
Pré-Publicações do Departamento de Matemática
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Introduction
This paper may be considered as a sequel to [2], a paper devoted to the

study of special localic embeddings like z-embeddings. In the present paper,
we consider general localic z-maps, an extension of z-embeddings, and other
related classes of localic maps. These notions can be nicely motivated via
the familiar image/preimage adjunction in the category of locales.

Let f : L→M be a localic map. For any sublocale S of L, its set theoretic
image f [S] is a sublocale of M . On the other hand, the set theoretic preimage
f−1[T ] of a sublocale T of M may not be a sublocale of L. But since f
is meet preserving, f−1[T ] is closed under meets and thus there exists the
largest sublocale of L contained in f−1[T ], usually denoted as f−1[T ] ([18,
III.4]). This is the localic preimage of T that provides the image/preimage
Galois adjunction

S(L)
f [−]

⊥
--
S(M)

f−1[−]

mm

between coframes S(L) and S(M) of sublocales of L and sublocales of M ,
respectively. The right adjoint f−1[−] is a coframe homomorphism that pre-
serves complements while f [−] is a colocalic map ([18, III.9]).
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2 A. B. AVILEZ

Localic preimages of closed (resp. open) sublocales are closed (resp. open).
More specifically, denoting by f ∗ the frame homomorphism left adjoint to f ,
we have

f−1[oM(a)] = oL(f ∗(a)) and f−1[cM(a)] = cL(f ∗(a))

for any a ∈M .
Since frame homomorphisms preserve cozero elements, the preimage map

f−1[−] restricts to maps

f z−1[−] : ZS(M)→ ZS(L) and f coz−1 [−] : CoZS(M)→ CoZS(L)

in the sub-σ-coframe ZS(M) (resp. sub-σ-frame CoZS(M)) of zero sublocales
of M (resp. cozero sublocales of M).

The zero map f z−1[−] is a σ-coframe homomorphism while the cozero map
f coz−1 [−] is a σ-frame homomorphism. Clearly, the former is surjective if and
only if the latter is surjective. In this case, we say that f is a z-map.

These maps are the right adjoints of the coz-onto frame homomorphisms
of [10, 3] and, in the particular case when the embedding of a sublocale S
of L is a z-map, one gets precisely the notion of a z-embedding, treated in
[2] (in this case one refers to S as z-embedded in L). Hence z-maps are an
extension of z-embeddings to general localic maps.

Inspired by classical results of Weir [21], these and other related classes
of localic maps are treated in this paper (e.g. when the image of any zero
sublocale is closed we speak of z-closed localic maps). In particular, we
extend results from [9, 10, 15, 17].

Here is a brief outlay of the paper. We collect some background notions
and notation in Section 1. Following that, we study, in Section 2, the classes
of z-maps, z-dense maps and almost z-dense localic maps, and, in Section
3, the classes of z-open and z-closed maps and variants of them. Then, in
Section 4, we characterize normality and some weaker forms of it in terms
of z-embeddings. In particular, we identify sufficient conditions under which
the characterizations hold for certain variants of normality. In Section 5, we
introduce n- and w-maps and present a similar unifying study in terms of
those maps. The last section (Section 6) is devoted to a further type of maps,
the wz-maps .
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1. Notation and terminology
1.1. The categories of frames and locales. Our notation and terminol-
ogy for frames and locales is that of [18]. We recall here some of the basic
notions involved. A frame L is a complete lattice in which

a ∧
∨
S =

∨
{a ∧ b | b ∈ S} for any a ∈ L and S ⊆ L. (1.1.1)

A frame homomorphism preserves all joins (in particular, the bottom element
0 of the lattice) and all finite meets (in particular, the top element 1).

In any frame L, the mappings (x 7→ (a∧x)) : L→ L preserve suprema and
hence they have right Galois adjoints (y 7→ (a→ y)) : L→ L, satisfying

a ∧ x ≤ y iff x ≤ a→ y

and making L a complete Heyting algebra. The pseudocomplement of a ∈ L
is the element a∗ = a → 0 =

∨
{x | x ∧ a = 0}. A regular element of L is

an element of the form a∗ for some a (equivalently, an element a such that
a∗∗ = a).

The rather below relation ≺ in L is defined by b ≺ a iff b∗∨ a = 1. A frame
is regular if a =

∨
{b ∈ L | b ≺ a} for every a ∈ L, and it is normal if for any

a, b ∈ L such that a ∨ b = 1, there is a pair u, v ∈ L such that u ∧ v = 0 and
a ∨ u = b ∨ v = 1.

The category of locales and localic maps is the dual category of frames
and frame homomorphisms. Thus a locale is a frame and localic maps can
be represented by the (uniquely defined) right adjoints f = h∗ : L → M of
frame homomorphisms h : M → L. They are precisely the meet preserving
maps f : L→ M such that f(h(a)→ b) = a→ f(b) and f(a) = 1⇒ a = 1.
A localic map is dense if f(0) = 0.

1.2. The coframe of sublocales of a locale. A sublocale of a locale L is
a subset S ⊆ L closed under arbitrary meets such that

∀x ∈ L ∀s ∈ S (x→ s ∈ S).

They are precisely the subsets of L for which the embedding S ⊆ L is a
localic map. The system S(L) of all sublocales of L, partially ordered by
inclusion, is a coframe, that is, its dual lattice is a frame [18, Thm. III.3.2.1].
Infima and suprema are given by∧

i∈J
Si =

⋂
i∈J

Si,
∨
i∈J

Si = {
∧
M |M ⊆

⋃
i∈J

Si}.
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The least element is the void sublocale O = {1} and the greatest element is
the entire locale L. Since S(L) is a coframe, there is a co-Heyting operator
S r T given by the formula

⋂
{A | S ⊆ T ∨ A} and characterized by the

condition
S r T ⊆ A ⇔ S ⊆ T ∨ A.

In particular, the co-pseudocomplement (usually called supplement) of S is
the sublocale S# = Lr S and we have that for any S, T ∈ S(L),

S ∨ T = L ⇔ S# ⊆ T and S ∩ T = O ⇒ S ⊆ T# (1.2.1)

(we refer to [11] for more information on supplements in S(L)). Furthermore,
any complemented S satisfies the special distributivity law S ∩

∨
i∈J Ti =∨

i∈J(S ∩ Ti) for every {Ti}i∈J ⊆ S(L).
For each a ∈ L, the sublocales

cL(a) = ↑a = {x ∈ L | x ≥ a} and oL(a) = {a→ b | b ∈ L}
are the closed and open sublocales of L, respectively (that we shall denote
simply by c(a) and o(a) when there is no danger of confusion). For each
a ∈ L, c(a) and o(a) are complements of each other in S(L) and satisfy the
identities ⋂

i∈J
c(ai) = c(

∨
i∈J

ai), c(a) ∨ c(b) = c(a ∧ b), (1.2.2)∨
i∈J

o(ai) = o(
∨
i∈J

ai) and o(a) ∩ o(b) = o(a ∧ b). (1.2.3)

Open sublocales have a further distributivity property: for every S ∈ S(L),
S ∩

∨
i∈J o(ai) =

∨
i∈J(S ∩ o(ai)).

Let j∗S be the left adjoint of the localic embedding jS : S ↪→ L, given by
j∗S(a) =

∧
{s ∈ S | s ≥ a}. The closed (resp. open) sublocales cS(a) (resp.

oS(a)) of S (a ∈ S) are precisely the intersections c(a) ∩ S (resp. o(a) ∩ S)
and we have, for any a ∈ L,

c(a) ∩ S = cS(j∗S(a)) and o(a) ∩ S = oS(j∗S(a)). (1.2.4)

The closure S of a sublocale S is the smallest closed sublocale containing
S, and the interior S◦ is the largest open sublocale contained in S. There is
a particularly simple formula for the closure:

S = c(
∧
S). (1.2.5)

Hence o(a) = c(a∗) and, consequently, c(a)◦ = o(a∗). More generally, for

every sublocale S, S# = (S◦)# [11, Section 4].



ON CLASSES OF LOCALIC MAPS DEFINED BY ZERO SUBLOCALES 5

1.3. Open and closed localic maps. A localic map f : L→M is said to
be open (resp. closed) if the image f [S] of each open (resp. closed) sublocale
S ⊆ L is open (resp. closed). By the celebrated Joyal-Tierney Theorem,
f is open iff its left adjoint f ∗ is a complete Heyting homomorphism. In
particular, f ∗ has a left adjoint φ and f [o(a)] is precisely the open o(φ(a))
for every a ∈ L.

We will also need the following alternative characterization ([18, III.7.2.1]):
a localic f : L→M is open iff f ∗ has a left adjoint φ such that

f(a→ f ∗(b)) = φ(a)→ b for all a ∈ L and b ∈M. (1.3.1)

In particular, for b = 0, f(a∗) = φ(a)∗.
Closed maps are much easier to characterize: a localic f : L→M is closed

iff f(a ∨ f ∗(b)) = f(a) ∨ b for every a ∈ L and b ∈M .

1.4. Continuous real-valued functions. Recall the frame of reals L(R)
from [4]. Here we define it, equivalently, as the frame presented by generators
(r,—) and (—, r) for all rationals r, and relations

(r1) (p,—) ∧ (—, q) = 0 if q ≤ p,
(r2) (p,—) ∨ (—, q) = 1 if p < q,
(r3) (p,—) =

∨
r>p(r,—),

(r4) (—, q) =
∨
s<q(—, s),

(r5)
∨
p∈Q(p,—) = 1,

(r6)
∨
q∈Q(—, q) = 1.

Note that (—, q)∗ = (q,—) and (p,—)∗ = (—, p). For each p < q in Q, the
element (p,—) ∧ (—, q) in L(R) is denoted by (p, q).

The `-ring R(L) of continuous real-valued functions [4] on a frame L is the
set of all frame homomorphisms f : L(R) → L. Each element of R(L) is
uniquely determined by a map defined on the generators of L(R) that turns
relations (r1)-(r6) into identities in L.

Scales are a useful tool to define continuous real functions on a frame L.
A scale in L is a family (ap)p∈Q ⊆ L such that

(S1) p < q ⇒ aq ≺ ap.
(S2)

∨
p∈Q ap = 1 =

∨
p∈Q a

∗
p.

(If the ap’s are complemented then ap ≺ ap for any p and condition (S1)
amounts only to p < q ⇒ aq ≤ ap.)
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Proposition 1.4.1. ([18, XIV.5.2.2]) Let (ap)p∈Q be a scale in L. Then the
formulas

f(p,—) =
∨
r>p

ar and f(—, q) =
∨
s<q

a∗s

define a frame homomorphism f : L(R)→ L.

1.5. Zero sublocales. A cozero element [4] of L is an element of the form
f((—, 0) ∨ (0,—)) for some frame homomorphism f : L(R) → L, usually de-
noted as coz(f). They form a σ-frame CozL ⊆ L, that is, a lattice in which all
countable subsets have a join such that the distributivity law (1.1.1) holds for
any countable S. Furthermore, CozL is a normal σ-frame, that is, a∨ b = 1
(a, b ∈ CozL) implies there exist c and d in CozL such that a∨ c = 1 = b∨d
and c ∧ d = 0 [5].

Cozero elements can be described without reference to the frame of reals
as follows. An a ∈ L is a cozero element iff a =

∨∞
n=1 an for some an≺≺a

(n = 1, 2, . . .) where the completely below relation ≺≺ is the interpolative
modification of the rather below relation: b≺≺a if and only if there exists a
subset {aq | q ∈ [0, 1] ∩ Q} ⊆ L with a0 = b and a1 = a such that ap ≺ aq
whenever p < q. Recall also that a frame L is said to be completely regular
if a =

∨
{b ∈ L | b≺≺a} for every a ∈ L.

The zero sublocales (resp. cozero sublocales) are the c(a) (resp. o(a)) with
a ∈ CozL. We denote by

ZS(L) and CoZS(L)

the classes of zero and cozero sublocales, respectively1. The former class is a
sub-σ-coframe of S(L) while the latter is a sub-σ-frame.

1.5.1. We know from [15, 5.6.1] that any Z ∈ ZS(L) can be written as⋂∞
n=1 c(an) where for each n there are a zero sublocale Zn and a cozero sublo-

cale Cn such that Z ⊆ Z◦n ⊆ Zn ⊆ Cn ⊆ c(an) (and, moreover, this charac-
terizes the sublocales in ZS(L)). Similarly, a sublocale C is in CoZS(L) iff it
can be written as

∨∞
n=1 o(an) where for each n there are a zero sublocale Zn

and a cozero sublocale Cn such that o(an) ⊆ Zn ⊆ Cn ⊆ Cn ⊆ C. By [18,
XIV.6.2.4] and [15, 5.4.2], we may consider in the meet (resp. join) above
that every an is in CozL and c(an+1) ⊆ c(an) (resp. o(an) ⊆ o(an+1)) for

1In [2] the authors, following the notation of [15], assumed zero sublocales (resp. cozero sublo-
cales) to be the o(a) (resp. c(a)) with a ∈ CozL. The present terminology, less confusing (in
agreement with the classical fact that zero subspaces are closed), has been adopted in recent pa-
pers by T. Dube et al.
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every n. Furthermore, a sublocale S is both a zero and a cozero sublocale iff
it is closed and open.

1.6. General real-valued functions. Consider the assembly frame of L,
that is, the dual frame S(L)op of the coframe of sublocales of L. By the
identities in (1.2.2), the set of all closed sublocales of L form a subframe of
S(L)op isomorphic to the given L. Hence the `-ring R(S(L)op) is an extension
of R(L), regarded as the ring of general real functions on L and denoted
simply by F(L) (see [13, 15] for motivation and more information). It is
partially ordered by

f ≤ g iff ∀r ∈ Q, f(—, r) ⊆ g(—, r) iff ∀r ∈ Q, g(r,—) ⊆ f(r,—).

Note that a scale in the frame S(L)op is a family (Sp)p∈Q of sublocales of L
satisfying

(S1) p < q ⇒ Sq ≺ Sp (i.e. S#
q ∩ Sp = O), and

(S2)
⋂
p∈Q Sp = O =

⋂
p∈Q S

#
p .

The extension F(L) of R(L) allows to deal with more general types of real
functions. In particular, an f ∈ F(L) is continuous if f(p,—) and f(—, q)
are closed sublocales for every rationals p, q. The subring of all continuous
members of F(L), denoted by C(L), is an isomorphic copy of R(L) inside
F(L). We will work always in F(L) and regard R(L) as the subring C(L) of
F(L).

For any f ∈ C(L) and r ∈ Q, both f(—, r) and f(r,—) are zero sublocales
([15, 5.3.1]).

For each r ∈ Q, (Srp | p ∈ Q), defined by Srp = O if p < r and Srp = L if
p ≥ r, is a scale in S(L)op. The corresponding function in C(L), the constant
function r, is given by

r(p,—) =

{
O if p < r

L if p ≥ r
and r(—, q) =

{
L if q ≤ r

O if q > r.

The bounded part C∗(L) of C(L) consists of all f ∈ C(L) such that p ≤ f ≤
q, that is, f(—, p) ∩ f(q,—) = L, for some pair p < q in Q.

By the isomorphism between R(L) and C(L) every zero sublocale is of the
form c(a) = f(0,—) ∩ f(—, 0) for some f ∈ C(L) (which, furthermore, can
always be considered to be bounded); so we can always assume that a zero
sublocale is of the form f(0,—) for some continuous f satisfying 0 ≤ f ≤ 1.

We will need the following result:
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Proposition 1.6.1. ([3, 5.1.2]) For any disjoint zero sublocales c(a) and c(b)
of L, there exists an f ∈ C(L), with 0 ≤ f ≤ 1, such that c(a) = f(0,—) and
c(b) = f(—, 1).

1.7. Completely separated sublocales. Two sublocales S and T of L
are said to be completely separated in L ([12]) if

S ⊆ f(0,—) and T ⊆ f(—, 1)

for some f ∈ C(L) such that 0 ≤ f ≤ 1.
By 1.6.1, any pair of disjoint zero sublocales are completely separated.

Consequently, two sublocales are completely separated iff they are contained
in disjoint zero sublocales. Note further that if two sublocales are completely
separated so are their closures. We refer to [2] and [15] for more information
about completely separated sublocales. E.g., sublocales c(a) and o(b) are
completely separated iff b≺≺a [15, Lemma 5.4.2]. It follows from this result
(and the normality of CozL) that whenever S and T are completely separated
sublocales of L there are completely separated sublocales c(a) ∈ ZS(L) and
o(b) ∈ CoZS(L) such that S ⊆ c(a) and T ⊆ o(b).

2. Classes of localic maps defined by the behavior of
their preimages on zero sublocales

2.1. Localic z-maps. Let f : L → M be a localic map and consider the
image/preimage Galois adjunction

S(L)
f [−]

⊥
--
S(M)

f−1[−]

mm

described in the Introduction. Since frame homomorphisms preserve cozero
elements, the preimage map f−1 : S(M)→ S(L) restricts to maps

f z−1[−] : ZS(M)→ ZS(L) and f coz−1 [−] : CoZS(M)→ CoZS(L).

The former is a σ-coframe homomorphism and the latter is a σ-frame homo-
morphism. Whenever f z−1[−] is surjective, we say that f is a z-map. These
maps are the right adjoints of the coz-onto frame homomorphisms of [10].
Note that when L is completely regular, a z-map is always injective be-
cause a completely regular frame is join-generated by its cozero σ-frame ([18,
XIV.6.2.5]).
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In the particular case where the embedding j : S ↪→ L of a sublocale S of
L is a z-map, one refers to S as z-embedded in L ([2]). In this case, since
j−1[T ] = S ∩ T we have immediately the following:

Proposition 2.1.1. A sublocale S of L is z-embedded if and only if for each
zero sublocale Z of S there is a zero sublocale T of L such that T ∩ S = Z.
Equivalently, for every cozero sublocale C of S there is a cozero sublocale T
of L such that T ∩ S = C.

Remark 2.1.2. If f : L→M is a z-map, then f [L] is a z-embedded sublocale
of M . Indeed, consider the standard factorization (see [18, IV.1.4])

L
φ
// //

f

''

f [L] �
�

j
// M

with φ onto and j one-to-one. Since the correspondence L 7→ ZS(L) is
functorial ([4, Section 8]), we get the following commutative diagram:

ZS(L) ZS(f [L])
φz−1[−]
oo ZS(M)

fz−1[−]

tt

jz−1[−]
oo

Then, for any c(a) ∈ ZS(f [L]), φz−1[c(a)] ∈ ZS(L). Since f is a z-map,

φz−1[c(a)] = f z−1[c(b)] = φz−1[j
z
−1[c(b)]]

for some c(b) ∈ ZS(M). This means that c(φ∗j∗(b)) = c(φ∗(a)). Finally, since
φ∗ is injective (it is the left adjoint of an onto localic map), j∗(b) = a and
thus c(b) ∩ f [L] = j−1[c(b)] = c(j∗(b)) = c(a).

2.2. z-Dense maps. We say that a localic map f : L→M is z-dense if

f z−1[Z] = O ⇒ Z = O.

Remarks 2.2.1. (1) Equivalently, f is z-dense if the cozero map f coz−1 [−] is
a codense σ-frame homomorphism, that is, f coz−1 [C] = L ⇒ C = M . The
z-dense localic maps are the right adjoints of the coz-codense frame homo-
morphisms of [3].

(2) For a sublocale S of L, the embedding j : S ↪→ L is z-dense iff Z ∩S = O
implies Z = O for every Z ∈ ZS(L).
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2.3. Almost z-dense maps. Furthermore, we say that an f is almost z-
dense if for every Z ∈ ZS(M) such that f z−1[Z] = O, there exists a Z ′ ∈
ZS(M) such that f z−1[Z

′] = L and Z ∩ Z ′ = O.

Remarks 2.3.1. (1) Almost z-dense maps are the right adjoints of the almost
coz-codense frame homomorphisms of [10, 3]. Clearly, any codense localic
map is z-dense, and any z-dense localic map is almost z-dense.

(2) If f is dense and almost z-dense, then it is z-dense.

(3) For each sublocale S of L, the embedding j : S ↪→ L is almost z-dense iff
for every Z ∈ ZS(L) such that Z ∩ S = O, there exists a Z ′ ∈ ZS(L) such
that S ⊆ Z ′ and Z ∩Z ′ = O (i.e., S is completely separated from every zero
sublocale disjoint from it).

The following result characterizes almost z-dense maps. It was proved in
[3, 7.2.1] for coz-codense frame homomorphisms.

Proposition 2.3.2. A localic map f : L→M is almost z-dense if and only if
for every Z ∈ ZS(M) such that f−1[Z] = O there exists a bounded g ∈ C(M)
such that Z ⊆ g(0,—) and f−1[g(—, 1)] = L.

Proof : The implication ‘⇒’ follows from 1.6.1. The converse is clear since
g(0,—) and g(—, 1) are disjoint zero sublocales for every bounded g ∈ C(M).

2.4. f-Separation. Let f : L → M be a localic map. We say that two
sublocales S and T of M are f -separated whenever there exist Z1, Z2 ∈
ZS(M) such that

S ⊆ Z1, T ⊆ Z2, and f z−1[Z1] ∩ f z−1[Z2] = O.

In particular, for a localic embedding j : R ⊆ L, the sublocales S and T are
j-separated iff there exist Z1, Z2 ∈ ZS(L) such that S ⊆ Z1, T ⊆ Z2 and
Z1 ∩ Z2 ∩R = O. In this case we say that S and T are R-separated.

Remarks 2.4.1. (1) If S and T are f -separated sublocales of M and f is
z-dense, then S and T are completely separated in M .

(2) Any two completely separated sublocales of M are f -separated for any
f : L→M .
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2.5. More on z-maps. Next result is a characterization of z-maps that
appears in [10, Prop. 3.3] in terms of coz-onto frame homomorphisms.

Proposition 2.5.1. The following are equivalent for any localic map f : L→
M :

(i) f is a z-map.
(ii) For any C ∈ CoZS(L) and Z ∈ ZS(L) such that C ⊆ Z, there exist

C ′ ∈ CoZS(M) and Z ′ ∈ ZS(M) with C ′ ⊆ Z ′ such that f coz−1 [C ′] = C
and f z−1[Z

′] = Z.
(iii) For any C ∈ CoZS(L) and Z ∈ ZS(L) such that C ⊆ Z, there exist

C ′ ∈ CoZS(M) and Z ′ ∈ ZS(M) with C ′ ⊆ Z ′ such that C ⊆ f coz−1 [C ′] ⊆
f z−1[Z

′] ⊆ Z.

Proof : (i)⇒(ii): Let f be a z-map. Consider Z ∈ ZS(L) and C ∈ CoZS(L)
such that C ⊆ Z. Since f is a z-map we have

f z−1[c(a)] = Z and f coz−1 [o(b)] = C

for some a, b ∈ Coz(M). Since c(a) is a zero sublocale of L, we get from 1.5.1
that c(a) =

⋂∞
n=1 c(an) for some an ∈ CozM such that, for every n ∈ N,

c(a) ⊆ o(xn) ⊆ c(an) and c(an+1) ⊆ c(an) (∗)

for some xn ∈ CozM . Analogously, o(b) =
∨∞
n=1 o(bn) for some bn ∈ CozM

and

o(bn) ⊆ c(yn) ⊆ o(b) and o(bn) ⊆ o(bn+1) (∗∗)
for some yn ∈ CozM . Now, let

Z ′ =
∞⋂
n=1

(c(an) ∨ c(yn)) and C ′ =
∞∨
n=1

(o(bn) ∩ o(xn)) .

Clearly, Z ′ ∈ ZS(M) and C ′ ∈ CoZS(M). Fix an m ∈ N. From (∗) and (∗∗)
we know that

o(bm) ∩ o(xm) ⊆ o(bm) ⊆ c(yn) ⊆ c(yn) ∨ c(an) ∀n ≥ m,

and o(bm) ∩ o(xm) ⊆ o(xm) ⊆ c(an) ⊆ c(yn) ∨ c(an) ∀n ≤ m.

Hence, o(bm) ∨ o(xm) ⊆ Z ′ for every m ∈ N, and C ′ ⊆ Z ′. Moreover,

c(a) =
∞⋂
n=1

c(an) ⊆ Z ′ ⊆
∞⋂
n=1

c(an) ∨ o(b) = c(a) ∨ o(b)



12 A. B. AVILEZ

and Z = f z−1[c(a)] ⊆ f z−1[Z
′] ⊆ f z−1[c(a)] ∨ f coz−1 [o(b)] = Z ∨ C = Z. Similarly,

o(b) ∩ c(a) =
∞∨
n=1

o(bn) ∩ c(a) ⊆ C ′ ⊆
∞∨
n=1

o(bn) = o(b).

Finally, C = C ∩ Z = f coz−1 [o(b)] ∩ f z−1[c(a)] ⊆ f coz−1 [C ′] ⊆ f coz−1 [o(b)] = C as
required.

(ii) ⇒ (iii) is trivial.

(iii)⇒ (i): Let c(a) =
⋂∞
n=1 c(an) be a zero sublocale with an ∈ CozL such

that for each natural n there is a cozero sublocale o(xn) satisfying c(a) ⊆
o(xn) ⊆ c(an) (recall 1.5.1). By hypothesis, there exist zero and cozero
sublocales c(bn) and o(dn) in M , such that

o(dn) ⊆ c(bn) and o(xn) ⊆ f−1[o(dn)] ⊆ f−1[c(bn)] ⊆ c(an)

for every n. We claim that c(a) = f−1 [
⋂∞
n=1 c(bn)]. Indeed,

c(a) ⊆
∞⋂
n=1

o(xn) ⊆
∞⋂
n=1

f−1[o(dn)] ⊆
∞⋂
n=1

f−1[c(bn)] ⊆
∞⋂
n=1

c(an) = c(a)

and
⋂∞
n=1 f−1[c(bn)] = f−1 [

⋂∞
n=1 c(bn)], where

⋂∞
n=1 c(bn) is clearly a zero

sublocale of M .

Remark 2.5.2. Conditions (ii) and (iii) above can be equivalently written
as follows:

(ii)’ For any disjoint pair of cozero sublocales C1, C2 ∈ CoZS(L), there exist
disjoint C ′1, C

′
2 ∈ CoZS(M) such that f coz−1 [C ′1] = C1 and f coz−1 [C ′2] = C2.

(ii)” For any pair of zero sublocales Z1, Z2 ∈ ZS(L) such that Z1 ∨Z2 = L,
there exist Z ′1, Z

′
2 ∈ ZS(M) such that D1∨D2 = M , f z−1[Z

′
1] = Z1 and

f z−1[Z
′
2] = Z2.

(iii)’ For any disjoint pair of cozero sublocales C1, C2 ∈ CoZS(L), there exist
disjoint C ′1, C

′
2 ∈ CoZS(M) such that C1 ⊆ f coz−1 [C ′1] and C2 ⊆ f coz−1 [C ′2].

(iii)” For any pair of zero sublocales Z1, Z2 ∈ ZS(L) such that Z1 ∨Z2 = L,
there exist Z ′1, Z

′
2 ∈ ZS(M) such that Z ′1 ∨ Z ′2 = M , f z−1[Z

′
1] ⊆ Z1 and

f z−1[Z
′
2] ⊆ Z2.

Proposition 2.5.1 applied to the case of a sublocale embedding S ↪→ L
yields immediately the following corollary:

Corollary 2.5.3. The following are equivalent for any sublocale S of L:

(i) S is z-embedded.
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(ii) For any C ∈ CoZS(S) and Z ∈ ZS(S) such that C ⊆ Z, there exist
C ′ ∈ CoZS(L) and Z ′ ∈ ZS(L) with C ′ ⊆ Z ′ such that S ∩ C ′ = C and
S ∩ Z ′ = Z.

(iii) For any C ∈ CoZS(S) and Z ∈ ZS(S) such that C ⊆ Z, there exist
C ′ ∈ CoZS(L) and Z ′ ∈ ZS(L) with C ′ ⊆ Z ′ such that C ⊆ S ∩ C ′ ⊆
S ∩ Z ′ ⊆ Z.

(iv) For any pair of disjoint cozero sublocales C1, C2 ∈ CoZS(S), there exist
disjoint C ′1, C

′
2 ∈ CoZS(L) such that S ∩ C ′1 = C1 and S ∩ C ′2 = C2.

(v) For any pair of zero sublocales Z1, Z2 ∈ ZS(S) such that Z1 ∨ Z2 = S,
there exist Z ′1, Z

′
2 ∈ ZS(L) such that Z ′1 ∨ Z ′2 = L, S ∩ Z ′1 = Z1 and

S ∩ Z ′2 = Z2.

We have a further characterization of z-maps in terms of complete separa-
tion and f -separation:

Proposition 2.5.4. The following are equivalent for any localic map f : L→
M :

(i) f is a z-map.
(ii) If S and T are completely separated sublocales of L, then there exists

Z ∈ ZS(M) such that S ⊆ f−1[Z] and T ⊆ f−1[Z
#] = f−1[Z]#.

(iii) If S and T are completely separated sublocales of L, then f [S] and f [T ]
are f -separated.

Proof : (i) ⇒ (ii): Let S and T be completely separated sublocales of L.
There exists a Z ∈ ZS(L) such that S ⊆ Z and T ⊆ Z#. Then, since f is a
z-map, Z = f−1[Z

′] where Z ′ ∈ ZS(M).

(ii) ⇒ (iii): It suffices to show condition (iii) for disjoint zero sublocales
(recall 1.7). Consider Z1, Z2 ∈ ZS(L) such that Z1 ∩Z2 = O. By assumption
there exists Z ∈ ZS(M) such that Z1 ⊆ f−1[Z] and Z2 ⊆ f−1[Z

#]. Then

Z2 ∩ f−1[Z] ⊆ f−1[Z
#] ∩ f−1[Z] = f−1[Z ∩ Z#] = f−1[OM ] = OL,

and thus Z2 and f−1[Z] are completely separated in L. We apply once again
(ii) to obtain Z2 ⊆ f−1[Z

′] and f−1[Z] ⊆ f−1[Z
′#] for some Z ′ ∈ ZS(M).

Then

f−1[Z
′] ∩ f−1[Z] ⊆ f−1[Z

′] ∩ f−1[Z
′#] = f−1[Z

′ ∩ Z ′#] = f−1[OM ] = OL.

Finally, by the image/preimage adjunction, we get f [Z1] ⊆ Z and f [Z2] ⊆ Z ′.
Hence, f [Z1] and f [Z2] are f -separated.
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(iii) ⇒ (i): In order to show that f is a z-map, let Z ∈ ZS(L). By 1.5.1,
Z =

⋂∞
n=1 c(an) where for each n there exist zero and cozero sublocales

Zn and Cn such that Z ⊆ Zn ⊆ Cn ⊆ c(an). In particular, Z and o(an)
are completely separated sublocales in L. Then, by assumption, there are
F ′n, Fn ∈ ZS(M) such that

f [Z] ⊆ Fn, f [o(an)] ⊆ F ′n and f−1[Fn] ∩ f−1[F
′
n] = O.

Clearly,
⋂∞
n=1 Fn ∈ ZS(M) and Z ⊆ f−1 [

⋂∞
n=1 Fn]. For the other inclusion,

since o(an) ⊆ f−1[F
′
n], we have

f−1

[ ∞⋂
n=1

Fn

]
=
∞⋂
n=1

f−1[Fn] ⊆
⋂
f−1[F

′
n]

# ⊆
∞⋂
n=1

c(an) = Z.

The following corollary (which is Prop. 7.3 of [2]) is the application of
Proposition 2.5.4 to the case of a sublocale embedding S ↪→ L.

Corollary 2.5.5. The following are equivalent for a sublocale S of L:

(i) S is z-embedded in L.
(ii) If T and R are completely separated sublocales of S, then there exists

Z ∈ ZS(L) such that T ⊆ Z and R ⊆ Z#.
(iii) If T and R are completely separated sublocales of S, then they are S-

separated.

2.6. More on almost z-dense maps. Similarly to the extension of z-
embedded sublocales to z-maps, we can generalize the notions of C- and
C∗-embedded sublocales of [2, 3].

We say that a localic map f : L → M is a C-map (resp. C∗-map) if for
every continuous (resp. bounded and continuous) real function f : L(R) →
S(L)op there exists a continuous (resp. bounded and continuous) function
f : L(R)→ S(M)op such that the diagram

L(R)
f

//

f %%

S(L)op

S(M)op

f−1[−]

OO

commutes.

Remarks 2.6.1. (1) Every C-map is a C∗-map, and every C∗-map is a z-
map.
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(2) If f : L → M is a C-map (resp. C∗-map), then f [L] is a C-embedded
(resp. C∗-embedded) sublocale of L. In particular, a sublocale S of L is C-
embedded (resp. C∗-embedded) iff the embedding S ⊆ L is a C-map (resp.
C∗-map).

Some of the results of [3, 2] can be immediately generalized to C- and
C∗-maps. E.g., mimicking the proofs of Theorems 6.1 and 6.2 of [2] we get:

Proposition 2.6.2. Every C-map is almost z-dense.

Proposition 2.6.3. A localic map f : L → M is a C-map if and only if it
is an almost z-dense C∗-map.

Proposition 2.6.4. A localic map f : L → M is a C∗-map if and only if
for every pair of disjoint zero sublocales Z1, Z2 ∈ ZS(L) there are disjoint
sublocales Z ′1, Z

′
2 ∈ ZS(M) such that Z1 ⊆ f z−1[Z

′
1] and Z2 ⊆ f z−1[Z

′
2].

Moreover, we have:

Proposition 2.6.5. A localic map f : L → M is a C-map if and only if it
is an almost z-dense z-map.

Proof : If f is a C-map it is a z-map, and it is almost z-dense by 2.6.2.
Conversely, assume f is an almost z-dense z-map. To show that it is a
C-map it suffices, by 2.6.3, to check that f is a C∗-map. We will do that
using 2.6.4. Consider a pair of disjoint sublocales Z1, Z2 ∈ ZS(L). Since f
is a z-map, f [Z1] and f [Z2] are f -separated (by 2.5.4), that is, there exist
Z ′1, Z

′
2 ∈ ZS(M) such that f [Z1] ⊆ Z ′1, f [Z2] ⊆ Z ′2 and f z−1[Z

′
1]∩ f z−1[Z

′
2] = O.

Then by almost z-density, there exists an F ∈ ZS(M) such that f z−1[F ] = L
and Z ′1 ∩Z ′2 ∩ F = O. Then Z ′1 and Z ′2 ∩ F are disjoint zero sublocales of M
such that Z1 ⊆ f z−1[Z

′
1] and Z2 ⊆ f z−1[Z

′
2 ∩ F ].

Theorem 2.6.6. The following assertions are equivalent for a locale M :

(i) Every closed localic map with codomain M is a z-map.
(ii) Every closed localic map with codomain M is a C∗-map.
(iii) Every closed localic map with codomain M is a C-map.

Proof : (iii)⇒(ii)⇒(i) is trivial because

C-map⇒ C∗-map⇒ z-map.

(i)⇒(iii): Consider a closed localic map f : L → M . By assumption it is
a z-map; we will use Prop. 2.6.5 in order to prove that it is a C-map. It
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suffices to show that f is almost z-dense so consider Z ∈ ZS(M) such that
f−1[Z] = O. Since f [L] is a closed sublocale of M we have

f [L] ∩ Z# (∗)
= f [L]r Z

(∗∗)
= f [Lr f−1[Z]] = f [Lr O] = f [L]

((∗) holds because Z and f [L] are closed, hence complemented; in (∗∗) we
use the fact that f [−] is a colocalic map).

The equality above shows that f [L] ⊆ Z#, hence f [L] ∩ Z = O. Consider
the closed sublocale T = f [L] ∨ Z of M . The localic embedding j : T ↪→ M
is closed and, by hypothesis, it is a z-map. Therefore T is z-embedded in M .
Note that T ∩ f [L] = (f [L] ∨ Z) ∩ f [L] = f [L] and

T ∩ Z# = (f [L] ∨ Z) ∩ Z# = f [L] ∩ Z# = f [L].

This means that f [L] is both closed and open in T . Consequently, by 1.5.1,
f [L] is both a zero and a cozero sublocale of T . Since T is z-embedded in M ,
there exists Z ′ ∈ ZS(M) such that T ∩ Z ′ = f [L]. Then f [L] ⊆ Z ′, that is,
L = f−1[Z

′]. Moreover, Z ′∩Z = Z ′∩ (Z∩T ) = (Z ′∩T )∩Z = f [L]∩Z = O,
which shows that f is almost z-dense.

3. Classes of localic maps defined by the behavior of
their images on zero sublocales

So far we have discussed classes of localic maps defined by conditions on
the behavior of their preimages on zero and cozero sublocales. In this sec-
tion, inspired by [21], we introduce similar classes of localic maps defined by
conditions on the behavior of their images on zero and cozero sublocales.

Definition 3.1. Let f : L→M be a localic map. We say that f is

(a) z-closed if f [Z] is a closed sublocale of M for every Z ∈ ZS(L);
(b) coz-open if f [C] is an open sublocale of M for every C ∈ CoZS(L);

(c) z-open if f [Z] ⊆ f [C]◦ for every Z ∈ ZS(L) and every C ∈ CoZS(L) such
that Z ⊆ C;

(d) z-preserving (resp. coz-preserving) if the image of every zero (resp. coz-
ero) sublocale is a zero (resp. cozero) sublocale.

Remarks 3.2. (1) The σ-coframe homomorphism f z−1[−] : ZS(M)→ ZS(L)
has a left adjoint if and only if f is z-preserving. On the other hand the
σ-frame homomorphism f coz−1 [−] : CoZS(M)→ CoZS(L) has a right adjoint if
and only if f is coz-preserving.
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(2) Clearly, any open or coz-preserving map is coz-open. Similarly, any closed
or z-preserving localic map is z-closed.

(3) If f is z-closed and coz-open, then it is z-open.

(4) Recall from 1.2 that S# = (S◦)# for every sublocale S. Hence, Z ⊆ C ⇔
Z∩C# = O and f [Z] ⊆ f [C]◦ ⇔ f [Z]∩(f [C]◦)# = f [Z]∩f [C]# = O for any
Z ∈ ZS(L) and C ∈ CoZS(L). Therefore, f is z-open if and only if for any

disjoint Z1, Z2 ∈ ZS(L), the sublocales f [Z1] and f [Z#
2 ]# are also disjoint.

In [15, 6.3.2] it is proved that for any localic map f : L → M , if L is
completely regular and f is coz-open, then it is open. We have a similar
result for z-open maps.

Proposition 3.3. Let f : L→M be a localic map. If L is completely regular
and f is z-open, then f is open.

Proof : Let o(a) be an open sublocale of L. By complete regularity, o(a) =∨
b≺≺ a o(b). Moreover, by [15, 5.4.2], sublocales c(a) and o(b) are completely

separated, that is, there exist Zb ∈ ZS(L) and Cb ∈ CoZS(L) such that
o(b) ⊆ Zb ⊆ Cb ⊆ o(a). Hence, by the z-openness of f ,

f [o(b)] ⊆ f [Zb] ⊆ f [Zb] ⊆ f [Cb]
◦ ⊆ f [Cb] ⊆ f [o(a)].

Finally, taking joins we obtain

f [o(a)] = f

[ ∨
b≺≺ a

o(b)

]
=
∨

b≺≺ a
f [o(b)] ⊆

∨
b≺≺ a

f [Cb]
◦ ⊆ f [o(a)],

which shows that f [o(a)] is a join of open sublocales of M , hence open.

Summing up, we have the following diagram depicting the relations between
the mentioned classes of maps

z-open
CR

'/
open

+3
coz-open

CR
ks

+z-closedmu

coz-preserving

19
CR

/7

(3.3.1)

(where CR indicates that we need to assume complete regularity in the do-
main).
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Proposition 3.4. Let f : L → M be a localic map. If for any completely
separated sublocales S and T , f [S] and f [T#]# are completely separated in
M , then f is z-open.

Proof : Let Z1 and Z2 be disjoint zero sublocales of L. By assumption, f [Z1]

and f [Z#
2 ]# are completely separated in M . In particular, f [Z1] and f [Z#

2 ]#

are disjoint sublocales hence f is z-open by 3.2(4).

The converse holds under complete regularity:

Theorem 3.5. The following are equivalent for a localic map f : L → M
with completely regular domain:

(i) f is z-open.
(ii) If S and T are completely separated sublocales of L, then f [S] and

f [T#]# are completely separated in M .

Proof : Let f be a z-open map. If S and T are completely separated sublocales
of L, they are contained in disjoint zero sublocales Z1 and Z2. Clearly, in
order to show that f [S] and f [T#]# are completely separated, it suffices to

show that so are f [Z1] and f [Z#
2 ]#.

By 1.6.1, there exists a continuous g′ : L(R) → S(L)op, with 0 ≤ g′ ≤ 1
such that Z1 = g′(0,—) and Z2 = g′(—, 1). From 3.3, we know that f is open,
hence f ∗ has a left adjoint φ such that f [o(a)] = o(φ(a)) for any a ∈ L. We
have the following diagram

L(R)
g

//

g′
$$

L

cL[−]

��

φ

⊥ ##

f

88
M

f∗

⊥
oo

cM [−]

��

S(L)op
f [−]

//

S(M)op

f−1[−]
oo

where the left triangle and the square f−1[−]cM [−] = cL[−]f ∗ commute.
For each r ∈ Q let

Cr = g′(−, r)# = oL(g(−, r)) and Fr = g′(r,−) = cL(g(r,—)).

Clearly, Cr ∈ CoZS(L) and Fr ∈ ZS(L). If r < s then g′(r,—) ∨ g′(—, r) = L
and g′(r,—) ∩ g′(—, s) = O. Hence, by 1.2.1, Cr ⊆ Fr ⊆ Cs, and, since f is
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z-open,

f [Cr] ⊆ f [Fr] ⊆ f [Cs]
◦ = f [Cs] (3.5.1)

for every r < s.
Consider further the following family of open sublocales of M (r ∈ Q):

Ur =


O if r < 0

f [Cr] if 0 ≤ r ≤ 1

M if r > 1.

Since every Ur is complemented and Ur ⊆ Us for every r < s, it is easy to see
that {Ur}r∈Q is a scale in S(M)op (recall 1.6). By 1.4.1, it generates a frame
homomorphism ϕ : L(R)→ S(M)op given by

ϕ(p,−) =
⋂
r>p

f [Cr] and ϕ(−, q) =
⋂
s<q

f [Cs]
#.

Clearly, ϕ(—, q) is closed for every q ∈ Q and, by (3.5.1)

ϕ(p,—) =
⋂
r′>p

f [Cr′] ⊆
⋂
r′>p

f [Cr′] ⊆
⋂
r>p

f [Cr] = ϕ(p,—).

So ϕ(p,—) is closed for every p ∈ Q and ϕ is continuous. Notice ϕ is also
bounded since ϕ(—, 0)∩ϕ(1,—) = M . We claim that ϕ completely separates

f [Z1] and f [Z#
2 ]# in M . Indeed:

ϕ(—, 1) =
⋂
s<1

f [Cs]
# =

⋂
s<1

f [oL(g(—, s))]# =
⋂
s<1

oM(φ(g(—, s)))# =

=
⋂
s<1

cM(φ(g(—, s))) = cM

(
φ

(
g

(∨
s<1

(—, s)

)))
= cM(φ(g(—, 1))) =

= oM(φ(g(—, 1)))# = f [oL(g(—, 1))]# = f [g′(—, 1)#]# = f [Z#
2 ]#.

Notice that we are using the fact that φ and g, being left adjoints, preserve
arbitrary joins. Moreover,

ϕ(0,—) =
⋂

0<r
f [Cr]

(∗)
⊇
⋂
0<s

f [Cs] =
⋂
0<s

oM(φ(g(—, s))) =
⋂
0<s

cM(φ(g(—, s))∗)

(∗∗)
=
⋂
0<s

cM(f(g(—, s)∗)) = cM

(
f

(∨
0<s

g(—, s)∗
))

(∗∗∗)
⊇ cM(f(g(0,—)))

⊇ f [cL(g(0,—))] = f [g′(0,—)] = f [Z1]

where (∗) follows from (3.5.1), (∗∗) from (1.3.1), and (∗ ∗ ∗) holds since
g(—, s)∗ ≤ g(0,—) (because g(0,—) ∨ g(—, s) = 1) for every s > 0.
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We get a similar result by replacing the condition on the domain with the
normality of codomain. For proving it we need to recall from [4, Prop. 5] that
in normal locales, disjoint closed sublocales are always completely separated.

Proposition 3.6. The following are equivalent for a localic map f : L→M
with normal M :

(i) f is z-open.
(ii) If S and T are completely separated sublocales of L, then f [S] and

f [T#]# are completely separated in M .

Proof : Assume that f is z-open. As in 3.5, it suffices to show (ii) for Z1

and Z2 disjoint zero sublocales of L. Since Z1 ⊆ Z#
2 , we have, by hypoth-

esis, f [Z1] ⊆ f [Z#
2 ]◦. Hence f [Z1] and (f [Z#

2 ]◦)# = f [Z#
2 ]# are disjoint

closed sublocales and since M is normal, they are completely separated. In
particular, f [Z1] and f [Z#

2 ]# are completely separated.

In pointfree topology, the role of classical T1-axiom is usually taken by the
so called subfit axiom (see [19])2. One speaks of a subfit locale whenever

a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c.
Normality in conjunction with subfitness implies complete regularity (see [18]
or [19]).

Proposition 3.7. Let f : L → M be a localic map between subfit locales,
with L normal. Then f is z-open if and only if it is open and closed.

Proof : By (3.3.1), if f is open and closed then it is z-open. Conversely, let f
be z-open. Since L is completely regular, we know by 3.3 that f is open. To
prove that it is also closed, let cL(a) ⊆ L and let cM(b) = f [cL(a)]. It suffices
to show cM(b) ⊆ f [cL(a)]. We will proceed by contradiction.

If cM(b) * f [cL(a)], then, by (1.2.1), f [cL(a)]∨ oM(b) 6= M , and since M is
subfit there would exist some cM(d) 6= OM in M such that (f [cL(a)]∨oM(b))∩
cM(d) = OM (see [18, V.1.4]). Then, f [cL(a)] ⊆ f [cL(a)] ∨ oM(b) ⊆ oM(d)
and, consequently, cL(a) ⊆ f−1[oM(d)] = oL(f ∗(d)). This would mean that
cL(a) and cL(f ∗(d)) would be disjoint closed sublocales hence completely
separated (by the normality of L). It then would follow, by 3.5, the existence
of Z1, Z2 ∈ ZS(M) such that

f [cL(a)] ⊆ Z1, f [oL(f ∗(d))]# ⊆ Z2, and Z1 ∩ Z2 = OM .

2In spaces, the subfit property is in fact slightly weaker than T1.
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Indeed, cM(d) ⊆ f [oL(f ∗(d))]# ⊆ Z2 since

cM(d) ∩ f [oL(f ∗(d))] = cM(d) ∩ oM(φ(f ∗(d))) ⊆ cM(d) ∩ oM(d) = OM

(where φ denotes the left adjoint of f ∗ provided by the openness of f). More-

over, f [cL(a)] ⊆ cM(b) ⊆ Z1 ⊆ Z#
2 ⊆ oM(d). Then we would get M =

oM(b) ∨ cM(b) ⊆ oM(d), contradicting the fact that cM(d) is nonempty.

4. Forms of normality and z-embeddings
As is well known, normality can be characterized in terms of C-embeddings

and C∗-embeddings (see [3]) as well as in terms of z-embeddings (see [2, The-
orem 7.10]). Similar results hold for some weaker forms of normality as e.g.
mild normality. We will present now some general results that cover and unify
all such characterizations under a single proof. Besides, the setting will allow
us to identify general conditions under which this kind of characterizations
may hold.

In what follows s denotes a function which assigns to each locale L a subset
sL of L and S denotes the function which assigns to each L the set of closed
sublocales

S(L) = {c(a) | a ∈ sL}.
We call S a (closed) selection function and we say that the sublocales in S(L)
are the S-closed sublocales of L. Accordingly, we say that L is completely
separated S-normal (briefly, c. s. S-normal) if every two disjoint S-closed
sublocales of L are completely separated in L.

The standard examples for S are given by selecting respectively all ele-
ments, regular elements, cozero elements, δ-elements and δ-regular elements3.
In the following, these will be denoted as

S1, Sreg, Scoz, Sδ, Sδreg

respectively.
Given a closed selection S, a locale L is called S-normal [14] whenever

a ∨ b = 1 for a, b ∈ sL implies the existence of u, v ∈ sL such that u ∧ v = 0
and a ∨ u = 1 = v ∨ b. It will be useful for the exposition to introduce the
following (formally) weaker variant of this notion: we say that a locale L is
weakly S-normal whenever a ∨ b = 1 for a, b ∈ sL implies the existence of

3An a ∈ L is a δ-element [17] if a =
∨
{x ∈ L | x is regular, x ≤ a}; it is a δ-regular element if

a =
∨∞

n=1 an for some an ≺ a (we may assume that each an is regular since an ≺ a implies a∗∗n ≺ a,
hence any δ-regular element is a δ-element); see [14] for more information.
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u, v ∈ L such that u∧v = 0 and a∨u = 1 = v∨b. Clearly, any c. s. S-normal
locale is weakly S-normal.

Examples 4.1. For the selection S = S1, S-normality and weak S-normality
are just standard normality, while for Sreg, weak S-normality is mild nor-
mality ([17]). In this case, as well as in any case where sL contains all
regular elements, S-normality coincides with weak S-normality because in
any frame (more generally, any distributive pseudocomplemented algebra [14,
Prop. 1.4]), u ∧ v = 0 iff u∗∗ ∧ v∗∗ = 0. This is also the case of Sδ.

For S = Scoz, S-normality is a property satisfied by any locale.

The fact that ≺ interpolates in normal locales, and thus ≺= ≺≺ , plays an
important role in the proof that a locale is normal iff every pair of disjoint
closed sublocales is completely separated. Certainly, the following conditions
on a locale L might also play some role if we want to obtain similar results
for other variants of normality:

(I) For every a, b ∈ sL, if a ≺ b then there is a c ∈ sL such that a ≺ c ≺ b.
(II) For every a ∈ L and b ∈ sL, if a ≺ b then there is a c ∈ sL such that

a ≺ c ≺ b.
(wI) For every a, b ∈ sL, if a ≺ b then a≺≺ b.

(wII) For every a ∈ L and b ∈ sL, if a ≺ b then a≺≺ b.
(wI’) For every a, b ∈ sL, if a ≺ b then there is a c ∈ CozL such that

a ≺ c ≺ b.
(wII’) For every a ∈ L and b ∈ sL, if a ≺ b then there is a c ∈ CozL such

that a ≺ c ≺ b.

Clearly, we have:

(II)

��

+3 (wII)

��

+3 (wII’)

��

(I) +3 (wI) +3 (wI’)

Remark 4.2. If L is a S-normal (resp. weakly S-normal) locale and satisfies
(wI) (resp. (wII)) then L is c. s. S-normal. Indeed, if a, b ∈ sL are such
that a ∨ b = 1 then there are u, v ∈ sL (resp. in L) such that u ∧ v = 1 and
a ∨ u = 1 = v ∨ b. This implies a ∨ v∗ = 1 meaning v ≺ a. By (wI) (resp.
(wII)), v≺≺a. Thus, from [15, 5.4.2], c(a) is completely separated from o(v).
Because c(b) ⊆ o(v), then c(a) and c(b) are also completely separated in L.
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Summing up, we have

weakly S-normal

under (wII)

��

S-normal

.6

under (wI)

)1 c. s. S-normal

KS

Consider now the following further conditions on a selection S:

(s1) If a, b ∈ sL then a ∧ b ∈ sL.
(s2) If a ∈ sL and b ∈ scL(a), then b ∈ sL.
(s3) If a, b ∈ CozL are such that a∨ b = 1, then there are u, v ∈ sL such that

v ≤ a, u ≤ b and u ∨ v = 1.

When a selection function S satisfies all them we say that S is an adequate
selection. E.g. S1 and Sreg are examples of adequate selections.

Proposition 4.3. Let S be a selection with property (s2 ). If L is a weakly
S-normal locale, then cL(a) is weakly S-normal for every a ∈ sL.

Proof : Let S and T be disjoint S-closed sublocales of cL(a) for some a ∈ sL.
By (s2), S and T are S-closed sublocales of L. By assumption, there are
open sublocales oL(x) and oL(y) of L such that S ⊆ oL(x) and T ⊆ oL(y).
Thus, S ⊆ oL(x) ∩ cL(a) and T ⊆ oL(y) ∩ cL(a) where o(x)L ∩ cL(a) and
o(y)L ∩ cL(a) are open sublocales of cL(a).

Proposition 4.4. Let S be a selection with properties (s2 ) and (s3 ). If
L is completely separated S-normal, then every S-closed sublocale of L is
C∗-embedded in L.

Proof : Let cL(a) be a S-closed sublocale of L. We will use 2.6.4 (more
precisely, the particular case of it for sublocale embeddings) to show that
cL(a) is C∗-embedded. Let Z1 and Z2 be disjoint zero sublocales of cL(a).
By (s3) there are disjoint S-closed sublocales D1 and D2 of cL(a) such that
Z1 ⊆ D1 and Z2 ⊆ D2. Since (s2) holds, D1 and D2 are S-closed in L.
Because L is c. s. S-normal, then D1 and D2 are completely separated in L,
and so are Z1 and Z2.

Proposition 4.5. Let S be a selection with properties (s2 ) and (s3 ). Con-
sider the following statements for a locale L:

(a) For every pair of disjoint S-closed sublocales c(a) and c(b) of L there is
a zero sublocale Z such that c(a) ⊆ Z and c(b) ⊆ Z#.
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(b) Every S-closed sublocale of L is z-embedded in L.

Then (a) ⇒ (b).

Proof : Let cL(a) be a S-closed sublocale. We will use (ii) of 2.5.5 to prove
that cL(a) is z-embedded. It suffices to take disjoint zero sublocales instead of
general completely separated sublocales (recall 1.7). Let Z1 and Z2 be disjoint
zero sublocales of cL(a). By (s3) there are disjoint S-closed sublocales D1

and D2 of c(a) such that Z1 ⊆ D1 and Z2 ⊆ D2. Since (s2) holds, D1 and
D2 are S-closed in L. By assumption, there is a zero sublocale Z of L such
that Z1 ⊆ Z and Z2 ⊆ Z#.

Corollary 4.6. Let S be a selection satisfying (s2 ) and (s3 ). If L is com-
pletely separated S-normal, then every S-closed sublocale of L is z-embedded
in L.

The following proposition gives a sufficient condition for weak S-normality
that only requires property (s1); hence it covers also the selections Sδ and
Sδreg.

Proposition 4.7. Let S be a selection with property (s1 ). If L is a locale
in which every S-closed sublocale is z-embedded, then L is weakly S-normal.

Proof : Let cL(a) and cL(b) be disjoint S-closed sublocales of L. Consider the
sublocale M = cL(a) ∨ cL(b) = cL(a ∧ b). By (s1), M is S-closed in L. Then
the sublocales cL(a) and cL(b) are clopen in M ; indeed cL(a) = cL(a) ∩M ,
cL(b) = cL(b) ∩M and, since cL(a) ∩ cL(b) = O,

cL(a) = oL(b) ∩ cL(a) = oL(b) ∩ (cL(a) ∨ cL(b)) = oL(b) ∩M,

cL(b) = oL(a) ∩ cL(b) = oL(a) ∩ (cL(b) ∨ cL(a)) = oL(a) ∩M.

Consequently (recall 1.5.1), cL(a) and cL(b) are disjoint cozero sublocales of
M . By assumption, M is z-embedded so from (iv) of 2.5.3 we know that
there are disjoint cozero sublocales oL(v) and oL(u) in L such that

oL(u) ∩ oL(v) = O, cL(a) ⊆ oL(u) and cL(b) ⊆ oL(v),

as required.

Proposition 4.8. Let S be a selection with properties (s2 ) and (s3 ). If L
is a weakly S-normal locale and (wII’ ) holds, then every S-closed sublocale
of L is z-embedded.
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Proof : To prove that every S-closed sublocale is z-embedded we will show
that condition (a) of 4.5 holds. Let c(a) and c(b) be disjoint S-closed sublo-
cales. Then a ∨ b = 1. Since L is weakly S-normal, there are u, v ∈ L such
that u∧v = 0 and a∨u = 1 = b∨v. This implies v ≺ a. By (wII’), there is a
c ∈ CozL such that v ≺ c ≺ a. In particular, c ≤ a, which means c(a) ⊆ c(c).
Furthermore, v∗ ∨ c = 1 so v ≤ v∗∗ ≤ c. Hence, 1 = v ∨ b ≤ c ∨ b, that is,
c(b) ⊆ o(c) = c(c)# as required.

Corollary 4.9. Let S be an adequate selection. If (wII’ ) holds on a locale
L, then L is weakly S-normal if and only if every S-closed sublocale is z-
embedded.

Mimicking the proof of Proposition 4.8 we can show a similar result for
S-normality:

Proposition 4.10. Let S be a selection with properties (s2 ) and (s3 ). If
L is an S-normal locale and (wI’ ) holds, then every S-closed sublocale is
z-embedded.

Putting together all the results above we obtain the following theorems:

Theorem 4.11. Let S be an adequate selection. Consider the following
statements for a locale L:

(a) Any pair of disjoint S-closed sublocales of L are completely separated in
L (i.e. L is completely separated S-normal).

(b) Every S-closed sublocale of L is C∗-embedded.
(c) Every S-closed sublocale of L is z-embedded.
(d) L is weakly S-normal.

Then (a)⇒ (b)⇒ (c)⇒ (d).

Theorem 4.12. Let S be an adequate selection. The following statements
are equivalent for any locale L with property (wII ):

(i) Any pair of disjoint S-closed sublocales of L are completely separated
in L (i.e. L is completely separated S-normal).

(ii) Every S-closed sublocale of L is C∗-embedded.
(iii) Every S-closed sublocale of L is z-embedded.
(iv) L is weakly S-normal.

Theorem 4.13. Let S be an adequate selection. Consider the following
statements for a locale L with property (wI ):
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(a) L is S-normal.
(b) Any pair of disjoint S-closed sublocales of L are completely separated in

L (i.e. L is completely separated S-normal).
(c) Every S-closed sublocale of L is C∗-embedded.
(d) Every S-closed sublocale of L is z-embedded.
(e) L is weakly S-normal.

Then (a)⇒ (b)⇒ (c)⇒ (d)⇒ (e).

In the standard example S = S1, an important fact is that CozL ⊆
sL. For a general S, we do not have necessarily CozL ⊆ sL, but we need
cozero elements to behave “normally” with respect to sL in order to get the
converses. For this we consider the following condition on L:

(D) For every a, b ∈ CozL such that a ∨ b = 1 there are u, v ∈ sL such
that u ∧ v = 0 and a ∨ u = 1 = b ∨ v.

Note that if (D) holds and L is c. s. S-normal , then L is S-normal.
Hence:

Theorem 4.14. Let S be an adequate selection. The following statements
are equivalent for any locale L with properties (wII ) and (D):

(i) L is S-normal.
(ii) Any pair of disjoint S-closed sublocales of L are completely separated

in L (i.e. L is completely separated S-normal).
(iii) Every S-closed sublocale of L is C∗-embedded.
(iv) Every S-closed sublocale of L is z-embedded.
(v) L is weakly S-normal.

Remarks 4.15. (1) If CozL ⊆ sL, then clearly (D) holds. Furthermore, in
this case we can add one more equivalent statement to 4.14, namely:

Every S-closed sublocale of L is C-embedded.

Indeed, let c(a) be a S-closed sublocale. If L is c. s. S-normal then c(a)
is C∗-embedded. From [2, 6.2] it suffices to show that c(a) is completely
separated from every zero sublocale disjoint form it, but this is immediate
since CozL ⊆ sL and L is c. s. S-normal.

This assertion can also be added to theorems 4.11 (in between statements
(a) and (b)) and 4.12 whenever CozL ⊆ sL.

(2) On the other hand, the property that sL contains the set L∗ of regular
elements is equivalent to the following condition (by the property that u∧v =
0 iff u∗∗ ∧ v∗∗ = 0):
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(DC) For every a, b ∈ L such that a ∧ b = 0 there are u, v ∈ sL such that
u ∧ v = 0, a ≤ u and b ≤ v.

(DC) is stronger than (D): Indeed, if (DC) holds then for every a, b ∈ CozL
with a∧ b = 0 there are u, v ∈ sL such that u∧ v = 0 and a∨ u = 1 = b∨ v.
This together with the fact that CozL is a normal σ-frame yields (D).

This means that if L is c. s. S-normal then it is S-normal. Furthermore,
if L is S-normal then (I) holds. Indeed, if a, b ∈ sL are such that a ≺ b then
a∗ ∨ b = 1, and since a∗ ∈ L∗ ⊆ sL, there are u, v ∈ sL such that u ∧ v = 0
and a∗ ∨ u = 1 = b ∨ v; thus, a ≺ u and u ≺ b, as required. Hence, L is c.
s. S-normal. Together with 4.1 this means that whenever sL contains all
regular elements, the notions of c. s. S-normality, weak S-normality and
S-normality are equivalent.

5. Localic n- and w-maps
In this section, we present a similar study for the localic counterpart of

the continuous N -maps and WN -maps introduced by Woods in [22]. Both
notions can be mimicked in the category of locales. The latter were already
studied by Dube [8] in terms of frame homomorphisms, referred to as W -
maps; here we call them w-maps.

Definition 5.1. A localic map f : L→M is

(a) a w-map if whenever an open sublocale oL(a) is completely separated
from f−1[Z] where Z ∈ ZS(M), there exists an open sublocale oM(b)
such that oL(a) ⊆ f−1[oM(b)], and oM(b) is completely separated from Z.

(b) an n-map if whenever an open sublocale oL(a) is completely separated
from f−1[cM(b)] where b ∈M , there exists an open sublocale oM(d) such
that oL(a) ⊆ f−1[oM(d)], and oM(d) is completely separated from cM(b).

Clearly, every n-map is a w-map.

We may unify both notions by defining the concept in terms of a selec-
tion function S on locales. We can also make our results more general by
extending the notion of a closed selection to an arbitrary selection S where
S selects for each L a set S(L) of sublocales of L (not necessarily closed).
In the next section we will deal with examples where the sublocales of the
selection may not even be complemented.

Definition 5.2. We say then that a locale L is S-normally separated if every
S ∈ S(L) is completely separated from every closed sublocale of L disjoint
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from it. A localic map f : L→M is an S-map if whenever an open sublocale
oL(a) of L is completely separated from f−1[T ] with T ∈ S(M), there exists
an open sublocale oM(d) of M such that oL(a) ⊆ f−1[oM(d)], and oM(d) is
completely separated from T .

Of course, for S = S1, S-normally separated is just normality and S-maps
are precisely the n-maps.

The definition of a δ-normally separated frame was introduced in [9, 3.13].
Rephrasing it in terms of sublocales and localic maps we have that a locale L
is δ-normally separated if every zero sublocale is completely separated from
every closed sublocale disjoint from it (that is, if the embedding cL(a) ↪→ L is
almost z-dense for every a ∈ L). Hence, for S = Scoz, S-normally separated
is precisely δ-normally separated while S-maps are w-maps.

Our first result shows that in S-normally separated locales M (and only on
them), any closed, z-closed, or proper map with codomain M is an S-map
(recall that a proper localic map is a closed map that preserves directed joins
[20]).

Theorem 5.3. Let S be a selection on locales and let M be a locale such
that every T ∈ S(M) is complemented. The following are equivalent:

(i) M is S-normally separated.
(ii) Every z-closed localic map f : L→M is an S-map.
(iii) Every closed localic map f : L→M is an S-map.
(iv) Every proper localic map f : L→M is an S-map.

Proof : (i)⇒(ii): Let f : L → M be a z-closed localic map and take oL(a)
and f−1[S] with S ∈ S(M) such that they are completely separated in L.
Then there exists a zero sublocale cL(d) such that oL(a) ⊆ cL(d) and f−1[S]∩
cL(d) = OL (which implies that cL(d) ⊆ f−1[S]#). Taking images we obtain

f [oL(a)] ⊆ f [cL(d)] ⊆ f [f−1[S]#] = f [f−1[S
#]] ⊆ S#.

Note that the equality above holds because preimages preserve complements,
and that the last inclusion holds due to the adjunction between image and
preimage. Hence, since S is complemented, f [cL(d)] ∩ S = O and f [cL(d)] is
closed because f is z-closed. Then, since M is S-normally separated, f [cL(d)]
and S are completely separated in M and, using the fact that CozM is a
normal σ-frame, there is a cozero sublocale oM(x), completely separated from
S, such that f [cL(d)] ⊆ oM(x) (recall 1.7). In particular, f [oL(a)] ⊆ oM(x).
Hence oL(a) ⊆ f−1[oM(x)], as required.
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(ii) ⇒ (iii) ⇒ (iv) are trivial since every closed map is z-closed and every
proper map is closed.

(iv)⇒(i): Let cM(a) and S ∈ S(M) be disjoint sublocales of M . To prove
that M is S-normally separated we will show they are completely separated
in M . Consider the embedding j : cM(a) ↪→ M . Since j is a proper map, by
assumption, it is an S-map. Consider cM(a) (which is open in cM(a)) and
j−1[S]; they are completely separated in cM(a) because j−1[S] = S ∩ cM(a) =
OcM (a). Thus, there exists oM(d) such that cM(a) ⊆ j−1[oM(d)] and oM(d) is
completely separated from S in M . In particular, since cM(a) = j[cM(a)] ⊆
oM(d), cM(a) is completely separated from S in M .

Hence, we may conclude when M is a normal locale that any closed, z-
closed or proper map with codomain M is an n-map:

Corollary 5.4. The following are equivalent for a locale M :

(i) M is normal.
(ii) Every z-closed localic map f : L→M is an n-map.
(iii) Every closed localic map f : L→M is an n-map.
(iv) Every proper localic map f : L→M is an n-map.

On the other hand, for the selection S = Scoz we get:

Corollary 5.5. The following are equivalent for a locale M :

(i) M is δ-normally separated.
(ii) Every z-closed localic map f : L→M is a w-map.
(iii) Every closed localic map f : L→M is a w-map.
(iv) Every proper localic map f : L→M is a w-map.

Examples 5.6. We briefly describe now another type of examples of w- and
n-maps, inspired by an example in classical topology from [23, Section 2].
The details of the construction and the proofs of the results presented below,
rather long and technical, will appear in the author’s PhD dissertation (in
preparation).

We will first build a frame Pa. Consider a frame L, an a ∈ L and the onto
frame homomorphism pa : L → c(a) given by x 7→ x ∨ a. Let 2 be the two-
element frame {0, 1}: there is a unique frame homomorphism ι : 2 → c(a).
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The frame Pa is given by the pullback

Pa
k

//

h
��

2

ι
��

L
pa
// c(a)

in the category of frames, of morphisms ι and pa. Since the pullback is the
equalizer of

L× 2
pL
// L

pa
// c(a) and L× 2

p2
// 2

ι
// c(a)

(where pL and p2 are the product projections), Pa is the subframe of L × 2
given by

Pa = {(x, 0) ∈ L× 2 | x ≤ a} ∪ {(x, 1) ∈ L× 2 | x ∨ a = 1},
and h = pLi and k = p2i (being i the subframe inclusion Pa ⊆ L× 2).

It can be shown that the cozero elements of Pa are precisely the (x, 0) ∈ Pa
with x ∈ CozL and the (x, 1) ∈ Pa with x ∈ CozL such that c(x) is completely
separated from c(a) in L. It is also easy to see that if c(a) is completely
separated from every zero sublocale disjoint from it, then

CozPa = {(x, y) ∈ Pa | x ∈ CozL}.
Consequently, L is δ-normally separated if and only if CozPa = {(x, y) ∈ Pa |
x ∈ CozL} for every a ∈ L.

Regarding separation properties, Pa is normal (resp. subfit) whenever L
is normal (resp. subfit). However, the corresponding result for complete
regularity is not true. Nevertheless, it can be shown that:

(1) If Pa is completely regular then c(a) is completely separated in L
from every closed sublocale disjoint from it. Thus, if Pa is completely
regular for every a ∈ L, then L is normal (recall that a frame is
normal if and only if every pair of disjoint closed sublocales in it are
completely separated).

(2) If L is completely regular and c(a) is completely separated from every
closed sublocale of L disjoint from it, then Pa is completely regular.
Hence, for a completely regular L, L is normal if and only if Pa is
completely regular for every a ∈ L.

Finally, for the localic map h∗ : L→ Pa (the right adjoint of h), we have:

Proposition. (a) h∗ is always a w-map.
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(b) If Pa is completely regular then h∗ is an n-map.

We end with one more unifying result that shows that under some assump-
tions on L and M , n-maps f : L → M are S-closed, that is, f [S] is closed
for every S ∈ S(L). Of course, for S = S1, S-closed maps are the closed
localic maps; for S = Scoz, S-closed maps are the z-closed maps.

Theorem 5.7. Let f : L → M be an n-map. If L is S-normally separated
and M is subfit, then f is S-closed.

Proof : Let S ∈ S(L) and consider cM(b) = f [S]. Clearly, f [S] ⊆ cM(b).
To prove that f is S-closed it suffices to show that cM(b) ⊆ f [S]. Suppose
cM(b) * f [S]. Then oM(b) ∨ f [cL(a)] 6= L, by (1.2.1), and, by a well-known
characterization of subfit locales ([18, V.1.4]), there is a closed sublocale
cM(d) 6= OM such that

(oM(b) ∨ f [S]) ∩ cM(d) = OM . (5.6.1)

Then f [S] ⊆ (oM(b) ∨ f [S]) ⊆ oM(d). Taking preimages we obtain

S ⊆ f−1[f [S]] ⊆ f−1[oM(d)] = oL(f ∗(d)),

from which it follows that S ∩ cL(f ∗(d)) = OL. Since L is S-normally sep-
arated, S and cL(f ∗(d)) are completely separated in L. Therefore there are
Z1, Z2 ∈ ZS(L) such that

S ⊆ Z1, cL(f ∗(d)) ⊆ Z2 and Z1 ∩ Z2 = O

In fact, since CozL is a normal σ-frame, there is a cozero sublocale oL(y) such
that S ⊆ Z1 ⊆ oL(y), and oL(y) is completely separated from Z2 (recall 1.7).
In particular, oL(y) is completely separated from cL(f ∗(d)) = f−1[cM(d)].
Since f is an n-map, there is oM(z) such that

S ⊆ Z1 ⊆ oL(y) ⊆ f−1[oM(z)] (5.6.2)

and oM(z) is completely separated from cM(d) in M . Taking images in (5.6.2)
we deduce that f [S] ⊆ f [f−1[oM(z)]] ⊆ oM(z). So, in fact, f [S] is completely

separated from cM(d) in M . In particular, f [S] is completely separated

from cM(d). Thus cM(b) = f [S] ⊆ oM(d), and it follows from (5.6.1) that
oM(b) ⊆ (oM(b)∨f [S]) ⊆ oM(d). Consequently, M = cM(b)∨oM(b) ⊆ oM(d),

which contradicts the fact that cM(d) 6= OM . Hence, f [S] = cM(b) ⊆ f [S],
as required.

In particular, we have:
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Corollary 5.8. Let f : L→M be a localic n-map with M a subfit locale.

(a) If L is normal then f is closed.
(b) If L is δ-normally separated then f is z-closed.

6. Localic wz-maps
In this final section, we discuss a different type of selections that is still

covered by the results in the preceding section.
Recall that the points of a locale L are the prime elements, that is, the

p ∈ L r {1} such that p = a ∧ b implies p = a or p = b. We denote by PrL
the set of all prime elements of L. A special kind of points are the covered
prime elements of L that satisfy the condition p =

∧
S ⇒ p ∈ S for any

S ⊆ L ([6]).
For each a ∈ L, the boolean sublocale

b(a) = {x→ a | x ∈ L}
is the least sublocale containing a ([18, III.10.2]). Let Sp denote the sublocale
selection given by

Sp(L) = {b(p) | p ∈ Pr(L)} .
Note that for any p ∈ PrL and x ∈ L, p = (x ∨ p) ∧ (x→ p) and, therefore,
p = x ∨ p or p = x → p. Hence b(p) = {1, p} (these are the one-point
sublocales [18]).

The Sp-maps will be called wz-maps: they are the point-free counterparts
of the WZ-maps of Zenor [23].

We will show now that any completely regular locale is Sp-normally sepa-
rated. To simplify terminology, we say that a point p is completely separated
from a sublocale T whenever sublocales b(p) and T are completely separated.

Proposition 6.1. In a locale L, every point is completely separated from
every zero sublocale disjoint from it.

Proof : Let c(a) ∈ ZS(L) such that b(p) ∩ c(a) = O. Then b(p) ⊆ o(a). By
1.5.1,

o(a) =
∞∨
n=1

o(an) =
∞∨
n=1

c(bn)

where o(an) ⊆ c(bn) and bn ∈ CozL for every n ∈ N. Since b(p) ⊆
o (
∨∞
n=1 an), we have

p =

( ∞∨
n=1

an

)
→ p =

∞∧
n=1

(an → p) .
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As remarked above, since p is prime, an → p = 1 or an → p = p, so there is
a k ∈ N such that ak → p = p and, therefore, b(p) ⊆ o(ak) ⊆ c(bk) ⊆ o(a),
as required.

In other words,

the localic embedding b(p) ↪→ L is almost z-dense for every
p ∈ PrL.

Corollary 6.2. In a completely regular locale L, every point is completely
separated from every closed sublocale disjoint from it. That is, any completely
regular locale is Sp-normally separated.4

Proof : Let c(a) be a sublocale of L such that b(p) ∩ c(b) = O. Since L is
completely regular, c(a) =

⋂
{Z ∈ ZS(L) | c(a) ⊆ Z} (see [15, 5.5]). Con-

sequently, since p /∈ c(a), there is a Z ∈ ZS(L) such that c(a) ⊆ Z and
Z ∩ b(p) = O. By 6.1, c(a) and b(p) are completely separated.

Remark 6.3. Hence, in any completely regular locale L, for each p ∈ PrL
and a ∈ L such that a � p, there is a continuous real-valued function
f : L(R)→ L such that 0 ≤ f ≤ 1, b(p) ⊆ f(0,—) and c(a) ⊆ f(—, 1).

A one-point sublocale b(p) is complemented iff p is a covered prime ([11,
Prop. 10.2]). Moreover, in regular locales every prime is covered ([11,
Prop. 10.3]). Hence, Sp satisfies the assumptions of Theorem 5.3 when-
ever codomain M is regular and we have:

Corollary 6.4. The following assertions are equivalent for a regular locale
M :

(i) M is Sp-normally separated.
(ii) Every z-closed localic map f : L→M is a wz-map.
(iii) Every closed localic map f : L→M is a wz-map.
(iv) Every proper localic map f : L→M is a wz-map.

Corollary 6.5. Let f : L→M be a localic n-map with M a subfit locale. If
L is Sp-normally separated, then f is a wz-map.

Let us consider also the general (boolean) selection Sb defined by

Sb(L) = {b(x) | x ∈ L}.

Proposition 6.6. Each Sb-normally separated locale is normal and subfit.
4The converse cannot hold since there are pointless locales that are not completely regular.
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Proof : Let L be a Sb-normally separated locale. If c(a) ∩ c(b) = O then
b(a) ∩ c(b) ⊆ c(a) ∩ c(b) = O. By assumption, b(a) and c(b) are completely
separated. By (1.2.5),

b(a) = ↑(
∧
b(a)) = ↑(

∧
x∈L

(x→ a)) = ↑((
∨
x∈L

x)→ a) = ↑(1→ a) = c(a).

Hence c(a) and c(b) are also completely separated (recall 1.7). This means
that every pair of disjoint closed sublocales are completely separated, which
characterizes normality.

Regarding subfitness, consider a, b ∈ L such that a � b (equivalently,
a → b 6= 1). Given d = a → b ≥ b, consider b(d) and c(a). Notice that if
x ∈ b(d) ∩ c(a), then x ≥ a and x = (x→ d)→ d. Hence

a ≤ (x→ d)→ d⇔ (x→ d) ∧ a ≤ d

⇔ (x→ d) ≤ a→ d = a→ (a→ b) = a→ b = d

⇔ 1 ≤ (x→ d)→ d = x.

Thus, b(d) ∩ c(a) = O. Then, since L is Sb-normally separated, b(d) and
c(a) are completely separated: there exist x, y ∈ CozL such that

b(d) ⊆ c(x), c(a) ⊆ c(y) and c(x) ∩ c(y) = O.

This means that c(a) ⊆ o(x), that is, a ∨ x = 1. Moreover, x ≤ d and b ≤ d,
hence x ∨ b ≤ d 6= 1 and L is subfit.

Moreover,

each normal locale is Sp-normally separated.5

Summing up, since each subfit normal locale is completely regular we have:

normal
$,

Sb-norm. sep. +3 normal + subfit

-5

(0

Sp-norm. sep.

c. regular

19

We end with examples of z-embedded sublocales that are also C-embedded.

5Again, use the fact that a locale is normal if and only if every two disjoint closed sublocales are
completely separated and note that if p ∈ L is a point and b(p) ∩ c(a) = O, then c(p) ∩ c(a) = O.
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Proposition 6.7. Let f : L → M be a z-closed localic map with L and M
completely regular locales, and let p ∈ PrM . If f−1[b(p)] is z-embedded, then
it is C-embedded.

Proof : Applying 2.6.5 and 2.3.1 to the localic embedding f−1[b(p)] ↪→ L,
it suffices to show that f−1[b(p)] is completely separated from every zero
sublocale disjoint from it. So consider cL(a) ∈ ZS(L) such that f−1[b(p)] ∩
cL(a) = OL. By the regularity of M , b(p) is complemented, hence f−1[b(p)]
is also complemented (since preimages preserve complements). Then

f−1[b(p)] ∩ cL(a) = cL(a)r f−1[b(p)]# = cL(a)r f−1[b(p)#]

because f−1[−] is a coframe homomorphism. Furthermore, f [−] is a colocalic
map hence

OM = f [f−1[b(p)] ∩ cL(a)] = f [cL(a)r f−1[b(p)#]] = f [cL(a)]r b(p)# =

= f [cL(a)] ∩ b(p) = cM(f(a)) ∩ b(p)

(where the last equality follows from f being z-closed). By 6.2, b(p) and
cM(f(a)) are completely separated in M . Then, f−1[b(p)] and f−1[cM(f(a))]
are completely separated in L. Since cL(a) ⊆ f−1[cM(f(a))], this completes
the proof.
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[14] J. Gutiérrez Garćıa and J. Picado, On the parallel between normality and extremal discon-

nectedness, J. Pure Appl. Algebra 218 (2014) 784–803.
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