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Abstract: We define the product of admissible abstract kernels of the form

Φ: M → End(G)
Inn(G) , where M is a monoid, G is a group, and Φ is a monoid ho-

momorphism. Identifying C-equivalent abstract kernels, where C is the center of
G, we obtain that the set M(M,C) of C-equivalence classes of admissible abstract
kernels inducing the same action of M on C is a commutative monoid. Considering
the submonoid L(M,C) of abstract kernels that are induced by special Schreier ex-

tensions, we prove that the factor monoid A(M,C) = M(M,C)
L(M,C) is an abelian group.

Moreover, we show that this abelian group is isomorphic to the third cohomology
group H3(M,C).
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1. Introduction
It is well known that every group extension

0 // G // // B // // Π // 1

induces, via the conjugation action of B on the normal subgroup G, a group

homomorphism Φ: Π→ Aut(G)
Inn(G) , which is called the abstract kernel of the ex-

tension. A classical problem in group theory [20, 21] consists in determining

what are the abstract kernels Φ: Π → Aut(G)
Inn(G) that are induced by a group

extension. A cohomological answer to this question was given by Eilenberg
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and Mac Lane in [7]: they associated to any abstract kernel Φ an element
Obs(Φ), called obstruction of the abstract kernel, of the third cohomology
group H3(Π, Z(G)), where Z(G) is the center of G and the left Π-module
structure on Z(G) is induced by Φ. They showed that an abstract kernel
Φ is induced by an extension if and only if Obs(Φ) is the zero element of
H3(Π, Z(G)). Moreover, if there is an extension inducing Φ, then the set
of isomorphism classes of the extensions inducing it is in bijection with the
second cohomology group H2(Π, Z(G)). The same fact holds in many other
contexts, as shown by several authors. Examples of such contexts are asso-
ciative algebras [9] and Lie algebras [10] over a field, rings [11], categories
of interest [16], categorical groups [8, 4], semi-abelian action accessible cat-
egories [3, 1, 6, 5].

The situation is more complicated for abstract kernels of the form Φ: M →
End(G)
Inn(G) , whereM is a monoid, G is a group, and Φ is a monoid homomorphism.

Every Schreier extension 0 // G // // B // // M // 1 of a monoid M by

a group G induces a monoid homomorphism Φ: M → End(G)
Inn(G) [12]. Here,

Similarly to the classical case, arises the problem of describing the abstract

kernels Φ: M → End(G)
Inn(G) that are induced by a Schreier extension. Since

Φ need not induce an action of M on Z(G), a cohomological solution of
this problem, similar to the one described above, can be obtained only for
particular subclasses of abstract kernels [22, 23, 12].

Actually, in [7] Eilenberg and Mac Lane proved something more. They
showed that the third cohomology group H3(Π, Z(G)) is isomorphic to the
group whose elements are equivalence classes (w.r.t. a suitable equivalence
relation) of abstract kernels inducing the same Π-action on Z(G), modulo
those abstract kernels that are induced by a group extension. This gives a
complete interpretation of the third cohomology group in terms of abstract
kernels.

The aim of the present paper is to get an interpretation of the third Eilen-
berg–Mac Lane cohomology group of a monoid M in terms of abstract kernels

of the form Φ: M → End(G)
Inn(G) . In [22, 23], the monoid homomorphisms Φ were

required to satisfy the following condition: for all x ∈M and all ϕ(x) ∈ Φ(x),
the centralizer of ϕ(x)(G) in G coincides with Z(G). This gives an action of
M on Z(G) and allows the author of [22, 23] to involve cohomology groups
of M with coefficients in Z(G) in the study of Schreier type extensions of
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M by G. The abstract kernels restricted in this way, which we call admis-
sible abstract kernels, are used in this paper to get the desired interpreta-

tion. We define a product of admissible abstract kernels Φ1 : M → End(G1)
Inn(G1)

and Φ2 : M → End(G2)
Inn(G2) with Z(G1) = Z(G2) = C, inducing the same ac-

tion of M on C. Identifying abstract kernels that are C-equivalent (see
Section 3 for the definition of this equivalence relation), we obtain a commu-
tative monoidM(M,C). The subset L(M,C) of extendable abstract kernels,
namely of those abstract kernels that are induced by a special Schreier ex-
tension, is a submonoid of M(M,C) and we show that the factor monoid

A(M,C) = M(M,C)
L(M,C) is an abelian group. Moreover, we prove that the abelian

group A(M,C) is isomorphic to the third cohomology group H3(M,C) of M
with coefficients in the M -module C.

2. Notation and terminology
We begin by fixing some notations we will use throughout the paper. Given

a group G, we will denote by Z(G) its center. More generally, if H is a sub-
group of G, we will denote by CG(H) the centralizer of H in G. The monoid
End(G) is the monoid of endomorphisms of G, while Inn(G) is the subgroup
of inner automorphisms, namely automorphisms of G of the form µg, where
g ∈ G and µg(g

′) = g + g′ − g (we will use the additive notation for G,
although G will be not necessarily abelian). The identity automorphism of
G will be indicated by idG.

Let M be a monoid (with the operation written multiplicatively). A sub-
group H of M (i.e. a subgroup H of the group U(M) of invertible elements
of M) is right normal if, for all m ∈M , mH ⊆ Hm, where

mH = {mh | h ∈ H}, Hm = {hm | h ∈ H}.

If H is a right normal subgroup of a monoid M , the relation on M defined
by

m1 ∼ m2 ⇔ m1 = hm2 for some h ∈ H

is a congruence on M , called the right coset relation. The equivalence class
of an element m is cl(m) = Hm. Hence the operation

Hm1 ·Hm2 = Hm1m2
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is well defined. We denote by M
H the quotient monoid. For every group

G, Inn(G) is right normal in End(G) (indeed, ϕµg = µϕ(g)
ϕ, g ∈ G, ϕ ∈

End(G)), so we always have the factor monoid End(G)
Inn(G) . Given α ∈ End(G),

we denote the corresponding element in the quotient by cl(α).

Definition 2.1. Given a monoid M (written multiplicatively) and a group G
(written additively), an abstract kernel is a monoid homomorphism Φ: M →
End(G)
Inn(G) , also written as (M,G,Φ).

We will be interested, in particular, in a specific kind of abstract kernels,
the admissible ones:

Definition 2.2. An abstract kernel Φ: M → End(G)
Inn(G) is admissible if, for all

x ∈M and all ϕ(x) ∈ Φ(x), one has that CG(ϕ(x)(G)) = Z(G).

The notion of admissible abstract kernel first appeared in [22]. In the
original definition, another condition was required, namely that, for all x ∈
M , there exists ϕ(x) ∈ Φ(x) such that ϕ(x)(C) ⊆ C, where C = Z(G). But
this condition actually follows from the previous one. Furthermore, it follows
that ϕ(x)(C) ⊆ C for all ϕ(x) ∈ Φ(x). Indeed, if ϕ(x) ∈ Φ(x) and c ∈ C,
then for all g ∈ G

ϕ(x)(g) + ϕ(x)(c) = ϕ(x)(g + c) = ϕ(x)(c+ g) = ϕ(x)(c) + ϕ(x)(g),

and so ϕ(x)(c) ∈ CG(ϕ(x)(G)) = Z(G) = C.

Admissible abstract kernels can be characterized also in the following, sim-
pler way:

Proposition 2.3. An abstract kernel Φ: M → End(G)
Inn(G) is admissible if and

only if for all x ∈ M there exists ϕ(x) ∈ Φ(x) such that CG(ϕ(x)(G)) =
Z(G).

Proof : This is a corollary of the following lemma.

Lemma 2.4. If α ∈ End(G) is such that CG(α(G)) = Z(G), then for all
inner automorphisms µg one has that CG(µgα(G)) = Z(G).

Proof : Let r ∈ CG(µgα(G)). Then, for all g′ ∈ G, we have that

r + µgα(g′) = µgα(g′) + r,
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or, in other terms,

r + g + α(g′)− g = g + α(g′)− g + r.

From this equality we get

−g + r + g + α(g′) = α(g′)− g + r + g,

and hence
−g + r + g ∈ CG(α(G)).

Since, by assumption, CG(α(G)) = Z(G), we get that −g+r+g = c ∈ Z(G).
Then, from r + g = g + c = c+ g we obtain r = c ∈ Z(G) by canceling g on
the right.

Any action of a monoid M on an abelian group, i.e. a monoid homomor-
phism ϕ : M → End(C), where C is an abelian group, is clearly an admissible

abstract kernel. It is also clear that any abstract kernel Φ: M → End(G)
Inn(G) which

factors through Epi(G)
Inn(G) , where Epi(G) is the monoid of epimorphisms of G on

itself, is admissible. Less trivial examples are provided, for instance, by using
the fact that, for a non-trivial subgroup of a free group F , the centralizer
CF (H) is different from the trivial group if and only if H is a cyclic subgroup
of F . As for concrete examples, let us consider the following:

Example 2.5. Let F = F (x, y, z) be the free group on three elements. Define
α ∈ End(F ) by putting α(x) = x, α(y) = α(z) = y, and consider the monoid

homomorphism Φ: N → End(F )
Inn(F ) defined by Φ(n) = cl(αn), where N is the

monoid of natural numbers with the usual sum. Since the subgroups αn(F )
are not cyclic, CF (αn(F )) = {1} = Z(F ). Hence Φ is an admissible abstract
kernel.

Example 2.6. Let F(a, b) be the free monoid on two generators a and b,
and let F and α be as in the previous example. Define β ∈ End(F ) by
putting β(x) = x, β(y) = β(z) = z, and consider the monoid homomorphism

Φ: F(a, b)→ End(F )
Inn(F ) defined by Φ(a) = cl(α) and Φ(b) = cl(β). It is straight-

forward to check that αn = α, βn = β (for n ≥ 1), and that αβ = α, βα = β.
Hence, for any w ∈ F(a, b) \ {1}, we have Φ(w) = cl(α) or Φ(w) = cl(β).
Since the subgroups α(F ) and β(F ) are not cyclic, CF (α(F )) = CF (β(F )) =
{1} = Z(F ). Hence Φ is an admissible abstract kernel.

Remark 2.7. Note that, if CG(α(G)) = CG(β(G)) = Z(G) for α, β ∈
End(G), it is not true in general that CG(αβ(G)) = Z(G) or CG(βα(G)) =
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Z(G). As a counterexample, consider F and α as in Example 2.5, and β de-
fined by β(x) = β(y) = y, β(z) = z. Then CF (α(F )) = CF (β(F )) = {1} =
Z(F ), while CF (αβ(F )) and CF (βα(F )) coincide with the cyclic subgroup of
F generated by y.

Proposition 2.8. Let α ∈ End(G). CG(α(G)) = Z(G) if and only if the
following condition is satisfied for any g ∈ G: if µgα = α, then µg = idG.

Proof : Suppose that CG(α(G)) = Z(G) and that µgα = α. Then µgα(g′) =
α(g′) for all g′ ∈ G; that is

g + α(g′)− g = α(g′) for all g′ ∈ G.

This means that g ∈ CG(α(G)) = Z(G), and so µg = idG.
Conversely, suppose that, for all g ∈ G, if µgα = α, then µg = idG. If

r ∈ CG(α(G)), then for all g′ ∈ G:

r + α(g′)− r = α(g′).

This means that µrα = α; by assumption, we get µr = idG, and hence
r ∈ Z(G).

Corollary 2.9. Given g1, g2 ∈ G and α ∈ End(G) such that CG(α(G)) =
Z(G), if µg1α = µg2α, then µg1 = µg2.

We complete this section with the following simple but crucial consequence
of Definition 2.2.

Proposition 2.10. Let Φ: M → End(G)
Inn(G) be an admissible abstract kernel.

Then M acts on Z(G) as follows:

x · c = ϕ(x)(c) for x ∈M, c ∈ Z(G) and ϕ(x) ∈ Φ(x).

Proof : We have already seen that ϕ(x)(c) ∈ Z(G) for all x ∈M and c ∈ Z(G)
(see the paragraph after Definition 2.2). Now we show that the definition
of the action given above does not depend on the choice of ϕ(x) ∈ Φ(x). If
ψ(x) ∈ Φ(x) is another representative, then ψ(x) = µhϕ(x) for some h ∈ G.
Then

ψ(x)(c) = µhϕ(x)(c) = h+ ϕ(x)(c)− h = ϕ(x)(c),

where the last equality holds since ϕ(x)(c) ∈ Z(G). The fact that in this
way an action of the monoid M on the abelian group Z(G) is defined is a
straightforward verification.



THE THIRD COHOMOLOGY GROUP OF A MONOID AND ADMISSIBLE . . . 7

3. The product of admissible abstract kernels

Let Φ1 : M → End(G1)
Inn(G1) and Φ2 : M → End(G2)

Inn(G2) be admissible abstract kernels

such that Z(G1) = Z(G2) = C, inducing a fixed action Φ0 : M → End(C)
of M on C. We want to define a product of Φ1 and Φ2, i.e. an admissible

abstract kernel Φ: M → End(G)
Inn(G) such that Z(G) = C and inducing the same

action Φ0 of M on C. In order to do that, consider, as in [7], the following
subgroup of G1 ×G2:

S = { (c,−c) | c ∈ C }.
It is immediate to check that S is a normal subgroup of G1 × G2. We
then define G = G1×G2

S . There is a monomorphism j : C → G defined by
j(c) = cl(c, 0) = cl(0, c). Moreover, for all cl(u1, u2) ∈ Z(G) and all g1 ∈ G1

we have
cl(u1, u2) + cl(g1, 0) = cl(g1, 0) + cl(u1, u2),

hence
cl(u1 + g1, u2) = cl(g1 + u1, u2).

This means that
(u1 + g1, u2)− (g1 + u1, u2) ∈ S,

i.e. there exists c ∈ C such that

(u1 + g1, u2)− (g1 + u1, u2) = (c,−c).
From this we obtain

u1 + g1 − (g1 + u1) = c and u2 − u2 = −c,
and so c = 0 and u1 ∈ Z(G1) = C. Similarly one can prove that u2 ∈
Z(G2) = C. Hence

j(u1 + u2) = cl(u1 + u2, 0) = cl(u1, u2),

and this shows that j(C) = Z(G), so the center of G can be identified with
C.

Now we can define Φ: M → End(G)
Inn(G) . For x ∈ M , consider any repre-

sentatives ϕ1(x) ∈ Φ1(x), ϕ2(x) ∈ Φ2(x). We obtain an endomorphism
ϕ1(x)× ϕ2(x) : G1 ×G2 → G1 ×G2. For all c ∈ C, (ϕ1(x)× ϕ2(x))(c,−c) =
(ϕ1(x)(c),−ϕ2(x)(c)) = (x · c,−x · c) ∈ S since Φ1 and Φ2 are admissible
(see Proposition 2.10 and its proof). Hence we have (ϕ1(x)×ϕ2(x))(S) ⊆ S,
giving an endomorphism ϕ(x) : G→ G defined by

ϕ(x)(cl(g1, g2)) = cl(ϕ1(x)(g1), ϕ2(x)(g2)).
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If we choose different representatives ψ1(x) ∈ Φ1(x), ψ2(x) ∈ Φ2(x), we get
another endomorphism ψ(x) : G→ G given by

ψ(x)(cl(g1, g2)) = cl(ψ1(x)(g1), ψ2(x)(g2)).

ϕi(x) and ψi(x) differ by inner automorphisms, i.e. there are hi ∈ Gi (i =
1, 2) such that ϕi(x) = µhiψi(x). Now we show that ϕ(x) = µcl(h1,h2)ψ(x):

µcl(h1,h2)ψ(x)(cl(g1, g2)) = cl(h1, h2) + cl(ψ1(x)(g1), ψ2(x)(g2))− cl(h1, h2) =

= cl(h1+ψ1(x)(g1)−h1, h2+ψ2(x)(g2)−h2) = cl(µh1ψ1(x)(g1), µh2ψ2(x)(g2)) =

= cl(ϕ1(x)(g1), ϕ2(x)(g2)) = ϕ(x)(cl(g1, g2)).

Thus we obtain a well defined map Φ: M → End(G)
Inn(G) , given by Φ(x) = cl(ϕ(x)).

We have that Φ is a monoid homomorphism. Indeed, for x, y ∈M , consider
representatives ϕi(x) ∈ Φi(x), ϕi(y) ∈ Φi(y); we have

ϕi(x)ϕi(y) = µhiϕi(xy) for some hi ∈ Gi.

Then
ϕ(x)ϕ(y)(cl(g1, g2)) = ϕ(x)(cl(ϕ1(y)(g1), ϕ2(y)(g2))) =

= cl(ϕ1(x)ϕ1(y)(g1), ϕ2(x)ϕ2(y)(g2)) = cl(µh1ϕ1(xy)(g1), µh2ϕ2(xy)(g2)) =

= cl(h1 + ϕ1(xy)(g1)− h1, h2 + ϕ2(xy)(g2)− h2) =

= cl(h1, h2)+cl(ϕ1(xy)(g1), ϕ2(xy)(g2))−cl(h1, h2) = µcl(h1,h2)ϕ(xy)(cl(g1, g2)).

Hence ϕ(x)ϕ(y) = µcl(h1,h2)ϕ(xy), and so

Φ(xy) = cl(ϕ(xy)) = cl(ϕ(x)ϕ(y)) = cl(ϕ(x))cl(ϕ(y)) ∈ Φ(x)Φ(y),

and clearly Φ(1) = cl(ϕ(1)) = cl(idG) = idEnd(G)
Inn(G)

.

It remains to show that Φ is admissible. Let cl(r1, r2) ∈ CG(ϕ(x)(G)); for
every g1 ∈ G1 we have

cl(r1, r2) + ϕ(x)(cl(g1, 0)) = ϕ(x)(cl(g1, 0)) + cl(r1, r2),

hence

cl(r1, r2) + cl(ϕ1(x)(g1), 0) = cl(ϕ1(x)(g1), 0) + cl(r1, r2),

which means that

cl(r1 + ϕ1(x)(g1), r2) = cl(ϕ1(x)(g1) + r1, r2),

or, in other terms,

(r1 + ϕ1(x)(g1), r2)− (ϕ1(x)(g1) + r1, r2) = (c,−c)
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for some c ∈ C. Then c = 0 and hence

r1 + ϕ1(x)(g1) = ϕ1(x)(g1) + r1,

from which we get that r1 ∈ CG1
(ϕ1(x)(G1)) = C. Similarly one proves that

r2 ∈ C. Hence

cl(r1, r2) = cl(r1 + r2, 0) = j(r1 + r2) ∈ j(C) = C

and Φ is admissible. Finally, the action of M on C induced by Φ is the same
as the one induced by Φ1 and Φ2, i.e Φ0 : M → End(C). Indeed:

x · j(c) = ϕ(x)(cl(c, 0)) = cl(ϕ1(x)(c), ϕ2(x)(0)) = cl(x · c, 0) = x · c
for all x ∈M and c ∈ C.

Then, on the class of admissible abstract kernels inducing the action Φ0 of
M on C, we have a well defined binary operation ⊗, given by

(M,G1,Φ1)⊗ (M,G2,Φ2) = (M,G,Φ).

We want this operation to give a monoid structure. In order to have this,
we need to identify admissible abstract kernels by means of the following
equivalence relation:

Definition 3.1. Two admissible abstract kernels Φ1 : M → End(G1)
Inn(G1) and

Φ2 : M → End(G2)
Inn(G2) inducing the same M-action on C = Z(G1) = Z(G2)

are C-equivalent if there exists a group isomorphism ξ : G1 → G2 satisfying
the two following conditions:

(i) for all c ∈ C, ξ(c) = c;
(ii) for all x ∈M and all ϕ1(x) ∈ Φ1(x), ξϕ1(x)ξ−1 ∈ Φ2(x).

Condition (ii) can be expressed by the commutativity of the following triangle:

M
Φ1 //

Φ2 !!

End(G1)
Inn(G1)

ξ
��

End(G2)
Inn(G2) ,

where ξ(cl(α)) = cl(ξαξ−1).

We will write (M,G1,Φ1)
C∼= (M,G2,Φ2) to denote that Φ1 and Φ2 are C-

equivalent. It is clear that
C∼= is an equivalence relation.



10 N. MARTINS-FERREIRA, A. MONTOLI, A. PATCHKORIA AND M. SOBRAL

The proofs of the following facts are analogous to the corresponding ones
in [7] for the case of the classical abstract kernels, that is, for the case of

abstract kernels of the form Φ: Π→ Aut(G)
Inn(G) , where Π and G are groups. We

give them in details for the sake of completeness.

Proposition 3.2. The definition of the binary operation ⊗ is compatible with
the C-equivalence.

Proof : Suppose that (M,G1,Φ1)⊗(M,G2,Φ2) = (M,G,Φ) and (M,G′1,Φ
′
1)⊗

(M,G′2,Φ
′
2) = (M,G′,Φ′) and that Φi

C∼= Φ′i. Then there are isomorphisms
ξi : Gi → G′i satisfying the conditions (i) and (ii) above. They induce an
isomorphism ξ1×ξ2 : G1×G2 → G′1×G′2, and since (ξ1×ξ2)(c,−c) = (c,−c),
we get an isomorphism

ξ : G =
G1 ×G2

S
→ G′ =

G′1 ×G′2
S

given by ξ(cl(g1, g2)) = cl(ξ1(g1), ξ2(g2)),

and clearly ξ(c) = ξ(cl(c, 0)) = cl(ξ1(c), 0) = cl(c, 0) = c. It remains to show
that the triangle

M
Φ //

Φ′ !!

End(G)
Inn(G)

ξ
��

End(G′)
Inn(G′)

commutes, where ξ is defined as in Definition 3.1. For x ∈ M and ϕ(x) ∈
Φ(x), we have

ϕ(x)(cl(g1, g2)) = cl(ϕ1(x)(g1), ϕ2(x)(g2)) with ϕi(x) ∈ Φi(x),

and, by assumption, ϕ′i(x) = ξiϕi(x)ξ−1
i ∈ Φ′i(x). Hence, defining ϕ′(x) ∈

Φ′(x) by
ϕ′(x)(cl(g′1, g

′
2)) = cl(ϕ′1(x)(g′1), ϕ

′
2(x)(g′2)),

we have that

ξϕ(x)ξ−1(cl(g′1, g
′
2)) = cl(ξ1ϕ1(x)ξ−1

1 (g′1), ξ2ϕ2(x)ξ−1
2 (g′2)) =

= cl(ϕ′1(x)(g′1), ϕ
′
2(x)(g′2)) = ϕ′(x)(cl(g′1, g

′
2)),

and so ξϕ(x)ξ−1 = ϕ′(x) ∈ Φ′(x).

Proposition 3.3. The neutral element of ⊗ is Φ0 : M → End(C), the fixed
M-action on C.
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Proof : Given an admissible abstract kernel Φ: M → End(G)
Inn(G) inducing the

action Φ0 of M on C, we want to show that (M,G,Φ) ⊗ (M,C,Φ0) is C-
equivalent to (M,G,Φ). Let us consider the map ξ : G → G×C

S defined by
ξ(g) = cl(g, 0). It is clearly a group homomorphism, and moreover ξ(c) =
cl(c, 0) = c (identifying j(C) with C). Its inverse ξ−1 given by ξ−1(cl(g, c)) =
g + c is well defined. Indeed, cl(g, c) = cl(g′, c′) if and only if

(g, c)− (g′, c′) = (c1,−c1) for some c1 ∈ C,

i.e. if and only if

g − g′ = c1, c− c′ = −c1 ⇔ g − g′ = c′ − c ⇔ g + c = g′ + c′.

The fact that ξ−1ξ is the identity is obvious. Concerning the other composi-
tion:

ξξ−1(cl(g, c)) = ξ(g + c) = cl(g + c, 0) = cl(g, c).

It remains to show that the following triangle commutes:

M
Φ //

Ψ ""

End(G)
Inn(G)

ξ
��

End(G×C
S )

Inn(G×C
S )

,

where ξ is defined as in Definition 3.1 and Ψ is given, for x ∈M and ϕ(x) ∈
Φ(x), by

ψ(x)(cl(g, c)) = cl(ϕ(x)(g), x · c).
We have to show that, if ϕ(x) ∈ Φ(x), then ξϕ(x)ξ−1 ∈ Ψ(x). We have that

ψ(x)(cl(g, c)) = cl(ϕ(x)(g), x · c) = cl(ϕ(x)(g) + x · c, 0) =

= ξ(ϕ(x)(g)+x·c) = ξ(ϕ(x)(g)+ϕ(x)(c)) = ξϕ(x)(g+c) = ξϕ(x)ξ−1(cl(g, c)),

and so ξϕ(x)ξ−1 = ψ(x) ∈ Ψ(x).

So we proved that the set M(M,C) of C-equivalence classes [M,G,Φ] of
admissible abstract kernels, inducing the fixed M -action Φ0 : M → End(C)
on the group C, is a unitary magma w.r.t. the product defined above. Our
aim now is to show that it is actually a commutative monoid. In order to
prove associativity, we start with some preliminary lemmas.
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Lemma 3.4. Given two admissible abstract kernels Φ1 : M → End(G1)
Inn(G1) and

Φ2 : M → End(G2)
Inn(G2) , inducing the same M-action on C = Z(G1) = Z(G2), and

their product Φ: M → End(G)
Inn(G) , in G we have that

cl(g1, g2) = c ∈ C if and only if gi = ci for some c1, c2 ∈ C with c1 + c2 = c.

Proof : If cl(g1, g2) = cl(c, 0) = c, then there exists c′ ∈ C such that

(g1, g2)− (c, 0) = (c′,−c′);

then

g1 − c = c′, g2 = −c′,
so, putting c1 = c+ c′ and c2 = −c′ we get the thesis. Conversely,

cl(g1, g2) = cl(c1, c2) = cl(c1 + c2, 0) = cl(c, 0) = c.

Lemma 3.5. Given three admissible abstract kernels Φi : M → End(Gi)
Inn(Gi)

, i =

1, 2, 3, inducing the same M-action on C = Z(Gi), consider the product

Φ: M → End(G)
Inn(G) of Φ1 and Φ2 and the product Φ] : M → End(G])

Inn(G])
of Φ and Φ3,

so that

(M,G],Φ]) = ((M,G1,Φ1)⊗ (M,G2,Φ2))⊗ (M,G3,Φ3).

Then, in G] = ((G1×G2)/S)×G3

S , we have that cl(cl(g1, g2), g3) = cl(cl(g′1, g
′
2), g

′
3)

if and only if

g1 − g′1 = c1, g2 − g′2 = c2, g3 − g′3 = −(c1 + c2), with c1, c2 ∈ C.

Proof : If cl(cl(g1, g2), g3) = cl(cl(g′1, g
′
2), g

′
3), then there exists c ∈ C such that

(cl(g1, g2), g3)− (cl(g′1, g
′
2), g

′
3) = (c,−c),

hence

cl(g1 − g′1, g2 − g′2) = c, g3 − g′3 = −c.
Thanks to the previous lemma, we know that there exist c1, c2 ∈ C such that

g1 − g′1 = c1, g2 − g′2 = c2, c1 + c2 = c,

and so

g1 − g′1 = c1, g2 − g′2 = c2, g3 − g′3 = −c = −(c1 + c2).
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Conversely,

(cl(g1, g2), g3)− (cl(g′1, g
′
2), g

′
3) = (cl(g1, g2)− cl(g′1, g′2), g3 − g′3) =

= (cl(g1 − g′1, g2 − g′2), g3 − g′3) = (cl(c1, c2),−(c1 + c2)) =

= (cl(c1 + c2, 0),−(c1 + c2)) = (c1 + c2,−(c1 + c2)),

and so cl(cl(g1, g2), g3) = cl(cl(g′1, g
′
2), g

′
3).

In the same way one can prove the following

Lemma 3.6. Given three admissible abstract kernels Φi : M → End(Gi)
Inn(Gi)

, i =

1, 2, 3, inducing the same M-action on C = Z(Gi), consider the product

Ψ: M → End(H)
Inn(H) of Φ2 and Φ3 and the product Ψ] : M → End(H])

Inn(H])
of Φ1 and

Ψ, so that

(M,H],Ψ]) = (M,G1,Φ1)⊗ ((M,G2,Φ2)⊗ (M,G3,Φ3)).

Then, in H] = G1×((G2×G3)/S)
S , we have that cl(g1, cl(g2, g3)) = cl(g′1, cl(g

′
2, g
′
3))

if and only if

g2 − g′2 = c2, g3 − g′3 = c3, g1 − g′1 = −(c2 + c3), with c2, c3 ∈ C.

Proposition 3.7. The unitary magma M(M,C) is a monoid.

Proof : Using the notation of the previous lemmas, we have to show that

Φ] : M → End(G])
Inn(G])

and Ψ] : M → End(H])
Inn(H])

are C-equivalent. To do that, first

we have to build a group isomorphism

ξ :
((G1 ×G2)/S)×G3

S
→ G1 × ((G2 ×G3)/S)

S
.

ξ is defined by ξ(cl(cl(g1, g2), g3)) = cl(g1, cl(g2, g3)). It is well defined, indeed,
if

cl(cl(g1, g2), g3) = cl(cl(g′1, g
′
2), g

′
3),

then, thanks to Lemma 3.5, there exist c1, c2 ∈ C such that

g1 − g′1 = c1, g2 − g′2 = c2, g3 − g′3 = −(c1 + c2).

Putting c′2 = c2 and c′3 = −(c1 + c2), we get that

g2 − g′2 = c′2, g3 − g′3 = c′3, g1 − g′1 = c1 = −(c2 − (c1 + c2)) = −(c′2 + c′3),

and then, by Lemma 3.6, we conclude that

cl(g1, cl(g2, g3)) = cl(g′1, cl(g
′
2, g
′
3)).
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The fact that ξ is a group homomorphism is obvious. Its inverse ξ−1 is defined
by

ξ−1(cl(g1, cl(g2, g3))) = (cl(cl(g1, g2), g3)).

The proof that ξ−1 is a well defined map is similar to the one for ξ, and it
is obvious that these two maps are inverse to each other. Moreover, for all
c ∈ C:

ξ(c) = ξ(cl(c, 0)) = cl(c, cl(0, 0)) = cl(c, 0) = c.

It remains to show that the following triangle commutes:

M
Φ]
//

Ψ\ !!

End(G])
Inn(G])

ξ
��

End(H])
Inn(H])

,

where ξ(cl(α)) = cl(ξαξ−1). Consider the representatives ϕ](x) ∈ Φ](x),
ψ](x) ∈ Ψ](x), where

ϕ](x)(cl(cl(g1, g2), g3)) = (cl(cl(ϕ1(x)(g1), ϕ2(x)(g2)), ϕ3(x)(g3))),

ψ](x)(cl(g1, cl(g2, g3))) = cl(ϕ1(x)(g1), cl(ϕ2(x)(g2), ϕ3(x)(g3))),

with ϕi(x) ∈ Φi(x). Then

ξϕ](x)ξ−1(cl(g1, cl(g2, g3))) = ξϕ](x)(cl(cl(g1, g2), g3)) =

= ξ((cl(cl(ϕ1(x)(g1), ϕ2(x)(g2)), ϕ3(x)(g3)))) =

= cl(ϕ1(x)(g1), cl(ϕ2(x)(g2), ϕ3(x)(g3))) = ψ](x)(cl(g1, cl(g2, g3))),

and hence ξϕ](x)ξ−1 = ψ](x) ∈ Ψ](x).

Proposition 3.8. The monoid M(M,C) is commutative.

Proof : Given two admissible abstract kernels Φi : M → End(Gi)
Inn(Gi)

, i = 1, 2, in-

ducing the sameM -action on C = Z(Gi), consider the products (M,G1,Φ1)⊗
(M,G2,Φ2) = (M,G,Φ) and (M,G2,Φ2)⊗ (M,G1,Φ1) = (M,G′,Ψ), where
G = G1×G2

S and G′ = G2×G1

S . It is clear that the twisting isomorphism G1 ×
G2 → G2 × G1 gives an isomorphism ξ : G → G′, defined by ξ(cl(g1, g2)) =
cl(g2, g1), such that ξ(c) = c for all c ∈ C. To conclude the proof, consider
the representatives ϕ(x) ∈ Φ(x), ψ(x) ∈ Ψ(x), where

ϕ(x)(cl(g1, g2)) = cl(ϕ1(x)(g1), ϕ2(x)(g2)),

ψ(x)(cl(g2, g1)) = cl(ϕ2(x)(g2), ϕ1(x)(g1)),
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with ϕi(x) ∈ Φi(x). Then

ξϕ(x)ξ−1(cl(g2, g1)) = ξϕ(x)(cl(g1, g2)) = ξ(cl(ϕ1(x)(g1), ϕ2(x)(g2))) =

cl(ϕ2(x)(g2), ϕ1(x)(g1)) = ψ(x)(cl(g2, g1)),

hence ξϕ(x)ξ−1 = ψ(x) ∈ Ψ(x).

Our aim, now, is to introduce a suitable submonoid L(M,C) of M(M,C)
such that the quotient monoid becomes an abelian group. In order to do
that, in the next section we will consider the notion of extendable admissible
abstract kernel.

4. Extendable admissible abstract kernels
We recall from [2, 13, 14] the following

Definition 4.1. Let

E : 0 // G // κ // B
σ // // M // 1 (1)

be a sequence of monoids and monoid homomorphisms such that σ is a sur-
jection, κ is an injection and κ(G) = {b ∈ B |σ(b) = 1} (i.e. κ is the kernel
of σ). E is a special Schreier extension of M by G (some authors would say
“G by M” ) if, for every b1, b2 ∈ B such that σ(b1) = σ(b2), there exists a
unique g ∈ G such that

b2 = g + b1,

where we treat κ just as an inclusion (again, we use the multiplicative nota-
tion for M and the additive one for the other monoids involved).

The word “special” is motivated by the fact that these extensions are spe-
cial cases of the Schreier extensions in the sense of [19] (see also [17, 18]).
It is easily seen that, in a special Schreier extension (1), the monoid G is
necessarily a group.

Let us now show how to associate an abstract kernel to a special Schreier
extension (1). First note that σ is the cokernel of κ. Indeed, suppose that
f : B → M ′ is a monoid homomorphism such that f(g) = 1M ′ for all g ∈ G.
Define f ′ : M → M ′ by putting f ′(x) = f(b), b ∈ σ−1(x). If σ(b1) = x =
σ(b2), then b2 = g + b1, whence f(b2) = f(b1). Hence f ′ is well defined.
Clearly, f ′ is a monoid homomorphism and f ′σ = f . The uniqueness of such
a homomorphism f ′ is also clear. Furthermore, for every b ∈ B and every
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g ∈ G, there is a unique g′ ∈ G such that b + g = g′ + b. This defines an
endomorphism θ(b) : G→ G sending g to g′ (b+ g1 + g2 = θ(b)(g1) + b+ g2 =
θ(b)(g1) + θ(b)(g2) + b, whence θ(b)(g1 + g2) = θ(b)(g1) + θ(b)(g2)). Moreover,
we get a monoid homomorphism θ : B → End(G), which sends b to θ(b)
(θ(0) = 1G and b1 + b2 + g = b1 + θ(b2)(g) + b2 = θ(b1)(θ(b2)(g)) + b1 + b2,
whence θ(b1 + b2)(g) = (θ(b1)θ(b2))(g)). For g ∈ G, it is immediate to see
that θ(g) = µg ∈ Inn(G). Hence, since σ is the cokernel of κ, we get
the abstract kernel Φ via the universal property of the cokernel, as in the
following diagram:

G // κ // B

θ
��

σ // // M

Φ
��

End(G) p
// End(G)
Inn(G) .

(2)

More explicitly, Φ(x) = pθ(b) = cl(θ(b)) for any b such that σ(b) = x.

Given a special Schreier extension (1), for every b ∈ B one always has that
b + G ⊆ G + b (and so G is right normal in B), but the other inclusion is
false, in general. The set

Gb = { g ∈ G | ḡ + b = b+ g for some g ∈ G }

measures the difference between the two cosets (in other words, the sets Gb

measure how far G is from being a normal subgroup of B).

Lemma 4.2. Gb is a subgroup of G.

Proof : If g1, g2 ∈ Gb, then

g1 + b = b+ g1, g2 + b = b+ g2 for some g1, g2 ∈ G.

Then

g1 + g2 + b = g1 + b+ g2 = b+ g1 + g2,

and so g1 + g2 ∈ Gb. Furthermore, if g ∈ Gb, then g + b = b + g for some
g ∈ G. Hence −g + b = b+ (−g), and −g ∈ Gb.

Definition 4.3. A special Schreier extension (1) is admissible if, for all
b ∈ B, CG(Gb) = Z(G).

Lemma 4.4. In the notation of diagram (2), for all b ∈ B one has θ(b)(G) =
Gb.
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Proof : If g ∈ θ(b)(G), then g = θ(b)(g1) for some g1 ∈ G. Hence

b+ g1 = θ(b)(g1) + b = g + b

and g ∈ Gb. Conversely, if g ∈ Gb, then there exists g1 ∈ G such that
g + b = b+ g1. Thus, we have

b+ g1 = g + b and b+ g1 = θ(b)(g1) + b,

whence, by the uniqueness in the Schreier condition, we get that g = θ(b)(g1),
and so g ∈ θ(b)(G).

Proposition 4.5. If an abstract kernel Φ: M → End(G)
Inn(G) is induced by a special

Schreier extension E, then Φ is admissible if and only if E is admissible.

Proof : Suppose E is admissible. Then, for all b ∈ B, CG(Gb) = Z(G). By the
previous lemma, this means that CG(θ(b)(G)) = Z(G). Let x = σ(b). Then
θ(b) ∈ Φ(x), and hence Φ is admissible (see Proposition 2.3). Conversely,
suppose Φ is admissible. If b ∈ B, then Φ(σ(b)) = cl(θ(b)). By admissibility
of Φ, we know that CG(θ(b)(G)) = Z(G). Since θ(b)(G) = Gb, thanks to the
previous lemma, we get that E is admissible.

Definition 4.6. We say that an admissible abstract kernel Φ: M → End(G)
Inn(G) is

extendable if it is induced by a special Schreier extension (which is necessarily
admissible because of the previous proposition).

Suppose that admissible abstract kernels (M,G,Φ) and (M,G′,Φ′) induc-
ing the same M -action on C = Z(G) = Z(G′) are C-equivalent. Then,
(M,G,Φ) is extendable if and only if so is (M,G′,Φ′). Indeed, if (M,G,Φ)
is induced by a special Schreier extension (1), then (M,G′,Φ′) is induced

by a special Schreier extension E ′ : 0 // G′ //
κξ−1

// B
σ // // M // 1 , where

ξ : G → G′ is an isomorphism realizing the C-equivalence (M,G,Φ)
C∼=

(M,G′,Φ′) (see Definition 3.1). The set of C-equivalence classes of extend-
able admissible abstract kernels inducing the same M -action on C will be
denoted by L(M,C).

Proposition 4.7. If (M,G1,Φ1) and (M,G2,Φ2) are extendable admissible
abstract kernels inducing the same action on C, then their product

(M,G,Φ) = (M,G1,Φ1)⊗ (M,G2,Φ2)

is extendable as well.
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Proof : If Φ1 and Φ2 are extendable, then they are induced by admissible
special Schreier extensions E1 and E2, as in the following diagrams:

E1 : G1
//

κ1 // B1

θ1
��

σ1 // // M

Φ1
��

End(G1) p1
// End(G1)
Inn(G1) ,

E2 : G2
//

κ2 // B2

θ2
��

σ2 // // M

Φ2
��

End(G2) p2
// End(G2)
Inn(G2) .

Consider the pullback

R

π1
��

π2 // B2

σ2
��

B1 σ1
// M,

i.e. the monoid R = {(b1, b2) ∈ B1 × B2 | σ1(b1) = σ2(b2)}. Clearly S =
{(c,−c) | c ∈ C} is a submonoid of R. Moreover, S is right normal in R,
i.e. (b1, b2) + S ⊆ S + (b1, b2) for all (b1, b2) ∈ R. Indeed, if (b1, b2) ∈ R and
(c,−c) ∈ S, using the admissibility of Φ1 and Φ2 we get that

θ1(b1)(c) = θ2(b2)(c) = x · c,
where x = σ1(b1) = σ2(b2). Then we have

(b1, b2) + (c,−c) = (b1 + c, b2 − c) = (θ1(b1)(c) + b1, θ2(b2)(−c) + b2) =

= (x · c+ b1,−x · c+ b2) = (x · c,−x · c) + (b1, b2),

and (x · c,−x · c) ∈ S. Let us then put B = R
S and consider the following

sequence:

E : 0 // G // κ // B
σ // // M // 1,

where

G =
G1 ×G2

S
, κ(cl(g1, g2)) = cl(g1, g2), and σ(cl(b1, b2)) = σ1(b1) = σ2(b2).

We want to show that E is a special Schreier extension which induces the
product Φ of Φ1 and Φ2. It is immediate to see that κ is a well defined injec-
tive homomorphism. σ is well defined, too. Indeed, if cl(b1, b2) = cl(b′1, b

′
2),

then there exists c ∈ C such that

(b′1, b
′
2) = (c,−c) + (b1, b2).

Then b′1 = c + b1, b
′
2 = −c + b2, and so σi(b

′
i) = σi(bi), i = 1, 2. Clearly σ

is a monoid homomorphism. It is surjective, since for all x ∈ M there exist
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bi ∈ Bi, i = 1, 2, with σi(bi) = x; then σ(cl(b1, b2)) = x. Moreover σκ = 0,
indeed σκ(cl(g1, g2)) = σ1(g1) = 1. So, κ(G) ⊆ Ker(σ). To show the other
inclusion, suppose that σ(cl(b1, b2)) = 1. Then σ1(b1) = σ2(b2) = 1. Since
κi is the kernel of σi, we know that bi = κi(gi) for some gi ∈ Gi. Hence
κ(cl(g1, g2)) = cl(b1, b2).

Let us now check the Schreier condition. Suppose that σ(cl(b′1, b
′
2)) =

σ(cl(b1, b2)). Then

σ1(b
′
1) = σ1(b1) = σ2(b2) = σ2(b

′
2).

E1 and E2 are special Schreier extensions, so there are unique gi ∈ Gi such
that b′i = gi + bi. Hence

cl(b′1, b
′
2) = cl(g1, g2) + cl(b1, b2).

To prove the uniqueness of the element cl(g1, g2) satisfying the last equality,
it suffices to show that, if cl(g1, g2) + cl(b1, b2) = cl(b1, b2), then cl(g1, g2) = 0.
So, suppose that cl(g1, g2) + cl(b1, b2) = cl(b1, b2). Then

(g1 + b1, g2 + b2) = (c,−c) + (b1, b2) for some c ∈ C.

Then g1 + b1 = c + b1, g2 + b2 = −c + b2. Being E1 and E2 special Schreier
extensions, this gives that (g1, g2) = (c,−c), and so cl(g1, g2) = 0.

It remains to show that E induces the admissible abstract kernel Φ. Let
us call Ψ the abstract kernel induced by E, as in the following diagram:

G // κ // B

θ
��

σ // // M

Ψ
��

End(G) p
// End(G)
Inn(G) .

Then, for x ∈ M , Ψ(x) = cl(θ(cl(b1, b2))), where σ(cl(b1, b2)) = σ1(b1) =
σ2(b2) = x. By construction of θ1 and θ2, we have that

b1 + g1 = θ1(b1)(g1) + b1, b2 + g2 = θ2(b2)(g2) + b2.

Hence, on one hand

cl(b1, b2) + cl(g1, g2) = cl(θ1(b1)(g1), θ2(b2)(g2)) + cl(b1, b2);

on the other hand, since E is a special Schreier extension, we have that

cl(b1, b2) + cl(g1, g2) = θ(cl(b1, b2))(cl(g1, g2)) + cl(b1, b2),
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by construction of θ. Thanks to the uniqueness in the Schreier condition, we
obtain that

θ(cl(b1, b2))(cl(g1, g2)) = cl(θ1(b1)(g1), θ2(b2)(g2)).

Moreover, we know that Φ is defined by Φ(x) = cl(ϕ(x)), where

ϕ(x)(cl(g1, g2)) = cl(θ1(b1)(g1), θ2(b2)(g2)).

Hence θ(cl(b1, b2)) = ϕ(x), and consequently Ψ(x) = Φ(x) for all x ∈M .

Since the “zero” abstract kernel Φ0 : M → End(C) is clearly extendable (it
is induced by the special Schreier extension given by the semidirect product
of M and C), we get the following

Corollary 4.8. The set L(M,C) of C-equivalence classes of extendable ad-
missible abstract kernels inducing the same action of M on C is a submonoid
of the monoid M(M,C).

Using the fact that the monoidM(M,C) is commutative, in the next sec-
tion we will observe that we can consider a suitable factor monoid A(M,C) =
M(M,C)
L(M,C) , and we will prove that this factor monoid is actually an abelian

group, following essentially the same idea of [7] for the case of abstract ker-

nels of the form Φ: Π→ Aut(G)
Inn(G) with Π and G are groups.

5. The group structure of admissible abstract kernels
We begin this section by recalling a general fact. If A is a commutative

monoid, and B ⊆ A is a submonoid, the relation ∼ on A defined by

a1 ∼ a2 ⇐⇒ ∃ b1, b2 ∈ B such that a1 + b1 = a2 + b2

is a congruence on A. We denote the factor monoid A
∼ by A

B . It is easy to

check that A
B is a group as soon as the following condition is satisfied: for

all a ∈ A there exists a′ ∈ A such that a + a′ ∈ B. We will use this fact,
together with the results of the previous sections, to show that the factor

monoid A(M,C) = M(M,C)
L(M,C) is an abelian group.

Given an admissible abstract kernel Φ: M → End(G)
Inn(G) , let us denote by G∗

the opposite group of G: as a set, G∗ = G, but we will denote the elements
of G∗ with g∗, for g ∈ G. Then the group operation in G∗ is defined by
g∗ + h∗ = (h + g)∗, and so the inverse of an element g∗ is (−g)∗. We will
simply write c for the elements c∗ of C∗ = Z(G∗) = Z(G) = C. Given an
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endomorphism α : G→ G, we get an endomorphism α∗ : G∗ → G∗ simply by
putting α∗(g∗) = (α(g))∗. In this way, it is obvious that (βα)∗ = β∗α∗ and
that (µg)

∗ = µ−g∗ for g ∈ G.

Hence we can define an abstract kernel Φ∗ : M → End(G∗)
Inn(G∗) by putting, for

x ∈M , Φ∗(x) = cl(ϕ∗(x)), where ϕ∗(x) = (ϕ(x))∗, with ϕ(x) ∈ Φ(x).

Lemma 5.1. The abstract kernel Φ∗ is admissible.

Proof : Let r∗ ∈ CG∗(ϕ∗(x)(G∗)). Then, for all g ∈ G,

r∗ + ϕ∗(x)(g∗) = ϕ∗(x)(g∗) + r∗.

This means that
r∗ + (ϕ(x)(g))∗ = (ϕ(x)(g))∗ + r∗,

hence
(ϕ(x)(g) + r)∗ = (r + ϕ(x)(g))∗,

i.e.
ϕ(x)(g) + r = r + ϕ(x)(g).

But the abstract kernel Φ is admissible, so r = r∗ ∈ C, giving that Φ∗ is
admissible, too.

We also observe that the action of M on C induced by Φ∗ is the same that
Φ induces, since

ϕ∗(x)(c) = (ϕ(x)(c))∗ = (x · c)∗ = x · c
for all x ∈M and all c ∈ C.

Our goal now is to show that, for any admissible abstract kernel (M,G,Φ),
the product (M,G,Φ) ⊗ (M,G∗,Φ∗) is extendable. In order to do that,
we first build an admissible special Schreier extension, and then we will
show that the abstract kernel induced by it is C-equivalent to (M,G,Φ) ⊗
(M,G∗,Φ∗).

Let B be the set

B = {(g, α, x) | g ∈ G, x ∈M,α ∈ Φ(x)}.
We define on B the following binary operation:

(g, α, x) + (h, β, y) = (g + α(h), αβ, xy).
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It is easy to see that (B,+) is a monoid, with neutral element (0, idG, 1).
Consider then the following sequence:

E : 0 // K // κ // B
σ // // M // 1,

where σ(g, α, x) = x, K is the kernel of σ and κ is the canonical inclusion.
Explicitly

K = {(g, α, 1) | g ∈ G,α ∈ Φ(1)} = {(g, µh, 1) | g, h ∈ G}.
Moreover, K is a group. Indeed, for all g, h ∈ G we have that

(g, µh, 1) + (−h− g + h, µ−h, 1) = (g + µh(−h− g + h), µhµ−h, 1) =

= (g + h− h− g + h− h, µh−h, 1) = (0, µ0, 1) = (0, idG, 1) = 1K .

Lemma 5.2. Z(K) = {(c, idG, 1) | c ∈ C} and so can be identified with C.

Proof : If (s, µh, 1) ∈ Z(K), then for all r ∈ G we have

(s, µh, 1) + (0, µr, 1) = (0, µr, 1) + (s, µh, 1);

hence
(s, µh+r, 1) = (µr(s), µr+h, 1),

and from this we get that s+r = r+s for all r ∈ G, i.e. s ∈ C. Furthermore,
for all g ∈ G we have that

(s, µh, 1) + (g, idG, 1) = (g, idG, 1) + (s, µh, 1),

and so
(s+ µh(g), µh, 1) = (g + s, µh, 1).

From this, using that C = Z(G) is a group, we get that, for all g ∈ G
s+ µh(g) = g + s =⇒ s+ µh(g) = s+ g =⇒ µh(g) = g,

so that µh = idG and (s, µh, 1) ∈ { (c, idG, 1) | c ∈ C }. The converse
inclusion is obvious.

Lemma 5.3. E is a special Schreier extension.

Proof : Given x ∈ M and (g, α, x), (h, β, x) ∈ σ−1(x), we have that there
exists s ∈ G such that α = µsβ (because α and β both belong to Φ(x)).
Hence

(g + s− h− s, µs, 1) + (h, β, x) = (g + s− h− s+ µs(h), µsβ, x) =

= (g + s− h− s+ s+ h− s, α, x) = (g, α, x).
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As for uniqueness, if

(g, µs, 1) + (h, α, x) = (h, α, x),

then
(g + µs(h), µsα, x) = (h, α, x),

and so
g + µs(h) = h and µsα = α.

From the first equality we get g+ s+h− s = h, while from the second, using
the admissibility of Φ, we obtain that µs = idG (see Proposition 2.8). Hence
s ∈ C, and consequently g + h = h. But h is cancellable, so we get g = 0,
whence (g, µs, 1) = (0, idG, 1) = 1B.

Consider now the abstract kernel Ψ induced by the special Schreier exten-
sion E:

K // κ // B

θ
��

σ // // M

Ψ
��

End(K) p
// End(K)
Inn(K) .

Given x ∈M and choosing (0, α, x) ∈ σ−1(x), we know that Ψ is defined by
Ψ(x) = cl(θ(0, α, x)). Given (g, µh, 1) ∈ K, on one hand, since E is a special
Schreier extension, we have

(0, α, x) + (g, µh, 1) = θ(0, α, x)(g, µh, 1) + (0, α, x)

by construction of θ, and on the other hand

(0, α, x) + (g, µh, 1) = (α(g), αµh, x) = (α(g), µα(h)α, x) =

= (α(g), µα(h), 1) + (0, α, x).

Thanks to the uniqueness in the Schreier condition, we get that θ(0, α, x)(g, µh, 1) =
(α(g), µα(h), 1).

Lemma 5.4. The abstract kernel Ψ is admissible.

Proof : We have to show that, for (0, α, x) ∈ B, CK(θ(0, α, x)(K)) = C. If
(r, µh, 1) ∈ CK(θ(0, α, x)(K)) and g ∈ G, then

(r, µh, 1) + θ(0, α, x)(0, µg, 1) = θ(0, α, x)(0, µg, 1) + (r, µh, 1).

Using the previous expression for θ, this is the same as

(r, µh, 1) + (0, µα(g), 1) = (0, µα(g), 1) + (r, µh, 1),
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i.e.
(r, µhµα(g), 1) = (µα(g)(r), µα(g)µh, 1).

Hence, for all g ∈ G:

r = µα(g)(r) =⇒ r = α(g) + r − α(g),

which means that r ∈ CG(α(G)) = C (because Φ was admissible). Moreover,
for all g ∈ G

(r, µh, 1) + θ(0, α, x)(g, µ0, 1) = θ(0, α, x)(g, µ0, 1) + (r, µh, 1),

which is the same as

(r, µh, 1) + (α(g), µ0, 1) = (α(g), µ0, 1) + (r, µh, 1),

i.e.
(r + µh(α(g)), µh, 1) = (α(g) + r, µh, 1).

From this we get

r + µh(α(g)) = α(g) + r = r + α(g),

so that
h+ α(g)− h = α(g).

Hence h ∈ CG(α(G)) = C since Φ is admissible. Thus µh = idG and
(r, µh, 1) = (r, idG, 1) ∈ C.

So we conclude that the admissible abstract kernel (M,K,Ψ) is extendable.
Furthermore, the action of M on C induced by Ψ is the same as the one
induced by (M,G,Φ), indeed:

θ(0, α, x)(c) = θ(0, α, x)(c, idG, 1) = θ(0, α, x)(c, µ0, 1) =

= (α(x)(c), µα(x)(0), 1) = (x · c, idG, 1) = x · c.

Proposition 5.5. The product (M,G,Φ) ⊗ (M,G∗,Φ∗) is C-equivalent to
(M,K,Ψ).

Proof : Let us denote by (M, G×G
∗

S ,Φ′) the product (M,G,Φ)⊗ (M,G∗,Φ∗).
In order to show that it is C-equivalent to (M,K,Ψ), we consider the map
ξ : G×G∗

S → K defined by

ξ(cl(g, h∗)) = (g + h, µ−h, 1).

This definition is well given. Indeed, if cl(g1, h
∗
1) = cl(g2, h

∗
2), then

(g1, h
∗
1)− (g2, h

∗
2) = (c,−c) for some c ∈ C.
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Hence

g1 − g2 = c, (−h2 + h1)
∗ = h∗1 − h∗2 = −c = −c∗ = (−c)∗,

and from this we get

g1 = g2 + c, h1 = h2 − c,
whence

g1 + h1 = g2 + c+ h2 − c = g2 + h2.

Moreover, from the equality −h1 = c− h2 we get that µ−h1 = µ−h2, and so

(g1 + h1, µ−h1, 1) = (g2 + h2, µ−h2, 1).

The map ξ is a group homomorphism:

ξ(cl(g1, h
∗
1) + cl(g2, h

∗
2)) = ξ(cl(g1 + g2, (h2 + h1)

∗)) =

= (g1 + g2 + h2 + h1, µ−(h2+h1), 1) = (g1 + h1 + µ−h1(g2 + h2), µ−h1µ−h2, 1) =

= (g1 + h1, µ−h1, 1) + (g2 + h2, µ−h2, 1) = ξ(cl(g1, h
∗
1)) + ξ(cl(g2, h

∗
2)).

The inverse of ξ is the map ξ−1 : K → G×G∗
S defined by

ξ−1(g, µh, 1) = cl(g + h,−h∗).
It is well defined. Indeed, if (g, µh1, 1) = (g, µh2, 1), then µh1 = µh2, and so
h1 − h2 = c ∈ C. We need to check that

cl(g + h1,−h∗1) = cl(g + h2,−h∗2),
i.e. that

(g + h1,−h∗1)− (g + h2,−h∗2) ∈ S.
We have that

(g + h1,−h∗1)− (g + h2,−h∗2) = (g + h1 − (g + h2),−h∗1 + h∗2) =

= (g + h1 − h2 − g, (−h1)
∗ + h∗2) = (g + c− g, (h2 − h1)

∗) =

= (c, (−c)∗) = (c,−c),
and so cl(g + h1,−h∗1) = cl(g + h2,−h∗2). The maps ξ and ξ−1 are inverse to
each other:

ξξ−1(g, µh, 1) = ξ(cl(g + h, (−h)∗)) = (g + h− h, µ−(−h), 1) = (g, µh, 1),

and

ξ−1ξ(cl(g, h∗)) = ξ−1(g + h, µ−h, 1) = cl(g + h− h,−(−h)∗) = cl(g, h∗).
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Moreover, for all c ∈ C:

ξ(c) = ξ(cl(c, 0∗)) = (c+ 0, µ0, 1) = (c, idG, 1) = c.

To conclude the proof, it remains to show that the following triangle com-
mutes:

M
Φ′ //

Ψ !!

End(G×G∗
S )

Inn(G×G∗
S )

ξ
��

End(K)
Inn(K) ,

where ξ(cl(α)) = cl(ξαξ−1). If ϕ(x) ∈ Φ′(x), then

ϕ(x)(cl(g, h∗)) = cl(α(x)(g), α∗(x)(h∗)),

where α(x) ∈ Φ(x) and α∗(x) ∈ Φ∗(x) is given by α∗(x) = (α(x))∗. Then

ξϕ(x)ξ−1(g, µh, 1) = ξϕ(x)(cl(g + h,−h∗)) =

= ξ(cl(α(x)(g + h), α∗(x)(−h∗))) = ξ(cl(α(x)(g + h), (α(x)(−h))∗)) =

= (α(x)(g + h) + α(x)(−h), µ−α(x)(−h), 1) =

= (α(x)(g) + α(x)(h) + α(x)(−h), µα(x)(h), 1) =

= (α(x)(g), µα(x)(h), 1) = θ(0, α(x), 1)(g, µh, 1),

hence ξϕ(x)ξ−1 = θ(0, α(x), 1) ∈ Ψ(x).

We know that the definition of extendability of an admissible abstract ker-
nel is compatible with the C-equivalence (see the paragraph after Definition
4.6). Hence, since the admissible abstract kernel (M,K,Ψ) is extendable,
the previous proposition gives

Corollary 5.6. For any admissible abstract kernel (M,G,Φ), the product
(M,G,Φ)⊗ (M,G∗,Φ∗) is extendable.

This corollary, Proposition 3.8 and Corollary 4.8, according to the first
paragraph of this section, imply the following

Theorem 5.7. The factor monoid A(M,C) = M(M,C)
L(M,C) is an abelian group.
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6. The isomorphism of A(M,C) with the third
cohomology group

The aim of this section is to prove that the abelian group A(M,C) =
M(M,C)
L(M,C) described above is isomorphic to the third cohomology groupH3(M,C).

In order to do that, the first step is to associate with every admissible ab-

stract kernel Φ: M → End(G)
Inn(G) an element Obs(Φ) of H3(M,Z(G)). Due to

the admissibility condition, the construction of Obs(Φ) is, as shown in [23],
analogous to the one described in [7] for the case of the classical abstract
kernels. A very detailed construction of Obs(Φ) is given in [12, Section 5], in
a slightly different context. Here we just give a brief sketch of the construc-
tion, stressing the difference with the one in [12].

Given an admissible abstract kernel Φ: M → End(G)
Inn(G) , we choose a represen-

tative ϕ(x) ∈ Φ(x) for any x ∈M , with ϕ(1) = idG. We have that

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy)

for some f(x, y) ∈ G, with f(x, 1) = f(1, y) = 0. Now, given x, y, z ∈M , we
have, on one hand

ϕ(x)ϕ(y)ϕ(z) = ϕ(x)µf(y,z)ϕ(yz) = µϕ(x)(f(y,z))ϕ(x)ϕ(yz) =

= µϕ(x)(f(y,z))µf(x,yz)ϕ(xyz) = µϕ(x)(f(y,z))+f(x,yz)ϕ(xyz),

and, on the other hand

ϕ(x)ϕ(y)ϕ(z) = µf(x,y)ϕ(xy)ϕ(z) = µf(x,y)µf(xy,z)ϕ(xyz) = µf(x,y)+f(xy,z)ϕ(xyz).

Comparing the two expressions, and using Corollary 2.9, we get the equality

µϕ(x)(f(y,z))+f(x,yz) = µf(x,y)+f(xy,z),

namely
µϕ(x)(f(y,z))+f(x,yz)−(f(x,y)+f(xy,z)) = idG,

which tells us that

ϕ(x)(f(y, z)) + f(x, yz)− (f(x, y) + f(xy, z)) ∈ Z(G).

This means that there exists a unique element k(x, y, z) ∈ Z(G) such that

ϕ(x)(f(y, z)) + f(x, yz) = k(x, y, z) + f(x, y) + f(xy, z).

Clearly, k(x, y, 1) = k(x, 1, z) = k(1, y, z) = 0.
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It is shown in [23] that the map k : M ×M ×M → C obtained from an
admissible abstract kernel Φ as above is a 3-cocycle of the cohomology of
M with coefficients in the M -module Z(G), and that the cohomology class
of k does not depend on the choices made in the construction. Note that
the same conclusion can be drawn from [12, Section 5] using Corollary 2.9
instead of the surjectivity of the homomorphisms ϕ(x), for x ∈M .

Let us now show that C-equivalent admissible abstract kernels determine

cohomologous 3-cocycles. Given two abstract kernels Φ: M → End(G)
Inn(G) and

Φ′ : M → End(G′)
Inn(G′) , suppose that (M,G,Φ)

C∼= (M,G′,Φ′). That is, there exists

a group isomorphism ξ : G → G′ such that ξ(c) = c for all c ∈ C and
ξϕ(x)ξ−1 ∈ Φ′(x) for all x ∈ M and all ϕ(x) ∈ Φ(x) (see Definition 3.1).
Suppose that k is the 3-cocycle associated with (M,G,Φ) as above. If we
choose ϕ′(x) ∈ Φ′(x) and f ′(x, y) ∈ G′ by putting

ϕ′(x) = ξϕ(x)ξ−1 and f ′(x, y) = ξ(f(x, y)),

then the 3-cocycle we get from (M,G′,Φ′) by means of this choice is precisely
k. Indeed, for all x, y, z ∈M , we have that

ϕ′(x)ϕ′(y) = ξϕ(x)ξ−1ξϕ(y)ξ−1 = ξϕ(x)ϕ(y)ξ−1 =

= ξµf(x,y)ϕ(xy)ξ−1 = µξ(f(x,y))ξϕ(xy)ξ−1 = µf ′(x,y)ϕ
′(xy),

and

ϕ′(x)(f ′(y, z)) + f ′(x, yz) = ξϕ(x)ξ−1ξ(f(y, z)) + ξ(f(x, yz)) =

= ξϕ(x)(f(y, z)) + ξ(f(x, yz)) = ξ(ϕ(x)(f(y, z)) + f(x, yz)) =

= ξ(k(x, y, z) + f(x, y) + f(xy, z)) = ξ(k(x, y, z)) + ξ(f(x, y)) + ξ(f(xy, z)) =

= k(x, y, z) + f ′(x, y) + f ′(xy, z).

Hence we get a well-defined map

ζ : M(M,C)→ H3(M,C), ζ([M,G,Φ]) = Obs(Φ) = cl(k).

Proposition 6.1. The map ζ : M(M,C) → H3(M,C) is a monoid homo-
morphism.

Proof : Let ζ([M,G1,Φ1]) = cl(k1) and ζ([M,G2,Φ2]) = cl(k2). According
to the beginning of this section, there are ϕi(x) ∈ Φi(x) and fi(x, y) ∈ Gi,
i = 1, 2, for x, y ∈M , with ϕi(1) = 1G and fi(x, 1) = fi(1, y) = 0, such that

ϕi(x)ϕi(y) = µfi(x,y)ϕi(xy)
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and

ϕi(x)(fi(y, z)) + fi(x, yz) = ki(x, y, z) + fi(x, y) + fi(xy, z), i = 1, 2,

for all x, y, z ∈ M . Let now Φ: M → End(G)
Inn(G) be the product of Φ1 and Φ2.

Consider the representatives ϕ(x) ∈ Φ(x) defined by

ϕ(x)(cl(g1, g2)) = cl(ϕ1(x)(g1), ϕ2(x)(g2))

(see Section 3) and the map f : M ×M → G defined by

f(x, y) = cl(f1(x, y), f2(x, y)).

Clearly, ϕ(1) = 1G and f(x, 1) = f(1, y) = 0. Furthermore, for all x, y, z ∈
M , we have

ϕ(x)ϕ(y)(cl(g1, g2)) = cl(ϕ1(x)ϕ1(y)(g1), ϕ2(x)ϕ2(y)(g2)) =

= cl(µf1(x,y)ϕ1(xy)(g1), µf2(x,y)ϕ2(xy)(g2)) =

= cl(f1(x, y), f2(x, y)) + cl(ϕ1(xy)(g1), ϕ2(xy)(g2))− cl(f1(x, y), f2(x, y)) =

= f(x, y) + ϕ(xy)(cl(g1, g2))− f(x, y) = µf(x,y)ϕ(xy)(cl(g1, g2)),

and

ϕ(x)(f(y, z))+f(x, yz) = ϕ(x)(cl(f1(y, z), f2(y, z)))+cl(f1(x, yz), f2(x, yz)) =

= cl(ϕ1(x)(f1(y, z)) + f1(x, yz), ϕ2(x)(f2(y, z)) + f2(x, yz)) =

= cl(k1(x, y, z) + f1(x, y) + f1(xy, z), k2(x, y, z) + f2(x, y) + f2(xy, z)) =

= cl(k1(x, y, z), k2(x, y, z)) + cl(f1(x, y), f2(x, y)) + cl(f1(xy, z), f2(xy, z)) =

= cl(k1(x, y, z), 0) + cl(0, k2(x, y, z)) + f(x, y) + f(xy, z) =

= k1(x, y, z) + k2(x, y, z) + f(x, y) + f(xy, z)

(recall that cl(c, 0) = cl(0, c) = c for all c ∈ C). So, for all x, y, z ∈ M , we
get

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy)

and

ϕ(x)(f(y, z)) + f(x, yz) = k1(x, y, z) + k2(x, y, z) + f(x, y) + f(xy, z).

Thus we have

ζ([M,G,Φ]) = cl(k1 + k2) = cl(k1) + cl(k2) = ζ([M,G1,Φ1]) + ζ([M,G2,Φ2]).

Proposition 6.2. The monoid homomorphism ζ : M(M,C)→ H3(M,C) is
surjective.
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Proof : Let cl(k) ∈ H3(M,C). We have to show that there exists an admis-

sible abstract kernel Φ: M → End(G)
Inn(G) with Z(G) = C, inducing the given

action on C, and such that ζ([M,G,Φ]) = cl(k) (cf. [7, Lemma 9.1]). First
consider the case in which the monoid M has at least 3 elements. Let F be
the free group on the set of symbols

{[x, y] | x, y ∈M,x, y 6= 1}
and let G be the direct product C × F . Define a map f : M ×M → G by

f(x, y) = [x, y] if x, y 6= 1 and f(x, 1) = f(1, y) = 0,

where we identify 0× F with F . Next, we identify Z(G) with C and define
an endomorphism ϕ(x) ∈ End(G) by putting, on the generators of G:

ϕ(x)(c) = x · c,
where the action of M on C is the given one, and

ϕ(x)([y, z]) = k(x, y, z) + f(x, y) + f(xy, z)− f(x, yz). (3)

Then, for all x, y, z, t ∈M, we have

ϕ(x)ϕ(y)([z, t]) = ϕ(x)(k(y, z, t) + f(y, z) + f(yz, t)− f(y, zt)) =

= x ·k(y, z, t)+k(x, y, z)+f(x, y)+f(xy, z)−f(x, yz)+k(x, yz, t)+f(x, yz)

+f(xyz, t)− f(x, yzt)− (k(x, y, zt) + f(x, y) + f(xy, zt)− f(x, yzt)) =

= f(x, y)+x·k(y, z, t)+k(x, y, z)+k(x, yz, t)−k(x, y, zt)+f(xy, z)−f(x, yz)

+f(x, yz) + f(xyz, t)− f(x, yzt) + f(x, yzt)− f(xy, zt)− f(x, y).

Since k is a 3-cocycle, this last expression is equal to

f(x, y) + k(xy, z, t) + f(xy, z) + f(xyz, t)− f(xy, zt)− f(x, y) =

= f(x, y) + ϕ(xy)([z, t])− f(x, y) = µf(x,y)ϕ(xy)([z, t]).

Hence
ϕ(x)ϕ(y) = µf(x,y)ϕ(xy)

for all x, y ∈M . So we obtain an abstract kernel

Φ: M → End(G)

Inn(G)
, Φ(x) = cl(ϕ(x)).

Let us show that Φ is admissible. Suppose that x and y are two distinct
non-trivial elements of M . If xy = 1 then x2 6= 1 (since otherwise x =
y) and ϕ(x)([x, x]) does not commute with ϕ(x)([x, y]). If xy 6= 1 then
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ϕ(x)([x, x]) and ϕ(x)([y, x]) do not commute. Hence ϕ(x)(C × F ) is a non-
abelian subgroup of C×F for all x ∈M . Next, denoting CC×F (ϕ(x)(C×F ))
by H and using elementary properties of centralizers, we have

ϕ(x)(C × F ) ⊆ CC×F (H) =
⋂

(c,u)∈H

CC×F (c, u) =

=
⋂

(c,u)∈H

(CC(c)× CF (u)) =
⋂

(c,u)∈H

(C × CF (u)) = C ×
⋂

(c,u)∈H

CF (u).

Now, if we let H 6= C, then
⋂

(c,u)∈H CF (u) is a cyclic subgroup of F (since
the centralizer of any non-trivial element of a free group is a cyclic subgroup
of that group) and hence ϕ(x)(C × F ) is an abelian subgroup of C × F , a
contradiction which shows that CC×F (ϕ(x)(C × F )) = C for all x ∈ M . So
Φ is an admissible abstract kernel, inducing the given action on C. The fact
that ζ([M,G,Φ]) = cl(k) is an immediate consequence of (3).

It remains to consider the cases in which M has less than 3 elements. If M
has only one element, then clearly H3(M,C) = 0, and so the result is obvious.
If M is the two element group, then the abstract kernels involved, as well as
the cohomology group H3(M,C), lie inside groups. Hence one can apply to
this case the proof of [7, Lemma 9.1]. If M = M2 = {1, x} is the two element
monoid that is not a group, then x is an absorbing element. It is known that
if a monoid possesses an absorbing element, then all its cohomology groups
of order greater than zero are trivial (see e.g. [15]), but for the sake of the
reader’s convenience, let us check here that H3(M2, C) = 0. Suppose that
k : M2 ×M2 ×M2 → C is a 3-cocycle. Then x · k(x, x, x) = 0. Define a 2-
cochain g : M2×M2 → C by g(x, x) = −k(x, x, x). Then for the coboundary
δg : M2 ×M2 ×M2 → C of g, one has

δg(x, x, x) = x · g(x, x)− g(x, x) + g(x, x)− g(x, x) = x · g(x, x)− g(x, x) =

= −x · k(x, x, x) + k(x, x, x) = k(x, x, x).

Thus, the cohomology group H3(M2, C) vanishes. This clearly implies the
result.

Proposition 6.3. For an admissible abstract kernel Φ: M → End(G)
Inn(G) , we

have that ζ([M,G,Φ]) = 0 if and only if Φ is extendable.
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Proof : Suppose that Φ: M → End(G)
Inn(G) is extendable. That is, there exists a

diagram

E : G // κ // B

θ
��

σ // // M

Φ
��

End(G) p
// End(G)
Inn(G) ,

where E is a special Schreier extension, the monoid homomorphism θ is
defined thanks to the uniqueness in the Schreier condition,

b+ g = θ(b)(g) + b for every b ∈ B and every g ∈ G,
and Φ(x) = pθ(b) = cl(θ(b)) for any b such that σ(b) = x (see the beginning
of Section 4). Let us choose, for every x ∈ M , an element ux ∈ σ−1(x) with
u1 = 0, and denote θ(ux) by ϕ(x). Clearly, ϕ(x) ∈ Φ(x) and ϕ(1) = 1G.
Since E is a special Schreier extension, for all x, y ∈M , there exists a unique
element f(x, y) ∈ G such that ux + uy = f(x, y) + uxy. This defines a map
f : M ×M → G such that f(x, 1) = f(1, y) = 0, and implies

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy) for all x, y ∈M.

Indeed,

ϕ(x)ϕ(y) = θ(ux)θ(uy) = θ(ux + uy) =

= θ(f(x, y) + uxy) = θ(f(x, y))θ(uxy) = µf(x,y)ϕ(xy)

(clearly, θ(g) = µg for every g ∈ G). Then, thanks to Corollary 2.9, we get,
as in the beginning of this section, that

ϕ(x)(f(y, z))+f(x, yz) = k(x, y, z)+f(x, y)+f(xy, z) for all x, y, z ∈M,
(4)

where k : M ×M ×M → C is a 3-cocycle. Hence, by definition of ζ, we have
ζ([M,G,Φ]) = cl(k). Next, on one hand

ux + uy + uz = f(x, y) + uxy + uz = f(x, y) + f(xy, z) + uxyz,

and, on the other hand

ux + uy + uz = ux + f(y, z) + uyz = ϕ(x)(f(y, z)) + ux + uyz =

= ϕ(x)(f(y, z)) + f(x, yz) + uxyz,

whence

ϕ(x)(f(y, z)) + f(x, yz) = f(x, y) + f(xy, z) for all x, y, z ∈M.
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Comparing the last equality with (4), we obtain that k = 0. Thus
ζ([M,G,Φ]) = 0.

Conversely, suppose that ζ([M,G,Φ]) = 0. Then there are ϕ(x) ∈ Φ(x)
and f(x, y) ∈ G for x, y ∈ M , with ϕ(1) = 1G and f(x, 1) = f(1, y) = 0,
such that

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy)

and, in addition, f(x, y) can be chosen so that

ϕ(x)(f(y, z)) + f(x, yz) = f(x, y) + f(xy, z) for all x, y, z ∈M

(cf. [12, Proposition 5.6]). Then the set [G,ϕ, f,M ] of all pairs (g, x) ∈ G×M
with the operation defined by

(g1, x) + (g2, y) = (g1 + ϕ(x)(g2) + f(x, y), xy)

is a monoid, and the sequence

G // i // [G,ϕ, f,M ]
p
// // M, i(g) = (g, 1), p(g, x) = x,

is a special Schreier extension of M by G inducing the given admissible

abstract kernel Φ: M → End(G)
Inn(G) ((0, x)+(g, 1) = (ϕ(x)(g), x) = (ϕ(x)(g), 1)+

(0, x)).

Now, as an immediate consequence of Propositions 6.2 and 6.3, we have
the following

Theorem 6.4. The map

ζ ′ : A(M,C) =
M(M,C)

L(M,C)
→ H3(M,C), ζ ′(cl([M,G,Φ])) = ζ([M,G,Φ]),

is a group isomorphism.

If M = Π is a group then Φ: Π → End(G)
Inn(G) factors through Aut(G)

Inn(G) and

Theorem 6.4 turns into the classical interpretation of the third cohomology

group of Π in terms of the abstract kernels of the form Φ: Π → Aut(G)
Inn(G) [7,

Theorem 10.1].
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