivatives of the ground types and
primitive operations of Syn by defining

• for each n-dimensional array realn ∈ Syn,
−→
D (realn)

def
= (realn, realn)

and
←−
D (realn)

def
= (realn, realn) in which we think of realn as the as-

sociated tangent and cotangent space;

• for each primitive op ∈ Opmn1,...,nk
,
−→
D (op)

def
= (op,Dop) and

←−
D (op)

def
=(

op,Dopt
)
, in which Dop and Dopt are the linear operations that im-

plement the derivative and the transposed derivative of op, respectively,

we obtain unique functors

−→
D (−) : Syn→ ΣCSynLSyn,

←−
D (−) : Syn→ ΣCSynLSyn

op (5.1)

that extend these definitions such that
−→
D (−) and

←−
D (−) preserve the bi-

Cartesian closed structure and the µν-polynomials.

By definition of equality in Syn, ΣCSynLSyn and ΣCSynLSyn
op, these code

transformations automatically respect equational reasoning principles, in the

sense that t
βη
= s implies that

−→
D (t)

βη+
=
−→
D (s) and

←−
D (t)

βη+
=
←−
D (s). In this section,

we detail the implied definitions of
−→
D and

←−
D as well as their properties.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 55

5.1. Kinding and typing of the code transformations. We define for
each type τ of the source language:

• a Cartesian type
−→
D (τ)1 of forward mode primals;

• a linear type
−→
D (τ)2 (with free term variable p) of forward mode tan-

gents;
• a Cartesian type

←−
D (τ)1 of reverse mode primals;

• a linear type
←−
D (τ)2 (with free term variable p) of reverse mode cotan-

gents.

We extend
−→
D (−) and ←−D (−) to act on typing contexts Γ = x1 : τ1, . . . , xn : τn

as

−→
D (Γ)1

def
= x1 :

−→
D (τ1)1, . . . , xn :

−→
D (τn)n (a Cartesian typing context)

−→
D (Γ)2

def
= (
−→
D (τ1)2[

x1/p]∗ · · ·∗
−→
D (τn)2[

xn/p]) (a linear type)
←−
D (Γ)1

def
= x1 :

←−
D (τ1)1, . . . , xn :

←−
D (τn)n (a Cartesian typing context)

←−
D (Γ)2

def
= (
←−
D (τ1)2[

x1/p]∗ · · ·∗
←−
D (τn)2[

xn/p]) (a linear type).

Our code transformations are well-kinded in the sense that they translate a
type ∆ ⊢ τ : type of the source language into pairs of types of the target
language

∆ | · ⊢ −→D (τ)1 : type
∆ | p :

−→
D (τ)1 ⊢

−→
D (τ)2 : ltype

∆ | · ⊢ ←−D (τ)1 : type
∆ | p :

←−
D (τ)1 ⊢

←−
D (τ)2 : ltype.

Similarly, the functors
−→
D (−) : Syn → ΣCSynLSyn and

←−
D (−) : Syn →

ΣCSynLSyn
op define for each term t of the source language and a list Γ of

identifiers that contains at least the free identifiers of t:

• a term
−→
DΓ(t)1 that represents the forward mode primal computation

associated with t;
• a term

−→
DΓ(t)2 that represents the forward mode tangent computation

associated with t;
• a term

←−
DΓ(t)1 that represents the reverse mode primal computation

associated with t;
• a term←−DΓ(t)2 that represents the reverse mode cotangent computation
associated with t.

These code transformations are well-typed in the sense that a source language
term t that is typed according to ∆ | Γ ⊢ t : τ is translated into pairs of

56 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

terms of the target language that are typed as follows:

∆ | −→D (Γ)1 ⊢
−→
DΓ(t)1 :

−→
D (τ)1

∆ | −→D (Γ)1; v :
−→
D (Γ)2 ⊢

−→
DΓ(t)2 :

−→
D (τ)2[

−→
DΓ(t)1/p]

∆ | ←−D (Γ)1 ⊢
←−
DΓ(t)1 :

←−
D (τ)1

∆ | ←−D (Γ)1; v :
←−
D (τ)2[

←−
DΓ(t)1/p] ⊢

←−
DΓ(t)2 :

←−
D (Γ)2,

where Γ is the list of identifiers that occurs in Γ (that is, x1 : τ1, . . . , xn : τn
def
=

x1, . . . , xn).
However, as we noted already in Insight 1 of §, we often want to share

computation between the primal and (co)tangent values, for reasons of effi-
ciency. Therefore, we focus instead on transforming a source language term
∆ | Γ ⊢ t : τ into target language terms:

∆ | −→D (Γ)1 ⊢
−→
DΓ(t) : Σp :

−→
D (τ)1.

−→
D (Γ)2 ⊸

−→
D (τ)2

∆ | ←−D (Γ)1 ⊢
←−
DΓ(t) : Σp :

←−
D (τ)1.

←−
D (τ)2 ⊸

←−
D (Γ)2,

where
−→
DΓ(t)

βη+
= ⟨−→DΓ(t)1, λv.

−→
DΓ(t)2⟩ and

←−
DΓ(t)

βη+
= ⟨←−DΓ(t)1, λv.

←−
DΓ(t)2⟩. While

both representations of AD on programs are equivalent in terms of the βη+-
equational theory of the target language and therefore for any semantic and
correctness purposes, they are meaningfully different in terms of efficiency.
Indeed, we ensure that common subcomputations between the primals and
(co)tangents are shared via let-bindings in

−→
DΓ(t) and

←−
DΓ(t).

5.2. Some notation. In the rest of this section, we use the following syn-
tactic sugar:

• a notation for (linear) n-ary tuple types:

(τ 1∗ . . .∗τn)
def
= (((τ 1∗τ 2) · · ·∗τn−1)∗τn);

• a notation for n-ary tuples: ⟨t1, · · · , tn⟩
def
= ⟨⟨⟨t1, t2⟩ · · · , tn−1⟩, tn⟩;

• given Γ; v : τ ⊢ t : (σ1∗ · · ·∗σn), we write Γ; v : τ ⊢ proji (t) : σi for
the obvious i-th projection of t, which is constructed by repeatedly
applying fst and snd to t;
• given Γ; v : τ ⊢ t : σi, we write the i-th coprojection Γ; v : τ ⊢
coproji (t)

def
= ⟨0, . . . , 0, t, 0, . . . , 0⟩ : (σ1∗ · · ·∗σn);

• for a list x1, . . . , xn of distinct identifiers, we write idx(xi;x1, . . . , xn)
def
=

i for the index of the identifier xi in this list;

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 57

• a let-binding for tuples: let ⟨x, y⟩ = t in s
def
= let z = t in letx =

fst z in let y = snd z in s, where z is a fresh variable.

Further, all variables used in the source code transforms below are assumed
to be freshly chosen.

5.3. Code transformations of primitive types and operations. We
have suitable terms (linear operations)

x1 : realn1 , · · · , xk : realnk ; v : realn1∗ · · ·∗realnk ⊢ Dop(x1, . . . , xk; v) : realm

x1 : realn1 , · · · , xk : realnk ; v : realm ⊢ Dopt(x1, . . . , xk; v) : realn1∗ · · ·∗realnk

to represent the forward- and reverse-mode derivatives of the primitive op-
erations op ∈ Opmn1,...,nk

. Using these, we define

−→
D (realn)1

def
= realn

−→
D (realn)2

def
= realn

−→
DΓ(op(t1, . . . , tk))

def
= let ⟨x1, x

′
1⟩ =

−→
DΓ(t1) in · · · let ⟨xk, x′k⟩ =

−→
DΓ(tk) in

⟨op(x1, . . . , xk), λv.Dop(x1, . . . , xn; ⟨x′1 • v, . . . , x′k • v⟩)⟩

←−
D (realn)1

def
= realn

−→
D (realn)2

def
= realn

←−
DΓ(op(t1, . . . , tk))

def
= let ⟨x1, x

′
1⟩ =

←−
DΓ(t1) in · · ·

let ⟨xk, x′k⟩ =
←−
DΓ(tk) in

⟨op(x1, . . . , xk), λv.let v = Dopt(x1, . . . , xk; v) in

x′1 • proj1 v + · · ·+ x′k • projk v⟩
For the AD transformations to be correct, it is important that these deriva-
tives of language primitives are implemented correctly in the sense that

Jx1, . . . , xk; y ⊢ Dop(x1, . . . , xk; v)K = DJopK
Jx1, . . . , xk; v ⊢ Dopt(x1, . . . , xk; v)K = DJopKt.

For example, for elementwise multiplication (∗) ∈ Opnn,n, we need that

JD(∗)(x1, x2; v)K((a1, a2), (b1, b2)) = a1 ∗ b2 + a2 ∗ b1

JD(∗)t(x1, x2; v)K((a1, a2), b) = (a2 ∗ b, a1 ∗ b).

58 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

By Corollary 2.1, the extension of the AD transformations
−→
D and

←−
D to

the full source language are now canonically determined, as the unique µν-
polynimials preserving bi-Cartesian closed functors that extend the previous
definitions.

5.4. Forward-mode CHAD definitions. We define the types of (forward-
mode) primals

−→
D (τ)1 and tangents

−→
D (τ)2 associated with a type τ as follows:

−→
D (1)1

def
= 1

−→
D (τ∗σ)1

def
=
−→
D (τ)1∗

−→
D (σ)1

−→
D (τ → σ)1

def
= Πp :

−→
D (τ)1.Σp

′ :
−→
D (σ)1.

−→
D (τ)2 ⊸

−→
D (σ)2[

p′/p]

−→
D ({ℓ1τ1 | · · · | ℓnτn})1

def
=
{
ℓ1
−→
D (τ1)1 | · · · | ℓn

−→
D (τn)1

}
−→
D (α)1

def
= α

−→
D (µα.τ)1

def
= µα.

−→
D (τ)1

−→
D (να.τ)1

def
= να.

−→
D (τ)1

−→
D (1)2

def
= 1

−→
D (τ∗σ)2

def
=
−→
D (τ)2[

fst p/p]∗
−→
D (σ)2[

snd p/p]

−→
D (τ → σ)2

def
= Πp′ :

−→
D (τ)1.

−→
D (σ)2[

fst (p p′)/p]

−→
D ({ℓ1τ1 | · · · | ℓnτn})2

def
= case pof {ℓ1p→

−→
D (τ1)2 | · · · | ℓnp→

−→
D (τn)2}

−→
D (α)2

def
= α

−→
D (µα.τ)2

def
= µα.

−→
D (τ)2[

fold pwith y→
−→
D (τ)1[y⊢roll y/α]/p]

−→
D (να.τ)2

def
= να.

−→
D (τ)2[

unroll p/p]

For programs t, we define we define their efficient CHAD transformation
−→
DΓ(t) as follows (and we list the less efficient transformations

−→
DΓ(t)1 and

−→
DΓ(t)2 that do not share computation between the primal and tangents in
Appendix H):
−→
DΓ(x)

def
= ⟨x, λv.projidx(x;Γ) (v)⟩

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 59

−→
DΓ(letx = t in s)

def
=

let ⟨x, x′⟩ = −→
DΓ(t) in

let ⟨y, y′⟩ = −→
DΓ,x(s) in

⟨y, λv.y′ • ⟨v, x′ • v⟩⟩

−→
DΓ(⟨⟩)

def
= ⟨⟨⟩, λv.⟨⟩⟩

−→
DΓ(⟨t, s⟩)

def
= let ⟨x, x′⟩ = −→

DΓ(t) in

let ⟨y, y′⟩ = −→
DΓ(s) in

⟨⟨x, y⟩, λv.⟨x′ • v, y′ • v⟩⟩

−→
DΓ(fst t)

def
= let ⟨x, x′⟩ = −→

DΓ(t) in ⟨fstx, λv.fst (x
′ • v)⟩

−→
DΓ(snd t)

def
= let ⟨x, x′⟩ = −→

DΓ(t) in ⟨sndx, λv.snd (x′ • v)⟩

−→
DΓ(λx.t)

def
= let y = λx.

−→
DΓ,x(t) in

⟨λx.let ⟨z, z′⟩ = y x in ⟨z, λv.z′ • ⟨0, v⟩⟩, λv.λx.(snd (y x)) • ⟨v, 0⟩⟩

−→
DΓ(t s)

def
= let ⟨x, x′⟩ = −→

DΓ(t) in

let ⟨y, y′⟩ = −→
DΓ(s) in

⟨fst (x y), λv.x′ • v y + (snd (x y)) • y′ • v⟩

−→
DΓ(ℓt)

def
= let ⟨x, x′⟩ = −→

DΓ(t) in ⟨ℓx, x
′⟩

−→
DΓ(case tof {ℓ1x1 → s1 | · · · | ℓnxn → sn})

def
= let ⟨y, y′⟩ = −→

DΓ(t) in

case y of {ℓ1x1 →

let ⟨z1, z′1⟩ =
−→
DΓ,x1

(s1) in

⟨z1, λv.bunch (y, ⟨v, y′ • v⟩)of {

(ℓ1x1, v)→ z′1 • v

| (ℓ2x2, v)→ 0

| · · ·

| (ℓnxn, v)→ 0}⟩

| · · · |
ℓnxn →

let ⟨zn, z′n⟩ =
−→
DΓ,x1

(s1) in

⟨zn, λv.bunch (y, ⟨v, y′ • v⟩)of {

(ℓ1x1, v)→ 0

| · · ·

| (ℓn−1xn−1, v)→ 0

| (ℓnxn, v)→ z′n • v}⟩}

60 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

−→
DΓ(roll t)

def
= let ⟨x, x′⟩ = −→

DΓ(t) in ⟨roll x, λv.roll (x
′ • v)⟩

−→
DΓ(fold twithx→ s)

def
= let ⟨y, y′⟩ = −→

DΓ(t) in

let z = λx.
−→
Dx(s) in

⟨fold ywithx→ fst (z x),

λv.fold y′ • vwith v→

letx = fold ywithx→ −→
D (τ)1[

x⊢fst (z x)/α] in (snd (z x)) • v⟩

−→
DΓ(unroll t)

def
= let ⟨x, x′⟩ = −→

DΓ(t) in ⟨unrollx, λv.unroll (x
′ • v)⟩

−→
DΓ(gen from twithx→ s)

def
= let ⟨y, y′⟩ = −→

DΓ(t) in

let z = λx.
−→
Dx(s) in

⟨gen from ywithx→ fst (z x),

λv.gen from y′ • vwith v→ (snd (z y)) • v⟩

5.5. Reverse-mode CHAD definitions. We define the types of (reverse-
mode) primals

←−
D (τ)1 and cotangents

←−
D (τ)2 associated with a type τ as fol-

lows:
←−
D (1)1

def
= 1

←−
D (τ∗σ)1

def
=
←−
D (τ)1∗

←−
D (σ)1

←−
D (τ → σ)1

def
= Πp :

←−
D (τ)1.Σp

′ :
←−
D (σ)1.

←−
D (σ)2[

p′/p] ⊸
←−
D (τ)2

←−
D ({ℓ1τ1 | · · · | ℓnτn})1

def
=
{
ℓ1
←−
D (τ1)1 | · · · | ℓn

←−
D (τn)1

}
←−
D (α)1

def
= α

←−
D (µα.τ)1

def
= µα.

←−
D (τ)1

←−
D (να.τ)1

def
= να.

←−
D (τ)1

←−
D (1)2

def
= 1

←−
D (τ∗σ)2

def
=
←−
D (τ)2[

fst p/p]∗
←−
D (σ)2[

snd p/p]

←−
D (τ → σ)2

def
= Σp′ :

←−
D (τ)1.

←−
D (σ)2[

fst (p p′)/p]

←−
D ({ℓ1τ1 | · · · | ℓnτn})2

def
= case pof {ℓ1p→

←−
D (τ1)2 | · · · | ℓnp→

←−
D (τn)2}

←−
D (α)2

def
= α

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 61

←−
D (µα.τ)2

def
= να.

←−
D (τ)2[

fold pwith y→
←−
D (τ)1[y⊢roll y/α]/p]

←−
D (να.τ)2

def
= µα.

←−
D (τ)2[

unroll p/p]

For programs t, we define we define their efficient CHAD transformation
←−
DΓ(t) as follows (and we list the less efficient transformations

←−
DΓ(t)1 and

←−
DΓ(t)2 that do not share computation between the primal and tangents in
Appendix H):
←−
DΓ(x)

def
= ⟨x, λv.coprojidx(x;Γ) (v)⟩

←−
DΓ(letx = t in s)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in

let ⟨y, y′⟩ = ←−
DΓ,x(s) in

⟨y, λv.let v = y′ • v in fst v + x′ • (snd v)⟩

←−
DΓ(⟨⟩)

def
= ⟨⟨⟩, λv.0⟩

←−
DΓ(⟨t, s⟩)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in

let ⟨y, y′⟩ = ←−
DΓ(s) in

⟨⟨x, y⟩, λv.x′ • (fst v)⟩+ y′ • (snd v)

←−
DΓ(fst t)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in ⟨fstx, λv.x
′ • ⟨v, 0⟩⟩

←−
DΓ(snd t)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in ⟨sndx, λv.x′ • ⟨0, v⟩⟩

←−
DΓ(λx.t)

def
= let y = λx.

←−
DΓ,x(t) in

⟨λx.let ⟨z, z′⟩ = y x in ⟨z, λv.snd (z′ • v)⟩,

λv.case v of !x⊗ v→ fst ((snd (y x)) • v)⟩

←−
DΓ(t s)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in

let ⟨y, y′⟩ = ←−
DΓ(s) in

⟨fst (x y), λv.x′•!y ⊗ v + y′ • (snd (x y)) • v⟩

←−
DΓ(ℓt)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in ⟨ℓx, x
′⟩

←−
DΓ(case tof {ℓ1x1 → s1 | · · · | ℓnxn → sn})

def
= let ⟨y, y′⟩ = ←−

DΓ(t) in

case y of {ℓ1x1 →

let ⟨z1, z′1⟩ =
←−
DΓ,x1

(s1) in

⟨z1, λv.let v = bunch (y, v)of {

(ℓ1x1, v)→ z′1 • v

| (ℓ2x2, v)→ 0

62 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

| · · ·

| (ℓnxn, v)→ 0} in

fst v + y′ • snd v⟩

| · · · |
ℓnxn →

let ⟨zn, z′n⟩ =
←−
DΓ,x1

(s1) in

⟨zn, λv.let v = bunch (y, v)of {

(ℓ1x1, v)→ 0

| · · ·

| (ℓn−1xn−1, v)→ 0

| (ℓnxn, v)→ z′n • v} in

fst v + y′ • snd v⟩}

←−
DΓ(roll t)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in ⟨roll x, λv.x
′ • (unroll v)⟩

←−
DΓ(fold twithx→ s)

def
= let ⟨y, y′⟩ = ←−

DΓ(t) in

let z = λx.
←−
D (x)s in

⟨fold ywithx→ fst (z x)

, λv.y′ • gen from vwith v→

letx = fold ywithx→ −→
D (τ)1[

x⊢fst (z x)/α] in (snd (z x)) • v⟩

←−
DΓ(unroll t)

def
= let ⟨x, x′⟩ = ←−

DΓ(t) in ⟨unrollx, λv.x
′ • (roll v)⟩

←−
DΓ(gen from twithx→ s)

def
= let ⟨y, y′⟩ = ←−

DΓ(t) in

let z = λx.
←−
Dx(s) in

⟨gen from ywithx→ fst (z x)

, λv.y′ • fold vwith v→ (snd (z y)) • v⟩

6. Concrete denotational semantics
In order to proceed with our correctness proof of Automatic Differentiation,

we need to establish the semantics of the program transformation in our
setting. In this section, we construct denotational semantics for the target
language.

6.1. Locally presentable categories and denotational model for the
source language. We start by giving examples of concrete models for our
source language. In order to do so, we show that any Cartesian closed locally
presentable category yields a concrete model for the source language. Indeed,
the only step needed to establish this fact is to recall that locally presentable
categories have µν-polynomials [36, Theorem 3.7]. We recall below how to

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 63

prove this result, taking the opportunity to recall some basic aspects on
locally presentable categories.
The first fact to recall is that locally presentable categories are complete

(besides being cocomplete by definition). Moreover:

Lemma 6.1. Let A,B be locally presentable categories.
A functor G : A → B has a right adjoint if and only if G is accessible and

preserves limits.
A functor F : B → A has a left adjoint if and only if F preserves colimits.

Lemma 6.2. Every accessible endofunctor on a locally presentable category
has an initial algebra and a terminal coalgebra.

Proof : Every accessible endofunctor on a locally presentable category has an
initial algebra since we construct the initial algebra via the directed colimit,
see [2].
If A is a locally presentable category, given an endofunctor E : A → A,

we have that E-CoAlg is locally presentable. Since the forgetful functor
E-CoAlg→ A is a functor between locally presentable categories that creates
colimits, we have that it has a right adjoint R. Therefore R(1) is the terminal
object of E-CoAlg (terminal coalgebra of E), see [5].

Proposition 6.3. If D is locally presentable then D has µν-polynomials.

Proof : The terminal category 1 is a locally presentable category and, if D′
and D′′ are locally presentable categories, then D′×D′′ is locally presentable
as well. Therefore all the objects of µνPolyD are locally presentable.
Given locally presentable categories D′,D′′, the projections π1 : D′×D′′ →
D′ and π2 : D′ × D′′ → D′′ have right (and left) adjoints and, therefore, are
accessible.
Moreover, given locally presentable categories D′,D′′,D′′′, if E : D′ → D′′

and J : D′ → D′′′ are accessible functors, then so is the induced functor
(E, J) : D′ → D′′ ×D′′′.
Furthermore, × : D × D → D and ⊔ : D × D → D have, respectively, a

left adjoint and a right adjoint. Therefore they are accessible.
Finally, by [36, Proposition 3.8], assuming their existence, µH and νH

are accessible whenever H : D′ × D → D is accessible and D′ is locally
presentable.

64 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

This completes the proof that all morphisms of µνPolyD are accessible.
Hence, by Lemma 6.2, we have that all endofunctors in µνPolyD have initial
algebras and terminal coalgebras. Therefore D has µν-polynomials.

As a consequence, we have that any locally presentable Cartesian closed
category yields a concrete model for the source language. In particular, Set
yields a model for the source language and, thus, we obtain the following
corollary by Corollary the universal property of the source language Syn
(see Corollary 2.1):

Corollary 6.4 (Concrete semantics of the source language). Set is a bi-
Cartesian closed category with µν-polynomials. Hence, once we fix the con-
crete semantics of the ground types and primitive operations of Syn by defin-
ing

• for each n-dimensional array realn ∈ Syn, JrealnK def
= Rn ∈ Set in

which Rn is the set underlying the n-dimensional Euclidean space;
• for each primitive op ∈ Opmn1,...,nk

, JopK : Rn1 × · · · × Rnk → Rm is the
map in Set corresponding to the operation op intends to implement,

we obtain a unique functor

J−K : Syn→ Set

that extends these definitions to give a concrete denotational semantics for
the entire source language such that J−K preserves the bi-Cartesian closed
structure and the µν-polynomials.

6.2. Fam(Li) is bi-Cartesian closed and has µν-polynomials. Hence-
forth, we assume that T is an accessible monad on Set. We denote by Li
the associated Eilenberg-Moore category. We further assume that Li has
biproducts (+, 0). The main examples that we have in mind are the cate-
gory of vector spaces Li = Vect and the category of commutative monoids
Li = CMon.
We consider the indexed category

FLi : Setop → Cat (6.1)

X 7→ Cat [X,Li] = LiX (6.2)

f : X → Y 7→ Lif = Cat [f,Li] : LiY → LiX (6.3)

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 65

defined by the composition

Setop → Catop Cat[−,Li]−−−−−→ Cat (6.4)

in which Cat [−,Li] = Li(−) is the exponential (internal hom) in Cat. It is
well known that

ΣSetFLi ∼= Fam(Li), ΣSetFLi
op ∼= Fam(Liop) (6.5)

where Fam(Li) and Fam(Liop) are, respectively, the free cocompletion under
coproducts of Li and of Liop. We have the following results.

Proposition 6.5. For any category D, Fam(D) and Fam(Dop) are exten-
sive.

Proof : It follows from [10, Proposition 2.4].

Proposition 6.6. If D has biproducts (+, 0) and products, Fam(D) is Carte-
sian closed. Codually, if C has biproducts (+, 0) and coproducts, Fam(Cop)
is Cartesian closed.

Proof : Namely, given families of objects Y : Y → D,Z : Z → D, we have
that

(Y ⇒ Z) : Fam(D) (Y ,Z) → D(
g : Y → Z, (αy : Y(y)→ Z (g(y)))y∈Y

)
7→
∏
y∈Y

Z (g(y))

is the exponential in Fam(D). Codually,
(Y ⇒ Z) : Fam(Cop) (Y ,Z) → C(

g : Y → Z, (αy : Z (g(y))→ Y(y))y∈Y
)
7→
∐
y∈Y

Z (g(y))

is the exponential in Fam(Cop).

Proposition 6.7. If D is locally presentable, Fam(D) and Fam(Dop) are
locally presentable.

By Proposition 6.3, as a consequence of the above, we have:

Corollary 6.8. The categories Fam(Li) and Fam(Liop) are locally pre-
sentable Cartesian closed categories. As a consequence, Fam(Li) and Fam(Liop)
have µν-polynomials and yield models for the source language.

66 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Indeed, we prove below that FLi : Setop → Cat yields a model for the tar-
get language. This also provides another proof that ΣSetFLi ∼= Fam(Li) and
ΣSetFLi

op ∼= Fam(Liop) are Cartesian closed categories with µν-polynomials
by the results of Section 3.

6.3. Li is a Σ-bimodel for inductive and coinductive types. To show
that FLi : Liop → Cat yields a model for the target language, we first prove
that FLi : Setop → Cat is a Σ-bimodel for inductive and coinductive types.
We already know that Set has µν-polynomials. Since Li is complete and
cocomplete, we get that FLi (X) = LiX is complete and cocomplete (limits
and colimits are constructed pointwise). In particular, FLi (X) = LiX has
biproducts (also constructed pointwise) with zero objects. Moreover, for any
function f : X → Y in Set, we have that

Lif = FLi (f) : Cat [Y,Li]→ Cat [X,Li] (6.6)

has a (fully faithful) left adjoint and a (fully faithful) right adjoint, given by
the left and right Kan extensions respectively. Namely, for each X : X → Li,

ranfX (x) =
∏

i∈f−1(x)

X (i), lanfX (x) =
∐

i∈f−1(x)

X (i). (6.7)

Therefore, since FLi (f) is left and right adjoint, we get that it preserves
limits, colimits (in particular, biproducts), initial algebras and terminal coal-
gebras (by Theorem 7.2). Indeed, FLi (f) strictly preserves biproducts (and
zero object), initial algebras and terminal coalgebras, provided that we have
chosen ones.
Since we have, of course, the isomorphisms

FLi (X ⊔ Y) = Cat [X ⊔ Y,Li]
∼= Cat [X,Li]×Cat [Y,Li]

= FLi (X)× FLi (Y)

we have that FLi is extensive. Indeed, we have

S(X,Y) : FLi (X)× FLi (Y)→ FLi (X ⊔ Y) (6.8)

in which S(X,Y) (X ,Y) (i) = X (i) if i ∈ X and S(X,Y) (X ,Y) (j) = Y(j) if
j ∈ Y .

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 67

Theorem 6.1. The strictly indexed category FLi is a Σ-bimodel for in-
ductive and coinductive types. Therefore ΣSetFLi and ΣSetFLi

op have µν-
polynomials.

Proof : It only remains to prove that all the endomorphisms in µνPolyFLi
have initial algebras and terminal coalgebras. In order to do so, by Lemma
6.2, it is enough to prove that µνPolyFLi is a subcategory of the category of
locally presentable categories and accessible functors between them.
As proved in Lemma 6.2, the subcategory of locally presentable functors

and accessible functors is closed under products. That is to say, if D,D′
are locally presentable categories and E, J are accessible functors between
locally presentable categories, we get that 1,D × D′ are locally presentable
categories, (E, J) is accessible, and the projections are accessible (since they
have right adjoints).
Moreover, LiX is locally presentable for any set X since Li is locally pre-

sentable. Also, since the biproduct + : LiX×LiX → LiX has a right adjoint,
it is accessible.
Furthermore, since it has a right adjoint, we get that Li(f) is accessible

for any function f : X → Y .
Finally, by [36, Proposition 3.8], assuming their existence, µh and νh are

accessible whenever h : D′ × D → D is accessible and D′,D are locally
presentable categories.
Since isomorphisms between locally presentable categories are accessible,

this completes the proof that all functors in µνPolyFLi are accessible func-
tors between locally presentable categories and, hence, any endomorphism
µνPolyFLi has initial algebra and terminal coalgebra.

6.4. Li yields a model for the target language. It remains only to prove
that Li is a Σ-bimodel for function types.
The model of Cartesian dependent type theory associated is, of course, the

strictly indexed category FSet : Setop → Cat

X 7→ Cat [X,Li] .

The fact that FSet satisfies full, faithful, democratic comprehension with
Π-types and strong Σ-types is well-known [19].
The fact that Li has Π- types follows, for instance, from [38, Theorem 5.2.9]

while the Σ-types and ⊸ follows from [38, Theorem 5.6.3].

68 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

6.5. The denotational model for the target language. We specialize
further to a concrete denotational model for the target language in terms of
real vector spaces. We can phrase of our specifications for the correctness
proofs of Section 8 with respect to this concrete semantics. Namely, we
consider Li = Vect, denoting by

FVect : Setop → Cat, FVect(X) = VectX

the associated indexed category. Recall that we have that

ΣSetFVect ∼= Fam(Vect), ΣSetFVectop ∼= Fam(Vectop) (6.9)

where Fam(Vect) and Fam(Vectop) are, respectively, the free cocompletion
under coproducts of of Vect and Vectop.
As proved above, seeing that Vect is locally presentable, FVect is a Σ-

bimodel for tuple, function, sum, inductive and coinductive types and, hence,
it provides a suitable model for our target language. Once we specialize from
arbitrary families FLi in a locally indexed category to FVect, there is a bit
more we can say about the interpretation of type formers.

Product structure. Assume that (M,R), (N, V) are objects of ΣSetFVect (or
ΣSetFVectop). By Propositions 3.2 and 3.1, we have that

(M,R)× (N, V) = (M ×N, (i, j) 7→ R(i)× V (j)) . (6.10)

gives the product of (M,R) and (N, V) in ΣSetFVect (and in ΣSetFVectop).
The terminal object in ΣSetFVect (and in ΣSetFVectop) is given by (1, 0).

Coproduct structure. Assume that (M,R), (N, V) are objects of ΣSetFVect
(or ΣSetFVectop). By Corollaries 3.7 and 3.6, we have that

(M,R) ⊔ (N, V) = (M ⊔N, ⟨R, V ⟩ : M ⊔N → Set) . (6.11)

gives the coproduct of (M,R) and (N, V) in ΣSetFVect (and in ΣSetFVectop).
The initial objects are given by (∅, 0).

Lists and Streams. The categories ΣSetFVect and ΣSetFVectop have µν-
polynomials by Corollary 3.20 since FVect is Σ-bimodel for inductive and
coinductive types by Theorem 6.1. But, in fact, as showed above Fam(Vect) ∼=
Fam(Vect) and Fam(Vectop) ∼= ΣSetFVectop have µν-polynomials because
they are locally presentable categories (Corollary 6.8).
Therefore, since we are in the locally presentable setting, we can compute

the initial algebras or terminal coalgebras of µν-polynomials via directed
colimits and limits (see [2]). In particular, denoting by V : V → Vect the

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 69

functor constantly equal to the vector space V (in which, by abuse of language
V is also the set underlying the vector space), given the endofunctors

E : Fam(Vect)→ Fam(Vect), H : Fam(Vect)→ Fam(Vect)

in which E(X, x) = (1, 0) ⊔ (X, x) × (V, V) and H(X, x) = (X, x) × (V, V),
we have that

µE =
∞∐
i=0

(V, V)n , νH =
∞∏
i=0

(V, V) ,

in Fam(Vect) and Fam(Vectop).
For the case of µE, this means that

List (V, V) = µE :
∞∐
i=0

V n → Vect

is induced/defined by the functors V n : V n → Vect constantly equal to the
product V n (in Vect) in each component V n of the set

∐∞
i=0 V

n (in both
Fam(Vect) and Fam(Vectop)).
For the case of νE, this means that

Stream (V, V) :
∞∏
i=0

V → Vect

is the functor constantly equal to the product
∞∏
i=0

V in the case of Fam(Vect),

while it is the functor constantly equal to
∞∐
i=0

V in the case of Fam(Vectop).

Primitive types and operations. The reason we work with a concrete seman-
tics in terms of (families of) real vector spaces is because they suffice to
interpret spaces of (co)tangent vectors as well as (transposed) derivatives of
smooth functions. In particular, we have a constant family of vector spaces
Rn to interpret realn and, for every smooth function JopK that op is tended
to implement, we have linear functions DJopK and DJopKt (the usual mathe-
matical derivative and transposed derivative of JopK!) to interpret Dop and
Dopt. Fixing these choices if enough to give a full denotational semantics to
the target language of CHAD.

70 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Corollary 6.9 (Concrete semantics of the target language). FVect is a Σ-
bimodel for tuples, function types, sum types, inductive and coinductive types.
Hence, considering the Σ-bimodel of primitive types and operations defined
by

(1) for each n-dimensional array realn ∈ Syn, Crealn = JrealnK def
= Rn ∈

Set in which Rn is the set underlying the n-dimensional Euclidean
space;

(2) for each n-dimensional array realn ∈ Syn,

Lrealn, L
′
realn ∈ FVect (Rn)

in which Lrealn = L′realn = Rn : Rn → Vect is the functor/family
constantly equal to the n-dimensional Euclidean space;

(3) for each primitive op ∈ Opmn1,...,nk
:

(a) fop = JopK : Rn1×· · ·×Rnk → Rm is the map in Set corresponding
to the operation that op intends to implement (hence smooth when
considered as a function between the Euclidean spaces Rn1×· · ·×
Rnk and Rm);

(b) gop = JDopK = DJopK ∈ FVect(Rn1 × · · · × Rnk)(Rn1 × · · · ×
Rnk,Rm) is the family of linear transformations corresponding to
the derivative of the operation that op intends to implement;

(c) g′op = JDoptK = DJopKt ∈ FVect(Rn1 × · · · × Rnk)(Rm,Rn1 ×
· · · × Rnk) is the family of linear transformations corresponding
to the transposed derivative of the operation that op intends to
implement;

we obtain, by Corollary 4.2, canonical functors

ΣJ−KJ−K : ΣCSynLSyn→ ΣSetFVect ∼= Fam(Vect)

ΣJ−KJ−Kop : ΣCSynLSyn
op → ΣSetFVectop ∼= Fam(Vectop).

that extend these definitions to give a concrete denotational semantics for the
entire target language of the forward AD and the reverse AD respectively such
that ΣJ−KJ−K and ΣJ−KJ−Kop are bi-Cartesian closed functors that preserve
µν-polynomials.

7. Sconing
Given a functor G : C → D, the comma category D ↓ G is also known as

the scone or Artin glueing of G. Explicitly, the scone’s objects are triples
(C0 ∈ D, C1 ∈ C, f : C0 → G(C1)) in which f is a morphism of D. Its

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 71

morphisms (C0, C1, f) → (C ′0, C
′
1, f

′) are pairs (h0 : C0 → C ′0, h1 : C1 → C ′1)
such that

C0 C ′0

G(C ′1)G(C1)

h0

f ′f

G(h1)

commutes in D.
The scone D ↓ G inherits much of the structure of D×C. For that reason,

under suitable conditions, sconing can be seen as a way of building a suitable
categorical model from a previously given categorical model D×C, providing
an appropriate semantics for our problem. This is, indeed, the fundamental
aspect that underlies our logical relations argument in Section 8 and, also,
in [40, Section 8].
Under suitable conditions, the nice properties of D ↓ G can be seen as

consequences of the fact that the forgetful functor

L : D ↓ G→ D × C, (7.1)

defined by (C0 ∈ D, C1 ∈ C, f : C0 → G(C1)) 7→ (C0, C1), is comonadic and,
in our case, even monadic. More precisely:

Theorem 7.1. If D has binary products, then (7.1) is comonadic.

Proof : By the universal property of comma categories, a diagram D : S →
D ↓ G corresponds biunivocally with triples

(D0 : S → D, D1 : S → C, d : D0 → GD1) (7.2)

in which D0, D1 are diagrams and d is a natural transformation. In this
setting, it is clear that, assuming that limD0 exists, if limD1 exists and is
preserved by G, we have that(

limD0, limD1, limD0
d−→ lim (G ◦D1)

∼=−→ G (limD1)
)
, (7.3)

is the limit of D in D ↓ G, in which d is the morphism induced by the natural
transformation d.
Now, given a diagram D : S → D ↓ G such that L ◦D = (D0, D1) : S →
D × C has an absolute limit, we get that limD0 and limD1 exist and are
preserved by any functor. Hence, by the observed above, in this case, the

72 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

limit of D exists and is given by (7.3). Thus it is preserved by L. Since (7.1)
is conservative, this completes the proof that (7.1) creates absolute limits.
Finally, since (7.1) has a right adjoint defined by

(Y,X) 7→ (Y ×G(X), X, π2 : Y ×G(X)→ G(X)) ,

the proof that (7.1) is comonadic is complete by Beck’s Monadicity Theorem.∗

Remark 7.1. If C has a terminal object and D has binary products as above,
(7.1) is comonadic and, furthermore, the comonad induced by it is the free
comonad over the endofunctor on D × C defined by (Y,X) 7→ (G(X), 1).

Corollary 7.2. Assume that C has binary coproducts and D has binary prod-
ucts. We have that (7.1) is comonadic and monadic provided that G has a
left adjoint F .

Proof : Firstly, of course, by Theorem 7.1, we have that (7.1) is comonadic.
Secondly, by the dual of Theorem 7.1, we have that the forgetful functor
F ↓ C → C ×D is monadic. Hence, since

D ↓ G D × C

F ↓ C

L

∼=

commutes, we get that L is monadic as well.

Indeed, in our case, all the properties of the scone we are interested in follow
from the comonadicity and monadicity of (7.1), that is to say, Corollary 7.2.†

7.1. Bi-Cartesian structure. The bi-Cartesian closed structure of the
scone D ↓ G follows from the well known result about monadic functors and
creation of limits. Namely:

Proposition 7.3. Monadic functors create all limits. Dually, comonadic
functors create all colimits.

∗Despite its usual statement in terms of split (co)equalizers, Beck’s Monadicity Theorem im-
plies that: a left adjoint functor is comonadic if and only if it creates absolute limits. See, for
instance, [29, pag. 550].

†Some of the results presented here hold under slightly more general conditions. But we chose
to make the most of our setting, which is general enough to our proof and many others cases of
interest.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 73

Proof : See, for instance, [30, Section 1.4].

As a corollary, then, we have the following explicit constructions.

Corollary 7.4. Assuming that C and D have finite products and coproducts,
if G : C → D has a left adjoint, then L : D ↓ G → D × C creates limits
and colimits. In particular, D ↓ G is bi-Cartesian and, in case D × C is a
distributive category, so is D ↓ G.

Proof : Given a diagram D : S → D ↓ G, we have that it is uniquely deter-
mined by a triple (D0 : S → D, D1 : S → C, d : D0 → GD1) like in (7.2). In
this case, we have that:

(1) In the proof of Theorem 7.1, we implicitly addressed the problem of
creation of limits that are preserved by G. Since G has a left adjoint,
it preserves all the limits so all the limits are created like (7.4).
More precisely, in this case, assuming that L ◦D = (D0, D1) : S →
D×C has a limit, we get that both limD0 and limD1 exist, since the
projections D × C → D and D × C → C have left adjoints (because C
and D have initial objects).
Since G has a left adjoint, it preserves the limit of D1. Hence, the

limit of D is given by(
limD0, limD1, limD0,

d−→ lim (G ◦D1)
∼=−→ G (limD1)

)
, (7.4)

like in (7.3), in which d is the morphism induced by d and lim (G ◦D1) ∼=
G (limD1) comes from the fact that G preserves limits.

(2) Assuming that L ◦ D = (D0, D1) : S → D × C has a limit, we get
that both colimD0 and colimD1 exist. In this case, the colimit of D
is given by(

colimD0, colimD1, colimD0
d−→ colim (G ◦D1)→ G (colimD1)

)
, (7.5)

in which colim (G ◦D1)→ G (colimD1) is the induced comparison.

7.2. Closed structure. Under the conditions of our proof, the scone D ↓ G
is cartesian closed. In our case, we can see as a consequence of the well known
result below.

74 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Proposition 7.5. If a category is monadic-comonadic over a finitely com-
plete cartesian closed category, then it is finitely complete cartesian closed as
well.

Proof : See, for instance, a slightly more general version in [27, Theorem 1.8.2].
Indeed, assuming that G : C → D is monadic and comonadic and that D is
finitely complete, we get that C is finitely complete as well and, moreover, G
preserves them (since monadic functors create limits).
Given an object W ∈ C, we have an isomorphism

C C

DD

∼=

(W ×−)

(G(W)×−)

G G

(7.6)

in which we know that (W × F (−)) ⊣ (G(W)×G(−)). Since C has equaliz-
ers and G is comonadic, we get that (W ×−) has a right adjoint by Dubuc’s
adjoint triangle theorem.∗

Explicitly, we get:

Corollary 7.6. Let C and D be finitely complete cartesian closed categories.
If G : C → D has a left adjoint, we get that D ↓ G is finitely complete
cartesian closed. More precisely:

(C0, C1, f)⇒ (D0, D1, f
′) = (P,C1 ⇒ D1, f ⇒ f ′),

where we write f ⇒ f ′ for the following pullback:

P C0 ⇒ D0

C0 ⇒ G(D1)G(C1 ⇒ D1) G(C1)⇒ G(D1)
f ⇒ G(D1)

f ⇒ f ′ C0 ⇒ f ′

(7.7)

∗See [12] or, for instance, [26, Corollary 1.2] for the precise statement in our case.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 75

7.3. Initial algebras and final coalgebras. Recall the definition of preser-
vation, reflection and creation of initial algebras and final coalgebras (see
Definitions E.3 and E.7). We prove and establish the result that says that
monadic functors create initial algebras, while, dually, comonadic functors
create final coalgebras.
We firstly establish the fact that left adjoint functors preserve initial alge-

bras and, dually, right adjoint functors preserve final coalgebras. In order to
do so, we start by observing that:

Lemma 7.7. Let

C ⊥(ε, η) D
G

F

be an adjunction. Assume that γ : E◦F ∼= F ◦E ′ is a natural isomorphism in
which E and E ′ are endofunctors. In this case, we have an induced adjunction

E-Alg ⊥(ε̂, η̂) E ′-Alg

Ĝγ

F̌γ

(7.8)

in which F̌γ is defined as in E.3 and Ĝγ is defined as follows:∗

Ĝγ : E ′-Alg → E-Alg

(Y, ξ) 7→
(
G(Y), G (ξ) ◦GE (εY) ◦G

(
γ−1
G(Y)

)
◦ ηE′G(Y)

)
f 7→ G(f).

∗The right adjoint Ĝγ does not come out of the blue. For the reader who knows a bit of

2-dimensional category theory, it is interesting to note that the association (F, γ) 7→ F̌γ of Lemma
E.1 is actually part of a 2-functor. The codomain of this 2-functor is Cat, while the domain is the
2-category of endomorphisms in Cat, lax natural transformations and modifications.

By doctrinal adjunction (see [21] or, for instance, [27, Corollary 1.4.15]), whenever (F, γ) is
pseudonatural (meaning that γ is invertible) and F has a right adjoint in Cat, the pair (F, γ) has
a right adjoint (

G, (GEε) ·
(
Gγ−1

G

)
· (ηE′G)

)
in the 2-category of endofunctors. Therefore, since 2-functors preserve adjunctions, we get that F̌γ

has a right adjoint given by Ǧ(GEε)·(Gγ−1
G)·(ηE′G), denoted herein by Ĝγ , whenever γ is invertible

and F has a right adjoint.

76 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Proof : In fact, the counit and unit, ε̂, η̂, are defined pointwise by the original
counit and unit. That is to say, ε̂(Y,ξ) = εY and η̂

(W,ζ)
= ηW .

Dually, we get:

Lemma 7.8. Let

C ⊥(ε, η) D
G

F

be an adjunction. Assume that β : G◦E ∼= E ′◦G is a natural isomorphism in
which E and E ′ are endofunctors. In this case, we have an induced adjunction

E-CoAlg ⊥(ε̂, η̂) E ′-CoAlg

G̃β

F̂ β

(7.9)

in which G̃β is defined as in E.7 and F̂ β is defined as follows:

F̂ : E ′-CoAlg → E-CoAlg

(W, ζ) 7→
(
W, εEF (W) ◦ F (β−1

F (W)) ◦ FE ′ (ηW) ◦ F (ζ)
)

g 7→ F (g).

As an immediate consequence, we have that:

Theorem 7.2. Right adjoint functors preserve terminal coalgebras. Dually,
left adjoints preserve initial algebras.

Proof : Let G : C → D be a functor and β : G ◦ E ∼= E ′ ◦ G a natu-
ral isomorphism in which E,E ′ are endofunctors. If F ⊣ G, we get that
G̃β : E-CoAlg → E ′-CoAlg (as defined in E.7) has a left adjoint by Lemma
7.8. Therefore G̃β preserves limits and, in particular, terminal objects. This
completes the proof that G preserves final coalgebras (see Definition E.7).

Finally, we can state the result about monadic functors. Namely:

Theorem 7.3. Monadic functors create final coalgebras. Dually, comonadic
functors create initial algebras.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 77

Proof : Let G : C → D be a monadic functor. Assume that β : G◦E ∼= E ′◦G
is a natural isomorphism in which E,E ′ are endofunctors.
We have that G̃β : E-CoAlg → E ′-CoAlg (as defined in E.7) has a left

adjoint by Lemma 7.8. Moreover, we have the commutative diagram

E-CoAlg E ′-CoAlg

DC

G̃β

G (7.10)

in which the vertical arrows are the forgetful functors.
Since we know that all the functors in (7.10) but G̃β create absolute col-

imits, we conclude that G̃β creates absolute colimits as well. Therefore G̃β

is monadic and, thus, it creates all limits. In particular, G̃β creates termi-
nal objects. This completes the proof that G creates final coalgebras (see
Definition E.7).

7.4. µν-polynomials. Finally, we can establish the existence of µν-polynomials
in the scone, and the preservation of the initial algebras and final coalgebras
by the forgetful functor.

Corollary 7.9. Monadic-comonadic functors create µν-polynomials. More
precisely, if G : A → B is monadic-comonadic and B has µν-polynomials,
then

(1) A has µν-polynomials;
(2) for each µν-polynomial endofunctor E on A, there is a µν-polynomial

endofunctor E on B such that G◦E ∼= E ◦G (and G creates the initial
algebra and the terminal coalgebra of E).

Proof : Let G : A → B be a monadic-comonadic functor in which B has
µν-polynomials. We inductively define the set ×G as follows:

×G1. the identity functor 1→ 1 belongs to ×G;
×G2. G : A → B belongs to ×G;
×G3. if G′ : A′ → B′ and G′′ : A′′ → B′′ belong ×G, then so does the

product G′ ×G′′ : A′ ×A′′ → B′ × B′′.
We have a clear bijection dom between ×G and the objects of µνPolyA

defined inductively by

78 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

dom (1→ 1) = 1 , dom (G) = A,
dom (G′ ×G′′) = dom (G′)× dom (G′′).

In other words, the function dom : ×G → obj (µνPolyA) gives the domain
of each functor in ×G. Analogously, we define the bijection codom : ×G→
obj (µνPolyB) which gives the codomain of each functor in ×G.
Since we know that G creates initial algebras and final coalgebras, to com-

plete the proof, it is enough to show that, for any µν-polynomial H : C → D
in µνPolyA, there is a morphism H of µνPolyB such that there is an isomor-
phism

C D

DC

∼=←→

H

H

dom−1 (C) dom−1 (D)

(7.11)

where D := codom ◦ dom−1 (D) and D := codom ◦ dom−1 (C).
We start by proving that the objects of µνPolyA together with the func-

tors that satisfy the property above do form a subcategory of Cat. Indeed,
observe that the identities do satisfy the condition above, since it is always
true that

idC ◦ dom
−1 (C) = dom−1 (C) ◦ idC

for any given object C of µνPolyA. Moreover, given morphisms J : D′′ → D′′′
and E : D′ → D′′ of µνPolyA such that we have natural isomorphisms

γ : E ◦ dom−1 (D′) ∼= dom−1 (D′′) ◦ E
γ′ : J ◦ dom−1 (D′′) ∼= dom−1 (D′′′) ◦ J

in which J and E are morphisms of µνPolyB, we have that

D′ D′′ D′′′

D′′D′ D′′′

γ←→ γ′

←→

E

E

dom−1 (D′) dom−1 (D′′)

J

J

dom−1 (D′′′)

(7.12)
is a natural isomorphism and J ◦ E is a morphism in µνPolyB.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 79

Finally, we complete the proof that all the morphisms of µνPolyA satisfy the
property above by proving by induction over the Definition 1.1 of µνPolyA.

M1. for any object C of µνPolyA, the unique functor C → 1 is such that

C 1

1C
dom−1 (C) dom−1 (1)

(7.13)

commutes and, of course, C → 1 is a morphism in µνPolyB;
M2. for any object D of µνPolyA, given a functor W : 1 → D (which

belongs to µνPolyA), we have that dom−1 (D) ◦W is a morphism of
µνPolyB such that

1 D

D1

W

dom−1 (D) ◦W

dom−1 (1) dom−1 (D)

(7.14)

commutes;
M3. consider the binary product × : A × A → A (which exists, since G

is monadic). We have that × : B × B → B (which is a morphism of
µνPolyB) is such that we have an isomorphism

A×A A

BB × B

∼=←→

×

×

dom−1 (A×A) dom−1 (A)

(7.15)

since G : A → B preserves products and

dom−1 (A) = G, dom−1 (A×A) = G×G;

M4. consider the binary coproduct ⊔ : A×A → A (which exists, since G
is comonadic). We have that ⊔ : B × B → B (which is a morphism of

80 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

µνPolyB) is such that we have an isomorphism

A×A A

BB × B

∼=←→

⊔

⊔

G×G = dom−1 (A×A) G = dom−1 (A)

(7.16)

since G : A → B preserves coproducts.
M5. for any pair of objects (C,D) ∈ µνPolyA×µνPolyA, we have, of course,

that

C × D C

CC × D

π1

π1

dom−1 (C × D) dom−1 (C)
C × D D

DC × D

π2

π2

dom−1 (C × D) dom−1 (D)

(7.17)

commute and π1 : C × D → C and π2 : C × D → D are morphisms in
µνPolyB.

M6. given objects D′,D′′,D′′′ of µνPolyA, if E : D′ → D′′ and J : D′ → D′′′
are morphisms of µνPolyA such that we have natural isomorphisms

γ : E ◦ dom−1 (D′) ∼= dom−1 (D′′) ◦ E
γ′ : J ◦ dom−1 (D′) ∼= dom−1 (D′′′) ◦ J

in which J and E are morphisms of µνPolyB, then
(
E, J

)
is a mor-

phism in µνPolyB and (γ, γ′) defines an isomorphism(
E, J

)
◦ dom−1 (D′) ∼= dom−1 (D′′ ×D′′′) ◦ (E, J). (7.18)

M7. if C is an object of µνPolyA and H : C × A → A is a morphism of
µνPolyA such that there is an isomorphism

γ : H ◦ dom−1 (C × A) ∼= dom−1 (A) ◦H
in which H is a morphism of µνPolyB, then, since G creates initial
algebras and terminal coalgebras, we get that there are natural trans-
formations

µH ◦ dom−1 (A) ∼= dom−1 (A) ◦ µH
νH ◦ dom−1 (A) ∼= dom−1 (A) ◦ νH

and, of course, µH and νH are morphisms of µνPolyB.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 81

Corollary 7.10. Let C and D be categories with µν-polynomials. If G : C →
D has a left adjoint, then D ↓ G has µν-polynomials and

L : D ↓ G→ D × C (7.19)

preserves (in fact, creates) µν-polynomials.

Proof : By Corollary 7.2, we have that L is monadic and comonadic (since
it has finite products and finite coproducts). Hence it creates µν-polynomials
and we get the conclusion of the result provided thatD×C has µν-polynomials.
Indeed, D × C has µν-polynomials (constructed pointwise) provided that
D and C have µν-polynomials.

7.5. The projection D ↓ G → C. Let C and D be bi-Cartesian closed
categories with finite limits. Recall that πC : D × C → C has left and right
adjoints. They are respectively given by W 7→ (W, 0) and W 7→ (W, 1).
Therefore, assuming that G : C → D has a left adjoint, we get that

D ↓ G L−→ D × C π2−→ C (7.20)

has a left adjoint and a right adjoint. Therefore it preserves limits, colimits,
initial algebras and terminal coalgebras. Finally, (7.20) preserves the closed
structure by Corollary (7.6).

Corollary 7.11. Let C and D be finitely complete bi-Cartesian closed cate-
gories that have µν-polynomials. Assume that G : C → D has a left adjoint.
In this case, D ↓ G is a finitely complete bi-Cartesian closed category with
µν-polynomials, and the functor

D ↓ G L−→ D × C π2−→ C

is a bi-Cartesian closed functor that preserves µν-polynomials.

8. Correctness of CHAD, by logical relations
Recall that, by Corollary 4.1, ΣCSynLSyn and ΣCSynLSyn

op are both bi-
Cartesian closed categories with µν-polynomials and, hence, we get the fol-
lowing by the universal property of Syn (by Corollary 2.1).
Henceforth, following the terminology of Section 6, for any given set X and

any vector space V , we denote by

V : X → Vect

82 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

the family (object of Fam(Vect) or object of Fam(Vectop)) constantly equal
to V . Moreover, whenever f : Rn1×· · ·×Rnk → Rm is smooth, we respectively
denote by

Df : R
n1,...,nk → Rm, Df t : Rm → R

n1,...,nk

the (semantic) derivative and the transpose (semantic) derivative where we
denote R

n1,...,nk
= FVect (π1) (R

n1) + · · ·+ FVect (πk) (R
nk), that is to say,

R
n1,...,nk

= Rn1···nk : Rn1 × · · · × Rnk → Vect.

Recall that, by Corollary 4.1, we have unique structure-preserving functors
−→
D (−) : Syn → ΣCSynLSyn and

←−
D (−) : Syn → ΣCSynLSyn

op implement-
ing source-code transformations for forward and reverse AD, respectively.
Further, by Corollary 6.9, we have canonical functors

ΣJ−KJ−K : ΣCSynLSyn→ Fam(Vect), ΣJ−KJ−Kop : ΣCSynLSyn
op → Fam(Vectop).

giving a concrete denotational semantics for the entire target language of
the forward AD and the reverse AD respectively such that ΣJ−KJ−K and
ΣJ−KJ−Kop are bi-Cartesian closed functors that preserve µν-polynomials. By
the definition of the Grothendieck constructions and the fact that

ΣJ−KJ−K ◦ −→D (−) : Syn→ Fam(Vect), ΣJ−KJ−Kop ◦ ←−D (−) : Syn→ Fam(Vectop)

preserve the Cartesian structure, we have that, for each morphism

t : realn1 × · · · × realnk → realm

of Syn,

ΣJ−KJ−K ◦ −→D (t)
=
(
J−→D (t)K1 : Rn1 × · · · × Rnk → Rm, J−→D (t)K2 : R

n1,...,nk → FVect
(
J−→D (t)K1

)
(Rm)

)
=
(
J−→D (t)K1 : Rn1 × · · · × Rnk → Rm, J−→D (t)K2 : R

n1,...,nk → Rm
)

ΣJ−KJ−Kop ◦ ←−D (t)
=
(
J←−D (t)K1 : Rn1 × · · · × Rnk → Rm, J←−D (t)K2 : FVect

(
J←−D (t)K1

)
(Rm)→ R

n1,...,nk
)

=
(
J←−D (t)K1 : Rn1 × · · · × Rnk → Rm, J←−D (t)K2 : Rm → R

n1,...,nk
)

for some morphism
(
J−→D (t)K1, J

←−
D (t)K1

)
of Set × Set and some morphism(

J−→D (t)K2, J
←−
D (t)K2

)
of FVect (Rn1 × · · · × Rnk)× FVect (Rn1 × · · · × Rnk). In

this section, we prove that, for any such morphism

t : realn1 × · · · × realnk → realm

of Syn, we have that JtK is smooth and

J−→D (t)K1 = J←−D (t)K1 = JtK, J−→D (t)K2 = DJtK, J←−D (t)K2 = DJtKt.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 83

That is to say, in this section, we prove:

Theorem 8.1 (Correctness of CHAD). For any well-typed program

x1 : real
n1, . . . , xk : real

nk ⊢ t : realm

we have that

J−→D (t)K1 = J←−D (t)K1 = JtK, J−→D (t)K2 = DJtK, J←−D (t)K2 = DJtKt.

Note that t might, in particular, have subprograms that use higher-order
functions, sum types and (co)inductive types. In order to prove the result
above, we construct the scones w.r.t. the following functors

−→
G : Set× Fam(Vect)→ Set,

←−
G : Set× Fam(Vectop)→ Set,

−→
G = Set× Fam(Vect) ((R, (R,R)) ,−) ,

←−
G = Set× Fam(Vectop) ((R, (R,R)) ,−) .

Since Set, Fam(Vect) and Fam(Vectop) have coproducts, we get that, for
each W ∈ Set, the copowers

W ⊗ (R, (R,R)) ∼=
∐
x∈W

(R, (R,R))

∼= (W ⊗ R, (W ⊗ R,R : W ⊗ R→ Vect))

exist in Set × Fam(Vect) and Set × Fam(Vectop). Hence the functors

W 7→ W ⊗ (R, (R,R)) give the left adjoints to
−→
G and

←−
G respectively.

Moreover, since Set, Fam(Vect) and Fam(Vectop) are Cartesian closed
locally presentable categories (see 6.1 and 6.2), we have that Set×Fam(Vect)
and Set × Fam(Vectop) are Cartesian closed locally presentable categories
as well. In particular, Set×Fam(Vect) and Set×Fam(Vectop) are finitely
complete Cartesian closed categories that have µν-polynomials (see Propo-
sition 6.3). Therefore, by Corollary 7.11:

Lemma 8.1.
−−−−→
Scone := D ↓

−→
G,

←−−−−
Scone := D ↓

←−
G (8.1)

are finitely complete bi-Cartesian closed categories with µν-polynomials and
the projections

−→π :
−−−−→
Scone→ Fam(Vect)×Set, ←−π :

←−−−−
Scone→ Fam(Vectop)×Set

(8.2)
are bi-Cartesian closed functors and preserve µν-polynomials.

84 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Lemma 8.2. There are unique functors
−−→
J−K : Syn→

−−−−→
Scone,

←−−
J−K : Syn→

←−−−−
Scone (8.3)

that preserve the bi-Cartesian closed structure and µν-polynomials such that
• for each n-dimensional array realn ∈ Syn,

−−−−→
JrealnK =

({
(f, (g, h)) ∈

−→
G(Rn, (Rn,Rn)) : f is smooth, f = g andh = Df

}
, (Rn, (Rn,Rn))

)
,

with the obvious inclusion in
−→
G(Rn, (Rn,Rn)), and

←−−−−
JrealnK =

({
(f, (g, h)) ∈

←−
G(Rn, (Rn,Rn)) : f is smooth, f = g andh = Df t

}
, (Rn, (Rn,Rn))

)
,

with the obvious inclusion in
←−
G(Rn, (Rn,Rn));

• for each primitive op ∈ Opmn1,...,nk
,

−−→
JopK =

(
˜JopK
−−→

,
(
JopK, J−→D (op)K

))
,

←−−
JopK =

(
˜JopK
←−−

,
(
JopK, J←−D (op)K

))
.

in which ˜JopK
−−→

and ˜JopK
←−−

are the unique functions such that the pairs

above give morphisms of
−−−−→
Scone and

←−−−−
Scone respectively.

Proof : By Corollary 2.1 (the universal property of the source language Syn),

it is enough to prove that, indeed, there are functions ˜JopK
−−→

and ˜JopK
←−−

such

that
(

˜JopK
−−→

,
(
JopK, J−→D (op)K

))
and

(
˜JopK
←−−

,
(
JopK, J←−D (op)K

))
yield morphisms

in
−−−−→
Scone and

←−−−−
Scone respectively. That is to say, it is enough to see the

following.

• whenever (f, (g, h)) is such that f is a smooth curve R→ Rn1 × · · · ×
Rnk, f = g and h = Df , we have that, for any primitive op ∈ Opmn1,...,nk

,
– JopK ◦ f is smooth;
– FVect (g)

(
J−→D (op)K2

)
◦h is the derivative of JopK◦f by the chain

rule, provided that J−→D (op)K2 indeed is transpose derivative of
JopK.

Therefore(
JopK, J−→D (op)K

)
◦ (f, (g, h))

=
(
JopK ◦ f, J−→D (op)K ◦ (g, h)

)
=
(
JopK ◦ f,

(
J−→D (op)K1 ◦ g,FVect (g)

(
J−→D (op)K2

)
◦ h
))

=
(
JopK ◦ f,

(
JopK ◦ g,FVect (g)

(
J−→D (op)K2

)
◦ h
))

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 85

indeed satisfies the following: JopK ◦ f = JopK ◦ g and

FVect (g)
(
J−→D (op)K2

)
◦ h

is the derivative of JopK ◦ g.
• whenever (f, (g, h)) is such that f is a smooth curve R→ Rn1 × · · · ×

Rnk, f = g and h = Df t, we have that, for any primitive op ∈
Opmn1,...,nk

,
– JopK ◦ f is smooth;
– h ◦ FVect (g)

(
J←−D (op)K2

)
is the transpose derivative of JopK ◦ f

by the chain rule, provided that J←−D (op)K2 indeed is transpose
derivative of JopK.

Therefore(
JopK, J←−D (op)K

)
◦ (f, (g, h))

=
(
JopK ◦ f, J←−D (op)K ◦ (g, h)

)
=
(
JopK ◦ f,

(
J←−D (op)K1 ◦ g, h ◦ FVect (g)

(
J←−D (op)K2

)))
=
(
JopK ◦ f,

(
JopK ◦ g, h ◦ FVect (g)

(
J←−D (op)K2

)))
indeed satisfies the following: JopK ◦ f = JopK ◦ g and

h ◦ FVect (g)
(
J−→D (op)K2

)
is the transpose derivative of JopK ◦ g.

Indeed, this follows from the proof of [40, Lemma 8.1].

By the definitions of
−−→
J−K and

←−−
J−K above, for each realn ∈ Syn and any

primitive op ∈ Opmn1,...,nk
,(

JrealnK,ΣJ−KJ−K
(−→
D (realn)

))
= (Rn, (Rn,Rn))

= −→π
(−−−−→
JrealnK

)
,(

JrealnK,ΣJ−KJ−Kop
(←−
D (realn)

))
= (Rn, (Rn,Rn))

= ←−π
(←−−−−
JrealnK

)
,

(
JopK,ΣJ−KJ−K

(−→
D (op)

))
= (JopK, (JopK, DJopK))

= −→π
(−−→
JopK

)
,(

JopK,ΣJ−KJ−Kop
(←−
D (op)

))
=
(
JopK,

(
JopK, DJopKt

))

86 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

= ←−π
(←−−
JopK

)
.

Therefore, by the universal property of Syn (Corollary 2.1), since

−→π ◦
−−→
J−K,

(
J−K× ΣJ−KJ−K

)
◦
(
J−K,−→D (−)

)
←−π ◦
←−−
J−K,

(
J−K× ΣJ−KJ−Kop

)
◦
(
J−K,←−D (−)

)
are (strictly) bi-Cartesian closed functors that (strictly) preserve µν-polynomials,
we conclude that the diagrams

Syn Syn× ΣCSynLSyn Syn Syn× ΣCSynLSyn
op

−−−−→
Scone Set× Fam(Vect) ←−−−−

Scone Set× Fam(Vectop)

(
J−K,−→D (−)

) (
J−K,←−D (−)

)

−→π ←−π

−−→
J−K

←−−
J−KJ−K× ΣJ−KJ−K J−K× ΣJ−KJ−Kop

commute. This implies that, for any morphism t : realn1 × · · · × realnk →
realm of Syn, we have

−→π ◦
−→
JtK =

(
JtK,ΣJ−KJ−K ◦ −→D (t)

)
=
(
JtK,

(
J−→D (t)K1 : Rn1 × · · · × Rnk → Rm, J−→D (t)K2 : R

n1,...,nk → Rm
))

←−π ◦
←−
JtK =

(
JtK,ΣJ−KJ−Kop ◦ ←−D (t)

)
=
(
JtK,

(
J←−D (t)K1 : Rn1 × · · · × Rnk → Rm, J←−D (t)K2 : Rm → R

n1,...,nk
))

which show, by the definitions of
−−−−−→
JrealmK and

←−−−−−
JrealmK (logical relations),

that, for any curve γ : R→ Rn1 × · · · × Rnk,

• J−→D (t)K1 ◦ γ and J←−D (t)K2 ◦ γ are smooth;
• J−→D (t)K1 ◦ γ = JtK ◦ γ = J←−D (t)K1 ◦ γ;
• FVect (γ)

(
J−→D (t)K2

)
◦Dγ is the derivative of J−→D (t)K1 ◦ γ;

• Dγt ◦ FVect (γ)
(
J←−D (t)K2

)
is the transpose derivative of J←−D (t)K1 ◦ γ.

Of course, the above implies that J−→D (t)K1 = JtK = J←−D (t)K1. But, also, by
Boman’s theorem [8], we conclude that the above implies that JtK is smooth,
J−→D (t)K2 is the derivative of J−→D (t)K1 = JtK , and J←−D (t)K2 is the transpose
derivative of J←−D (t)K1 = JtK∗. This completes the proof of Theorem 8.1.

∗See the argument of [40, Theorem 8.3]

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 87

9. Practical considerations
Despite the theoretical approach this paper has taken, our motivations

for this line of research are very applied: we want to achieve efficient and
correct reverse AD on expressive programming languages. We believe this
paper lays some of the necessary theoretical groundwork to achieve that goal.
We are planning to address the practical considerations around achieving
efficient implementations of CHAD in detail in a dedicated applied follow-up
paper. However, we still sketch some of these considerations in this section to
convey that the methods described in this paper are not merely of theoretical
interest.

9.1. Addressing expression blow-up and sharing common subcom-
putations. We can observe that our source-code transformations of Appen-
dix H can result in code-blowup due to the interdependence of the trans-
formations

−→
DΓ(−)1 and

−→
DΓ(−)2 (and

←−
DΓ(−)1 and

←−
DΓ(−)2, respectively) on

programs. This is why, in §5, we have instead defined a single code trans-
formation on programs

−→
DΓ(−) for forward mode and

←−
DΓ(−) for reverse

mode that simultaneously computes the primals and (co)tangents and shares
any subcomputations they have in common. These more efficient CHAD
transformations are still representations of the canonical CHAD functors
−→
D (−) : Syn → ΣCSynLSyn and

←−
D (−) : Syn → ΣCSynLSyn

op in the sense

that
−→
DΓ(t)

βη+
= ⟨−→DΓ(t)1, λv.

−→
DΓ(t)2⟩ and

←−
DΓ(t)

βη+
= ⟨←−DΓ(t)1, λv.

←−
DΓ(t)2⟩ and hence

are equivalent to the infficient CHAD transformations from the point of view
of denotational semantics and correctness.
We can observe that the efficient CHAD code transformations

−→
DΓ(−) and←−

DΓ(−) have the property that the transformation
−→
DΓ(C[t1, . . . , tn]) (resp.

←−
DΓ(C[t1, . . . , tn])) of a term former C[t1, . . . , tn] that takes n arguments t1,
. . . , tn (e.g., the pair constructor C[t1, t2] = ⟨t1, t2⟩, which takes two argu-
ments t1 and t2) is a piece of code that uses the CHAD transformation

−→
DΓ(ti)

(resp.
←−
DΓ(ti)) of each subterm ti exactly once. This has as a consequence

the following important compile-time complexity result that is a necesssary
condition if this AD technique is to scale up to large code-bases.

Corollary 9.1 (No code blow-up). The size of the code of the CHAD trans-
formed programs

−→
DΓ(t) and

←−
DΓ(t) grows linearly with the size of the original

source program t.

88 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

While we have taken care to avoid recomputation as much as possible
in defining these code transformations by sharing results of subcomputations
through let-bindings, the run-time complexity of the generated code remains
to be studied.

9.2. Removing dependent types from the target language. In this
paper, we have chosen to work with a dependently typed target language,
as this allows our AD transformations to correspond as closely as possible
to the conventional mathematics of differential geometry, in which spaces
of tangent and cotangent vectors form (non-trivial) bundles over the space
of primals. For example, the dimension of the space of (co)tangent vectors
to a sum Rn ⊔ Rm is either n or m, depending on whether the base point
(primal) is chosen in the left or right component. An added advantage of
this dependently typed approach is that it leads to a cleaner categorical story
in which all η-laws are preserved by the AD transformations and standard
categorical logical relations techniques can be used in the correctness proof.
That said, while the dependent types we presented give extra type safety

that simplify mathematical foundations and the correctness argument un-
derlying our AD techniques, nothing breaks if we keep the transformation
on programs the same and simply coarse grain the types by removing any
type dependency. This may be desirable in practical implementations of the
algorithms as most practical programming languages have either no or only
limited support for type dependency.
To be precise, we can perform the following coarse-graining transformation

(−)† on the types of the target language, which removes all type dependency:

α† def
= α

realn† def
= realn

1† def
= 1

(τ∗σ)† def
= τ†∗σ†

(Πx : τ.σ)†
def
= Πx : τ†.σ†

(Σx : τ.σ)†
def
= Σx : τ†.σ†

(case tof {ℓ1x1 → τ1 | · · · ℓnxn → τn})
† def

= τ1
† ∨ · · · ∨ τn

†

(µα.τ)†
def
= µα.τ†

(να.τ)†
def
= µα.τ†

(τ ⊸ σ)†
def
= τ† ⊸ σ†

(Πx : τ.σ)†
def
= Πx : τ†.σ†

(Σx : τ.σ)†
def
= Σx : τ†.σ†.

In fact, seeing that (case tof {ℓ1x1 → τ 1 | · · · ℓnxn → τn})-types were the
only source of type dependency in our language while these are translated
to non-depndent types, all Π- and Σ-types are simply translated to powers,
copowers, function types and product types:

(Πx : τ.σ)† = τ † → σ†

(Σx : τ.σ)† = !τ † ⊗ σ†
(Πx : τ.σ)† = τ † → σ†

(Σx : τ.σ)† = τ †∗σ†.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 89

Our translation (−)† is the identity on programs.
The types τ 1 ∨ · · · ∨ τn require some elaboration. We give this in the next

section where we explain how to implement all required linear types and their
terms in a standard functional programming language.

9.3. Removing linear types from the target language.

Basics. As discussed in detail in [40, 39] and demonstrated in the Haskell im-
plementation available at https://github.com/VMatthijs/CHAD, the types
realn, 1, τ∗σ, τ → σ, !τ ⊗σ and τ ⊸ σ (and, obviously, the ordinary Carte-
sian function and product types τ → σ and τ∗σ) together with their terms
can all be implemented in a standard functional language. The core idea is
to implement τ as the type τ ‡:

realn‡
def
= realn

1‡
def
= 1

(τ∗σ)‡ def
= τ ‡∗σ‡

(τ → σ)‡
def
= τ ‡ → σ‡

(!τ ⊗ σ)‡
def
= [(τ ‡, σ‡)]

(τ ⊸ σ)‡
def
= τ ‡ → σ‡.

Crucially, we implement the copowers as abstract types that can under the
hood be lists of pairs [(τ ‡, σ‡)] and we implement the linear function types as
abstract types that can under the hood be plain functions τ ‡ → σ‡. As dis-
cussed in [40, 39] and shown in the Haskell implementation, this translation
extends to programs and leads to a correct implementation of CHAD on a
simply typed λ-calculus.
We explain here how to extend this translation to implement the extra

linear types τ 1 ∨ · · · ∨ τn, µα.τ and να.τ required to perform AD on source
languages that additionally use sum types, inductive types and coinductive
types.

Linear sum types τ 1∨· · ·∨ τn. We briefly outline three possible implementa-

tions (τ 1 ∨ · · · ∨ τn)
‡ of the linear sum types

τ 1 ∨ · · · ∨ τn:

(1) as a finite (bi)product τ 1
‡∗ · · ·∗τn‡;

(2) as a finite lifted sum
{
Zero | Opt1 τ 1

‡ | · · · | Optn τn
‡};

(3) as a finite sum
{
Opt1 τ 1

‡ | · · · | Optn τn
‡}.

Approach 1 has the advantage that we can keep the implementation total.
As demonstrated in Appendix I, this allows us the easily extend the logi-
cal relations argument for the correctness of the applied implementation of

https://github.com/VMatthijs/CHAD

90 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

[40, 39] (in actual Haskell, available at https://github.com/VMatthijs/

CHAD). Categorically, what is going on is that, for a locally indexed category
L : Cop → Cat, with indexed finite biproducts, (X1×· · ·×Xn, A1×· · ·×An)
is a weak product of (X1, A1), ..., (Xn, An) in both ΣCL and ΣCLop: i.e. a
product for which the η-law may fail. The logical relations proof of Appendix
I lifts these weak biproducts to the subscone, demonstrating that this im-
plementation of CHAD for coproducts indeed computes semantically correct
derivatives.
This approach was first implemented in the Haskell implementation of

CHAD. However, a major downside of approach 1 is its inefficiency: it repre-
sents (co)tangents to a coproducts as tuples of (co)tangents to the component
spaces, all but one of which are known to be zero. This motivates approaches
2 and 3.
Approach 2 exploits this knowledge that all but one component of the

(co)tangent space are zero by only storing the single non-zero component,
corresponding to connected component the current primal is in. We pay for
this more efficient representation in two ways:

• addition on the (co)tangent space is defined by

Zero+ x = x x+ Zero = x Opti(t) +Opti(s) = Opti(t+ s)

and hence is a partial operation that throws an error if we try to add
Opti(t) + Optj(s) for i ̸= j; in particular, the nice theoretical story
about CMon-enriched fibres breaks down;
• we need to add a new zero element Zero rather than simply reusing
the zeros Opti(0) that are present in each of the components, which
should be equivalent for all practical purposes.

The first issue is not a problem at all in practice, as the more precise depen-
dent types we have erased guarantee that CHAD only ever adds (co)tangents
in the same component, meaning that the error can never be trigerred in prac-
tice. However, it complicates a direct correctness proof of this approach as we
need to work with a semantics with partial functions. This is the approach
of that is currently implemented in the reference Haskell implementation of
CHAD. The second issue is a minor inefficiency that can become more serious
if (co)inductive types are built using this representation of coproducts. This
motivates approach 3.
Approach 3 addresses the second issue with approach 2 by removing the

unneccesary extra element Zero of the (co)tangent spaces. To achieve this,

https://github.com/VMatthijs/CHAD
https://github.com/VMatthijs/CHAD

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 91

however, the zeros 0 at each type
−→
D (τ)2 of tangent and

←−
D (τ)2 of cotangents

need to be made functions 0 :
−→
D (τ)1 →

−→
D (τ)2 and 0 :

←−
D (τ)1 →

←−
D (τ)2, rather

than mere constant zeros. Whenever the a zero is used by CHAD, it is called
on the corresponding primal value that specifies in which component we
want the zero to land. While a mathematical formalization of this approach
remains future work, we have shown this approach to work well in practice
in an experimental Haskell implementation of CHAD. As we plan to detail
in an applied follow-up paper, this approach also gives an efficient way of
applying CHAD to dynamically sized arrays.

Linear inductive and coinductive types µα.τ and να.τ . As we have seen,
linear coinductive types arise in reverse CHAD of inductive types as well as in
forward CHAD of coinductive types. Similarly, linear inductive types arise in
reverse CHAD of coinductive types as well as in forward CHAD of inductive
types. It remains to be investigated how these can be best implemented.
However, as was the case for the implementation of copowers and linear sum
types, we are hopeful that the concrete denotational semantics can guide us
Observe that all polynomials F : Vect → Vect are of the form W 7→

L(A)+W n, where L ⊣ U : Set→ Vect is the usual free-forgetful adjunction.
Therefore, U ◦ F = H ◦ U for the polynomial H : Set → Set defined by
S 7→ U(L(A))× Sn. As the forgetful functor F : Vect→ Set is monadic, it
creates terminal coalgebras, hence hence U(νF) = νH. This suggests that

we might be able to implement (να.τ)‡ as the plain coinductive type να.τ ‡,

where α‡
def
= α.

Similarly, we have that F ◦ L = L ◦ E for the polynomial E : Set → Set
defined by E(X) = A ⊔

⊔
nX. Therefore, we have that

µF = L(µE) = (µE)→ R.

This suggests that the implementation of linear inductive types might be
achieved by ”delinearizing” a polynomial F to E, taking the initial algebra
of E and taking the function type to R.
We are hopeful that this theory will lead to a practical implementation,

but the details remain to be verified.

10. Related work
Automatic differentiation has long been studied by the scientific computing

community. In fact, its study goes back many decades with forward mode

92 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

AD being introduced by [43] and variants of reverse mode AD seemingly
being reinvented several times, for example, by [25, 37]. For brief reviews of
this complex history and the basic ideas behind AD, we refer the reader to
[7]. For a more comprehensive account of the traditional work on AD, see
the standard reference text [16].
In this section, we focus, instead, on the more recent work that has prolifer-

ated since the programming languages community started seriously studying
AD. Their objectives are more closely aligned with those of the present paper.
[33] is one of the early programming languages papers trying to extend the

scope of AD from the traditional setting of first-order imperative languages
to more expressive programming languages. Specifically, this applied paper
proposes an method to use reverse mode AD on an untyped higher-order func-
tional language, through the use of an intricate source code transformation
that employs ideas similar to defunctionalization. It focuses on implemen-
tation rather than correctness or intended semantics. [4] recently simplified
this code transformation and formalized its correctness.
Prompted by [35], there has, more recently, been a push in the program-

ming language community to learn from [33] and arrive at a definition of
(reverse) AD as a source code transformation on expressive languages that
should ideally be simple, semantically motivated and correct, compositional
and efficient.
Among this work, [42] specifies and implements much simpler reverse AD

transformation on a higher-order functional language with sum types. The
price they have to pay is that the transformation relies on the use of delimited
continuations in the target language.
Various more theoretical works give a formalizations and correctness proofs

of reverse AD on expressive languages through the use of custom operational
semantics. [1] gives such an analysis for a first-order functional language with
recursion, using an operational semantics that mirrors the runtime tracing
techniques used in practice. [31] instead works with a total higher-order lan-
guage that is a variant of the differential λ-calculus. Using slightly different
operational techniques, coming from linear logic, [9, 32] give an analysis of
reverse AD on a simply typed λ-calculus and PCF. Notably, [9] shows that
their algorithm has the right complexity if one assumes a specific operational
semantics for their linear λ-calculus with what they call a “linear factoring
rule”. Very recently, [22] applied the idea of reverse AD through tracing to
a higher-order functional language with variant types. They implement the

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 93

custom operational semantics as an evaluator and give a denotational cor-
rectness proof (using logical relations techniques similar to those of [6, 18])
as well as an asymptotic complexity proof about the full code transformation
plus evaluator.
[13] takes a different approach that is much closer to the present paper by

working with a target language that is a plain functional language and does
not depend on a custom operational semantics or an evaluator for traces.
Although this approach also naturally has linear types, it is a fundamentally
different algorithm from that of [9, 32]: for example, the linear types can
be coarse-grained to plain simply typed code (e.g., Haskell) with the right
computational complexity, even under the standard operational semantics of
functional languages. This is the approach that we have been referring to as
CHAD. Elliott’s CHAD transformation, however, is restricted to a first-order
functional language with tuples. [41, 39] both present (the same) extensions
of CHAD to apply to a higher-order functional source language, while still
working with a functional target language. While [41] relates CHAD to the
approach of [33, 4], [39] and its extended version [40] give a (denotational)
semantic foundation and correctness proof for CHAD, using a combination
of logical relations techniques that [6, 18, 17] had previously used to prove
correct (higher-order) forward mode AD together with the observation that
AD can be understood through the framework of lenses or Grothendieck
fibrations, which had previously been made by [14, 11]. The present paper
extends CHAD to further apply to source languages with variant types and
(co)inductive types. To our knowledge, it is the first paper to consider reverse
AD on languages with such expressive type systems.

94 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Appendix A.Pseudo-preterminal objects in Cat
The appropriate 2-dimensional analogous to preterminal objects are the

pseudo-preterminal ones. Namely, in the case of Cat, an object W in Cat is
pseudo-preterminal if the category of functors Cat [X,W] is a groupoid for
any X in Cat.
Lemma A.1 establishes that the initial and terminal categories are, up to

equivalence, the only pseudo-preterminal objects of Cat.

Lemma A.1 (Pseudo-preterminal objects in Cat). Let W be an object of
Cat. Assuming that W is not the initial object of Cat, the following state-
ments are equivalent.∗

i The unique functor W → 1 is an equivalence.
ii The projection πW : W ×W → W is an equivalence.
iii The identity idW : W → W is naturally isomorphic to a constant

functor c : W → W .
iv If f, g : X → W are functors, then there is a natural isomorphism

f ∼= g (that is to say, W is pseudo-preterminal).

Proof : Assuming (i), denoting by t : W → 1 the unique functor, we have

that πW is the composition W ×W
idW×t−−−→ W × 1 ∼= W . Hence, since idW

and t are equivalences, we conclude that πW is an equivalence. This proves
that (i) ⇒ (ii).
Given any constant functor c : W → W , we have that (idW , c) : W →

W ×W and the diagonal functor (idW , idW) : W → W ×W are such that
πW ◦ (idW , c) = idW and πW ◦ (idW , idW) = idW . Hence, assuming (ii), we
have that (idW , c) and (idW , idW) are inverse equivalences of πW . Thus we
have a natural isomorphism (idW , c) ∼= (idW , idW) which implies that

c ∼= π2 ◦ (idW , c) ∼= π2 ◦ (idW , idW) ∼= idW .

This proves that (ii) ⇒ (iii).
Assuming (iii), if f, g : X → W are functors, we have the natural isomor-

phisms
f = idW ◦ f ∼= c ◦ f = c ◦ g ∼= idW ◦ g = g.

This shows that (iii) ⇒ (iv).
∗The equivalence (ii) ⇔ (iv) holds for the general context of any 2-category. The other equiv-

alences mean that 1 and 0 are, up to equivalence, the unique pseudo-preterminal objects of Cat.
The reader might compare the result, for instance, with the characterization of contractible spaces
in basic homotopy theory.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 95

Finally, assuming (iv), we have that, given any functor c : 1 → W , the

composition W → 1
c−→ W is naturally isomorphic to the identity. Hence

W → 1 is an equivalence.

Appendix B.Fibrations and indexed categories
In this section, we recall a basic aspect of the equivalence between indexed

categories and fibrations. We use this result to get a better perspective over
some of the properties of the Grothendieck constructions in our work.

Definition B.1 (Strictly indexed functor). Let L′ : Dop → Cat and L :
Cop → Cat be two strictly indexed categories. A strictly indexed functor
between L′ and L consists of a pair (H, h) in which H : D → C is a functor
and

h : L′ −→
(
L ◦Hop)

(B.1)

is a natural transformation, where H
op

denotes the image of H by op. Given
two strictly indexed functors (E, e) : L′′ → L′ and (H, h) : L′ → L, the
composition is given by(

HE, (hE
op) · e : L′′ −→

(
L ◦

(
HE

)op))
. (B.2)

Strictly indexed categories and strictly indexed functors do form a category,
denoted herein by Ind.

It is well known that the Grothendieck construction provides an equivalence
between indexed categories and fibrations. Restricting this to our setting, we
get the equivalence∫

: Ind → SpFib

L : Cop → Cat 7→ (PL : ΣCL → C)
(E, e) 7→ (E,E)

between the category of strictly indexed categories (with strictly indexed
functors) and the category of (Grothendieck) split fibrations (with morphisms
of split fibrations respecting the cleavage (called, in this case, splitting)).∗ We
explicitly state the relevant part of this result below.

∗Although not necessary to your work, we refer to [15] and [20, Theorem 1.3.6] for further
details.

96 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Proposition B.2. Given two strictly indexed categories, L′ : Dop → Cat
and L : Cop → Cat, there is a bijection between strictly indexed functors(

H : D → C, h : L′ −→
(
L ◦Hop))

: L′ → L

and pairs (H,H) in which H : ΣDL′ → ΣCL is a functor satisfying the
following two conditions.

– The diagram

ΣDL′ ΣCL

D C

H

PL′ PL

H

(B.3)

commutes.
– For any morphism (f : X → Y, id : L′(f)(y) → L′(f)(y)) between
(X,L′(f)(y)) and (Y, y) in ΣDL′,

H(f, id) = (H(f), id) : H(X,L′(f)(y))→ H(Y, y). (B.4)

Proof : Although, as mentioned above, this result is just a consequence of
the well known result about the equivalence between indexed categories and
fibrations, we recall below how to construct the bijection.
For each strictly indexed functor (H, h) : L′ → L, we define

H(f : X → Y, f ′ : x→ L′(f)y) := (H(f), hX(f
′)). (B.5)

Reciprocally, given a pair (H,H) satisfying (B.3) and (B.4), we define

hX(f
′ : w → x) := H ((idX , f

′) : (X,w)→ (X, x)) (B.6)

for each object X ∈ D and each morphism f ′ : w → x of L′(X).

Definition B.3 (Split fibration functor). A pair (H,H) : PL′ → PL satisfying
(B.3) and (B.4) is herein called a split fibration functor. Whenever it is clear
from the context, we omit the split fibrations PL′, PL, and the functor H.

Following the above, given a strictly indexed functor (H, h) : L′ → L, we
denote ∫

L = (PL : ΣCL → C)

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 97∫ (
H, h

)
=
(
H,H

)
in which H (f : X → Y, f ′ : x→ L(f)(y)) = (H(f), hX(f

′)).
Let L′ : Dop → Cat and L : Cop → Cat be strictly indexed categories.

We denote by L′×L the product of the strict indexed categories in Ind.
Explicitly,

L′×L : (D × C)op → Cat

(X, Y) 7→ L′(X)× L(Y)

(f, g) 7→ L′(f)× L(g).
It should be noted that(∫

L′×L
)
∼=
(∫
L′
)
×
(∫
L
)

= (PL′ × PL : (ΣDL′)× (ΣCL)→ D × C) ,

(B.7)
which means that the product in SpFib coincides with the usual product of
functors PL × PL′. Moreover, given indexed functors (H, h) : H → H′ and
(E, e) : L → L′, we have that

(H, h)× (E, e) =
(
H × E, h× e

)
and, since the product of split fibrations is given by the usual product of
functors, ∫ (

(H, h)× (E, e)
)
=

(∫
(H, h)

)
×
(∫

(E, e)

)
. (B.8)

Codually, given a strictly indexed category L : Cop → Cat, we have the
Grothendieck codual construction∫ opL = (PLop : ΣCLop → C),

∫ op (
H, h

)
=
(
H,H

)
in which H (f : X → Y, f ′ : L(f)(y)→ x) = (H(f), hX(f

′)). This construc-
tion gives an equivalence between the indexed categories and split op-fibrations.
We, of course, have the codual observations above.

Appendix C.Coproducts in the total category
In this section, we recall general results about coproducts and initial objects

in the total categories of fibrations.

Proposition C.1 (Initial object in ΣCL). Let L : Cop → Cat be a strictly
indexed category. We assume that

98 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

– C has initial object 0;
– L(0) has initial object, denoted, by abuse of language, by 0.

In this case, (0, 0) is the initial object of ΣCL.

Proof : Assuming the hypothesis above, given any object (Y, y) ∈ ΣCL,

ΣCL ((0, 0), (Y, y))
=

∐
n∈C(0,Y)

L(0)(0,L(n)(y)) { Definition }

∼=
∐

n∈C(0,Y)

1 { 0 initial in L(0) }

∼= 1. { 0 initial in C }

Theorem C.1 (Coproducts in ΣCL). Let L : Cop → Cat be a strictly indexed
category. We assume that

– ((Wi, wi))i∈I is family of objects of ΣCL;
– the category C has the coproduct Wt

∐
i∈I

Wi

ιWt

t∈I

(C.1)

of the objects in ((Wi, wi))i∈I;
– there is an adjunction L(ιWi

)! ⊣ L(ιWi
) for each i ∈ I;

– L

(∐
i∈I

Wi

)
has the coproduct

∐
i∈I

L(ιWi
)!(wi) of the objects (L(ιWi

)!(wi))i∈I.

In this case, (∐
i∈I

Wi,
∐
i∈I

L(ιWi
)!(wi)

)
is the coproduct of the objects ((Wi, wi))i∈I in ΣCL.

Proof : Assuming the hypothesis above, given any object (Y, y) ∈ ΣCL,∏
i∈I

ΣCL ((Wi, wi), (Y, y))

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 99

=
∏
i∈I

 ∐
n∈C(Wi,Y)

L(Wi)(wi,L(n)(y))

 { Definition }

∼=
∐

(ni)i∈I∈
∏

i∈I C(Wi,Y)

(∏
i∈I

L(Wi)(wi,L(ni)(y))

)
{ Distributivity }

∼=
∐

h∈C(
∐

i∈I Wi,Y)

(∏
i∈I

L(Wi)(wi,L(h ◦ ιWi
)(y))

)
{ coprod. univ. property }

∼=
∐

h∈C(
∐

i∈I Wi,Y)

(∏
i∈I

L(Wi) (wi,L(ιWi
) ◦ L(h)(y))

)

∼=
∐

h∈C(
∐

i∈I Wi,Y)

(∏
i∈I

L

(∐
i∈I

Wi

)
(L(ιWi

)!(wi),L(h)(y))

)
{ adjunctions }

∼=
∐

h∈C(
∐

i∈I Wi,Y)

(
L

(∐
i∈I

Wi

)(∐
i∈I

L(ιWi
)!(wi),L(h)(y)

))
{ coprod. univ. property }

= ΣCL

((∐
i∈I

Wi,
∐
i∈I

L(ιWi
)!(wi)

)
, (Y, y)

)
. { coprod. univ. property }

Codually, we get results on the initial objects and coproducts in the cate-
gory ΣCLop below.

Corollary C.2 (Initial object in ΣCLop). Let L : Cop → Cat be a strictly
indexed category. We assume that

– C has initial object 0;
– L(0) has terminal object 1.

In this case, (0, 1) is the initial object of ΣCL.

Corollary C.3 (Coproducts in ΣCLop). Let L : Cop → Cat be a strictly
indexed category. We assume that

– ((Wi, wi))i∈I is family of objects of ΣCL;

100 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

– the category C has the coproduct Wt

∐
i∈I

Wi

ιWt

t∈I

(C.2)

of the objects in ((Wi, wi))i∈I;
– there is an adjunction L(ιWi

) ⊣ L(ιWi
)∗ for each i ∈ I;

– L

(∐
i∈I

Wi

)
has the product

∏
i∈I

L(ιWi
)∗(wi)

of the objects (L(ιWi
)∗(wi))i∈I.

In this case, (∐
i∈I

Wi,
∏
i∈I

L(ιWi
)∗(wi)

)
is the coproduct of the objects ((Wi, wi))i∈I in ΣCLop.

Appendix D.Parameterized initial algebras
This section aims to recall the basic aspects of the constructions related to

parameterized initial algebras.
Recall that, given an endofunctor E : D → D, the category of E-algebras,

denoted by E-Alg, is defined as follows. The objects are pairs (W, ζ) in which
W ∈ D and ζ : E(W) → W is a morphism of D. A morphism between E-
algebras (W, ζ) and (Y, ξ) is a morphism g : W → Y of D such that

E(W) E(Y)

W Y

E(g)

ζ ξ

g

(D.1)

commutes. Dually, we define the category E-CoAlg of E-coalgebras by

E-CoAlg := (Eop-Alg)op (D.2)

in which Eop : Dop → Dop is the image of E by op : Cat→ Cat.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 101

Recall that, provided that they exist, the initial object (µE, inE) of E-Alg
and the terminal object (νE, outE) of E-CoAlg are such that inE and outE
are invertible. In this setting, we denote by

foldE(Y, ξ) : µE → Y, unfoldE(X, ϱ) : X → νE (D.3)

the unique morphisms in D such that

E(µE) E(Y)

µE Y

E(foldE(Y,ξ))

inE ξ

foldE(Y,ξ)

X νE

E(X) E(νE)

unfoldE(X,ϱ)

ϱ outE

E(unfoldE(X,ϱ))

(D.4)
commute. Whenever it is clear from the context, we denote foldE(Y, ξ) by
foldEξ, and unfoldE(X, ϱ) by unfoldEϱ.
We recall below how to explicitly construct the parameterized initial alge-

bras and terminal coalgebras.

Proposition D.1 (µ-operator and ν-operator). Let H : D′ × D → D be a
functor. Assume that, for each object X ∈ D′, the functor HX = H(X,−) is
such that µHX exists. In this setting, we have the induced functor

µH : D′ → D
X 7→ µHX

(f : X → Y) 7→ foldHX

(
inHY ◦H(f, µHY)

)
.

Dually, assuming that, for each object X ∈ D′, νHX exists, we have the
induced functor

νH : D′ → D
X 7→ νHX

(f : X → Y) 7→ unfoldHY

(
H(f, νHX) ◦ outHX

)
.

Proof : We assume that the functor H : D′ × D → D is such that, for any
object X ∈ D′, µHX exists. For each morphism f : X → Y , we define
µH(f) = foldHX

(
inHY ◦H(f, µHY)

)
as above. We prove below that this

makes µH(f) a functor.

102 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Given X ∈ D′,

µH(idX)

= foldHX

(
inHX ◦H(idX , µH

X)
)

= foldHX (inHX)

= idµHX .

Moreover, given morphisms f : X → Y and g : Y → Z in D′, we have that

µH(g) ◦ µH(f) ◦ inHX

= µH(g) ◦ inHY ◦H (f, µH(f)) { µH(f) = foldHX

(
inHY ◦H(f, µHY)

) }
= inHZ ◦H (g, µH(g)) ◦H (f, µH(f)) { µH(g) = foldHY

(
inHZ ◦H(g, µHZ)

) }
= inHZ ◦H (gf, µH(g) ◦ µH(f))

= inHZ ◦H
(
gf, µHZ

)
◦H (X,µH(g) ◦ µH(f))

and, hence, the diagram

H
(
X,µHX

)
H
(
X,µHZ

)

µHX µHZ

H(X,µH(g)◦µH(f))

inHX inHZ◦H(g◦f,µHZ)

µH(g)◦µH(f)

commutes. By the universal property of the initial algebra
(
µHX , inHX

)
, we

conclude that

µH(g) ◦ µH(f)

= foldHX

(
inHZ ◦H

(
g ◦ f, µHZ

))
= µH(g ◦ f). { definition }

It should be noted that D′ above is any category. However, Proposition
D.1 usually is considered in the setting in which D′ = Dn−1 for n > 1 as
described below.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 103

Proposition D.2 (Parameterized initial algebras and terminal coalgebras).
Let H : Dn → D be a functor in which n > 1. Assume that, for each object
X ∈ Dn−1, µHX exists. In this setting, we have the induced functor

µH : Dn−1 → D
X 7→ µHX

(f : X → Y) 7→ foldHX

(
inHY ◦H(f, µHY)

)
.

Dually, if νHX exists for any X ∈ Dn−1, we have the induced functor

νH : Dn−1 → D
X 7→ νHX

(f : X → Y) 7→ unfoldHY

(
H(f, νHX) ◦ outHX

)
.

Appendix E.Preservation, reflection and creation of ini-
tial algebras

We establish the definitions of creation, preservation and reflection of initial
algebras and terminal cooalgebras.

Lemma E.1. Let F : D → C be a functor. Given endofunctors E : C → C,
E ′ : D → D and a natural transformation γ : E ◦ F −→ F ◦ E ′, we have an
induced functor defined by

F̌γ : E ′-Alg → E-Alg

(X, ζ) 7→ (F (X), F (ζ) ◦ γX)
g 7→ F (g).

Proof : Indeed, if g : W → Z is the underlying morphism of an algebra
morphism between (W, ζ) and (Z, ξ), we have that

F (g) ◦ F (ζ) ◦ γW
= F (ξ) ◦ FE ′(g) ◦ γW { f : (W, ζ)→ (Z, ξ) }
= F (ξ) ◦ γZ ◦ EF (g) { naturality of γ }

which proves that F (g) in fact gives a morphism between the algebras

(F (W), F (ζ) ◦ γW)

and (F (Z), F (ξ) ◦ γZ). The functoriality of F̌γ follows, then, from that of
F .

Dually, we have:

104 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Lemma E.2. Let E : C → C, G : C → D, and E ′ : D → D be functors.
Each natural transformation β : G ◦ E −→ E ′ ◦G induces a functor

G̃β : E-CoAlg → E ′-CoAlg

(W, ξ) 7→ (G(W), βW ◦G(ξ))

f 7→ G(f).

We can, now, establish the definition of preservation, reflection and creation
of initial algebras using the respective notions for the induced functor. More
precisely:

Definition E.3 (Preservation, reflection and creation of initial algebras). We
say that a functor F : D → C (strictly)∗ preserves the initial algebra/reflects
the initial algebra/creates the initial algebra of the endofunctor E : C → C if,
whenever E ′ : D → D is such that γ : E ◦ F ∼= F ◦ E ′ (or, in the strict case,
F ◦ E ′ = E ◦ F), the functor

F̌γ : E ′-Alg → E-Alg

(X, ζ) 7→ (F (X), F (ζ) ◦ γX)
g 7→ F (g).

induced by γ (induced by the identity) is such that it (strictly) preserves the
initial object/reflects the initial object/creates the initial object.

Remark E.4. A functor F : D → C (strictly) preserves the initial algebra
of the endofunctor E : D → D if, and only if, for any natural isomorphism
γ : E ◦ F ∼= F ◦ E ′ (or, in the strict case, for any identity E ◦ F = F ◦ E ′
) in which E ′ is an endofunctor, we have that E-Alg has an initial object
whenever E ′-Alg does, and

foldE (F (µE ′), F (inE′) ◦ γµE′) : µE → F (µE ′) (E.1)

is an isomorphism (the identity).

Definition E.5 (Preservation, reflection and creation of initial algebras).
We say that a functor F : D → C (strictly) preserves initial algebras/reflects
initial algebras/creates initial algebras if F (strictly) preserves initial alge-
bras/reflects initial algebras/creates initial algebras of any endofunctor on
D.

∗Whenever we talk about strict preservation, we are assuming that we have chosen initial
objects/terminal objects.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 105

Remark E.6. In other words, let F : D → C be a functor.

1. We say that F (strictly) preserves initial algebras, if: for any nat-
ural isomorphism γ : E ◦ F ∼= F ◦ E ′ (or, in the strict case, for
each identity E ◦ F = F ◦ E ′) in which E and E ′ are endofunc-
tors, assuming that (µE ′, inE′) is the initial E ′-algebra, the E-algebra
(F (µE ′) , F (inE′) ◦ γµE′) is an initial object of E-Alg (the chosen ini-
tial object of E-Alg, in the strict case).

2. We say that F reflects initial algebras, if: for any natural isomor-
phism γ : E ◦ F ∼= F ◦ E ′ in which E and E ′ are endofunctors, if
(F (Y), F (ξ) ◦ γY) is an initial E-algebra and (Y, ξ) is an E ′-algebra,
then (Y, ξ) is an initial E ′-algebra.

3. We say that F creates initial algebras if: (A) F reflects and preserves
initial algebras and, moreover, (B) for any γ : E ◦ F ∼= F ◦ E ′ in
which E and E ′ are endofunctors, E ′-Alg has an initial algebra if
E-Alg does.

Definition E.7 (Preservation, reflection and creation of terminal coalge-
bras). We say that a functor G : C → D (strictly) preserves the initial al-
gebra/reflects the initial algebra/creates the initial algebra of an endofunctor
E : C → C if, for any natural isomorphism β : G ◦ E ∼= E ′ ◦G, the functor

G̃β : E-CoAlg → E ′-CoAlg

(W, ξ) 7→ (G(W), βW ◦G(ξ))

f 7→ G(f).

induced by β (induced by the identity) is such that it (strictly) preserves the
terminal object/reflects the terminal object/creates the terminal object.

Definition E.8 (Preservation, reflection and creation of terminal coalge-
bras). We say that a functor G : C → D (strictly) preserves initial alge-
bras/reflects initial algebras/creates initial algebras if G (strictly) preserves
initial algebras/reflects initial algebras/creates initial algebras of any endo-
functor E : C → C.

E.1. Indexed categories. This subsection aims to reach a suitable notion of
what it means for an indexed category to respect initial algebras and terminal
coalgebras. These notions play a fundamental role in our approach to study
parameterized initial algebras and final coalgebras in the total category of a
split fibration (Corollary F.1).

106 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Definition E.9 (Respecting initial algebras). A strictly indexed category L :
Cop → Cat respects initial algebras if L(f) strictly preserves initial algebras
for any morphism f of C.∗
Dually, L : Cop → Cat respects terminal coalgebras if L(f) strictly pre-

serves terminal coalgebras for any morphism f of C.

Appendix F.Parameterized initial algebras for split fi-
brations

In this section, we establish and prove general results about parameter-
ized initial algebras on the total category of a split fibration. We start by
introducing a basic result on endofunctors.

Theorem F.1 (Initial algebras of strictly indexed endofunctors). Let (E, e)
be a strictly indexed endofunctor on L : Cop → Cat and E : ΣCL → ΣCL the
corresponding split fibration endofunctor. Assume that

– the initial E-algebra
(
µE, inE

)
exists;

– the initial
(
L(inE)−1eµE

)
-algebra(

µ
(
L(inE)−1eµE

)
, in(L(inE)−1eµE)

)
exists.

Denoting by e the endofunctor L(inE)−1eµE on L(µE), the initial E-algebra
exists and is given by

µE =
(
µE, µe

)
, inE = (inE, L(inE) (ine)) . (F.1)

Moreover, for each E-algebra

((Y, y), (ξ, ξ′) : E(Y, y)→ (Y, y)) =
(
(Y, y),

(
ξ : E(Y)→ Y, ξ′ : eY (y)→ L(ξ)(y)

))
,

we have that

foldE (ξ, ξ′) =
(
foldEξ, folde

(
L
(
E(foldE ξ) · in−1

E

)
(ξ′)
))

. (F.2)

Proof : In fact, under the hypothesis above, given an E-algebra(
ξ : E(Y)→ Y, ξ′ : eY (y)→ L(ξ)(y)

)
on (Y, y), we have that there is a unique morphism(

foldeL
(
E(foldEξ) · in

−1
E

)
(ξ′)
)
: µe→ L (foldEξ) (y)

∗We could have allowed non-strict preservation but, in our context, it is more practical to keep
things as strict as possible when it comes to strict indexed categories.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 107

in L(µE) such that

e(µe) e ◦ L (foldEξ) (y)

L
(
E(foldEξ) · in

−1
E

)
◦ eY (y)

L
(
ξ · E(foldEξ) · in

−1
E

)
(y)

µe L (foldEξ) (y)

e(folde L(E(foldEξ)·in−1

E)(ξ′))

ine L(E(foldEξ)·in−1

E)(ξ′)

(folde L(E(foldEξ)·in−1

E)(ξ′))

commutes. Since L(inE) is invertible, this implies that(
foldeL

(
E(foldEξ) · in

−1
E

)
(ξ′)
)
: µe→ L (foldEξ) (y)

is the unique morphism in L
(
E(µE)

)
such that

eµE(µe) eµE ◦ L (foldEξ) (y)

L
(
E(foldEξ)

)
◦ eY (y)

L
(
E(foldEξ)

)
◦ L (ξ) (y)

L(inE)(µe) L (inE) ◦ L (foldEξ) (y)

eµE(folde L(E(foldEξ)·in−1

E)(ξ′))

L(inE)(ine) L(E(foldEξ))(ξ′)

L(inE)(folde L(E(foldEξ)·in−1

E)(ξ′))

commutes. Finally, by the above and the universal property of foldEξ, this
completes the proof that

u =
(
foldEξ,

(
foldeL

(
E(foldEξ) · in

−1
E

)
(ξ′)
))

(F.3)

108 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

is the unique morphism in ΣCL such that

(ξ, ξ′) ◦ E(u) = u ◦ (inE, L(inE) (ine)) .

This completes the proof that
(
(µE, µe), (inE, L(inE) (ine))

)
is the initial

object of E-Alg, and that foldE((Y, y), (ξ, ξ
′)) = u.

Let L : Cop → Cat, L′ : Dop → Cat be strictly indexed categories as
above. We denote by L′×L : (D × C)op → Cat the product of the in-
dexed categories (see Appendix B). An object of ΣD×C (L′×L) ∼= (ΣDL′)×
(ΣCL) can be seen as a quadruple ((X, x), (W,w)) in which x ∈ L′(X) and
w ∈ L(W). Moreover, a morphism between objects ((X0, x0), (W0, w0)) and
((X1, x1), (W1, w1)) consists of a quadruple ((f, f ′), (g, g′)) in which

(f, g) : (X0,W0)→ (X1,W1)

is a morphism in D × C, and

(f ′, g′) : (x0, w0)→ (L′(f)(x1),L(g)(w1))

is a morphism in L′(X0)× L(W0).
Given a strictly indexed functor (H, h) : L′×L → L and an object (X, x) of

(ΣDL′), we can consider the restriction (H
X
, h(X,x)) in which H

X
= H(X,−)

and h(X,x) : L −→
(
L ◦HX

)
is pointwise defined by

h
(X,x)
Y : L(Y) → L ◦HX

(Y)

f ′ : y → z 7→ h(X,Y)(x, f
′)

in which we denote by (X, Y) ∈ D × C. To be consistent with the notation
previously introduced (in Proposition D.1), we also denote by hx

(X,Y) the

morphism h
(X,x)
Y above.

As a consequence of Theorem F.1, we have that, under suitable conditions,
parameterized initial algebras of split fibration functors are split fibration
functors. Namely, we have:

Theorem F.2 (Parameterized initial algebras are split fibration functors).
Let (H, h) be a strictly indexed functor from L′×L : (D × C)op → Cat to
L : Cop → Cat, and

H : (ΣDL′)× (ΣCL)→ ΣCL

the corresponding split fibration functor. Assume that

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 109

– for each object X of D, the initial H
X
-algebra

(
µH

X
, in

H
X

)
exists;

– for each object (X, x) in ΣDL′, denoting by hX the functor

L(in
H

X)−1h(
X,µH

X
) : L′(X)× L(µHX

)→ L(µHX
) (F.4)

is such that the initial hx
X-algebra

(
µhx

X , inhx
X

)
exists;

– for each morphism g : X → Y in D and y ∈ L′(Y), the equation

L
(
µH(g)

)
(inhy

Y
) = in

h
L′(g)(y)
X

(F.5)

holds.

In this setting, the parameterized initial algebra µH : ΣDL′ → ΣCL exists
and is a split fibration functor.

Proof : Assuming the hypothesis, we conclude that, for each (X, x) in ΣDL′,
the category ΣCL has the initial H(X,x)-algebra, by Theorem F.1. Hence we
have that

µH : ΣDL′ → ΣCL
exists by Proposition D.1. More precisely, given a morphism (f, f ′) : (X, x)→
(Y, y) in ΣDL′, we compute µH(f, f ′) below.

µH(f, f ′)

= foldH(X,x)

(
inH(Y,y) ◦H

(
(f, f ′), µH(Y,y)

))
{ Proposition D.1 }

= foldH(X,x)

((
in

H
Y ,L(in

H
Y)(inhy

Y
)
)
◦H

(
(f, f ′), µH(Y,y)

))
{ Eq. (F.1) }

= foldH(X,x)

((
in

H
Y ,L(in

H
Y)(inhy

Y
)
)
◦
(
H(f, µH

Y
), h

(X,µH
Y
)
(f ′, µhy

Y)
))

{ indexed functor }

= foldH(X,x)

(
in

H
Y ◦H(f, µH

Y
),L

(
in

H
Y ◦H(f, µH

Y
)
)
(inhy

Y
)

◦
(
h
(X,µH

Y
)
(f ′, µhy

Y)
))

{ composing }

which, by denoting ξ = in
H

Y ◦H(f, µH
Y
) and ξ′ = L (ξ) (inhy

Y
)◦
(
h

(X,µH
Y

)
(f ′, µhy

Y)
)
,

is equal to

foldH(X,x)

(
in

H
Y ◦H(f, µH

Y
), ξ′
)

=
(
fold

H
X

(
in

H
Y ◦H(f, µH

Y
)
)
,
(
foldhx

X
L
(
H

X
(fold

H
Xξ) · in−1

H
X

)
(ξ′)
))

{ Eq. (F.2) }

=
(
µH(f),

(
foldhx

X
L
(
H

X
(fold

H
Xξ) · in−1

H
X

)
(ξ′)
))

. { Proposition D.1 }

The above shows that

µH(f, f ′) =
(
µH(f),

(
foldhx

X
L
(
H

X
(fold

H
Xξ) · in−1

H
X

)
(ξ′)
))

. (F.6)

110 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Now, we can proceed to prove that µH is actually a split fibration functor.
Firstly, by Equation (F.6), we have that

ΣDL′ ΣCL

D C

µH

PL′ PL

µH

(F.7)

commutes.
Let (g, id) : (X,L′(g)(y)) → (Y, y) be a morphism in (ΣDL′). Denoting,

again,

ξ = in
H

Y ◦H(g, µH
Y
) and ξ′ = L (ξ) (inhy

Y
) ◦
(
h

(X,µH
Y

)
(id, µhy

Y)
)
,

we have that(
fold

h
L′(g)(y)
X

L
(
H

X
(fold

H
Xξ) · in−1

H
X

)
(ξ′)
)

=
(
fold

h
L′(g)(y)
X

L
(
ξ ·HX

(fold
H

Xξ) · in−1

H
X

)
(inhy

Y
)
)
{ h

(X,µH
Y
)
(id, µhy

Y) = id }

=
(
fold

h
L′(g)(y)
X

L
(
(fold

H
Xξ) · in

H
X · in−1

H
X

)
(inhy

Y
)
)
{ fold

H
X ξ }

=
(
fold

h
L′(g)(y)
X

L
(
µH(g)

)
(inhy

Y
)
)

{ Proposition D.1 }

= id
µh

L′(g)(y)
X

{ Eq. (F.5) }

By Equation (F.6), the above proves that

µH (g, id) =
(
µH(g), id

)
and, hence, we completed the proof that µH is a split fibration functor.

We can, then, reformulate our result in terms of the existence of parame-
terized initial algebras in the base category and in the fibers. That is to say,
we have:

Theorem F.3 (Parameterized initial algebras are strictly indexed functors).
Let (H, h) be a strictly indexed functor from L′×L : (D × C)op → Cat to
L : Cop → Cat, and H : (ΣDL′) × (ΣCL) → ΣCL the corresponding split
fibration functor. Assume that:

– the parameterized initial algebra µH : D → C exists;

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 111

– for any X ∈ D, the parameterized initial algebra µhX exists;
– for each morphism g : X → Y in D and y ∈ Y , the equation

L
(
µH(g)

)
(inhy

Y
) = in

h
L′(g)(y)
X

(F.8)

holds.

In this setting, the parameterized initial algebra

µH : ΣDL′ → ΣCL
is a split fibration functor coming from the strictly indexed functor

(
µH, µ

(
h(−)

))
in which, for each X ∈ D,

µ
(
h(X)

)
= µhX = µ

(
L(in

H
X)−1h(

X,µH
X
)) : L′(X)→ L(µHX

). (F.9)

Proof : By Theorem F.2 (Eq. (F.6)) and Proposition B.2 (Eq. (B.5)), we have
that

µH : ΣDL′ → ΣCL
comes from the indexed category (µH, h) in which, for each X ∈ D and each
morphism f ′ : x→ w in L′(X),

hX(f
′)

= µH(idX , f
′)

=
(
id

µH
X , foldhx

X

(
inhw

X
◦ L
(
in−1

H
X

)(
h

(X,µH
X

)
(f ′, µhw

X)
)))

{ Eq. (F.6) }

=
(
id

µH
X , foldhx

X

(
inhw

X
◦ hX (f ′, µhw

X)
))

=
(
id

µH
X , µhX(f

′)
)

{ Proposition D.1 }

Finally, for strictly indexed categories respecting initial algebras (see Defi-
nition E.9), we get a cleaner version of Theorem F.3 below.

Corollary F.1 (Parameterized initial algebras and strictly indexed cate-
gories respecting initial algebras). Let (H, h) be a strictly indexed functor
from L′×L : (D×C)op → Cat to L : Cop → Cat, and H : (ΣDL′)×(ΣCL)→
ΣCL the corresponding split fibration functor. Assume that:

– L respects initial algebras;
– the parameterized initial algebra µH : D → C exists;
– for any X ∈ D, the parameterized initial algebra µhX exists.

112 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

In this setting, the parameterized initial algebra

µH : ΣDL′ → ΣCL
is a split fibration functor coming from the strictly indexed functor

(
µH, µ

(
h(−)

))
in which, for each X ∈ D,

µ
(
h(X)

)
= µhX = µ

(
L(in

H
X)−1h(

X,µH
X
)) : L′(X)→ L(µHX

). (F.10)

Proof : By Theorem F.3, it is enough to show that Equation (F.8) holds
whenever L respects initial algebras.
We have that, for any morphism g : X → Y in D, and each y ∈ L′(Y), by

the naturality of h : L′×L −→
(
L ◦Hop)

and the definition of µH(g), the
squares

L
(
µH

Y
)

L(µHX
)

L′ (Y)× L
(
µH

Y
)

L′ (X)× L
(
µH

X
)

L
(
H
(
Y, µH

Y
))

L
(
H
(
X,µH

X
))

L
(
µH

Y
)

L
(
µH

X
)

L(µH(g))

(
y,id

L(µH
Y
)

) (
L′(y),id

L(µH
X

)

)

h
(Y,µHY)

L′(g)×L(µH(g))

h
(X,µH

X)

L(in
H

Y)
−1

L(H(g,µH(g)))

L(in
H

X)
−1

L(µH(g))

commute. Thus, we get that

L
(
µH(g)

)
◦ hy

Y

= L
(
µH(g)

)
◦ hY ◦

(
y, idL(µH

Y
)

)
= L

(
µH(g)

)
◦ L
(
in

H
Y

)−1

◦ h(
Y,µH

Y
) ◦ (y, idL(µH

Y
)

)

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 113

= L
(
in

H
X

)−1

◦ h(
X,µH

X
) ◦ (L′(y), idL(µH

X
)

)
◦ L
(
µH(g)

)
= h

L′(y)
X ◦ L

(
µH(g)

)
.

Therefore, assuming that L respects initial algebras, we conclude that

L
(
µH(g)

)
(inhy

Y
) = in

h
L′(g)(y)
X

holds. That is to say (F.8) holds for any g : X → Y in D and any y ∈ L′(Y).
This completes the proof by Theorem F.3.

Appendix G.Parameterized terminal coalgebras for split
fibrations

In this section, we establish and prove general results about terminal coal-
gebras of endofunctors on the total category of split fibrations.
Definition E.5 about strictly indexed categories respecting terminal coal-

gebras plays a central role in our basic result below.

Theorem G.1 (Terminal coalgebras of strictly indexed endofunctors). Let
(E, e) be a strictly indexed endofunctor on L : Cop → Cat and E : ΣCL →
ΣCL the corresponding split fibration endofunctor. Assume that

– L respects terminal coalgebras;
– the terminal E-coalgebra

(
νE, outE

)
exists;

– the terminal (L(outE)eνE)-coalgebra
(
ν (L(outE)eνE) , outL(outE)eνE

)
ex-

ists.

Denoting by e the endofunctor L (outE) eνE on L(νE), the terminal E-coalgebra
exists and is given by

νE =
(
νE, νe

)
, outE = (outE, oute) . (G.1)

Moreover, for each E-coalgebra

((Y, y), (ξ, ξ′) : (Y, y)→ E(Y, y)) =
(
(Y, y),

(
ξ : Y → E(Y), ξ′ : y → L(ξ)eY (y)

))
,

we have that

unfoldE (ξ, ξ′) =
(
unfoldEξ, unfoldL(ξ)eY ξ

′) . (G.2)

Proof : Under the hypothesis above, given an E-coalgebra(
ξ : Y → E(Y), ξ′ : y → L(ξ)eY (y)

)

114 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

on (Y, y), we have that the diagram

L
(
νE
)

L (Y)

L
(
E
(
νE
))

L
(
E (Y)

)

L
(
νE
)

L (Y)

e

L(unfoldEξ)

eνE eY

L(outE)

L(E(unfoldEξ))

L(ξ)

L(unfoldEξ)

commutes. Thus, since L respects terminal coalgebras, we have that

(L (unfoldEξ) (νe) , L (unfoldEξ) (oute))
is the terminal L (ξ) eY -coalgebra. Therefore, we have that

unfoldL(ξ)eY ξ
′ : y → L (unfoldEξ) (νe)

is the unique morphism of L(Y) such that

y L (unfoldEξ) (νe)

L (ξ) eY (y) L (ξ) eYL (unfoldEξ) (νe)

ξ′

unfoldL(ξ)eY
ξ′

L(unfoldEξ)(oute)

L(ξ)eY (unfoldL(ξ)eY
ξ′)

which shows that(
unfoldEξ, unfoldL(ξ)eY ξ

′) : (Y, y)→ E(Y, y) =
(
E(Y), eY (y)

)
is the unique morphism of ΣCL such that

(Y, y)
(
νE, νe

)

E (Y, y) =
(
E(Y), eY (y)

)
E
(
νE, νe

)
=
(
E
(
νE
)
, e (νe)

)
(ξ,ξ′)

(unfoldEξ, unfoldL(ξ)eY
ξ′)

(outE , oute)

(E(unfoldEξ),eY (unfoldL(ξ)eY
ξ′))

E(unfoldEξ, unfoldL(ξ)eY
ξ′)

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 115

commutes. This completes the proof that νE =
(
νE, νe

)
is the terminal

E-coalgebra.

Theorem G.2 (Parameterized terminal coalgebras are strictly indexed func-
tors). Let (H, h) be a strictly indexed functor from L′×L : (D × C)op → Cat
to L : Cop → Cat, and H : (ΣDL′) × (ΣCL) → ΣCL the corresponding split
fibration functor. Assume that

– L respects terminal coalgebras;

– for each object X of C, the terminal H
X
-coalgebra

(
νH

X
, out

H
X

)
exists;

– for each object (X, x) in ΣDL′, denoting by hX the functor

L(out
H

X)h(
X,νH

X
) : L′(X)× L(νHX

)→ L(νHX
) (G.3)

is such that the terminal h
x

X-coalgebra
(
νh

x

X , outhx

X

)
exists.

In this setting, the parameterized terminal coalgebra

νH : ΣDL′ → ΣCL
is a split fibration functor coming from the strictly indexed functor

(
νH, ν

(
h(−)

))
in which, for each X ∈ D,

ν
(
h(X)

)
= νhX = ν

(
L(out

H
X)h(

X,νH
X
)) : L′(X)→ L(νHX

). (G.4)

Proof : Assuming the hypothesis, we conclude that, for each (X, x) in ΣDL′,
ΣCL has the terminal H(X,x)-coalgebra by Theorem G.1. Hence, by Proposi-
tion D.1, we have that

νH : ΣDL′ → ΣCL
exists. More precisely, given a morphism (f, f ′) : (X, x) → (Y, y) in ΣDL′,
we compute νH(f, f ′) below.

νH(f, f ′)

= unfoldH(Y,y)

(
H
(
(f, f ′), νH(X,x)

)
◦ outH(X,x)

)
{ Proposition D.1 }

= unfoldH(Y,y)

(
H
(
(f, f ′), νH(X,x)

)
◦
(
out

H
X , outhx

X

))
{ Eq. (G.1) }

= unfoldH(Y,y)

((
H(f, νH

X
), h

(X,νH
X
)
(f ′, νh

x

X)
)
◦
(
out

H
X , outhx

X

))
{ hypothesis }

= unfoldH(Y,y)

(
H(f, νH

X
) ◦ out

H
X , L

(
out

H
X

) (
h
(X,νH

X
)
(f ′, νh

x

X)
)
◦ outhx

X

)
{ composing }

= unfoldH(Y,y)

(
H(f, νH

X
) ◦ out

H
X , hX

(
f ′, νh

x

X

)
◦ outhx

X

)
{ definition of hX }

116 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

=
(
unfold

H
Y

(
H(f, νH

X
) ◦ out

H
X

)
, unfoldh

y
Y

(
hX

(
f ′, νh

x

X

)
◦ outhx

X

))
{ Eq. (G.2) }

=
(
νH(f), νhY (f

′)
)

{ Proposition D.1 }

Since νH(f, f ′) =
(
νH(f), νhY (f

′)
)
, clearly, then, the pair

(
νH, νH

)
satisfies

Eq. (B.3) and Eq. (B.4) of Proposition B.3. Moreover, νH comes from the
strictly indexed functor

(
νH, ν

(
h(−)

))
.

Appendix H.CHAD transformation without sharing be-
tween primal and (co)tangents

In this section, we list the CHAD program transformations
−→
DΓ(t)1,

−→
DΓ(t)2,←−

DΓ(t)1 and
←−
DΓ(t)2 of a program t that keep the primals and (co)tangents sep-

arate without sharing computation. We advise against implementing these,
due to

(1) the code explosion they can result in, leading to a potentially large
code size and compilation times;

(2) the lack of sharing of computation they can result in, leading to poor
runtime performance.

H.1. Forward-mode AD.
−→
DΓ(op(t1, . . . , tk))1

def
= letx1 =

−→
DΓ(t1)1 in · · · letxk =

−→
DΓ(tk)1 in op(x1, . . . , xk)

−→
DΓ(x)1

def
= x

−→
DΓ(letx = t in s)1

def
= letx =

−→
DΓ(t)1 in

−→
DΓ,x(s)1

−→
DΓ(⟨⟩)1

def
= ⟨⟩

−→
DΓ(⟨t, s⟩)1

def
= ⟨−→DΓ(t)1,

−→
DΓ(s)1⟩

−→
DΓ(fst (t))1

def
= fst (

−→
DΓ(t)1)

−→
DΓ(snd (t))1

def
= snd (

−→
DΓ(t)1)

−→
DΓ(λx.t)1

def
= λx.⟨−→DΓ,x(t)1, λv.let v = ⟨0, v⟩ in

−→
DΓ,x(t)2⟩

−→
DΓ(t s)1

def
= fst (

−→
DΓ(t)1

−→
DΓ(s)1)

−→
DΓ(ℓt)1

def
= ℓ(

−→
DΓ(t)1)

−→
DΓ(case tof {ℓ1x1 → s1 | · · · | ℓnxn → sn})1

def
=

case
−→
DΓ(t)1 of {ℓ1x1 →

−→
DΓ,x1

(s1)1 | · · · | ℓnxn →
−→
DΓ,xn

(sn)1}
−→
DΓ(roll t)1

def
= roll

−→
DΓ(t)1

−→
DΓ(fold twithx→ s)1

def
= fold

−→
DΓ(t)1withx→ −→

Dx(s)1

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 117

−→
DΓ(gen from twithx→ s)1

def
= gen from

−→
DΓ(t)1withx→ −→

Dx(s)1
−→
DΓ(unroll t)1

def
= unroll

−→
DΓ(t)1

−→
DΓ(op(t1, . . . , tk))2

def
= letx1 =

−→
DΓ(t1)1 in · · · letxk =

−→
DΓ(tk)1 in

Dop(x1, . . . , xk; ⟨
−→
DΓ(t1)2 • v, . . . ,

−→
DΓ(tk) •2 v⟩)

−→
DΓ(x)2

def
= projidx(x;Γ) (v)

−→
DΓ(letx = t in s)2

def
= letx =

−→
DΓ(t)1 in let v = ⟨v,−→DΓ(t)2⟩ in

−→
DΓ,x(s)2

−→
DΓ(⟨⟩)2

def
= ⟨⟩

−→
DΓ(⟨t, s⟩)2

def
= ⟨−→DΓ(t)2,

−→
DΓ(s)2⟩

−→
DΓ(fst (t))2

def
= fst (

−→
DΓ(t)2)

−→
DΓ(snd (t))2

def
= snd (

−→
DΓ(t)2)

−→
DΓ(λx.t)2

def
= λx.let v = ⟨v, 0⟩ in−→DΓ,x(t)2

−→
DΓ(t s)2

def
= let y =

−→
DΓ(s)1 in

−→
DΓ(t)2 y + (snd (

−→
DΓ(t)1 y)) •

−→
DΓ(s)2

−→
DΓ(ℓt)2

def
=
−→
DΓ(t)2

−→
DΓ(case tof {ℓ1x1 → s1 | · · · | ℓnxn → sn})2

def
=

bunch (
−→
DΓ(t)1, ⟨v,

−→
DΓ(t)2⟩)of {(ℓ1x1, v)→

−→
DΓ,x1

(s1)2 | · · · | (ℓnxn, v)→
−→
DΓ,xn

(sn)2}
−→
DΓ(roll t)2

def
= roll

−→
DΓ(t)2

−→
DΓ(fold twithx→ s)2

def
= fold

−→
DΓ(t)2with v→

letx = fold
−→
DΓ(t)1withx→ −→

D (τ)1[
x⊢
−→
Dx(s)1/α] in

−→
Dx(s)2

−→
DΓ(gen from twithx→ s)2

def
= gen from

−→
DΓ(t)2with v→ letx =

−→
DΓ(t)1 in

−→
Dx(s)2

−→
DΓ(unroll t)2

def
= unroll

−→
DΓ(t)2

H.2. Reverse-mode AD.

←−
DΓ(op(t1, . . . , tk))1

def
= letx1 =

←−
DΓ(t1) in · · · letxk =

←−
DΓ(tk) in op(x1)

←−
DΓ(x)1

def
= x

←−
DΓ(letx = t in s)1

def
= letx =

←−
DΓ(t)1 in

←−
DΓ,x(s)1

←−
DΓ(⟨⟩)1

def
= ⟨⟩

←−
DΓ(⟨t, s⟩)1

def
= ⟨←−DΓ(t)1,

←−
DΓ(s)1⟩

←−
DΓ(fst (t))1

def
= fst (

←−
DΓ(t)1)

118 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

←−
DΓ(snd (t))1

def
= snd (

←−
DΓ(t)1)

←−
DΓ(λx.t)1

def
= λx.⟨←−DΓ,x(t)1, λv.snd (

←−
DΓ,x(t)2)⟩

←−
DΓ(t s)1

def
= fst (

←−
DΓ(t)1

←−
DΓ(s)1)

←−
DΓ(ℓt)1

def
= ℓ(

←−
DΓ(t)1)

←−
DΓ(case tof {ℓ1x1 → s1 | · · · | ℓnxn → sn})1

def
=

case
←−
DΓ(t)1 of {ℓ1x1 →

←−
DΓ,x1

(s1)1 | · · · | ℓnxn →
←−
DΓ,xn

(sn)1}
←−
DΓ(roll t)1

def
= roll

←−
DΓ(t)1

←−
DΓ(fold twithx→ s)1

def
= fold

←−
DΓ(t)1withx→ ←−

Dx(s)1
←−
DΓ(gen from twithx→ s)1

def
= gen from

←−
DΓ(t)1withx→ ←−

Dx(s)1
←−
DΓ(unroll t)1

def
= unroll

←−
DΓ(t)1

←−
DΓ(op(t1, . . . , tk))2

def
= letx1 =

←−
DΓ(t1) in · · · letxk =

←−
DΓ(tk) in let v = Dopt(x1, . . . , xk; v) in

(let v = proj1 v in
←−
DΓ(t1)2) + · · ·+ (let v = proj1 v in

←−
DΓ(tk)2)

←−
DΓ(x)2

def
= coprojidx(x;Γ) (v)

←−
DΓ(letx = t in s)2

def
= letx =

←−
DΓ(t)1 in let v =

←−
DΓ,x(s)2 in fst (v) + let v = snd (v) in

←−
DΓ(t)2

←−
DΓ(⟨⟩)2

def
= 0

←−
DΓ(⟨t, s⟩)2

def
= (let v = fst (v) in

←−
DΓ(t)2) + (let v = snd (v) in

←−
DΓ(s)2)

←−
DΓ(fst (t))2

def
= let v = ⟨v, 0⟩ in←−DΓ(t)2

←−
DΓ(snd (t))2

def
= let v = ⟨0, v⟩ in←−DΓ(t)2

←−
DΓ(λx.t)2

def
= case v of !x⊗ v→ fst (

←−
DΓ,x(t)2)

←−
DΓ(t s)2

def
= letx =

←−
DΓ(s)1 in (let v = !x⊗ v in

←−
DΓ(t)2)+

(let v = (snd (
←−
DΓ(t)1 x)) • v in

←−
DΓ(s)2)

←−
DΓ(ℓt)2

def
=
←−
DΓ(t)2

←−
DΓ(case tof {ℓ1x1 → s1 | · · · | ℓnxn → sn})2

def
=

let v = bunch (
←−
DΓ(t)1, v)of {(ℓ1x1, v)→

←−
DΓ,x1

(s1)2 | · · · | (ℓnxn, v)→
←−
DΓ,xn

(sn)2} in
fst v + let v = snd v in

←−
DΓ(t)2

←−
DΓ(roll t)2

def
= let v = unroll v in

←−
DΓ(t)2

←−
DΓ(fold twithx→ s)2

def
= let v =

(
gen from vwith v→

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 119

letx = fold
←−
DΓ(t)1withx→ ←−

D (τ)1[
x⊢
←−
Dx(s)1/α] in

←−
Dx(s)2

)
in
←−
DΓ(t)2

←−
DΓ(gen from twithx→ s)2

def
= let v = (fold vwith v→ letx =

←−
DΓ(t)1 in

←−
Dx(s)2) in

←−
DΓ(t)2

←−
DΓ(unroll t)2

def
= let v = roll v in

←−
DΓ(t)2

Appendix I.A Manual Proof of AD Correctness for Sim-
ply Typed Coproducts

In many implementations of CHAD, we will not have access to dependent
types. Therefore, we need to give up a bit of type safety for AD on coprod-
ucts. Here, we extend the applied, manual correctness proof of the applied
CHAD implementation of [40, Appendix A], reusing their notations.
For coproducts, we have the following constructs in the source language:

inl ∈ Syn(τ, τ + σ)

inr ∈ Syn(σ, τ + σ)

[,] : Syn(τ, ρ)× Syn(σ, ρ)→ Syn(τ + σ, ρ).

Forward AD. We have, in the applied target language ALSyn, that
−→
D (inl)1 ∈ ALSyn(

−→
D (τ)1,

−→
D (τ)1 +

−→
D (τ)2)

−→
D (inl)2 ∈ ALSyn(

−→
D (τ)1,LFun(

−→
D (τ)2,

−→
D (τ)2∗

−→
D (σ)2))

−→
D (inr)1 ∈ ALSyn(

−→
D (σ)1,

−→
D (τ)1 +

−→
D (τ)2)

−→
D (inr)2 ∈ ALSyn(

−→
D (σ)1,LFun(

−→
D (σ)2,

−→
D (τ)2∗

−→
D (σ)2))

−→
D ([t, s])1 ∈ ALSyn(

−→
D (τ)1 +

−→
D (σ)1,

−→
D (ρ)1)

−→
D ([t, s])2 ∈ ALSyn(

−→
D (τ)1 +

−→
D (σ)1,LFun(

−→
D (τ)2∗

−→
D (σ)2,

−→
D (ρ)2)).

We can define
−→
D (τ + σ)1

def
=
−→
D (τ)1 +

−→
D (σ)1

−→
D (τ + σ)2

def
=
−→
D (τ)1∗

−→
D (σ)1

−→
D (inl)1

def
= inl

−→
D (inl)2

def
= λ .lpair(lid, 0)

−→
D (inr)1

def
= inr

−→
D (inr)2

def
= λ .lpair(0, lid)

120 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

−→
D ([t, s])1

def
= x ⊢ casexof {inl x→ −→

D (t)1|x→
−→
D (s)1}

−→
D ([t, s])2

def
= x ⊢ casexof {inr x→ lfst ;;

−→
D (t)2|x→ lsnd ;;

−→
D (s)2}

.

Then, we define the following semantics:

{|−→D (τ + σ)1|}
def
= {|−→D (τ)1|}+ {|

−→
D (τ)1|}

{|−→D (τ + σ)2|}
def
= {|−→D (τ)2|} × {|

−→
D (τ)2|}

{|−→D (inl)1|}
def
= ι1

{|−→D (inl)2|}
def
= 7→ x 7→ (x, 0)

{|−→D (inr)1|}
def
= ι2

{|−→D (inr)2|}
def
= 7→ y 7→ (0, y)

{|−→D ([t, s])1|}
def
= [{|−→D (t)1|}, {|

−→
D (s)1|}]

{|−→D ([t, s])2|}
def
= [x 7→ (x′,) 7→ {|−→D (t)2|}(x)(x′), y 7→ (y′,) 7→ {|−→D (t)2|}(y)(y′)]

.

We define the forward AD logical relation Pτ+σ for coproducts on

(R→ ({|τ |}+ {|σ|}))× ((R→ ({|−→D (τ)1|}+ {|
−→
D (σ)1|}))× (R→ R ⊸ ({|−→D (τ)2|} × {|

−→
D (σ)2|})))

as

{(f ′; ι1, (g′; ι1, x 7→ x′ 7→ (h(x)(x′), 0))) | (f ′, (g′, h′)) ∈ Pτ}∪
{(f ′; ι2, (g′; ι2, x 7→ x′ 7→ (0, h(x)(x′)))) | (f ′, (g′, h′)) ∈ Pσ} .

Then, clearly, inl and inr respect this relation (almost by definition). We
verify that [t, s] also respects the relation provided that t and s do. Suppose
that (f, (g, h)) ∈ Pτ+σ, ({|t|}, ({|

−→
D (t)1|}, {|

−→
D (t)2|})) ∈ Pτ and

({|s|}, ({|−→D (s)1|}, {|
−→
D (s)2|})) ∈ Pσ.

We have to show that

(f ; [{|t|}, {|s|}],
(g; [{|−→D (t)1|}, {|

−→
D (s)1|}],

z 7→ z′ 7→ [x 7→ (x′,) 7→ {|−→D (t)2|}(x)(x′),

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 121

y 7→ (y′,) 7→ {|−→D (t)2|}(y)(y′)](g(z))(h(z)(z′)))) ∈ P{|ρ|}.

Now, we have two cases:

• (f, (g, h)) = (f ′; ι1, (g
′; ι1, x 7→ x′ 7→ (h′(x)(x′), 0))), for (f ′, (g′, h′)) ∈

Pτ . Then,

(f ; [{|t|}, {|s|}],
(g; [{|−→D (t)1|}, {|

−→
D (s)1|}],

z 7→ z′ 7→ [x 7→ (x′,) 7→ {|−→D (t)2|}(x)(x′),
y 7→ (y′,) 7→ {|−→D (t)2|}(y)(y′)](g(z))(h(z)(z′)))) =

(f ′; {|t|}, (g′; {|−→D (t)1|}, z 7→ z′ 7→ {|−→D (t)2|}(g(z))(h(z)(z′)))),

which is a member of Pρ because t respects the logical relation by
assumption.
• (f, (g, h)) = (f ′; ι2, (g

′; ι2, x 7→ x′ 7→ (0, h′(x)(x′)))) for (f ′, (g′, h′)) ∈
Pσ. Then,

(f ; [{|t|}, {|s|}],
(g; [{|−→D (t)1|}, {|

−→
D (s)1|}],

z 7→ z′ 7→ [x 7→ (x′,) 7→ {|−→D (t)2|}(x)(x′),
y 7→ (y′,) 7→ {|−→D (t)2|}(y)(y′)](g′(z))(h′(z)(z′)))) =

(f ′; {|s|}, (g′; {|−→D (s)1|}, z 7→ z′ 7→ {|−→D (t)2|}(g′(z))(h′(z)(z′)))),

which is a member of Pρ because s respects the logical relation by
assumption.

It follows that our implementation of forward AD for coproducts is correct.

Reverse AD. We have that
←−
D (inl)1 ∈ ALSyn(

←−
D (τ)1,

←−
D (τ)1 +

←−
D (τ)2)

←−
D (inl)2 ∈ ALSyn(

←−
D (τ)1,LFun(

←−
D (τ)2∗

←−
D (σ)2,

←−
D (τ)2))

←−
D (inr)1 ∈ ALSyn(

←−
D (σ)1,

←−
D (τ)1 +

←−
D (τ)2)

←−
D (inr)2 ∈ ALSyn(

←−
D (σ)1,LFun(

←−
D (τ)2∗

←−
D (σ)2,

←−
D (σ)2))

←−
D ([t, s])1 ∈ ALSyn(

←−
D (τ)1 +

←−
D (σ)1,

←−
D (ρ)1)

←−
D ([t, s])2 ∈ ALSyn(

←−
D (τ)1 +

←−
D (σ)1,LFun(

←−
D (ρ)2,

←−
D (τ)2∗

←−
D (σ)2)).

122 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

We can define
←−
D (τ + σ)1

def
=
←−
D (τ)1 +

←−
D (σ)1

←−
D (τ + σ)2

def
=
←−
D (τ)1∗

←−
D (σ)1

←−
D (inl)1

def
= inl

←−
D (inl)2

def
= λ .lfst

←−
D (inr)1

def
= inr

←−
D (inr)2

def
= λ .lsnd

←−
D ([t, s])1

def
= x ⊢ casexof {inl x→ ←−

D (t)1|x→
←−
D (s)1}

←−
D ([t, s])2

def
= x ⊢ casexof {inr x → lpair(

←−
D (t)2, 0)|x→ lpair(0,

←−
D (s)2)}

.

Then,

{|←−D (τ + σ)1|}
def
= {|←−D (τ)1|}+ {|

←−
D (τ)1|}

{|←−D (τ + σ)2|}
def
= {|←−D (τ)2|} × {|

←−
D (τ)2|}

{|←−D (inl)1|}
def
= ι1

{|←−D (inl)2|}
def
= 7→ (x,) 7→ x

{|←−D (inr)1|}
def
= ι2

{|←−D (inr)2|}
def
= 7→ (, y) 7→ y

{|←−D ([t, s])1|}
def
= [{|←−D (t)1|}, {|

←−
D (s)1|}]

{|←−D ([t, s])2|}
def
= [x 7→ z′ 7→ ({|←−D (t)2|}(x)(z′), 0), y 7→ z′ 7→ (0, {|←−D (t)2|}(y)(z′))]

.

We define the reverse AD logical relation Pτ+σ for coproducts on

(R→ ({|τ |}+ {|σ|}))× ((R→ ({|←−D (τ)1|}+ {|
←−
D (σ)1|}))× (R→ ({|←−D (τ)2|} × {|

←−
D (σ)2|}) ⊸ R))

as

{(f ′; ι1, (g′; ι1, z 7→ (x′,) 7→ h′(z)(x′))) | (f ′, (g′, h′)) ∈ Pτ}∪
{(f ′; ι2, (g′; ι2, z 7→ (, y′) 7→ h′(z)(y′))) | (f ′, (g′, h′)) ∈ Pσ} .

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 123

Then, clearly, inl and inr respect this relation (almost by definition). We
verify that [t, s] also respects the relation provided that t and s do. Suppose
that (f, (g, h)) ∈ Pτ+σ, ({|t|}, ({|

←−
D (t)1|}, {|

←−
D (t)2|})) ∈ Pτ and

({|s|}, ({|←−D (s)1|}, {|
←−
D (s)2|})) ∈ Pσ.

We have to show that

(f ; [{|t|}, {|s|}],
(g; [{|←−D (t)1|}, {|

←−
D (s)1|}],

z 7→ x′ 7→ h(z)([x 7→ z′ 7→ ({|←−D (t)2|}(x)(z′), 0),
y 7→ z′ 7→ (0, {|←−D (s)2|}(y)(z′))](g(x))(x′)))) ∈ P{|ρ|}.

Now, we have two cases:

• (f, (g, h)) = (f ′; ι1, (g
′; ι1, z 7→ (x′,) 7→ h′(z)(x′))), for (f ′, (g′, h′)) ∈

Pτ . Then,

(f ; [{|t|}, {|s|}],
(g; [{|←−D (t)1|}, {|

←−
D (s)1|}],

z 7→ x′ 7→ h(z)([x 7→ z′ 7→ ({|←−D (t)2|}(x)(z′), 0),
y 7→ z′ 7→ (0, {|←−D (s)2|}(y)(z′))](g(x))(x′)))) =

(f ′; {|t|}, (g′; {|←−D (t)1|}, z 7→ x′ 7→ h′(z)({|←−D (t)2|}(g′(x))(x′)))),

which is a member of Pρ because t respects the logical relation by
assumption.
• (f, (g, h)) = (f ′; ι2, (g

′; ι2, z 7→ (, y′) 7→ h′(z)(y′))) for (f ′, (g′, h′)) ∈
Pσ. Then,

(f ; [{|t|}, {|s|}],
(g; [{|←−D (t)1|}, {|

←−
D (s)1|}],

z 7→ x′ 7→ h(z)([x 7→ z′ 7→ ({|←−D (t)2|}(x)(z′), 0),
y 7→ z′ 7→ (0, {|←−D (s)2|}(y)(z′))](g(x))(x′)))) =

(f ′; {|s|}, (g′; {|←−D (s)1|}, z 7→ x′ 7→ h′(z)({|←−D (s)2|}(g′(x))(x′)))),

which is a member of Pρ because s respects the logical relation by
assumption.

124 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

It follows that our implementation of reverse AD for coproducts is correct.
A categorical way to understand this proof is that

(A1, A2) + (B1, B2)
def
= (A1 +B1, A2 ×B2)

lifts the coproduct in C to a weak (fibred) coproduct in ΣCL and ΣCLop.
This weak coproduct lifts to the subscone, in the manner outlined above.
One consequence is that the AD transformations no longer respect the η-rule
for coproducts (unlike in the dependently typed setting).

Acknowledgments. We thank Michael Betancourt, Bob Carpenter, Math-
ieu Huot, Ohad Kammar, Gabriele Keller, Gordon Plotkin, Curtis Chin Jen
Sem, Amir Shaikhha, Tom Smeding, and Sam Staton for helpful discussions
about Automatic Differentiation.

References
[1] Abadi, M. and Plotkin, G. D. 2020. A simple differentiable programming language. In

Proc. POPL 2020. ACM.
[2] Adámek, J. and Koubek, V. 1979. Least fixed point of a functor. Journal of Computer

and System Sciences, 19(2):163–178.
[3] Ahman, D., Ghani, N., and Plotkin, G. D. 2016. Dependent types and fibred computa-

tional effects. In International Conference on Foundations of Software Science and Computa-
tion Structures, pp. 36–54. Springer.

[4] Alvarez-Picallo, M., Ghica, D. R., Sprunger, D., and Zanasi, F. 2021. Functorial
string diagrams for reverse-mode automatic differentiation. arXiv preprint arXiv:2107.13433.

[5] Barr, M. 1993. Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci.,
114(2):299–315.

[6] Barthe, G., Crubillé, R., Lago, U. D., and Gavazzo, F. 2020. On the versatility of
open logical relations: Continuity, automatic differentiation, and a containment theorem. In
Proc. ESOP 2020. Springer. To appear.

[7] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. 2018. Automatic
differentiation in machine learning: a survey. Journal of machine learning research, 18.

[8] Boman, J. 1968. Differentiability of a function and of its compositions with functions of one
variable. Mathematica Scandinavica, pp. 249–268.

[9] Brunel, A., Mazza, D., and Pagani, M. 2020. Backpropagation in the simply typed
lambda-calculus with linear negation. In Proc. POPL 2020.

[10] Carboni, A., Lack, S., and Walters, R. F. C. 1993. Introduction to extensive and dis-
tributive categories. J. Pure Appl. Algebra, 84(2):145–158.

[11] Cockett, J. R. B., Cruttwell, G. S. H., Gallagher, J., Lemay, J.-S. P., MacAdam,
B., Plotkin, G. D., and Pronk, D. 2020. Reverse derivative categories. In Proc. CSL 2020.

[12] Dubuc, E. 1968. Adjoint triangles. In Reports of the Midwest Category Seminar, II, pp.
69–91. Springer, Berlin.

[13] Elliott, C. 2018. The simple essence of automatic differentiation. Proceedings of the ACM on
Programming Languages, 2(ICFP):70.

CHAD FOR EXPRESSIVE TOTAL LANGUAGES 125

[14] Fong, B., Spivak, D., and Tuyéras, R. 2019. Backprop as functor: A compositional
perspective on supervised learning. In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pp. 1–13. IEEE.

[15] Gray, J. W. 1966. Fibred and cofibred categories. In Proc. Conf. Categorical Algebra (La
Jolla, Calif., 1965), pp. 21–83. Springer, New York.

[16] Griewank, A. and Walther, A. 2008. Evaluating derivatives: principles and techniques of
algorithmic differentiation, volume 105. Siam.

[17] Huot, M., Staton, S., and Vákár, M. 2021. Higher order automatic differentiation of
higher order functions. arXiv preprint arXiv:2101.06757.

[18] Huot, M., Staton, S., and Vákár, M. 2020. Correctness of automatic differentiation via
diffeologies and categorical gluing. In Proc. FoSSaCS.

[19] Jacobs, B. 1999. Categorical logic and type theory. Elsevier.
[20] Johnstone, P. T. 2002. Sketches of an elephant: A topos theory compendium, volume 2.

Oxford University Press.
[21] Kelly, G. M. 1974. Doctrinal adjunction. In Category Seminar (Proc. Sem., Sydney,

1972/1973), pp. 257–280. Lecture Notes in Math., Vol. 420.
[22] Krawiec, F., Krishnaswami, N., Peyton Jones, S., Ellis, T., Fitzgib-

bon, A., and Eisenberg, R. 2021. Provably correct, asymptotically efficient,
higher-order reverse-mode automatic differentiation. https://www.microsoft.com/en-
us/research/uploads/prod/2021/08/higher-order-ad.pdf.

[23] Lack, S. 2012. Non-canonical isomorphisms. J. Pure Appl. Algebra, 216(3):593–597.
[24] Lambek, J. and Scott, P. J. 1988. Introduction to higher-order categorical logic, volume 7.

Cambridge University Press.
[25] Linnainmaa, S. 1970. The representation of the cumulative rounding error of an algorithm as

a taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki,
pp. 6–7.

[26] Lucatelli Nunes, F. 2016. On biadjoint triangles. Theory Appl. Categ., 31:Paper No. 9,
217–256.

[27] Lucatelli Nunes, F. 2017. Pseudomonads and Descent, PhD Thesis (Chapter 1). University
of Coimbra. arXiv: 1802.01767.

[28] Lucatelli Nunes, F. 2019. Pseudoalgebras and non-canonical isomorphisms. Appl. Categ.
Structures, 27(1):55–63.

[29] Lucatelli Nunes, F. 2021. Descent data and absolute Kan extensions. Theory Appl. Categ.,
37:Paper No. 18, 530–561.

[30] MacDonald, J. and Sobral, M. 2004. Aspects of monads. In Categorical foundations,
volume 97 of Encyclopedia Math. Appl., pp. 213–268. Cambridge Univ. Press, Cambridge.

[31] Mak, C. and Ong, L. 2020. A differential-form pullback programming language for higher-
order reverse-mode automatic differentiation. arxiv:2002.08241.

[32] Mazza, D. and Pagani, M. 2021. Automatic differentiation in pcf. Proceedings of the ACM
on Programming Languages, 5(POPL):1–27.

[33] Pearlmutter, B. A. and Siskind, J. M. 2008. Reverse-mode AD in a functional framework:
Lambda the ultimate backpropagator. ACM Transactions on Programming Languages and
Systems (TOPLAS), 30(2):7.

[34] Pitts, A. M. 1995. Categorical logic. Technical report, University of Cambridge, Computer
Laboratory.

[35] Plotkin, G. 2018. Some principles of differential programming languages. Invited talk, POPL,
2018.

126 FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

[36] Santocanale, L. 2002. µ-bicomplete categories and parity games. RAIRO - Theoretical In-
formatics and Applications - Informatique Théorique et Applications, 36(2):195–227.

[37] Speelpenning, B. 1980. Compiling fast partial derivatives of functions given by algorithms.
Technical report, Illinois Univ., Urbana (USA). Dept. of Computer Science.

[38] Vákár, M. 2017. In search of effectful dependent types. arXiv preprint arXiv:1706.07997.
DPhil Thesis, University of Oxford.

[39] Vákár, M. 2021. Reverse AD at higher types: Pure, principled and denotationally correct.
In ESOP, pp. 607–634.

[40] Vákár, M. and Smeding, T. 2021. CHAD: Combinatory homomorphic automatic differen-
tiation. arXiv preprint arXiv:2103.15776.

[41] Vytiniotis, D., Belov, D., Wei, R., Plotkin, G., and Abadi, M. 2019. The differentiable
curry.

[42] Wang, F., Wu, X., Essertel, G., Decker, J., and Rompf, T. 2019. Demystifying differ-
entiable programming: Shift/reset the penultimate backpropagator. Proceedings of the ACM
on Programming Languages, 3(ICFP).

[43] Wengert, R. E. 1964. A simple automatic derivative evaluation program. Communications
of the ACM, 7(8):463–464.

Fernando Lucatelli Nunes
Department of Information and Computing Sciences, Utrecht University, Netherlands
& CMUC, Centre for Mathematics, University of Coimbra, Portugal

E-mail address: f.lucatellinunes@uu.nl

Matthijs Vákár
Department of Information and Computing Sciences, Utrecht University, Netherlands

E-mail address: m.i.l.vakar@uu.nl

	Introduction
	Key ideas
	Origins in semantic derivatives and chain rules
	CHAD on a first-order functional language
	CHAD on a higher-order language: a categorical perspective saves the day
	CHAD for sum types: a challenge – (co)tangent spaces of varying dimension
	CHAD for (co)inductive types: where do we begin?
	How does CHAD for expressive types work in practice?

	1. Background: categorical semantics of expressive total languages
	1.1. Basics
	1.2. Tuple types
	1.3. Primitive types and operations
	1.4. Function types
	1.5. Sum types (aka variant types)
	1.6. Inductive and coinductive types

	2. An expressive functional language as a source language for AD
	3. Modelling expressive functional languages in Grothendieck constructions
	3.1. Basics: the categories CL and CLop
	3.2. Product structure
	3.3. Generators
	3.4. Closed structure
	3.5. Coproduct structure
	3.6. Distributive property
	3.7. Distributive and extensive properties
	3.8. -polynomials
	3.9. -bimodel for function types, inductive and coinductive types

	4. Linear -calculus as an idealised AD target language
	5. Novel AD algorithms as source-code transformations
	5.1. Kinding and typing of the code transformations
	5.2. Some notation
	5.3. Code transformations of primitive types and operations
	5.4. Forward-mode CHAD definitions
	5.5. Reverse-mode CHAD definitions

	6. Concrete denotational semantics
	6.1. Locally presentable categories and denotational model for the source language
	6.2. Fam(Li) is bi-Cartesian closed and has -polynomials
	6.3. Li is a -bimodel for inductive and coinductive types
	6.4. Li yields a model for the target language
	6.5. The denotational model for the target language

	7. Sconing
	7.1. Bi-Cartesian structure
	7.2. Closed structure
	7.3. Initial algebras and final coalgebras
	7.4. -polynomials
	7.5. The projection DGC

	8. Correctness of CHAD, by logical relations
	9. Practical considerations
	9.1. Addressing expression blow-up and sharing common subcomputations
	9.2. Removing dependent types from the target language
	9.3. Removing linear types from the target language

	10. Related work
	Appendix A. Pseudo-preterminal objects in Cat
	Appendix B. Fibrations and indexed categories
	Appendix C. Coproducts in the total category
	Appendix D. Parameterized initial algebras
	Appendix E. Preservation, reflection and creation of initial algebras
	E.1. Indexed categories

	Appendix F. Parameterized initial algebras for split fibrations
	Appendix G. Parameterized terminal coalgebras for split fibrations
	Appendix H. CHAD transformation without sharing between primal and (co)tangents
	H.1. Forward-mode AD
	H.2. Reverse-mode AD

	Appendix I. A Manual Proof of AD Correctness for Simply Typed Coproducts
	Forward AD
	Reverse AD
	Acknowledgments

	References

