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1. Introduction
Let F be a field of characteristic zero, let F 〈X〉 be the free associative

algebra on a countable set X of variables over F and let A be an associative
F -algebra. A polynomial of F 〈X〉 vanishing under every evaluation in A
is called a polynomial identity of A and we denote by Id(A) the T -ideal of
polynomial identities satisfied by A. One of the most challenging problem
in the theory of algebras with polynomial identities (PI theory) is to find
some numerical invariants allowing us to classify such T -ideals of F 〈X〉.
Since there is a one-to-one correspondence between T -ideals and varieties of
algebras, often it is convenient to translate a given issue about T -ideals into
the language of varieties of algebras.

If Pn is the space of multilinear polynomials in the variables x1, . . . , xn,
then we set

cn(A) = dimF
Pn

Pn ∩ Id(A)
,
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for all n ≥ 1, and we call it the codimension sequence of A. If V is a vari-
ety of algebras and Id(V) is its corresponding T -ideal, then we can similarly
define cn(V). Moreover, if V = var(A) is the variety generated by the al-
gebra A, then we refer to the codimension sequence of V as the one of A.
Such a numerical sequence was introduced by Regev in [28] and it measures
the rate of growth of the multilinear polynomials lying in the corresponding
T -ideal. In the same paper, Regev also showed that if A is an associative
algebra satisfying a non-trivial polynomial identity, then cn(A) is exponen-
tially bounded. Later on, Kemer in [18] and [19] proved several properties
about the codimension sequence. On one hand, he showed that cn(A) is
polynomially bounded or grows exponentially, on the other he gave a charac-
terization of the varieties of polynomial growth of the codimension proving
that cn(A) is polynomially bounded if and only if G,UT2 /∈ var(A), where G
is the infinite dimensional Grassmann algebra and UT2 is the algebra of 2×2
upper triangular matrices. Hence var(G) and var(UT2) are the only varieties
of almost polynomial growth, i.e., they grow exponentially but any proper
subvariety grows polynomially.

Varieties of poylnomial growth were extensively studied in the past years in
various settings. We refer the interested reader to [5], [6], [22] for some results
about ordinary algebras; to [8], [23], [24], [32] for superalgebras and more
generally group graded algebras; to [3], [7], [10], [20], [21], [25] for algebras
with involution, graded involution, superinvolution and pseudoinvolution; to
[27] for special Jordan algebras.

In this paper we deal with associative algebras with a Lie algebra action
by derivations. If L is such a Lie algebra, then its action can be naturally
extended to the action of the universal enveloping algebra U(L) of L and
in this case we say that the algebra A is an algebra with derivations or an
L-algebra. In this context it is natural to define the differential identities
of A, i.e. the polynomials in the variables xh = h(x), h ∈ U(L), vanishing
on A. In analogy with the ordinary case, one defines the sequence of L-
codimensions and studies their asymptotic behaviour. In [13] it was proved
that, in case of finite dimensional L-algebras, the sequence of L-codimensions
is exponentially bounded or grows polynomially. Moreover, in [9] the authors
studied the algebra UT ε2 of 2 × 2 upper triangular matrices with the action
of the 1-dimensional Lie algebra spanned by the inner derivation ε induced
by e11. In that paper, they show that such algebra generates an L-variety
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of almost polynomial growth. Finally, in [31] it was proved that the L-
codimension sequence of an L-variety V generated by a finite dimensional
L-algebra is polynomially bounded if and only if UT2, UT

ε
2 /∈ V , where UT2

stands for the algebra of 2× 2 upper triangular matrices and L acts trivially
on it.

The main purpose of this paper is to classify, up to PI-equivalence, all
the L-subvarieties of varL(UT2) and varL(UT ε2 ) in terms of generators of
the corresponding TL-ideals and to provide a complete list of L-algebras
generating such L-subvarieties. Concerning varL(UT ε2 ), the main result is
given by Theorem 28 below. We also highlight that if L acts trivially on
UT2, then such a classification coincides to the one of the ordinary case given
in [22]. We chose to include it here for sake of completeness.

2. On differential identities
Throughout this paper F will denote a field of characteristic zero and L a

Lie algebra over F .
Recall that a derivation of an associative algebra A is a linear map δ :

A → A such that (ab)δ = aδb + abδ, for all a, b ∈ A. In particular, an inner
derivation induced by a ∈ A is the derivation ada acting on the left on A by
bada = [a, b] = ab− ba, for all b ∈ A. Clearly, the set Der(A) of all derivations
of A is a Lie algebra.

Let U(L) be the universal enveloping algebra of L. By the Poincaré–
Birkhoff–Witt Theorem, if L has a ordered basis {δi | i ∈ I}, then U(L) has
a basis {δi1 · · · δip | i1 < · · · < ip, ik ∈ I, p ≥ 0}. Thus if A is an associative
F -algebra with an L-action by derivations, then this action can be naturally
extended to an U(L)-action. In this case we call A algebra with derivations
or L-algebra.

Let X = {x1, x2, . . . } be a countable set and B = {dj | j ≥ 0} be a
basis of U(L). We denote by F 〈X|L〉 the free associative algebra over F

with free formal generators x
dj
i , i > 0 and j ≥ 0, where we identify xi = x1

i ,
1 = d0 ∈ U(L). Notice that U(L) acts on F 〈X|L〉 by setting

(x
dj1
i1
x
dj2
i2
. . . x

djn
in

)δ = x
δdj1
i1

x
dj2
i2
. . . x

djn
in

+x
dj1
i1
x
δdj2
i2

. . . x
djn
in

+ · · ·+x
dj1
i1
x
dj2
i2
. . . x

δdjn
in

,

where δ ∈ L and x
dj1
i1
x
dj2
i2
. . . x

djn
in
∈ F 〈X|L〉. Thus we call F 〈X|L〉 the free

associative algebra with derivations on X over F and we refer to its elements
as differential polynomials or L-polynomials.
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Let A be an L-algebra over F . Recall that an L-polynomial f(x1, . . . , xn) ∈
F 〈X|L〉 is a differential polynomial identity of A (or simply an L-identity),
and we write f ≡ 0, if f(a1, . . . , an) = 0 for all ai ∈ A, 1 ≤ i ≤ n. We denote
by IdL(A) = {f ∈ F 〈X|L〉 | f ≡ 0 on A} the TL-ideal of L-identities of A,
i.e., IdL(A) is an ideal of F 〈X|L〉 invariant under all endomorphisms ϕ of
F 〈X|L〉 such that ϕ(fh) = ϕ(f)h, for all f ∈ F 〈X|L〉 and h ∈ U(L) (see for
example [14, 17, 29, 30]).

Let H be a Lie subalgebra of L. If A is an L-algebra, then by restricting
the action, A can be regarded as a H-algebra. In this case we can identify
the TL-ideal IdL(A) and the TH-ideal IdH(A), i.e., in IdL(A) we omit the
differential identities xδ ≡ 0, for all δ ∈ L\H. Furthermore, any algebra
A can be regarded as L-algebra by letting L act on A trivially, i.e., L acts
on A as the trivial Lie algebra. Hence the theory of differential identities
generalizes the ordinary theory of polynomial identities.

As in the ordinary case, in characteristic zero, every L-identity is equivalent
to a system of multilinear ones. We denote by

PL
n = span{xdi1σ(1) . . . x

din
σ(n) | σ ∈ Sn, dik ∈ B}

the vector space of multilinear differential polynomials in the variables x1, . . . ,
xn, n ≥ 1. Since IdL(A) is generated, as TL-ideal, by the multilinear L-
polynomials it contains, the study of IdL(A) is equivalent to the study of PL

n ∩
IdL(A) for all n ≥ 1. In case U(L) acts on A as a suitable finite dimensional
subalgbera of the endomorphism ring of A, then PL

n is finite dimensional and
we denote by

cLn(A) = dimF
PL
n

PL
n ∩ IdL(A)

, n ≥ 1,

the nth differential codimension of A or the nth L-codimension of A. From
now on, we will assume that the action of U(L) is always of this type.

Given a variety V of L-algebras the growth of V is defined as the growth of
the sequence of differential codimensions of any L-algebra A generating V ,
i.e., V = varL(A). In this case we set cLn(V) = cLn(A), n ≥ 1. Then we say
that V has polynomial growth if there exist C, t such that cLn(V) ≤ Cnt and
that V has almost polynomial growth if cLn(V) is not polynomially bounded
but every proper subvariety has polynomial growth.

In [31] the authors proved that there exists only two L-varieties generated
by finite dimensional L-algebras of almost polynomial growth. Next we are
going to describe such varieties.
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Let us denote by UT2 the L-algebra of 2×2 upper triangular matrices over
F where L acts trivially on it. Since xδ ≡ 0, for all δ ∈ L, is a differential
identity of UT2, we are dealing with ordinary identities. Thus by [19], it
follows that the algebra UT2 generates an L-variety of almost polynomial
growth. Moreover, we have the following result (see [26]).

Theorem 1.

1. IdL(UT2) = 〈[x1, x2][x3, x4]〉TL;
2. cLn(UT2) = 2n−1(n− 2) + 2.

Let now denote by UT ε2 the L-algebra of 2 × 2 upper triangular matrices
over F where L acts on it as the 1-dimensional Lie algebra spanned by the
inner derivation ε induced by e11, i.e.

(ae11 + be22 + ce12)
ε = ce12,

for all a, b, c ∈ F , where eij’s are the usual matrix units. In [9], the authors
proved that UT ε2 has almost polynomial growth and also they proved the
following.

Theorem 2. [9, Theorem 5]

1. IdL(UT ε2 ) = 〈xε21 − xε1, xε1xε2, [x1, x2]
ε − [x1, x2]〉TL;

2. cLn(UT ε2 ) = 2n−1n− 1.

The above algebras characterize the L-varieties of polynomial growth.

Theorem 3. [31, Theorem 18] Let A be a finite dimensional L-algebra. Then
the sequence cLn(A), n ≥ 1, is polynomially bounded if and only if UT2, UT

ε
2 /∈

varL(A).

Recall that given two L-algebras A and B, A is TL-equivalent to B and
we write A ∼TL B in case IdL(A) = IdL(B). Thus as a consequence of the
above theorem, we have that the algebras UT2 and UT ε2 are the only two
finite dimensional L-algebras, up to TL-equivalence, generating L-varieties of
almost polynomial growth.

As in the ordinary case, a useful tool when studying L-identities of algebras
with 1 is provided by the so-called proper polynomials.

Recall that a left normed commutator of length n ≥ 2 in the variables xi’s
is defined inductively by setting

[xh11 , . . . , x
hn−1
n−1 , x

hn
n ] = −[xh11 , . . . , x

hn−1
n−1 ]

ad
xhnn ,
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where h1, . . . hn ∈ U(L). An L-polynomial f(x1, . . . , xn) ∈ F 〈X|L〉 is a
proper L-polynomial if it is a linear combination of elements of the type

xh1i1 . . . x
hk
ik
w1 . . . wm

where hi ∈ U(L), hi 6= 1U(L), for all 1 ≤ i ≤ k, and w1, . . . , wm are (eventually
empty) left normed Lie commutators in xi’s.

In characteristic zero, if A is an unitary L-algebra, then IdL(A) is generated,
as TL-ideal, by the multilinear proper L-polynomials (see [1, Lemma 2.1]).
Thus if ΓLn denotes the subspace of PL

n of multilinear proper L-polynomials
in n ≥ 1 variables, and ΓL0 = span{1}, then we define the sequence of proper
L-codimensions of A as

γLn (A) = dimF
ΓLn

ΓLn ∩ IdL(A)
, n ≥ 0.

For unitary L-algebra A, the relation between the L-codimensions and the
proper L-codimensions is given by the following

cLn(A) =
n∑
i=0

(
n

i

)
γLi (A), n ≥ 1.

This relation can be proved following closely the proof in the ordinary case
in Theorem 4.3.1 of [2].

Next we present a result on proper L-polynomials which will be useful later.
Recall that given two sets of L-polynomials S, S ′ ⊆ F 〈X|L〉, we say that S ′

is a consequence of S if S ′ ⊆ 〈S〉TL.

Proposition 4. Let i ≥ 1. If k is even, then ΓLk+i is a consequence of ΓLk .
Otherwise, ΓLk+i is a consequence of ΓLk plus the polynomial [x1, x2] · · · [xk, xk+1].

Proof : We start by proving the statement in case k is even.
Let w ∈ ΓLk+i be a generator and i ≥ 1. Suppose first that w is a product

of commutators. If w is a product of commutators of length 2, then

w = [xh11 , x
h2
2 ] · · · [xhk−1k−1 , x

hk
k ] · · · [xhk+i−1k+i−1, x

hk+i
k+i ],

where h1, . . . , hk+i ∈ U(L). Thus w is a consequence of

[xh11 , x
h2
2 ] · · · [xhk−1k−1 , x

hk
k ] ∈ ΓLk

and we are done. On the other hand, if w contains a commutator u of length
m > 2, then u can be viewed as a consequence of a commutator of length< m.
Thus by the above, we get also that w is a consequence of ΓLk . Hence we may
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assume that w = xh1i1 · · ·x
ht
it

[· · · ] · · · [· · · ] with t > 0 and h1, . . . , ht ∈ U(L).

If t ≤ i, then by the previous case, w is a consequence of ΓLk . Otherwise,

if t > i, then w is a consequence of the polynomial xhrir · · ·x
ht
it

[· · · ] · · · [· · · ],
where r = i+ 1, and we are done also in this case.

Now suppose that k is odd.
If we prove that ΓLk+1 is a consequence of ΓLk and the polynomial [x1, x2] · · ·

[xk, xk+1], by the first part of the proof we reach the desired conclusion. Thus
let w ∈ ΓLk+1 be a generator. If either w contains a commutator of length

greater than 2 or w = xh1i1 · · ·x
ht
it

[· · · ] · · · [· · · ] with t > 0, h1, . . . , ht ∈ U(L),

we have, as above, that w is a consequence of ΓLk . Thus we may assume that
w is product of commutators of length 2, i.e.,

w = [xh11 , x
h2
2 ] · · · [xhkk , x

hk+1

k+1 ],

where h1, . . . , hk+1 ∈ U(L). If hi ∈ spanF{1U(L)} for all 1 ≤ i ≤ k + 1, then
w = β[x1, x2] · · · [xk, xk+1], for some β ∈ F, and we are done. Hence we may
assume that hi /∈ spanF{1U(L)}, for some i. We write

w =[xh11 , x
h2
2 ] · · · [xhi−3i−3 , x

hi−2
i−2 ]xhii x

hi+1

i+1 [x
hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ]

− [xh11 , x
h2
2 ] · · · [xhi−3i−3 , x

hi−2
i−2 ]x

hi+1

i+1 x
hi
i [x

hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ].

Since yz = [y, z] + zy and a commutator of length m > 2 is a consequence of
a commutator of length < m, then

w ≡(xhii x
hi+1

i+1 [xh11 , x
h2
2 ] · · · [xhi−3i−3 , x

hi−2
i−2 ][x

hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ]

− xhi+1

i+1 x
hi
i [xh11 , x

h2
2 ] · · · [xhi−3i−3 , x

hi−2
i−2 ][x

hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ]) (mod 〈Γk〉TL).

If hi+1 /∈ spanF{1U(L)}, then w is a consequence of

yh[xh11 , x
h2
2 ] · · · [xhi−3i−3 , x

hi−2
i−2 ][x

hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ] ∈ ΓLk

and we are done. Hence suppose that hi+1 = 1U(L), then

w ≡ xhii xi+1[x
h1
1 , x

h2
2 ] · · · [xhi−3i−3 , x

hi−2
i−2 ][x

hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ] (mod 〈Γk〉TL).

Without loss of generality, we may assume that hi = δ1 · · · δs, where δ1, . . . , δs
are in L. Let I = {i1, . . . , ir} and J = {j1, . . . , jt} be two disjoint sets such
that I ∪ J = {1, . . . , s}, i1 < · · · < ir and j1 < · · · < jt, respectively. We set
cI = δi1 · · · δir and cJ = δj1 · · · δjt, then by definition of derivation, we have
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the following

xhii xi+1 = (xixi+1)
hi − xixhii+1 −

∑
I,J

xcIi x
cJ
i+1.

Since cI , cJ ∈ U(L) for all I, J , it follows that w is a consequence of

yh[xh11 , x
h2
2 ] · · · [xhi−3i−3 , x

hi−2
i−2 ][x

hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ] ∈ ΓLk

and this completes the proof.

As a consequence we have the following.

Corollary 5. Let A be an L-algebra with 1. If γLk (A) = 0 for some k ≥ 1,
then γLm(A) = 0 for all m ≥ k.

Remark that these results are general facts not related to the L-identities
of UT2.

One of the main tool in the study of TL-ideals is the representation theory of
the symmetric group Sn. In fact, the natural left Sn-action σ(xhi ) = xhσ(i) turns

PL
n into a Sn-module and therefore the space PL

n (A) = PL
n /(P

L
n ∩ IdL(A))

becomes a left Sn-module. Similarly ΓLn(A) = ΓLn/(Γ
L
n ∩ IdL(A)) is an Sn-

module under the induced action. We denote by χLn(A) and ψLn (A) the Sn-
characters of PL

n (A) and ΓLn(A), respectively, and we refer to them as the nth
L-cocharacter and the nth proper L-cocharacter of A. Since charF = 0, by
complete reducibility we can write

χLn(A) =
∑
λ`n

mλχλ, ψLn (A) =
∑
λ`n

m′λχλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to
λ, and mλ,m

′
λ ≥ 0 are the corresponding multiplicities. It is clear that by

knowing the decomposition of the (proper) cocharacter of A, one can get
informations about the corresponding (proper) codimensions.

3. Constructing L-subvarieties in varL(UT ε2 )
The main goal of this section is to construct some suitable finite dimen-

sional L-algebras belonging to the L-variety generated by UT ε2 whose L-
codimension sequence grows polynomially.

For all k ≥ 2 let

Aε
k = spanF

{
e11, E, E

2, . . . , Ek−2, e12, e13, . . . , e1k

}
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be the subalgebra of UTk(F ) where E =
∑k−1

i=2 ei,i+1 and L acts on Aε
k as the

1-dimensional Lie algebra spanned by the derivation ε = ade11 . Remark that
eε11 = (Ej)ε = 0, for all 1 ≤ j ≤ k − 2, and eε1i = e1i, for all 2 ≤ i ≤ k.

We also denote by (Aε
k)
∗ the subalgebra of UTk(F ) obtained by flipping Aε

k

along its secondary diagonal. Hence

(Aε
k)
∗ = spanF

{
ekk, E, E

2, . . . , Ek−2, e1k, e2k, . . . , ek−1,k

}
.

In this case, L acts on (Aε
k)
∗ as the 1-dimensional Lie algebra spanned by

the derivation ε = adekk . Notice that one can determine the L-polynomial
identities of such an L-algebra via the ones of Aε

k. In fact, if f ∈ F 〈X|L〉
and f ∗ is the L-polynomial obtained by reversing the order of the variables
in each monomial of f, then one can easily check that f ∈ IdL(Aε

k) if and
only if f ∗ ∈ IdL((Aε

k)
∗). Notice that such kind of algebras was first studied

in the ordinary case in [5]
In what follows, we explicitly describe the L-identities of Aε

k and (Aε
k)
∗ for

any k ≥ 2.

Lemma 6 ([30], Theorem 3). Let k = 2, then:

1. IdL(Aε
2) = 〈xε21 − xε1, xε1x2, x1x

ε
2 − x2x

ε
1 − [x1, x2]〉TL;

2. IdL((Aε
2)
∗) = 〈xε21 − xε1, x1x

ε
2, x

ε
1x2 − xε2x1 − [x1, x2]〉TL;

3. cLn(Aε
2) = cLn((Aε

2)
∗) = n+ 1.

Lemma 7. Let k ≥ 3, then:

1. IdL(Aε
k) = 〈xε21 − xε1, xε1xε2, [x1, x2]

ε − [x1, x2], x
ε
1x2 · · ·xk〉TL;

2. cLn(Aε
k) = 2+n+

k−2∑
l=0

(
n

l

)
(n−l+1)+

k−2∑
l=1

n−l+1∑
j=2

(
n− j
l − 1

)
(j−1) ≈ qnk−1,

for some q > 0.

Hence IdL((Aε
k)
∗) = 〈xε21 − xε1, xε1xε2, [x1, x2]

ε − [x1, x2], x1 · · · xk−1x
ε
k〉TL and

cLn((Aε
k)
∗) = cLn(Aε

k) ≈ qnk−1.

Proof : Write I = 〈xε21 −xε1, xε1xε2, [x1, x2]
ε− [x1, x2], x

ε
1x2 · · · xk〉TL. It is clear

that I ⊆ IdL(Aε
k). In order to prove the opposite inclusion, first we find a set

of generators of PL
n modulo PL

n ∩ I, for all n ≥ 1.
Let f ∈ PL

n be a multilinear L-polynomial of degree n. Because of the
L-identities xε

2

1 − xε1 ≡ 0 and xε1x
ε
2 ≡ 0, in each monomial of f can occur at

most one differential variable xεj. Moreover, [x1, x2]x
ε
3 ≡ 0 and xε3[x1, x2] ≡ 0
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are a consequences of xε1x
ε
2 ≡ 0 and [x1, x2]

ε− [x1, x2] ≡ 0. Furthermore, from
[x1, x2]

ε−[x1, x2] ≡ 0 and xε1x2 · · ·xk ≡ 0, it follows also [x1, x2]x3 · · ·xk+1 ≡ 0.
Finally, since [x1, x2][x3, x4] ≡ 0 is a consequence of xε1x

ε
2 ≡ 0 and [x1, x2]

ε −
[x1, x2] ≡ 0, every left normed commutator [xj1, . . . , xjt] can be written as a
linear combination of [xi1, . . . , xit] where i1 > i2 < . . . < it (see for instance
[2, Theorem 5.2.1]).

By taking into account the previous remarks plus the Poincaré-Birkhoff-
Witt theorem, modulo I, f is a linear combination of L-polynomials of the
type

x1 · · · xn, xi1 · · ·xit[xi, xj]xj1 · · ·xjl,
x2 · · · xnxε1, xp1 · · ·xprxεmxq1 · · ·xqs,

(1)

where t+ l = n− 2, r+ s = n− 1, l < k− 1, s < k− 1, i > j < i1 < . . . < it,
j1 < . . . < jl, m < p1 < . . . < pr and q1 < . . . < qs. It follows that the space
PL
n is generated modulo PL

n ∩ I by the above polynomials.
We next show that they are linearly independent modulo IdL(Aε

k). To that
end, let f ∈ IdL(Aε

k) be a linear combination of such polynomials and write

f = αx1 · · ·xn + βx2 · · ·xnxε1 +
∑
l<k−1

∑
I,J

αI,Jxi1 · · · xit[xi, xj]xj1 · · ·xjl+

+
∑
s<k−1

∑
P,Q

βP,Qxp1 · · ·xprxεmxq1 · · ·xqs,

where I = {i, j, i1, . . . , it}, J = {j1, . . . , jl}, P = {m, p1, . . . , pr} and Q =
{q1, . . . , qs} are disjoint sets of indices subjected to the above conditions.

First suppose that α 6= 0, then by making the evaluation x1 = · · · = xn =
e11 one gets α = 0, a contradiction.

Suppose that there exists αI,J 6= 0 for some l < k − 1, I and J. Then by
making the evaluation xi = e12, xj = xi1 = · · · = xit = e11 and xj1 = · · · =
xjl = E, we get αI,J = 0, a contradiction.

Now suppose that β 6= 0, then if one considers the evaluation x1 = e12 and
x2 = · · · = xn = e11, we get β = 0, a contradiction.

Finally, if βP,Q 6= 0 for some s < k − 1, P and Q, then let xm = e12,
xp1 = · · · = xpr = e11 and xq1 = · · · = xqs = E, obtaining βP,Q = 0, a
contradiction.

Therefore the elements in (1) are linearly independent modulo PL
n ∩IdL(Aε

k)
and, since PL

n ∩IdL(Aε
k) ⊇ PL

n ∩I, they form a basis of PL
n modulo PL

n ∩IdL(Aε
k)

and IdL(Aε
k) = I.
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Thus, by counting we get

cLn(Aε
k) = 2 + n+

k−2∑
l=0

(
n

l

)
(n− l + 1) +

k−2∑
l=1

n−l+1∑
j=2

(
n− j
l − 1

)
(j − 1) ≈ qnk−1,

for some q > 0 and we are done.
Notice that, from the previous results, it follows also that IdL((Aε

k)
∗) =

〈xε21 −xε1, xε1xε2, [x1, x2]
ε− [x1, x2], x1 · · ·xk−1x

ε
k〉TL and cLn((Aε

k)
∗) = cLn(Aε

k) ≈
qnk−1.

We now introduce, for any fixed k ≥ 2, a unitary L-algebra in varL(UT ε2 )
which codimension sequence grows as nk−1.

To this end, for all k ≥ 2, let

N ε
k = spanF

{
I, E,E2, . . . , Ek−2, e12, e13, . . . , e1k

}
where I is the identity k × k matrix and L acts on N ε

k as the 1-dimensional
Lie algebra spanned by the derivation ε = ade11 . In this case Iε = (Ej)ε = 0,
for all 1 ≤ j ≤ k − 1, and eε1i = e1i, for all 2 ≤ i ≤ k.

Lemma 8. Let k ≥ 2, then:

1. IdL(N ε
k) = 〈xε21 − xε1, xε1xε2, [x1, x2]

ε − [x1, x2], [x1, . . . , xk]〉TL;

2. cLn(N ε
k) = 1 +

∑k−1
j=1

(
n
j

)
j ≈ qnk−1, for some q > 0.

Proof : Let Q = 〈xε21 −xε1, xε1xε2, [x1, x2]
ε− [x1, x2], [x1, . . . , xk]〉TL. It is easily

proved that Q ⊆ IdL(N ε
k).

Let now f be an L-identity of N ε
k . We may assume that f is multilinear

and since N ε
k is an unitary algebra, we may take f proper.

After reducing f modulo Q, we get that f is the zero polynomial if deg f ≥
k and it is a linear combination of commutators

[xε1, x2, . . . , xn] [xi, x1, . . . , x̂i, . . . , xn]

if deg f < k, where 2 ≤ i ≤ n and the symbol x̂i means that the variable xi
is omitted.

Hence, modulo Q,

f = α[xε1, x2, . . . , xn] +
n∑
i=2

βi[xi, x1, . . . , x̂i, . . . , xn],
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where n ≤ k − 1. We claim that such commutators are linearly independent
modulo IdL(N ε

k), i.e. f is the zero polynomial modulo IdL(N ε
k) and this will

imply that Q = IdL(N ε
k), as required.

Suppose that βi 6= 0 for some i, then we consider the evaluation xi = e12,
xj = E for all j 6= i and we get βi = 0, a contradiction. Now, if α 6= 0, then
we make the evaluation x1 = · · · = xn = E and we get α = 0, a contradiction.
This says that f ∈ Q and so Q = IdL(N ε

k) as claimed.
The arguments above also prove that

γLj (N ε
k) =

{
j, if j ≤ k − 1

0, if j ≥ k
.

Hence we also get that

cLn(N ε
k) = 1 +

k−1∑
j=1

(
n

j

)
γLj (N ε

k) = 1 +
k−1∑
j=1

(
n

j

)
j ≈ qnk−1,

for some q > 0.

We want to highlight that the case k = 2 was already studied in [30,
Theorem 1]. Moreover, it is clear that if k = 1, then N ε

1 = F, IdL(N ε
1 ) =

〈[x1, x2], x
ε
1〉TL and cLn(N ε

1 ) = 1 for all n ≥ 1.

4. On the structure of algebras generating L-subvarieties
of varL(UT ε2 )

In this section we shall study the structure of L-algebras belonging to the
L-variety generated by UT ε2 .

Notice that in what follows we may assume, without loss of generality, that
L is a 1-dimensional Lie algebra spanned by ε.

We start by proving that any L-algebra inside varL(UT ε2 ) satisfies the same
L-identities of a finite dimensional L-algebra.

Theorem 9. If A ∈ varL(UT ε2 ) is a finitely generated L-algebra over an
algebraically closed field F of characteristic zero, then A is TL-equivalent to
a finite dimensional L-algebra over F .

Proof : If A ∈ varL(UT ε2 ), then by Theorem 2, xε
2 − xε ∈ IdL(A). Hence

U(L) acts on A as the 2-dimensional semisimple Hopf algebra H with basis
{1H , ε̄} where ε̄2 = ε̄. Thus A can be regarded as an algebra with H-action
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and we may restrict the TL-ideal IdL(A) to the TH-ideal IdH(A). Thus the
claim follows from [16, Theorem 1.1].

We refer the reader to [13, 16] for an account on algebras with an Hopf
algebra action and the related theory of polynomial identities.

Now we recall the following result characterizing the nth L-cocharacter of
UT ε2 .

Theorem 10 ([9], Theorem 12). If χLn(UT ε2 ) =
∑

λ`nmλχλ is the nth cochar-
acter of UT ε2 , then

mλ =


n+ 1, λ = (n)

2(q + 1), λ = (p+ q, p)

q + 1, λ = (p+ q, p, 1)

0, otherwise

,

where p, q ≥ 0.

In order to characterize the L-subvariety of varL(UT ε2 ) we are going to
prove the following.

Theorem 11. If A ∈ varL(UT ε2 ), then A is TL-equivalent to a finitely gen-
erated L-algebra.

Proof : Let B be the relatively free algebra of varL(A) with 3 generators. We
claim that IdL(A) = IdL(B). Clearly IdL(A) ⊆ IdL(B), thus we shall prove
the opposite inclusion.

Let f ∈ IdL(B) be a multilinear polynomial of degree n and let M be the
Sn-module generated by f . Without loss of generality, we may assume that
M is irreducible. In fact, if M = M1 ⊕ · · · ⊕Mk is the decomposition into
irreducible components, where Mi is generated by fi as Sn-module, 1 ≤ i ≤ k,
then fi ∈ IdL(A) for all i implies that also f ∈ IdL(A).

Let χλ be the irreducible character of M , where λ = (λ1, . . . , λr) ` n, and
let

eTλ =
∑
τ∈RTλ
σ∈CTλ

(sgnσ)τσ

be the corresponding essential idempotent (see for instance [12, Chapter 2]).
Here recall that RTλ and CTλ stand for the row-stabilizer and the column-
stabilizer of the Young tableau Tλ, respectively.
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If λ4 6= 0 or λ3 > 1, then by Theorem 10, it follows that f ∈ IdL(A). Thus
we may assume that λ4 = 0 and λ3 ≤ 1.

Let now consider g =
(∑

τ∈RTλ
τ
)
f and notice that g is symmetric in at

most two disjoint subsets X1, X2 of differential variables. If we identify all
the variables of X1 with x1 and all the variables of X2 with x2 in g, we
obtain the homogeneous polynomial p = p(x1, x2, x3) which is still an L-
identity of B. But from the definition of relatively free algebra, it follows
that p ∈ IdL(A). By multilinearizing the polynomial p, we get the polynomial
λ1!λ2!g(x1, . . . xn). Hence g ∈ IdL(A) and, since M is irreducible and g 6= 0,
it follows that also f ∈ IdL(A). This completes the proof.

As a consequence of Theorems 9 and 11 we have the following.

Corollary 12. If A ∈ varL(UT ε2 ) is an L-algebra over an algebraically closed
field F of characteristic zero, then varL(A) = varL(B) for some finite dimen-
sional L-algebra B over F .

According to Corollary 12, from now on we will always assume, without
loss of generality, that if V ⊆ varL(UT ε2 ), then V = varL(A) where A is a
finite dimensional L-algebra.

Now we are going to describe the structure of such finite dimensional L-
algebras belonging to varL(UT ε2 ).

First we recall some definitions. A subalgebra (ideal) B of A is an L-
subalgebra (ideal) if it is a subalgebra (ideal) such that BL ⊆ B, where BL

denotes the set of all h(b), for all b ∈ B and h ∈ U(L).
Let A be a finite dimensional L-algebras over an algebraically closed field.

By the Wedderburn-Malcev Theorem for associative algebras, we can write

A = B + J (2)

where B is a maximal semisimple unitary subalgebra of A and J = J(A) is
its Jacobson radical. Notice that although J is an L-invariant ideal of A (see
[15]), it may does not exist an L-invariant Wedderburn-Malcev decomposi-
tion, i.e., it may happen that all semisimple subalgebras B of A that satisfy
(2) are not L-subalgebras of A. For example, the algebra UT δ2 of 2× 2 upper
triangular matrices where L acts as the 1-dimensional Lie algebra spanned by
the inner derivation δ induced by e12 has no L-invariant Wedderburn-Malcev
decomposition (see [31, Example 2]). Things are different inside varL(UT ε2 ),
in fact at the end of the section, we will prove that, up to TL-equivalence,
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we can always assume that a subvariety of varL(UT ε2 ) is generated by an
L-algebra with an L-invariant Wedderburn–Malcev decomposition.

To this end, first recall that J can be decompose into direct sum of B-
bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11

where for i, k ∈ {0, 1}, Jik is a left faithful module or a 0-left module according
as i = 1 or i = 0, respectively. Similarly, Jik is a right faithful module or
a 0-right module according as k = 1 or k = 0, respectively. Moreover, for
i, k, l,m ∈ {0, 1}, JikJlm ⊆ δk,lJim where δk,l is the Kronecker delta and
J11 = BN for some nilpotent subalgebra N of A commuting with B. For a
proof of this result see [11, Lemma 2].

Proposition 13. Let A = B + J be a finite dimensional L-algebra. If δ ∈
Der(A), then 1δB ∈ J01 + J10. Moreover, Jδ00 ⊆ J00 + J01 + J10, J

δ
01 ⊆ J00 +

J01 + J11, J
δ
10 ⊆ J00 + J10 + J11 and J δ11 ⊆ J01 + J10 + J11.

Proof : Since δ ∈ Der(A), by [15, Theorem 4.3] δ = adb + adj +δ′, where
b ∈ B, j ∈ J and δ′ ∈ Der(A) is such that Bδ′ = 0. Thus since [J11, 1B] =

J001B = 1BJ00 = 0, we get 1δB = 1
adj
B ∈ J01 + J10.

Let j00 ∈ J00. Since 1BJ00 = 0, we get 0 = 1δBj00 + 1Bj
δ
00 and so it

follows that 1Bj
δ
00 ∈ J10. On the other hand, since J001B = 0, we have

0 = jδ001B+j001
δ
B. Then jδ001B ∈ J01. Thus it follows that Jδ00 ⊆ J00+J01+J10.

Let now j11 ∈ J11. Then jδ11 = (j111B)δ = jδ111B + j111
δ
B ∈ J01 + J10 + J11.

Thus we get J δ11 ⊆ J01 + J10 + J11. Similarly it can be proved for J01 and
J10.

In case of algebras belonging to varL(UT ε2 ), the action of L on J and its
components can be assumed to be much more simpler.

Lemma 14. If A = B + J ∈ varL(UT ε2 ) with J = J00 + J10 + J01 + J11, then
jε = j for all j ∈ J01 ∪ J10.

Proof : If j ∈ J01 (resp. j ∈ J10), then j = [j, 1B] (resp. j = [1B, j]). Thus
the claim follows since [x1, x2]

ε − [x1, x2] ∈ IdL(A).

Lemma 15. Let A = B + J ∈ varL(UT ε2 ). Then Jε00J01 = J10J
ε
00 = Jε11J10 =

J01J
ε
11 = J01J10 = J10J01 = J01[J11, J11] = [J11, J11]J10 = [J00, J00]J01 =

J10[J00, J00] = 0.

Proof : Since [x1, x2]
ε − [x1, x2] ≡ 0 and xε1x

ε
2 ≡ 0 on varL(UT ε2 ), the result

immediately follows applying Lemma 14.
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Theorem 16. If A = B + J ∈ varL(UT ε2 ) then, up to TL-equivalence, BL ⊆
B.

Proof : If J = 0 there is nothing to prove, so let J 6= 0 and since A ∈
varL(UT ε2 ) then B = F ⊕ · · · ⊕ F. By Proposition 13 it readily follows that
if either 1εB = 0 or J01 = J10 = 0, then Bε ⊆ B and we are done also in this
case.

So, let suppose 1εB = j 6= 0, where j ∈ J01 + J10, and let consider ε′ =
ε − adj ∈ Der(A). Remark that ε′ 6= 0 in fact if ε′ = 0, then ε = adj and

1ε
2

B = jε = 0, since J2
01 = J2

10 = 0 and, by Lemma 15, J01J10 = J10J01 = 0.

This is a contradiction since xε
2 − xε ∈ IdL(A).

Let now Aε′ be the L-algebra A where L acts on it as the 1-dimensional
Lie algebra spanned by ε′. Clearly 1ε

′

B = 0, Bε′ ⊆ B and a straightforward
computation can also prove that Aε′ ∈ varL(UT ε2 ). We claim that IdL(A) =
IdL(Aε′) and this will complete the proof.

Let f ∈ IdL(A) be a multilinear polynomial of degree n. According to [9,
Theorem 5] we can write f as

f = αx1 . . . xn+
n∑
k=1

βkxi1 . . . xin−1x
ε
k+
∑
P,t

γP,txp1 . . . xpm[xεt , xj1, . . . , xjn−m−1]+g,

where g ∈ IdL(UT ε2 ) ⊆ IdL(A), i1 < · · · < in−1, p1 < · · · < pm and j1 < · · · <
jn−m−1. Notice that if we make the evaluation x1 = · · · = xn = 1B, we get
α = 0. Thus

f =
n∑
k=1

βkxi1 . . . xin−1x
ε
k +
∑
P,t

γP,txp1 . . . xpm[xεt , xj1, . . . , xjn−m−1] + g ∈ IdL(A).

(3)
In order to prove that f ∈ IdL(Aε′), we have to show that

f =
n∑
k=1

βkxi1 . . . xin−1x
ε′

k +
∑
P,t

γP,txp1 . . . xpm[xε
′

t , xj1, . . . , xjn−m−1] + g̃

vanishes under every evaluation of elements of A. Here g̃ stands for the
polynomial g in which we substituted every differential variable xε with xε

′
.

Since ε′ = ε− adj, it is enough to prove that
n∑
k=1

βkxi1 . . . xin−1x
adj
k +

∑
P,t

γP,txp1 . . . xpm[x
adj
t , xj1, . . . , xjn−m−1] ∈ IdL(Aε′).
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But by definition of inner derivation, the claim follows since [j, x]ε − [j, x] ∈
IdL(A) and (3) holds. Hence f ∈ IdL(Aε′).

Similarly it can be proved that IdL(Aε′) ⊆ IdL(A). Thus A ∼TL Aε′ and
the claim is proved.

As a consequence of Proposition 13, Lemma 14 and Theorem 16 we get the
following.

Corollary 17. If A = B + J ∈ varL(UT ε2 ) with J = J00 + J10 + J01 + J11,
then JLik ⊆ Jik, for all i, k ∈ {0, 1}.

According to the previous results, from now on we will assume that the
Wedderburn–Malcev decomposition and the Jacobson radical decomposition
into bimodules of every considered L-algebra are L-invariant.

5. On minimal L-subvarieties in varL(UT ε2 )
In this section we shall prove that the L-algebras Aε

k, (Aε
k)
∗ and N ε

k intro-
duced in section 3 generate minimal L-varieties of polynomial growth. We
start with the definition of minimal L-variety.

Definition 1. An L-variety V is said to be minimal of polynomial growth if
cLn(V) ≈ qnk, for some q > 0, and for any proper L-subvariety U ( V , we
have that cLn(U) ≈ q′nt with t < k.

Algebras generating minimal varieties will play an important role in the
main result, since we shall prove that any L-algebra inside varL(UT ε2 ) has
the same differential identities of a direct sum of such kind of algebra plus a
nilpotent algebra, eventually.

Remark 18 ([25], Remark 2). Let A = F + J be an L-algebra with J =
J00 +J10 +J01 +J11. If A satisfies the identity [x1, . . . , xt] ≡ 0 for some t ≥ 2,
then J01 = J10 = 0.

Proof : The proof immediately follows from the fact that J10 = [J10, F, . . . , F︸ ︷︷ ︸
t−1

]

and J01 = [J01, F, . . . , F︸ ︷︷ ︸
t−1

].

Theorem 19. For all k ≥ 2, N ε
k generates a minimal L-variety of polynomial

growth.
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Proof : Let suppose that A ∈ varL(N ε
k) and cLn(A) ≈ qnk−1 for some q > 0.

We shall prove that A ∼TL N ε
k and this will complete the proof.

Since cLn(A) is polynomially bounded, by [31, Theorem 8] we may assume
that

A = B1 ⊕ · · · ⊕Bm

where B1, . . . , Bm are finite dimensional L-algebras such that dimF
Bi

J(Bi)
≤ 1,

for all 1 ≤ i ≤ m. This implies that either Bi
∼= F + J(Bi) or Bi

∼= J(Bi) is
a nilpotent algebra. Moreover, since

cLn(A) ≤ cLn(B1) + · · ·+ cLn(Bm),

then there exists Bi such that cLn(Bi) ≈ bnk−1, for some b > 0. Thus

varL(N ε
k) ⊇ varL(A) ⊇ varL(F + J(Bi)) ⊇ varL(F + J11(Bi))

and cLn(F +J(Bi)) ≈ bnk−1. Here remark that F +J11(Bi) is an L-subalgebra
of F + J(Bi) since, according to Theorem 16, in varL(UT ε2 ) we may assume
F ε = 0 and Jεij ⊆ Jij for all i, j ∈ {0, 1}.

Moreover, by Remark 18, we get that J10(Bi) = J01(Bi) = 0 and so

F + J(Bi) =
(
F + J11(Bi)

)
⊕ J00(Bi),

as L-algebras, and cLn(F + J(Bi)) = cLn(F + J11(Bi)) for n large enough.
It turns out that, in order to prove A ∼TL N ε

k , it suffices to show that F +
J11(Bi) ∼TL N ε

k . Hence we assume, as we may, that A is a unitary L-algebra
and we shall look at its proper codimension and cocharacter sequences.

Since cLn(A) ≈ qnk−1, then

cLn(A) =
k−1∑
i=0

(
n

i

)
γLi (A)

and by Corollary 5, γLi (A) 6= 0 for all 0 ≤ i ≤ k − 1 and γLi (A) = 0 for all
i ≥ k.

Moreover, recall that since IdL(N ε
k) ⊆ IdL(A), then ΓLi

ΓLi ∩Id
L

(A)
is isomor-

phic to a quotient module of ΓLi

ΓLi ∩Id
L

(Nε
k)
. Thus if ψLi (A) =

∑
λ`imλχλ and

ψLi (N ε
k) =

∑
λ`im

′
λχλ are the i-th proper L-cocharacters of A and N ε

k , re-
spectively, then mλ ≤ m′λ for all λ ` i.
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From now on, suppose k ≥ 3. For all 3 ≤ i ≤ k− 1, let f1 = [x1, x2, . . . , x2︸ ︷︷ ︸
i−1

]

and f2 = [xε1, x1, . . . , x1︸ ︷︷ ︸
i−1

] be the highest weight vectors corresponding to the

partitions λ1 = (i− 1, 1) and λ2 = (i), respectively. It is clear that f1 and f2

are not differential identities of N ε
k , thus χ(i−1,1) and χ(i) participate in the

i-th proper L-cocharacter of N ε
k with a non-zero multiplicities.

Moreover, since γLi (N ε
k) = i = degχ(i−1,1) + degχ(i), for all 2 ≤ i ≤ k − 1,

we get that

ψLi (N ε
k) = χ(i−1,1) + χ(i).

Now, since γLk−1(A) 6= 0 then either ψLk−1(A) = χ(k−1) or ψLk−1(A) = χ(k−2,1)

or ψLk−1(A) = χ(k−1) + χ(k−2,1).

Fist suppose that ψLk−1(A) = χ(k−1). Then [x1, x2, . . . , x2︸ ︷︷ ︸
k−2

] ≡ 0 on A and this

trivially implies [xε1, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ 0 on A. Thus ψLk−1(A) = 0 and γLk−1(A) = 0,

a contradiction.
Now suppose ψLk−1(A) = χ(k−2,1), then [xε1, x1, . . . , x1︸ ︷︷ ︸

k−2

] ≡ 0 on A. Let sub-

stitute the variable x1 with x1 + x2 and let consider the multihomogeneous
component with degree k− 2 in x1 and 1 in x2. As a consequence, we get the
following identity modulo IdL(UT ε2 ) :

[xε2, x1, . . . , x1︸ ︷︷ ︸
k−2

] + (k − 2)[xε1, x2, x1, . . . , x1︸ ︷︷ ︸
k−3

] ≡ 0. (4)

Since [x1, x2]− [xε1, x2]− [x1, x
ε
2] ∈ IdL(UT ε2 ) ⊆ IdL(A), we get

[x2, x
ε
1, x1, . . . , x1︸ ︷︷ ︸

k−3

] ≡ [x2, x1, . . . , x1︸ ︷︷ ︸
k−2

]− [xε2, x1, . . . , x1︸ ︷︷ ︸
k−2

].

By putting together the latter one with (4) we get the identity

(k − 2)[x2, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ (k − 1)[xε2, x1, . . . , x1︸ ︷︷ ︸
k−2

]. (5)

Moreover, by substituting the variable x2 with xε2 in (4) and recalling that
xε

2

2 ≡ xε2, we also obtain [xε2, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ 0. From this one plus identity
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(5), we finally get the identity [x2, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ 0, thus ψLk−1(A) = 0 and

γLk−1(A) = 0, a contradiction. Hence it must be ψLk−1(A) = χ(k−1) + χ(k−2,1).

Now, for all 2 ≤ i ≤ k−2, as before either ψLi (A) = χ(i) or ψLi (A) = χ(i−1,1)

or ψLi (A) = χ(i) + χ(i−1,1).

If ψLi (A) = χ(i) then [x1, x2, . . . , x2︸ ︷︷ ︸
i−1

] ≡ 0 on A. Thus also [x1, x2, . . . , x2︸ ︷︷ ︸
k−2

] ≡ 0

that is absurd for the first part of the proof. Analogously, if ψLi (A) = χ(i−1,1)

then [xε1, x1, . . . , x1︸ ︷︷ ︸
i−1

] ≡ 0 on A and so [xε1, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ 0, a contradiction.

Thus ψLi (A) = χ(i) + χ(i−1,1) = ψLi (N ε
k), for all 1 ≤ i ≤ k − 1 and

cLn(A) =
k−1∑
i=0

(
n

i

)
γLi (A) = 1 +

k−1∑
i=1

(
n

i

)
i = cLn(N ε

k).

Hence A and N ε
k have the same codimension sequence and, since IdL(N ε

k) ⊆
IdL(A), we get the equality IdL(N ε

k) = IdL(A), as required.
Notice that if k = 2, then ψ2(N

ε
2 ) = χ(1,1) +χ(2) and with similar arguments

as in the first part of the proof we get ψ2(A) = ψ2(N
ε
2 ), cLn(A) = cLn(N ε

2 ) and
so A ∼TL N ε

2 .

We now recall a result about the Jacobson radical of an algebra belonging
to varL(Aε

k) that will be very useful hereafter.

Lemma 20. Let A = F + J ∈ varL(Aε
k) (resp. A = F + J ∈ varL((Aε

k)
∗)).

Then Jε11 = 0 and J01 = [J11, J11] = 0 (resp. J10 = [J11, J11] = 0).

Proof : We will prove the statement in case A ∈ varL(Aε
k). The other one will

follow analogously.
Recall that according to Corollary 17, Jε11 ⊆ J11.Moreover, since xε1x2 · · ·xk ∈

IdL(Aε
k) ⊆ IdL(A), for all j ∈ J11 we get jε 1F · · · 1F︸ ︷︷ ︸

k−1

= 0. Thus, if we let

jε = j̃ ∈ J11 then

0 = j̃ 1F · · · 1F︸ ︷︷ ︸
k−1

= j̃,

since 1F acts as a unit element on J11. Now, due to the identity [x1, x2]
ε −

[x1, x2] ≡ 0, we get also [J11, J11] = 0.
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Finally, by Lemma 14, for all a ∈ J01, a
ε = a. Thus by using the same

argument as before, we get that J01 = Jε01 = 0.

Lemma 21. Let A = F + J ∈ varL(Aε
k) (resp. A = F + J ∈ varL((Aε

k)
∗)).

If cLn(A) ≈ qnk−1, for some q > 0, then A ∼TL Aε
k (resp. A ∼TL (Aε

k)
∗).

Proof : We prove the statement for A = F + J ∈ varL(Aε
k). The case A =

F + J ∈ varL((Aε
k)
∗) will follow with similar arguments.

By the previous Lemma, J01 = [J11, J11] = 0, so we may assume A =
F + J00 + J10 + J11 and J11 commutative. Moreover Jε11 = 0.

First suppose that J10J
k−2
00 = 0.

If Jm = 0, then for all n ≥ m we shall prove that g = xk · · ·xnxε1x2 · · ·xk−1 ∈
IdL(A). Since such a monomial is multilinear, we can evaluate each variable
in a basis of A consisting in an union of a basis of J00, J10, J11 and 1F . Since
n ≥ m and Jm = 0, if we evaluate all the variables in J then we get zero,
thus at least one variable must be evaluated in 1F .

Let focus our attention to the variable x1. It is clear that if x1 is evaluated
in 1F or on J11, then g vanishes since F ε = Jε11 = 0. If we evaluate x1 in an
element j10 ∈ J10, then jε10 = j10 and we are forced to evaluate x2, . . . , xk−1

on elements of J00. Since J10J
k−2
00 = 0, we get zero. Finally, let evaluate x1

on an element j00 ∈ J00. Then jε00 ∈ J00 and since there exists t such that xt
is evaluated in 1F , also in this case we get zero.

Therefore we have proved that xk · · ·xnxε1x2 · · ·xk−1 ∈ IdL(A). From this
identity and from [x1, x2]

ε − [x1, x2] ≡ 0 follows also that

xk+1 · · ·xn[x1, x2]x3 · · · xk ∈ IdL(A).

Since A ∈ varL(Aε
k), if f ∈ PL

n with deg f = n ≥ m, then after reducing
f modulo the TL-ideal generated by the differential identities of Aε

k and by
g, by using also Lemma 7, we have that f is a linear combination of the
L-polynomials

x1 · · ·xn, xi1 · · ·xit[xi, xj]xj1 · · · xjl,
x2 · · ·xnxε1, xp1 · · ·xprxεmxq1 · · ·xqs,

where t+ l = n− 2, r+ s = n− 1, l < k− 2, s < k− 2, i > j < i1 < . . . < it,
j1 < . . . < jl, m < p1 < . . . < pr and q1 < . . . < qs. Remark that l, s < k − 2
since g ≡ 0 on A.
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Therefore

cLn(A) ≤ 2 + n+
k−3∑
l=0

(
n

l

)
(n− l + 1) +

k−3∑
l=1

n−l+1∑
j=2

(
n− j
l − 1

)
(j − 1) ≈ q′nk−2,

for some q′ > 0. This is a contradiction, since we are assuming that cLn(A) ≈
qnk−1.

Thus J10J
k−2
00 6= 0 and there exist a ∈ J10 and b1, . . . , bk−2 ∈ J00 such that

ab1 · · · bk−2 6= 0. Let f ∈ IdL(A) be a multilinear L-polynomial of degree n.
By Lemma 7, f modulo IdL(Aε

k) can be written as

f = αx1 · · ·xn + βx2 · · ·xnxε1 +
∑
l<k−1

∑
I,J

αI,Jxi1 · · ·xit[xi, xj]xj1 · · ·xjl+∑
s<k−1

∑
P,Q

βP,Qxp1 · · ·xprxεmxq1 · · ·xqs + f ′,

where f ′ ∈ IdL(Aε
k), I = {i, j, i1, . . . , it}, J = {j1, . . . , jl}, P = {m, p1, . . . , pr}

and Q = {q1, . . . , qs} with t+ l = n− 2, r + s = n− 1, l < k − 1, s < k − 1,
i > j < i1 < . . . < it, j1 < . . . < jl, m < p1 < . . . < pr and q1 < . . . < qs.

By choosing x1 = · · · = xn = 1F we get α = 0. Moreover, by induction
on l, for fixed I and J, the evaluation xi = a, xj = xi1 = · · · = xit = 1F
and xjh = bh, for all 1 ≤ h ≤ l, gives αI,J = 0. If we let x1 = a and
x2 = · · · = xn = 1F , then we get β = 0. Finally, by induction on s, for fixed
P and Q, the evaluation xm = a, xp1 = · · · = xpr = 1F and xqh = bh, for all
1 ≤ h ≤ s, gives βP,Q = 0.

Thus f = f ′ ∈ IdL(Aε
k) and IdL(Aε

k) = IdL(A), as claimed.

We are now in a position to prove that Aε
k and (Aε

k)
∗ generate minimal

L-varieties.

Theorem 22. For all k ≥ 2, Aε
k and (Aε

k)
∗ generate minimal L-varieties of

polynomial growth.

Proof : Let A ∈ varL(Aε
k) such that cLn(A) ≈ qnk−1, for some q > 0. By [31,

Theorem 8] we assume

A = B1 ⊕ · · · ⊕Bm

where B1, . . . , Bm are finite dimensional L-algebras such that dimF
Bi

J(Bi)
≤ 1.

This says that either Bi
∼= F +J(Bi) or Bi

∼= J(Bi) is a nilpotent L-algebra,
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for all 1 ≤ i ≤ m. Since

cLn(A) ≤ cLn(B1) + · · ·+ cLn(Bm),

there exists Bi such that cLn(Bi) ≈ bnk−1, for some b > 0. Thus Bi = F+J(Bi)
and by the previous Lemma, Bi ∼TL Aε

k. Hence

varL(Aε
k) = varL(Bi) ⊆ varL(A) ⊆ varL(Aε

k)

and so varL(A) = varL(Aε
k).

Similarly one can prove the statement for (Aε
k)
∗.

6. Classifying subvarieties of varL(UT ε2 )
In this section we present the main result about the L-variety generated by

UT ε2 , i.e., we will classify up to TL-equivalence all the L-algebras generating
L-subvarieties of varL(UT ε2 ).

To this end, we start with the following lemma concerning algebras with
slow codimension growth.

Lemma 23. Let A = F + J10 + J11 ∈ varL(UT ε2 ) with J10 6= 0 (resp. A =
F + J01 + J11 ∈ varL(UT ε2 ) with J01 6= 0). If Jε11 = 0, then A ∼TL Aε

2 (resp.
A ∼TL (Aε

2)
∗).

Proof : Since F ε = Jε11 = 0 and J2
10 = 0, it is clear that x1x

ε
2−x2x

ε
1− [x1, x2] ∈

IdL(A), thus IdL(Aε
2) ⊆ IdL(A).

In order to prove the opposite inclusion, let f ∈ IdL(A) be a multilinear
L-polynomial of degree n. By [30, Theorem 3], f can be written as

f =
n∑
j=1

αjxi1 · · ·xin−1xj + βx2 · · ·xnxε1 + g,

where g ∈ IdL(Aε
2) and i1 < · · · < in−1.

Suppose that there exists j 6= 1 such that αj 6= 0. Then by making the
evaluation xj = b ∈ J10, for some b 6= 0, and xi1 = · · · = xin−1 = 1F , we
get αj = 0, a contradiction. Now, if α1 6= 0, then by making the evaluation
x1 = · · · = xn = 1F we get α1 = 0, a contradiction. Finally, if β 6= 0, then
we let x1 = b and x2 = · · · = xn = 1F getting β = 0, a contradiction.

Hence f = g ∈ IdL(Aε
2) and so A ∼TL Aε

2.
Similarly, if A = F + J01 + J11, we get A ∼TL (Aε

2)
∗.

Lemma 24. Let A = F +J11 ∈ varL(UT ε2 ). Then A ∼TL N ε
k , for some k ≥ 1.
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Proof : Since A ∈ varL(UT ε2 ), then cLn(A) ≈ qnk−1 for some q > 0 and k ≥ 1.
If Jε11 = 0, then xε ≡ 0 on A and so [x1, x2] ∈ IdL(A). This trivially implies

that A is a commutative algebra with trivial derivation, i.e., A ∼TL N ε
1 = F.

Let now Jε11 6= 0. Since A is a unitary algebra, we can consider the proper
L-codimension sequence and write

cLn(A) =
k−1∑
i=0

(
n

i

)
γLi (A),

with γLi (A) = 0 for all i ≥ k. In particular γLk (A) = 0 and so [x1, . . . , xk] ∈
IdL(A). Hence IdL(N ε

k) ⊆ IdL(A) and by Theorem 19, since cLn(A) ≈ qnk−1,
it follows A ∼TL N ε

k .

We now prove some auxiliary lemmas very useful in the proof of the main
theorem. We start by the following that allows us to reduce our problem
to the study of a variety generated by an L-algebra with either J01 = 0 or
J10 = 0.

Lemma 25. Let A = F + J ∈ varL(UT ε2 ). Then A ∼TL (F + J00 + J10 +
J11)⊕ (F + J00 + J01 + J11).

Proof : Let B1 = F+J00 +J10 +J11 and B2 = F+J00 +J01 +J11. Since F ε = 0
and Jεij ⊆ Jij for all i, j ∈ {0, 1}, it is clear that B1 and B2 are L-subalgebras

of A. Then IdL(A) ⊆ IdL(B1 ⊕B2) = IdL(B1) ∩ IdL(B2).
Moreover, since J01J10 = J10J01 = 0, it turns out that also IdL(B1⊕B2) ⊆

IdL(A) holds. Thus A ∼TL B1 ⊕B2 as claimed.

Lemma 26. Let A = F + J00 + J10 + J11 ∈ varL(UT ε2 ) with J10 6= 0 (resp.
A = F + J00 + J01 + J11 ∈ varL(UT ε2 ) with J01 6= 0).

1. If Jε11 = 0, then A ∼TL Aε
k ⊕ N (resp. A ∼TL (Aε

k)
∗ ⊕ N), for some

k ≥ 2 where N is a nilpotent L-algebra.
2. If Jε11 6= 0, then A ∼TL Aε

k ⊕N ε
u ⊕N (resp. A ∼TL (Aε

k)
∗ ⊕N ε

u ⊕N),
for some u ≥ 2 and k ≥ 2 where N is a nilpotent L-algebra.

Proof : Let A = F + J00 + J10 + J11 ∈ varL(UT ε2 ) with J10 6= 0. The other
case will follow with similar arguments.

Suppose first Jε11 = 0 and let t ≥ 0 be the greatest integer such that
J10J

t
00 6= 0. Notice that if t = 0 then J10J00 = 0 and A = (F+J10+J11)⊕J00 as

L-algebras. By Lemma 23 we get F +J10 +J11 ∼TL Aε
2, hence A ∼TL Aε

2⊕J00,
where J00 is a nilpotent L-algebra.
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So let assume t > 0, i.e., J10J
t
00 6= 0 (that is in particular J10J00 6= 0) and

J10J
t+1
00 = 0.

Suppose that Jε00J
t+1
00 = 0. Then it is easy to check that xε1x2 · · ·xt+2 ∈

IdL(A), thus IdL(Aε
t+2) ⊆ IdL(A). Furthermore, since J10J

t
00 6= 0, there exist

a ∈ J10 and b1, . . . , bt ∈ J00 such that ab1 · · · bt 6= 0. Therefore, as in the proof
of Lemma 21, one can prove that A ∼TL Aε

t+2.
Let suppose now Jε00J

t+1
00 6= 0. Remark that, since Jε00 ⊆ J00, ε

2 = ε and
Lemma 15 holds, Jε00 is an L-ideal of A, thus we can consider Ā = A/Jε00. As
before, since J10J

t+1
00 = 0, it follows that xε1x2 · · · xt+2 ∈ IdL(Ā), IdL(Aε

t+2) ⊆
IdL(Ā) and so Ā ∼TL Aε

t+2.

Notice that IdL(A) ⊆ IdL(Ā) = IdL(Aε
t+2) and, since J00 is an L-subalgebra

of A, IdL(A) ⊆ IdL(J00). Therefore IdL(A) ⊆ IdL(Aε
t+2 ⊕ J00).

Conversely, let f ∈ IdL(Aε
t+2⊕J00) be a multilinear L-polynomial of degree

n. We can write f as

f = αx1 · · · xn + βx2 · · ·xnxε1 +
∑
l<t+1

∑
I,J

αI,Jxi1 · · ·xik[xi, xj]xj1 · · ·xjl

+
∑
s<t+1

∑
P,Q

βP,Qxp1 · · ·xprxεmxq1 · · ·xqs
∑
l′>t

∑
I ′,J ′

αI ′,J ′xi′1 · · ·xi′k[xi′, xj′]xj′1 · · ·xj′l

+
∑
s′>t

∑
P ′,Q′

βP ′,Q′xp′1 · · ·xp′rx
ε
m′xq′1 · · ·xq′s + g, (6)

where g ∈ IdL(UT ε2 ) ⊆ IdL(A) and the indices of the variables are subjected
to the conditions as in Lemma 7.

Remark that g and the last two summand of f are L-identities of Aε
t+2.

Moreover, in Lemma 7 it was also proved that the first four summand of f
are linearly independent modulo IdL(Aε

t+2), hence α = β = αI,J = βP,Q = 0
for all I, J, P and Q, and

f =
∑
l′>t

∑
I ′,J ′

αI ′,J ′xi′1 · · · xi′k[xi′, xj′]xj′1 · · ·xj′l

+
∑
s′>t

∑
P ′,Q′

βP ′,Q′xp′1 · · ·xp′rx
ε
m′xq′1 · · ·xq′s + g. (7)

Since f ∈ IdL(J00), if we evaluate all the variables on J00, we get zero. Now,
since J10J

t+1
00 = Jε11 = [J11, J11] = 0, every evaluation of f into elements of
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A gives the zero value, hence f ∈ IdL(A). So IdL(Aε
t+2 ⊕ J00) ⊆ IdL(A) and

A ∼TL Aε
t+2 ⊕ J00 follows.

Suppose now Jε11 6= 0.
Let B = F + J00 + J10 and D = F + J11. It is clear that B and D are L-

subalgebras of A. Moreover, for the first part of the proof, B ∼TL Aε
t+2 ⊕N,

for some t ≥ 0, and by Lemma 24, D ∼TL N ε
u for some u ≥ 2. Thus IdL(A) ⊆

IdL(B ⊕D) = IdL(Aε
t+2 ⊕N ε

u ⊕N).

Conversely, let f ∈ IdL(Aε
t+2⊕N ε

u⊕N) be a multilinear polynomial of degree

n and write f as in (6). As in the previous case, since f ∈ IdL(Aε
t+2), we can

reduce f as in (7). Notice that f ∈ IdL(B) ∩ IdL(D), thus any evaluation of
f in B or in D gives zero. Furthermore, since J10J

t+1
00 = Jε11J10 = 0, we get

that f vanishes under any evaluation on elements of A.
Thus f ∈ IdL(A) and IdL(A) = IdL(B ⊕D) = IdL(Aε

t+2 ⊕ N ε
u ⊕ N). This

immediately implies A ∼TL Aε
t+2 ⊕N ε

u ⊕N and we are done.

By putting together the previous results, we get the following.

Lemma 27. Let A = F + J ∈ varL(UT ε2 ) with J10 6= 0 and J01 6= 0. Then
either A ∼TL Aε

k ⊕ (Aε
r)
∗ ⊕ N or A ∼TL Aε

k ⊕ (Aε
r)
∗ ⊕ N ε

u ⊕ N, for some
k, r, u ≥ 2, where N is a nilpotent L-algebra.

Proof : By Lemma 25, A ∼TL B1 ⊕ B2 where B1 = F + J00 + J10 + J11 and
B2 = F + J00 + J01 + J11. Moreover, by the previous Lemma, B1 ∼TL Aε

k⊕N
or B1 ∼TL Aε

k ⊕ N ε
u ⊕ N and B2 ∼TL (Aε

r)
∗ ⊕ N or B2 ∼TL (Aε

r)
∗ ⊕ N ε

u ⊕ N,
for some k, r, u ≥ 2 and N a nilpotent L-algebra. It readily follows that

A ∼TL Aε
k ⊕ (Aε

r)
∗ ⊕N or

A ∼TL Aε
k ⊕ (Aε

r)
∗ ⊕N ε

u ⊕N,

as claimed.

We are now in a position to prove the main theorem of the paper.

Theorem 28. If A ∈ varL(UT ε2 ) then A is TL-equivalent to one of the fol-
lowing L-algebras: UT ε2 , N, N

ε
t ⊕ N, Aε

k ⊕ N, (Aε
r)
∗ ⊕ N, Aε

k ⊕ N ε
u ⊕ N,

(Aε
r)
∗⊕N ε

u⊕N, Aε
k⊕ (Aε

r)
∗⊕N, Aε

k⊕ (Aε
r)
∗⊕N ε

u⊕N, where N is a nilpotent
algebra and k, r, u ≥ 2, t ≥ 1.

Proof : If A ∼TL UT ε2 there is nothing to prove, so let suppose that A gen-
erates a proper L-subvariety of varL(UT ε2 ). Thus, by Theorem 3, cLn(A) is
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polynomially bounded and by [31, Theorem 8] we may assume

A = B1 ⊕ · · · ⊕Bm,

where B1, . . . , Bm are finite dimensional L-subalgebras of A such that
dimF

Bi
J(Bi)

≤ 1, for all 1 ≤ i ≤ m.

If for all i, dimF
Bi

J(Bi)
= 0, then Bi = J(Bi) is a nilpotent L-algebra and

A ∼TL N where N = B1 ⊕ · · · ⊕Bm.
Thus suppose that there exists i such that dimF

Bi
J(Bi)

= 1, that is Bi =

F + J(Bi). Write

J(Bi) = J00 ⊕ J10 ⊕ J01 ⊕ J11.

If J10 = J01 = 0, then by Lemma 24, A ∼TL N ε
ui
⊕ N for some ui ≥ 1,

where N is a nilpotent L-algebra. If either J10 6= 0 or J01 6= 0, then by
Lemmas 26 and 27, Bi is TL-equivalent to one of the following L-algebras:
Aε
ki
⊕ N, (Aε

ri
)∗ ⊕ N, Aε

ki
⊕ N ε

ui
⊕ N, (Aε

ri
)∗ ⊕ N ε

ui
⊕ N, Aε

ki
⊕ (Aε

ri
)∗ ⊕ N or

Aε
ki
⊕ (Aε

ri
)∗ ⊕N ε

ui
⊕N, for some ki, ri, ui ≥ 2.

Since A = B1⊕ · · ·⊕Bm, by taking into account the previous possibilities,
we get the desired conclusion.

As a direct consequence of the previous Theorem and Lemmas 19 and
22, we get the following corollary that classifies, up to TL-equivalence, all L-
algebras generating minimal varieties of polynomial growth inside varL(UT ε2 ).

Corollary 29. Let A ∈ varL(UT ε2 ). Then A generates a minimal L-variety
if and only if either A ∼TL N ε

u or A ∼TL Aε
k or A ∼TL (Aε

k)
∗, for some u ≥ 1,

k ≥ 2.

7. Classifying subvarieties of varL(UT2)
In this section we classify, up to TL-equivalence, all the L-subvarieties of

varL(UT2). As we remarked before, since L acts trivially on UT2, this is
equivalent to the classification of the algebras inside the variety generated
by UT2 in the ordinary case given in [22]. In what follows we present such
results in the language of L-algebras for convenience of the reader.

For k ≥ 2, let Ak, A
∗
k and Nk be the algebras Aε

k, (Aε
k)
∗ and N ε

k constructed
in Section 3, respectively, where L acts trivially on them.

Since xδ ≡ 0 for all δ ∈ L, in this case we are dealing with ordinary
identities. Thus we have the following results characterizing the L-identities
and the growth of the L-codimensions of the above algebras.
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Theorem 30 ([4], Lemma 3).

1. IdL(A2) = 〈[x1, x2]x3〉TL and IdL(A∗2) = 〈x1[x2, x3]〉TL.
2. cLn(A2) = cLn(A∗2) = n.

Theorem 31 ([22], Lemma 3.1). Let k ≥ 3, then:

1. IdL(Ak) = 〈[x1, x2][x3, x4], [x1, x2]x3 · · ·xk+1〉TL;

2. cLn(Ak) =
k−2∑
l=0

(
n

l

)
(n− l − 1) + 1 ≈ qnk−1, for some q > 0.

Hence IdL(A∗k) = 〈[x1, x2][x3, x4], x1 · · ·xk−2[xk−1, xk]〉TL and cLn(A∗k) = cLn(Ak)
≈ qnk−1.

Theorem 32 ([5], Theorem 3.4,). Let k ≥ 3, then:

1. IdL(Nk) = 〈[x1, x2][x3, x4], [x1, . . . , xk]〉TL;

2. cLn(Nk) = 1 +
∑k−1

j=2

(
n
j

)
(j − 1) ≈ qnk−1, for some q > 0.

Moreover, N2 ∼TL F.

The following result classifies the subvarieties of varL(UT2).

Theorem 33 ([22], Theorem 5.4). If A ∈ varL(UT2) then A is TL-equivalent
to one of the following L-algebras: UT2, N, Nu ⊕N, Ak ⊕N, A∗r ⊕N, Ak ⊕
Nu⊕N, A∗r⊕Nu⊕N, Ak⊕A∗r⊕N, Ak⊕A∗r⊕Nu⊕N, where N is a nilpotent
algebra and k, r, u ≥ 2.

As a consequence of the previous theorems, we can also get the classification
of all L-algebras generating minimal varieties.

Corollary 34. An L-algebra A ∈ varL(UT2) generates a minimal variety of
polynomial growth if and only if either A ∼TL Nu or A ∼TL Ak or A ∼TL A∗k,
for some u ≥ 2, k ≥ 2.
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