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1. Introduction

Let F' be a field of characteristic zero, let F'(X) be the free associative
algebra on a countable set X of variables over F' and let A be an associative
F-algebra. A polynomial of F(X) vanishing under every evaluation in A
is called a polynomial identity of A and we denote by Id(A) the T-ideal of
polynomial identities satisfied by A. One of the most challenging problem
in the theory of algebras with polynomial identities (PI theory) is to find
some numerical invariants allowing us to classify such T-ideals of F'(X).
Since there is a one-to-one correspondence between T-ideals and varieties of
algebras, often it is convenient to translate a given issue about T-ideals into
the language of varieties of algebras.

If P, is the space of multilinear polynomials in the variables z1, ..., z,,
then we set

P,
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for all n > 1, and we call it the codimension sequence of A. If V' is a vari-
ety of algebras and Id(V) is its corresponding T-ideal, then we can similarly
define ¢, (V). Moreover, if ¥V = var(A) is the variety generated by the al-
gebra A, then we refer to the codimension sequence of }V as the one of A.
Such a numerical sequence was introduced by Regev in [28] and it measures
the rate of growth of the multilinear polynomials lying in the corresponding
T-ideal. In the same paper, Regev also showed that if A is an associative
algebra satisfying a non-trivial polynomial identity, then ¢,(A) is exponen-
tially bounded. Later on, Kemer in [18] and [19] proved several properties
about the codimension sequence. On one hand, he showed that c¢,(A) is
polynomially bounded or grows exponentially, on the other he gave a charac-
terization of the varieties of polynomial growth of the codimension proving
that ¢, (A) is polynomially bounded if and only if G,UT, ¢ var(A), where G
is the infinite dimensional Grassmann algebra and U5 is the algebra of 2 x 2
upper triangular matrices. Hence var(G) and var(UT,) are the only varieties
of almost polynomial growth, i.e., they grow exponentially but any proper
subvariety grows polynomially.

Varieties of poylnomial growth were extensively studied in the past years in
various settings. We refer the interested reader to [5], [6], [22] for some results
about ordinary algebras; to [8], [23], [24], [32] for superalgebras and more
generally group graded algebras; to [3], [7], [10], [20], [21], [25] for algebras
with involution, graded involution, superinvolution and pseudoinvolution; to
[27] for special Jordan algebras.

In this paper we deal with associative algebras with a Lie algebra action
by derivations. If L is such a Lie algebra, then its action can be naturally
extended to the action of the universal enveloping algebra U(L) of L and
in this case we say that the algebra A is an algebra with derivations or an
L-algebra. In this context it is natural to define the differential identities
of A, i.e. the polynomials in the variables 2" = h(x), h € U(L), vanishing
on A. In analogy with the ordinary case, one defines the sequence of L-
codimensions and studies their asymptotic behaviour. In [13] it was proved
that, in case of finite dimensional L-algebras, the sequence of L-codimensions
is exponentially bounded or grows polynomially. Moreover, in [9] the authors
studied the algebra UTs5 of 2 x 2 upper triangular matrices with the action
of the 1-dimensional Lie algebra spanned by the inner derivation £ induced
by e;;. In that paper, they show that such algebra generates an L-variety
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of almost polynomial growth. Finally, in [31] it was proved that the L-
codimension sequence of an L-variety V generated by a finite dimensional
L-algebra is polynomially bounded if and only if UTy, UTS ¢ V, where UT
stands for the algebra of 2 x 2 upper triangular matrices and L acts trivially
on it.

The main purpose of this paper is to classify, up to Pl-equivalence, all
the L-subvarieties of varl(UTs) and var®(UT%) in terms of generators of
the corresponding T;-ideals and to provide a complete list of L-algebras
generating such L-subvarieties. Concerning var’(UT5), the main result is
given by Theorem 28 below. We also highlight that if L acts trivially on
UTs, then such a classification coincides to the one of the ordinary case given
in [22]. We chose to include it here for sake of completeness.

2. On differential identities

Throughout this paper F' will denote a field of characteristic zero and L a
Lie algebra over F'.

Recall that a derivation of an associative algebra A is a linear map ¢ :
A — A such that (ab)? = a’b + ab?’, for all a,b € A. In particular, an inner
derivation induced by a € A is the derivation ad, acting on the left on A by
b*de = [a,b] = ab— ba, for all b € A. Clearly, the set Der(A) of all derivations
of A is a Lie algebra.

Let U(L) be the universal enveloping algebra of L. By the Poincaré—
Birkhoff-Witt Theorem, if L has a ordered basis {0; | ¢ € I}, then U(L) has
a basis {6;, ---0;, | i1 <--- <1y, i € I, p>0}. Thus if A is an associative
F-algebra with an L-action by derivations, then this action can be naturally
extended to an U(L)-action. In this case we call A algebra with derivations
or L-algebra.

Let X = {x1,29,...} be a countable set and B = {d; | j > 0} be a
basis of U(L). We denote by F(X|L) the free associative algebra over F

with free formal generators xf‘j, i >0 and j > 0, where we identify z; = x;,
1 =dy € U(L). Notice that U(L) acts on F(X|L) by setting
dj dj d; ) §dj1 d

, d d.
n — 72 In J1
i ) =y et

5dj2 djn djl dj2 Jn
e ne B S PSRN S

(a o

g " 12 in

where § € L and x?jlx?f : xij" € F(X|L). Thus we call F/(X|L) the free

associative algebra with derivations on X over F' and we refer to its elements
as differential polynomials or L-polynomials.
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Let A be an L-algebra over F. Recall that an L-polynomial f(x1,...,z,) €
F(X|L) is a differential polynomial identity of A (or simply an L-identity),
and we write f =0, if f(ay,...,a,) =0foralla; € A, 1 <7 < n. We denote
by Id*(A) = {f € F(X|L) | f = 0 on A} the Ty-ideal of L-identities of A,
i.e., Id“(A) is an ideal of F(X|L) invariant under all endomorphisms ¢ of
F(X|L) such that p(f") = o(f)", for all f € F(X|L) and h € U(L) (see for
example [14, 17, 29, 30]).

Let H be a Lie subalgebra of L. If A is an L-algebra, then by restricting
the action, A can be regarded as a H-algebra. In this case we can identify
the Tr-ideal Id“(A) and the Ty-ideal 1d7(A), i.e., in Id*(A) we omit the
differential identities ° = 0, for all § € L\H. Furthermore, any algebra
A can be regarded as L-algebra by letting L act on A trivially, i.e., L acts
on A as the trivial Lie algebra. Hence the theory of differential identities
generalizes the ordinary theory of polynomial identities.

As in the ordinary case, in characteristic zero, every L-identity is equivalent
to a system of multilinear ones. We denote by

PnL = span{xii(ll) . a:cali(”n) | 0 € Sy, d;, € B}

the vector space of multilinear differential polynomials in the variables x4, .. .,
T,, n > 1. Since Id“(A) is generated, as Ti-ideal, by the multilinear L-
polynomials it contains, the study of Id*(A) is equivalent to the study of PN
Id%(A) for all n > 1. In case U(L) acts on A as a suitable finite dimensional
subalgbera of the endomorphism ring of A, then PF is finite dimensional and
we denote by
PL
ck(A) = dimp ——, n2>1,
PLNId"(A)

the nth differential codimension of A or the nth L-codimension of A. From
now on, we will assume that the action of U(L) is always of this type.

Given a variety )V of L-algebras the growth of )V is defined as the growth of
the sequence of differential codimensions of any L-algebra A generating V,
i.e., V = varf(A). In this case we set cZ(V) = cL(A), n > 1. Then we say
that V has polynomial growth if there exist C,¢ such that c¢£(V) < Cn! and
that V has almost polynomial growth if ¢Z()) is not polynomially bounded
but every proper subvariety has polynomial growth.

In [31] the authors proved that there exists only two L-varieties generated
by finite dimensional L-algebras of almost polynomial growth. Next we are
going to describe such varieties.
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Let us denote by UT5 the L-algebra of 2 x 2 upper triangular matrices over
F where L acts trivially on it. Since z° = 0, for all 6 € L, is a differential
identity of UT5, we are dealing with ordinary identities. Thus by [19], it
follows that the algebra UT, generates an L-variety of almost polynomial
growth. Moreover, we have the following result (see [26]).

Theorem 1.

1. 1d"(UTy) = ([21, zo] [x3, 74]) 77, ;
2. cH(UTy) =2""n—2)+2.

Let now denote by UTs the L-algebra of 2 x 2 upper triangular matrices
over F' where L acts on it as the 1-dimensional Lie algebra spanned by the
inner derivation ¢ induced by eqq, i.e.

€
(aell + b€22 + 0612) = ceq19,

for all a,b,c € F, where ¢;;’s are the usual matrix units. In [9], the authors
proved that UT5 has almost polynomial growth and also they proved the
following.

Theorem 2. [9, Theorem 5]
L 1" (UT5) = (25 — a5, @jas, [on,22) — [21,20])7,;
2. cL(UTS) =2""In — 1.

The above algebras characterize the L-varieties of polynomial growth.

Theorem 3. [31, Theorem 18] Let A be a finite dimensional L-algebra. Then
the sequence ct(A), n > 1, is polynomially bounded if and only if UTy, UT5 ¢
varl (A).

Recall that given two L-algebras A and B, A is Tp-equivalent to B and
we write A ~7, B in case Id"(A) = I1d*(B). Thus as a consequence of the
above theorem, we have that the algebras UT, and UT5 are the only two
finite dimensional L-algebras, up to Tr-equivalence, generating L-varieties of
almost polynomial growth.

As in the ordinary case, a useful tool when studying L-identities of algebras
with 1 is provided by the so-called proper polynomials.

Recall that a left normed commutator of length n > 2 in the variables x;’s
is defined inductively by setting

[56}1117 .. xhnﬂ .fUh"] — _[xih’ o xhn,l]adx%"

y HMn—1n » “n—1 ’
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where hy,...h, € U(L). An L-polynomial f(z1,...,x,) € F(X|L) is a
proper L-polynomial if it is a linear combination of elements of the type

hy I
Z.l ...inkwl...wm

where h; € U(L), h; # 1y (), forall1 <i < k, and wy, ..., wy, are (eventually
empty) left normed Lie commutators in x;’s.

In characteristic zero, if A is an unitary L-algebra, then Id” (A) is generated,
as Tr-ideal, by the multilinear proper L-polynomials (see [1, Lemma 2.1]).
Thus if T'L denotes the subspace of P¥ of multilinear proper L-polynomials
in n > 1 variables, and I'} = span{1}, then we define the sequence of proper
L-codimensions of A as

X

FL
L : n
A) = dim , n>0
)= dimr ey "2
For unitary L-algebra A, the relation between the L-codimensions and the
proper L-codimensions is given by the following

) =Y (Dt nz1

. 1
1=0

This relation can be proved following closely the proof in the ordinary case
in Theorem 4.3.1 of [2].

Next we present a result on proper L-polynomials which will be useful later.
Recall that given two sets of L-polynomials S,S" C F(X|L), we say that S’
is a consequence of S if S" C (S)r,.

Proposition 4. Let i > 1. If k is even, then F’,;JH is a consequence of 'k,
Otherwise, 'L . is a consequence of I't plus the polynomial [x1, T2 - - - [Tk, Tps1).

Proof: We start by proving the statement in case k is even.
Let w € T'F, . be a generator and ¢ > 1. Suppose first that w is a product

k+i
of commutators. If w is a product of commutators of length 2, then
hi b hio1 _h hivion s
w = [ayh @y’ [ ] [ 2 L
where hy, ..., hyy; € U(L). Thus w is a consequence of
h h hy— hi L
[yt 2] ] e Ty

and we are done. On the other hand, if w contains a commutator u of length
m > 2, then u can be viewed as a consequence of a commutator of length < m.
Thus by the above, we get also that w is a consequence of Fé . Hence we may
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assume that w = xﬁlxzt[][] with ¢ > 0 and hy,...,hy € U(L).
If ¢ < 4, then by the previous case, w is a consequence of I't. Otherwise,
if ¢ > 4, then w is a consequence of the polynomial ac? e xzt[ e,
where r = ¢ 4+ 1, and we are done also in this case.

Now suppose that £ is odd.

If we prove that I'z, | is a consequence of I'f and the polynomial [z, zo] - - -
[k, x)41], by the first part of the proof we reach the desired conclusion. Thus
let w € T'F,, be a generator. If either w contains a commutator of length

greater than2orw:xﬁl---xzt[---]---[---] with ¢ > 0, hy,...,hy € U(L),

we have, as above, that w is a consequence of I'f. Thus we may assume that
w is product of commutators of length 2, i.e.,

h
w = [[L‘ill’ ajg‘?] . .. [aj’llzk, xkiﬁl],

where hy, ..., hyy € U(L). If h; € spang{1y(p)} for all 1 <4 <k + 1, then
w = Play, o] - -+ [Tk, Tp11], for some f € F, and we are done. Hence we may
assume that h; ¢ spang{1y )}, for some i. We write

h h hi_ hi_ h; h; h; h; h h
w =[xy, 25%] - 1Y 2 Ly [%ffa 35¢++22H%k7 %Iff]
h h hi_ hi_ h; h; h; h; h h
— [z} 2] [xze?fa xi—22]xi++11xi [xz‘++117 xi++22”xkka xk’ff]

Since yz = [y, z] + zy and a commutator of length m > 2 is a consequence of
a commutator of length < m, then

_ h; h; h h hi_: h;_ h; h; h h
w =(7, Ty [yt 2g?] [ [xz'fllvxifzz [}, %Tf]
h; hir h h hi—s _ hi_ h; hi h h
— [yt 2?2 o [ vl [, fck’fﬁf]) (mod (T'x)r,)-

If hiy1 ¢ spanp{1ly(r)}, then w is a consequence of

hi— hif hi hi h
yh[x}fla x}f] R xi—22”xi—|—+117 5’71'++22Hx2kv fckiﬁl] S F%

and we are done. Hence suppose that h; 1 = 1y (), then

h hi—z _hi_ h; h; h h
SRR [$¢—357 xz‘—22”$z‘++11> xi++22“$kk> xk]rll] (mod (I'x)7,).

Without loss of generality, we may assume that h; = 07 - - - 5, where 91, .. ., s
are in L. Let I = {iy,... i} and J = {ji,...,jt} be two disjoint sets such
that TUJ ={1,...,s}, 41 <--- <i, and j; < --- < j;, respectively. We set
cr = 0;, -+ 0; and ¢y = d;, ---9;,, then by definition of derivation, we have

_ ok ha
w = x w2t
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the following

h; — h; h; Cr .CJ
T T = (i) — T — g T T
IJ

Since ¢y, ¢y € U(L) for all 1, J, it follows that w is a consequence of

h[ ha ha]...

ol b hi—3 hzez“ hiy1 hi+2][ hy, hk+1] c Fé

Y [%—3 s Li_o |41 s Lo 1Tk Vg

and this completes the proof. ]

As a consequence we have the following.

Corollary 5. Let A be an L-algebra with 1. If vE(A) = 0 for some k > 1,
then vE(A) =0 for all m > k.

Remark that these results are general facts not related to the L-identities
of UTQ

One of the main tool in the study of T -ideals is the representation theory of
the symmetric group S,,. In fact, the natural left S,-action o (z) = x(’;(i) turns
PL into a S,-module and therefore the space PX(A) = PL/(PL n1d*(A))
becomes a left S,-module. Similarly TE(A) = I'L/(TE N 1d*(A)) is an S,-
module under the induced action. We denote by xZ(A) and L (A) the S,-
characters of PX(A) and I'E(A), respectively, and we refer to them as the nth
L-cocharacter and the nth proper L-cocharacter of A. Since char F' = 0, by

complete reducibility we can write

XE(A) =D maxa, OH(A) =D mixa,
An AFn
where A is a partition of n, y) is the irreducible S,-character associated to
A, and my, m) > 0 are the corresponding multiplicities. It is clear that by
knowing the decomposition of the (proper) cocharacter of A, one can get
informations about the corresponding (proper) codimensions.

3. Constructing L-subvarieties in var’(UT5)

The main goal of this section is to construct some suitable finite dimen-
sional L-algebras belonging to the L-variety generated by UTs; whose L-
codimension sequence grows polynomially.

For all & > 2 let

€ 2 k—2
Ak:spanF{eH,E,E 7...,E ,612,613,...,6%}
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be the subalgebra of UT},(F') where E = Zf:_; e;i+1 and L acts on A as the
1-dimensional Lie algebra spanned by the derivation € = ad,,, . Remark that
€5, = (B’ =0,forall1 <j<k—2 and €5, = ey;, for all 2 < i < k.

We also denote by (A7)* the subalgebra of UT},(F') obtained by flipping A;,
along its secondary diagonal. Hence

€\ * 2 k—2
(Ak) = spanF{ekk, E, E o ,E , €1k, €2k - - - ,ek_l,k}.

In this case, L acts on (A})* as the 1-dimensional Lie algebra spanned by
the derivation € = ad,,, . Notice that one can determine the L-polynomial
identities of such an L-algebra via the ones of AS. In fact, if f € F(X|L)
and f* is the L-polynomial obtained by reversing the order of the variables
in each monomial of f, then one can easily check that f € Id* (Af) if and
only if f* € Id"((A%)*). Notice that such kind of algebras was first studied
in the ordinary case in [5]

In what follows, we explicitly describe the L-identities of A5 and (A3)* for
any k > 2.

Lemma 6 ([30], Theorem 3). Let k = 2, then:
1. [dL(AS) = (:U‘f — a3, xixe, X125 — wox] — X1, X2]) 7 ;

2. 1dM((A35)*) = (2 — 25, mah, a5my — 2501 — 21, 22))7y;
3. c(A5) = cE((A)") =n+ 1.

Lemma 7. Let k > 3, then:

L. [dL(Ai) = (xf - 5'3?7 xix%, [5517%2]5 - [$179€2]; 93%2 e 'fEk>TL;

k—2 k—2 n—I1+1 .
2. ch(AS) =24n+) (Tll) (n—l+1)+> > (7;_ ‘17>(j—1) ~ qn !,
1=0 =1 j=2

for some q > 0.

Hence Id"((A5)*) = <:U§2 — 2%, 1725, 21, m2]" — [11,22], X1+ w1 7) 7y, and
cH(45)") = cE(47) ~ qni !

Proof: Write I = (25" — a5, aSa5, [x1, 2] — [21, 2a], 259 - - - x3)7, . It is clear
that I C IdL(Ai). In order to prove the opposite inclusion, first we find a set
of generators of PL modulo P* NI, for all n > 1.

Let f € PL be a multilinear L-polynomial of degree n. Because of the
L-identities 25" — 2§ = 0 and z5z5 = 0, in each monomial of f can occur at
most one differential variable x5. Moreover, [z1, zo]25 = 0 and x5[zy, 22] =0
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are a consequences of zjx§ = 0 and [z, x2]° — [71, 2] = 0. Furthermore, from
(1, 22)°—[x1, 25] = 0 and x{xs - - - 2, = 0, it follows also [z, zo]x3 - - xR = 0.
Finally, since [x1, xs][x3, 4] = 0 is a consequence of ziz5 = 0 and |1, 25| —
(21, 29] = 0, every left normed commutator [xj,,...,z;,] can be written as a
linear combination of [x;,,...,x;] where i; > iy < ... < 4 (see for instance
2, Theorem 5.2.1]).

By taking into account the previous remarks plus the Poincaré-Birkhoft-
Witt theorem, modulo I, f is a linear combination of L-polynomials of the
type

TREET: SRR [

(1)

wheret+l=n—2,r+s=n—1I1I<k—-1,s<k—1,1>7<i3 <...<iy,
n<...<jym<p<...<prand ¢ < ... < qs. It follows that the space
PE is generated modulo PX N I by the above polynomials.

We next show that they are linearly independent modulo Id* (A%). To that
end, let f € Id" (A7) be a linear combination of such polynomials and write

f=axy- -2, + Bry- - zpx] + Z Z&]’inl---xit[xi,xj]le---le+

9 9
x2...xnx1, xpl...xprxqul...xqs,

I<k—1 I,J
+ Z Z BrQTp, -+ - Tp, Ty Tq, * Tg,,
s<k—1 P,Q
where I = {i,j,i1,...,4t}, J = {j1,-- -, 5}, P = {m,p1,...,p,} and Q =
{q1,...,qs} are disjoint sets of indices subjected to the above conditions.
First suppose that o # 0, then by making the evaluation z; = --- =z, =

e one gets a = 0, a contradiction.

Suppose that there exists ay jy # 0 for some | < £ — 1, I and J. Then by
making the evaluation z; = e, 2; =2, = -+ =x;, = ey and 5, = -+ =
zj, = F, we get ar ; = 0, a contradiction.

Now suppose that 5 # 0, then if one considers the evaluation x1 = e and

Ty =+ =1x, = ey1, we get =0, a contradiction.

Fmally, it Bpg # 0 for some s < k — 1, P and @, then let z,, = ey,
Ty = -+ =1, = e and z,, = --- = x, = E, obtaining Bpg = 0, a
contradiction.

Therefore the elements in (1) are linearly independent modulo PXNId*(A?)
and, since PXNId"(A$) D PENI, they form a basis of P* modulo PXNId"(A3)
and Id*(A3) = 1I.
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Thus, by counting we get

k—2 k—2 n—Il+1
L e\ __ n n—y —~ k—1
cn(Ak)—Q—l—n—l—Z(l)(n—l—l—l)—l—ZZ (l_1>j—1)~qn :

(=0

for some ¢ > 0 and we are done.
Notice that, from the previous results, it follows also that Id*((A$)*)
2 *

(21 —af, @iag, [v1, 2" = [v1, 2], @1+ wp2p)r, and o ((A7)") = ¢ (47) ~

gkl .
)

We now introduce, for any fixed k& > 2, a unitary L-algebra in varl(UT5s

which codimension sequence grows as n*!.

To this end, for all £ > 2, let
Ni = spanF{[, E,E% ... E*2 e, 613, ... ,€1k}

where [ is the identity k& x k matrix and L acts on N as the 1-dimensional
Lie algebra spanned by the derivation e = ad,,, . In this case I¢ = (E7)® = 0,
forall 1 <j<k—1, and ej;, = ey, forall 2 <7 < k.

Lemma 8. Let k > 2, then:

L Id"(Np) = (af — i, 2525, [o1,20)° — [w1, 0], [21, ., 2a])7y;
2. cE(Ng) =1+ 25;11 (?)j ~ gn*~1, for some q > 0.

Proof: Let Q = (x5 —af, afa5, [x1, x2]° — [x1, 22], [21,. .., xx])7,. It is easily
proved that @ C Id*(N;).

Let now f be an L-identity of N;. We may assume that f is multilinear
and since N; is an unitary algebra, we may take f proper.

After reducing f modulo (), we get that f is the zero polynomial if deg f >
k and it is a linear combination of commutators

[£E§7$2,...,l’n] [xi,xl,...,fv\i,...,xn]

if deg f < k, where 2 < ¢ < n and the symbol Z; means that the variable x;
is omitted.
Hence, modulo @),

f:a[ajivx%'")xn]+Z/6i[xiaxla"'7/x\i7"'7xn]7
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where n < k — 1. We claim that such commutators are linearly independent
modulo Id*(N§), i.e. f is the zero polynomial modulo Id*(N7) and this will
imply that Q = Id*(N¢), as required.

Suppose that 3; # 0 for some ¢, then we consider the evaluation z; = ejs,
x; = F for all j # i and we get 3; = 0, a contradiction. Now, if o # 0, then
we make the evaluation 1 = --- = z,, = E and we get a = 0, a contradiction.
This says that f € Q and so Q = Id"(N;) as claimed.

The arguments above also prove that

Hence we also get that
1 1
dop =1+ X (D)o =10 X (M)imant
1

for some g > 0. |

We want to highlight that the case £ = 2 was already studied in [30,
Theorem 1]. Moreover, it is clear that if k = 1, then N{ = F, Id%(N7) =
([x1, 29], 25)7, and cE(Nf) =1 for all n > 1.

4. On the structure of algebras generating L-subvarieties
of varl(UT5)

In this section we shall study the structure of L-algebras belonging to the
L-variety generated by UT5.

Notice that in what follows we may assume, without loss of generality, that
L is a 1-dimensional Lie algebra spanned by e.

We start by proving that any L-algebra inside var®(UT5) satisfies the same
L-identities of a finite dimensional L-algebra.

Theorem 9. If A € var®(UT5) is a finitely generated L-algebra over an
algebraically closed field F' of characteristic zero, then A is Ty -equivalent to
a finite dimensional L-algebra over F'.

Proof: If A € var’(UT5), then by Theorem 2, 25 — 2° € Id%(A). Hence
U(L) acts on A as the 2-dimensional semisimple Hopf algebra H with basis
{1g,&} where &2 = . Thus A can be regarded as an algebra with H-action
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and we may restrict the T;-ideal Id*(A) to the Ty-ideal Id¥ (A). Thus the
claim follows from [16, Theorem 1.1]. _

We refer the reader to [13, 16] for an account on algebras with an Hopf
algebra action and the related theory of polynomial identities.

Now we recall the following result characterizing the nth L-cocharacter of
UT5.

Theorem 10 ([9], Theorem 12). If x2(UTS) = 37, max. is the nth cochar-
acter of UT5, then

(n 41, A= (n)

_)2a+1), A= tap)

¢+1,  A=(p+qpl)

0, otherwise

\

where p,q > 0.

In order to characterize the L-subvariety of varl(UT5) we are going to
prove the following.

Theorem 11. If A € var®(UTs), then A is Ty -equivalent to a finitely gen-
erated L-algebra.

Proof: Let B be the relatively free algebra of var’(A) with 3 generators. We
claim that Id*(A) = Id%(B). Clearly 1d*(A) C Id*(B), thus we shall prove
the opposite inclusion.

Let f € Id*(B) be a multilinear polynomial of degree n and let M be the
Sy,-module generated by f. Without loss of generality, we may assume that
M is irreducible. In fact, if M = M; & - -- & M, is the decomposition into
irreducible components, where M, is generated by f; as S,-module, 1 <17 < k,
then f; € Id"(A) for all 4 implies that also f € Id*(A).

Let x» be the irreducible character of M, where A = (A1,...,\) F n, and

let
er, = Z (sgno)ro

TERTA

O’GCT/\
be the corresponding essential idempotent (see for instance [12, Chapter 2]).
Here recall that Ry, and Cp, stand for the row-stabilizer and the column-
stabilizer of the Young tableau T), respectively.
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If Ay # 0 or A3 > 1, then by Theorem 10, it follows that f € Id*(A). Thus
we may assume that Ay =0 and \g < 1.

Let now consider g = (ZTE Ry 7') f and notice that ¢ is symmetric in at
A

most two disjoint subsets X, Xy of differential variables. If we identify all
the variables of X; with x; and all the variables of Xy with x5 in g, we
obtain the homogeneous polynomial p = p(z1,x2, r3) which is still an L-
identity of B. But from the definition of relatively free algebra, it follows
that p € Id*(A). By multilinearizing the polynomial p, we get the polynomial
MINolg(z1, ... xy,). Hence g € Id¥(A) and, since M is irreducible and g # 0,
it follows that also f € Id*(A). This completes the proof. m

As a consequence of Theorems 9 and 11 we have the following.

Corollary 12. If A € var®(UT5) is an L-algebra over an algebraically closed
field F of characteristic zero, then vart(A) = var®(B) for some finite dimen-
stonal L-algebra B over F.

According to Corollary 12, from now on we will always assume, without
loss of generality, that if V C vark(UT5s), then V = var®(A4) where 4 is a
finite dimensional L-algebra.

Now we are going to describe the structure of such finite dimensional L-
algebras belonging to var®(UT5).

First we recall some definitions. A subalgebra (ideal) B of A is an L-
subalgebra (ideal) if it is a subalgebra (ideal) such that BY C B, where B*
denotes the set of all h(b), for all b€ B and h € U(L).

Let A be a finite dimensional L-algebras over an algebraically closed field.
By the Wedderburn-Malcev Theorem for associative algebras, we can write

A=B+J (2)

where B is a maximal semisimple unitary subalgebra of A and J = J(A) is
its Jacobson radical. Notice that although J is an L-invariant ideal of A (see
[15]), it may does not exist an L-invariant Wedderburn-Malcev decomposi-
tion, i.e., it may happen that all semisimple subalgebras B of A that satisfy
(2) are not L-subalgebras of A. For example, the algebra UTy of 2 x 2 upper
triangular matrices where L acts as the 1-dimensional Lie algebra spanned by
the inner derivation ¢ induced by e;5 has no L-invariant Wedderburn-Malcev
decomposition (see [31, Example 2]). Things are different inside var®(UT5),
in fact at the end of the section, we will prove that, up to T;-equivalence,
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we can always assume that a subvariety of var®(UTs) is generated by an
L-algebra with an L-invariant Wedderburn—-Malcev decomposition.

To this end, first recall that J can be decompose into direct sum of B-
bimodules

J = Joo @ Jo1 @ J1o @ Jn1

where for i, k € {0, 1}, Jix is a left faithful module or a 0-left module according
as ¢ = 1 or ¢ = 0, respectively. Similarly, J;; is a right faithful module or
a 0-right module according as k£ = 1 or k£ = 0, respectively. Moreover, for
i, k,l,m € {0,1}, JuJim C Ok Jim where d;; is the Kronecker delta and
Ji1 = BN for some nilpotent subalgebra N of A commuting with B. For a
proof of this result see [11, Lemma 2].

Proposition 13. Let A = B + J be a finite dimensional L-algebra. If § €
Der(A), then 153 € Jo1 + Jig. Moreover, Jgo C Joo + Jo1 + Jio, ng C Joo +
Jor + J11, S5y C Joo + Jio + Ji1 and JY € Joy + Jio + Ji1

Proof: Since § € Der(A), by [15, Theorem 4.3] § = ady+ ad; +¢’, where
be B, jec Jand ¢ € Der(A) is such that B® = 0. Thus since [Ji;,15] =
Joolp = 1gJyy = 0, we get 19, = 1%dj e Jo1 + Jio.

Let joo € Jyo. Since 1pJogg = 0, we get 0 = 1(SBj00 + 1ng() and so it
follows that 1Bj80 € Jip. On the other hand, since Jylp = 0, we have
0= jgolg -I—j00153. Then jgolB € Joi1. Thus it follows that Jgo C Joo+Jo1+J10-

Let now j11 € J11. Then ]fl = (j1113)5 = jfllB +j11153 € Jo1 + Jip + Ji1.
Thus we get Jfl C Jo1 + Jip + Ji1. Similarly it can be proved for Jy; and
Jl(). |

In case of algebras belonging to var®(UT%), the action of L on J and its
components can be assumed to be much more simpler.

Lemma 14. If A = B+ J € var®(UT5) with J = Jyo + Jig + Jo1 + Ji1, then
j€ :j fOT’ all] - J01 U Jl().

Proof: If j € Jy (resp. j € Jy), then j = [j,1p] (resp. j = [1p,7]). Thus
the claim follows since [z, 22]° — [x1, 23] € Id¥(A). m
Lemma 15. Let A = B+ J € vark(UT5). Then J5yJo1 = JioJ5 = JiJ10 =
JouJi, = JouJio = JwJn = Jo[Jin, Ju] = [Jus Juldwo = [Joo, JoolJor =
J10[Jo0, Joo] = 0.

Proof: Since [x1, 25)° — [w1,22] = 0 and 2{z5 = 0 on varl(UT5s), the result
immediately follows applying Lemma 14. |
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Theorem 16. If A = B + J € var(UT5) then, up to T -equivalence, BY C
B.

Proof: If J = 0 there is nothing to prove, so let J # 0 and since A €
varl(UTs) then B = F @ --- @ F. By Proposition 13 it readily follows that
if either 13 = 0 or Jy; = Ji9p = 0, then B* C B and we are done also in this
case.

So, let suppose 13 = j # 0, where j € Jy + Jio, and let consider ¢’ =
e —ad; € Der(A). Remark that ¢ # 0 in fact if ¢’ = 0, then ¢ = ad; and
15 = j° = 0, since J3 = J = 0 and, by Lemma 15, Jy,Jio = JigJo1 = 0.
This is a contradiction since z° — 2° € IdX(A).

Let now A. be the L-algebra A where L acts on it as the 1-dimensional
Lie algebra spanned by ¢’. Clearly 1% = 0, B° C B and a straightforward
computation can also prove that A € var”(UTs). We claim that Id*(A) =
Id*(A.) and this will complete the proof.

Let f € Id*(A) be a multilinear polynomial of degree n. According to [9,
Theorem 5] we can write f as

_ g £
f=ar...op+ E Brxi, ... x;p T+ E YPiTp, - Tp [T], Tiyy ey Tj ] H G,
k=1 Py

where g € IdX(UT5) CId*(A), i1 < -+ <ip1, p1 < -+ <ppand j; < --- <

Jn—m—1- Notice that if we make the evaluation z; = --- = x,, = 1, we get

o = 0. Thus

f= Z Brxi, ... xp  XpF Z Vi, Ty (25,24, 2y, ]+ g € T1dH(A).
k=1 Pt

(3)

In order to prove that f € Id¥(A./), we have to show that

n
f = Z /kazl ct xzn—lxi + nypvtxpl tt xpm [xi 7:Uj17 tt 7mjn—7n—1] + g
k=1 Pt
vanishes under every evaluation of elements of A. Here g stands for the
polynomial ¢ in which we substituted every differential variable z° with z< .
Since ¢’ = ¢ — ad;, it is enough to prove that

n
ad; ad; L
E Brxi, .. xi, x,  + g YPiTp, - Tp [Ty Ty X, ] € Id¥(A).
k=1 Pt
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But by definition of inner derivation, the claim follows since [j, z]® — [, x] €
Id%(A) and (3) holds. Hence f € Id*(A.).

Similarly it can be proved that Id*(A.) C Id*(A). Thus A ~7, A. and
the claim is proved. |

As a consequence of Proposition 13, Lemma 14 and Theorem 16 we get the
following.

Corollary 17. If A = B+ J € var(UT5) with J = Jyo + Jig + Jo1 + Ji1,
then Jk C Jiy., for alli k € {0,1}.

According to the previous results, from now on we will assume that the
Wedderburn—Malcev decomposition and the Jacobson radical decomposition
into bimodules of every considered L-algebra are L-invariant.

5. On minimal L-subvarieties in VarL(U T5)

In this section we shall prove that the L-algebras A;, (A;)* and N} intro-
duced in section 3 generate minimal L-varieties of polynomial growth. We
start with the definition of minimal L-variety.

Definition 1. An L-variety V is said to be minimal of polynomual growth if

CL(V) ~ gqnF, for some q > 0, and for any proper L-subvariety U C V), we

n

have that ck(U) ~ ¢'n' with t < k.

Algebras generating minimal varieties will play an important role in the
main result, since we shall prove that any L-algebra inside var’(UTs) has
the same differential identities of a direct sum of such kind of algebra plus a
nilpotent algebra, eventually.

Remark 18 ([25], Remark 2). Let A = F + J be an L-algebra with J =
Joo+ J1i0+ Jor + J11- If A satisfies the identity [x1,...,x¢ = 0 for some t > 2,
then J()l = Jl() = 0.

Proof: The proof immediately follows from the fact that Jyg = [Jig, F, ..., F

t—1

andJ01:[J01,F,...,F. |

t—1

Theorem 19. For all k > 2, N; generates a minimal L-variety of polynomial
growth.
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Proof: Let suppose that A € varl(N£) and cL(A) ~ gn*~! for some ¢ > 0.
We shall prove that A ~7, N; and this will complete the proof.

Since cL(A) is polynomially bounded, by [31, Theorem 8] we may assume
that

A:B1®...@Bm

where By, ..., B, are finite dimensional L-algebras such that dimpg % <1,

for all 1 <4 < m. This implies that either B; = F' + J(B;) or B; = J(B;) is
a nilpotent algebra. Moreover, since

cn(A) < c(Br) + -+ ¢(B),
then there exists B; such that ck(B;) ~ bn*~1, for some b > 0. Thus
var®(Ng) D var®(A) D var®(F + J(B;)) D var®(F + Ji1(B)))

and cZ(F + J(B;)) ~ bn*~! Here remark that F'+ Jy;(B;) is an L-subalgebra
of F'+ J(B;) since, according to Theorem 16, in var’(UTs) we may assume
F*=0and J; C J; for all 4,5 € {0,1}.

Moreover, by Remark 18, we get that Jio(B;) = Jo1(B;) = 0 and so

F+J(B) = <F 4 Jn(B; )) @ Joo(B)),

as L-algebras, and cZ(F + J(B;)) = cE(F + J11(B;)) for n large enough.

It turns out that, in order to prove A ~t, Np, it suffices to show that F' +
Ji(B;) ~7, Nj. Hence we assume, as we may, that A is a unitary L-algebra
and we shall look at its proper codimension and cocharacter sequences.

Since cL(A) ~ qn*~!, then
=
=3 (7))t
i=0

and by Corollary 5, v¥(A) # 0 for all 0 < i < k — 1 and v*(A) = 0 for all
i>k.

. L L It ..
Moreover, recall that since Id”(N;) C Id”(A), then I is isomor-

W() Thus if ¢} (A) = > s M and

VF(NE) = >, mix» are the i-th proper L-cocharacters of A and N§, re-
spectively, then my < m/ for all A - .

phic to a quotient module of
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From now on, suppose k > 3. For all 3 < i < k—1,let f; = [x1,29,..., 20
i—1
and fy = [2],x1,...,x1] be the highest weight vectors corresponding to the
i—1

partitions A\; = (i — 1,1) and Ay = (i), respectively. It is clear that f; and fo
are not differential identities of Vg, thus x(;_1,1) and x(; participate in the
i-th proper L-cocharacter of N; with a non-zero multiplicities.

Moreover, since vF(N;) = i = deg X(i-1,1) + deg x(p), for all 2 < ¢ <k — 1,
we get that

i (N}) = X(i—1,1) T X(i)-

Now, since v}, (A) # 0 then either ¢} | (A) = x-1) or Y1 (A) = Xx-21)
or ¢£_1(A) = X(k-1) T X(k—2,1)-

Fist suppose that ¢F | (A) = X(k—1)- Then [z1, 29, ..., 23] = 0 on A and this

k—2

trivially implies [z5, 21, ...,21] = 0 on A. Thus % ;(A) = 0 and 7 | (A) = 0,

k—2
a contradiction.

Now suppose & (A) = X(k—21), then [27,2q,...,21] = 0 on A. Let sub-

fi—2
stitute the variable xy with x1 4+ x5 and let consider the multihomogeneous

component with degree k — 2 in z1 and 1 in x,. As a consequence, we get the
following identity modulo Id“(UT5) :

(25, 21, ..., x1] + (k — 2)[2], 22, 21, ..., 21] = 0. (4)
k—2 k-3
Since [21, 2] — [25, 2] — [x1, 25] € IAX(UT5) C Id*(A), we get
[xo, 27, 21, ..., x1] = [w9, 21, ..., x1] — [25, 21, ..., 21].
k-3 k—2 k-2
By putting together the latter one with (4) we get the identity
(k —2)[xe, 21,...,21) = (k — D)[x5, 21, ..., 21]. (5)
k=2 k—2

Moreover, by substituting the variable x5 with 25 in (4) and recalling that
25 = 15, we also obtain [x5,21,...,2;] = 0. From this one plus identity
k2
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(5), we finally get the identity [z2,21,...,21] = 0, thus £ (A) = 0 and
f—2

vE_1(A) =0, a contradiction. Hence it must be ¥ ;(A) = x(k-1) + X(k—2.1)-

Now, for all 2 < i < k—2, as before either ¥/ (A) = x ) or ¥ (A) = x(-1,1)
or ML(LA) = X&)+ X(i-1,1)-

If ;7 (A) = x() then [z1,29,...,25] = 0 on A. Thus also [z, 73,...,22] =0

i—1 k—2
that is absurd for the first part of the proof. Analogously, if *(A) = X(i-1,1)
then [z{,z1,...,21] =0 on A and so [z],x1,...,21] = 0, a contradiction.
i—1 k—2
Thus ¢F(A) = x(4) + XG-1.1) = ¥F(Nf), for all 1 <i <k —1 and

=3 (Maten =143 (1)i=chove)

1=0

Hence A and N; have the same codimension sequence and, since 1d- (N;) C
1d%(A), we get the equality Id*(N7) = Id*(A), as required.

Notice that if & = 2, then 15(N5) = x(1,1) + X(2) and with similar arguments
as in the first part of the proof we get 19(A) = 1o(N5), cE(A) = cL(N3) and
so A ~p, Ns. |

We now recall a result about the Jacobson radical of an algebra belonging
to var®(A%) that will be very useful hereafter.

Lemma 20. Let A= F + J € var’(A3) (resp. A= F + J € vark((A3)")).
Then Jlgl =0 and J01 = [JH, JH] =0 (T@Sp. JlO = [JH, JH] = 0)

Proof: We will prove the statement in case A € var(A%). The other one will
follow analogously.
Recall that according to Corollary 17, Jj; C Ji;. Moreover, since zjxs - - - o), €
1d"(A5) C 1d"(A), for all j € J t j€1p---1p = 0. Thus, if we let
(45) € A, for all € i we ot Lo 1p us, if we le
j¢ =j € Jy; then
0=jlp---1lp=
J Fk 1 E =1

since 1p acts as a unit element on Ji;. Now, due to the identity [z1,x9]* —
(1, x9] = 0, we get also [Ji1, J11] = 0.
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Finally, by Lemma 14, for all a € Jy;, a® = a. Thus by using the same
argument as before, we get that Jy = Jj; = 0. |

Lemma 21. Let A= F + J € var’(A3) (resp. A= F + J € vark((A3)*)).
If cE(A) = gqn*Y, for some ¢ > 0, then A ~7, A5 (resp. A ~7, (A7)*).

Proof: We prove the statement for A = F + J € var?(A$). The case A =
F + J € varl((A2)*) will follow with similar arguments.

By the previous Lemma, Jy; = [Ji1,J11] = 0, so we may assume A =
F + Joo + J1o + J11 and Ji; commutative. Moreover Jf; = 0.

First suppose that JygJoy % = 0.

If J™ = 0, then for all n > m we shall prove that g = . - - -z, 229 - - - 21 €
Id*(A). Since such a monomial is multilinear, we can evaluate each variable
in a basis of A consisting in an union of a basis of Jyy, Jig, J11 and 1. Since
n > m and J™ = 0, if we evaluate all the variables in J then we get zero,
thus at least one variable must be evaluated in 1p.

Let focus our attention to the variable x7. It is clear that if x; is evaluated
in 1 or on Jjj, then g vanishes since F* = Jj; = 0. If we evaluate x; in an
element jip € Jyo, then jj, = 710 and we are forced to evaluate zs, ..., x5
on elements of Jyy. Since JlOJé“O_Q = 0, we get zero. Finally, let evaluate x;
on an element jo9 € Jyo. Then j5, € Joo and since there exists ¢ such that x;
is evaluated in 1p, also in this case we get zero.

Therefore we have proved that zy - - - 2,25z - - - 74—y € Id¥(A). From this
identity and from [z, x9]® — [x1, 25] = 0 follows also that

Tha1 - Tplxy, To]as - - - 2y € IAX(A).

Since A € varl(A?), if f € PL with deg f = n > m, then after reducing
f modulo the T7-ideal generated by the differential identities of A; and by
g, by using also Lemma 7, we have that f is a linear combination of the
L-polynomials

Tl Ty, a’;il...xit[xi’xj]le...xj”

$2.-.xn:€i7 xp P €
wheret+l=n—2,r4+s=n—1,1<k—-2,s<k—2,1>75<i1 <...<ly,
n<...<pym<p<...<p-and ¢ < ... < qs. Remark that [,s < k — 2
since g = 0 on A.
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Therefore
k-3 n k—3 n—Il+1 n ]
L - 1 k=2
A) <2 —[+1 —1) =~
ca(4) < +n+l§;(l)(n + H;; (l—l)] )~

for some ¢’ > 0. This is a contradiction, since we are assuming that cZ(A) ~
k—1
qn” .
Thus JigJ82 # 0 and there exist a € Jig and by, ..., by € Jyo such that
aby -+ bj_y # 0. Let f € Id*(A) be a multilinear L-polynomial of degree n.
By Lemma 7, f modulo Id”(A3) can be written as

f=axy---x,+ Pxy-- xnx1 + g g Qa7 jTi, xlt T, a:j]xh R
I<k—1 1,J

g !/
E , E :BP,prl”'xprxqul"'xqs‘i‘fa

s<k—1 P,Q

where f' € Id*(A3), I = {i,5,41,...,0: %, J = {1, -, 91}, P = {m,p1,...,pe}
and Q ={q1,...,qs} witht+l=n—-2r+s=n—-1,l<k—-1s<k—1,
1> )< n<...<iy, n<...<pym<p<...<prand ¢ < ... < gs.

By choosing 1 = --- = x, = 1p we get a = 0. Moreover, by induction
on [, for fixed I and J, the evaluation z; = a, z; = 25, = --- = 2;, = 1p
and zj, = by, for all 1 < h < [, gives a;; = 0. If we let 23 = a and
T9 =---=ux, = lp, then we get § = 0. Finally, by induction on s, for fixed
P and @), the evaluation z,, = a, x,, = --- = x,, = 1p and z,, = by, for all
1 <h<s,gives Bpg = 0.

Thus f = f € Id*(A3) and 1d"(A3) = 1d%(A), as claimed. n

We are now in a position to prove that Aj and (A})* generate minimal
L-varieties.

Theorem 22. For all k > 2, A} and (A})* generate minimal L-varieties of
polynomial growth.

Proof: Let A € varl(AZ) such that c¢L(A) ~ ¢gn*~!, for some ¢ > 0. By [31,
Theorem 8] we assume

where By, ..., B, are finite dimensional L- algebras such that dimp -2 75 <1
This says that either B; = F + J(B;) or B; = J(B;) is a nilpotent L-algebra,
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for all 1 <7 < m. Since
r(A) < cf(Br) + -+ ¢;(Bn),

n

there exists B; such that cZ(B;) ~ bn*~!, for some b > 0. Thus B; = F+J(B;)
and by the previous Lemma, B; ~7, A;. Hence

var®(A5) = var®(B;) C var’(A) C varf(AS)

and so var®(A) = varl(A?).
Similarly one can prove the statement for (A3)*. m

6. Classifying subvarieties of var’(UT5)

In this section we present the main result about the L-variety generated by
UTs, i.e., we will classify up to Tr-equivalence all the L-algebras generating
L-subvarieties of varl(UT5).

To this end, we start with the following lemma concerning algebras with
slow codimension growth.

Lemma 23. Let A = F + Jig + Ji1 € var®(UT§) with Jig # 0 (resp. A =
F + Jo1 + Ji1 € var(UTS) with Jo1 #0). If J5; = 0, then A ~p, A5 (resp.
A ~vgy (A3)7).

Proof: Since F° = J§; = 0 and J3, = 0, it is clear that z125 — zo25 — [11, 22] €
Id%(A), thus Id¥(A5) C Id*(A).

In order to prove the opposite inclusion, let f € Id*(A) be a multilinear
L-polynomial of degree n. By [30, Theorem 3|, f can be written as

n
Jn In—1"] 2 n+i g,
j=1

where g € Id*(A5) and i1 < --- < i,_;.

Suppose that there exists j # 1 such that «; # 0. Then by making the
evaluation z; = b € Jy, for some b # 0, and z;, = --- = x;, , = 1p, we
get a; = 0, a contradiction. Now, if a; # 0, then by making the evaluation
1 =---=x, = lp we get a; = 0, a contradiction. Finally, if 5 # 0, then
we let x1 =band 29 = --- =1, = 1p getting 5 = 0, a contradiction.

Hence f = g € Id*(A3) and so A ~p, Aj.

Similarly, if A= F + Jo; + Ji1, we get A ~7, (A5)*. m

Lemma 24. Let A = F+J;; € UCLTL(UTQE). Then A ~7, Ny, for some k > 1.
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Proof: Since A € var®(UTs), then ct(A) ~ gn*~! for some ¢ > 0 and k > 1.
If J5, = 0, then 2° = 0 on A and so [x1, 2] € Id"(A). This trivially implies
that A is a commutative algebra with trivial derivation, i.e., A ~7, Nf = F.
Let now Jj; # 0. Since A is a unitary algebra, we can consider the proper
L-codimension sequence and write

k-1
n
) =3 (1)t
=0

with vF(A) = 0 for all i > k. In particular vZ(A) = 0 and so [x1,...,7x] €
Id%(A). Hence Id*(N;) C 1d*(A) and by Theorem 19, since ck(A) ~ gn*~1,
it follows A ~7, N;. m

We now prove some auxiliary lemmas very useful in the proof of the main
theorem. We start by the following that allows us to reduce our problem
to the study of a variety generated by an L-algebra with either Jy; = 0 or

Jl() = 0.

Lemma 25. Let A = F + J € var®(UTS). Then A ~1, (F + Joo + Jio +
J11) D (F + Jo() + JOl + JH).

Proof: Let By = F'+ Jy+ Jip+ J11 and By = F+ Jog+ Jo1 + J11. Since F© =
and Ji; C Jy; for all 4, j € {0, 1}, it is clear that By and By are L-subalgebras
of A. Then Id"(A) C 1d*(B; @ By) = 1d*(B,) N1d*(By).

Moreover, since JyJ19 = J19Jo1 = 0, it turns out that also IdL(31 @ Bs) C
IdL(A) holds. Thus A ~7, By & B; as claimed. |

Lemma 26. Let A = F + Joo + Jyo + Ji1 € vark(UT5) with Jig # 0 (resp.
A=F+ Jy+ Jo1 + Ji1 € UCLTL(UTQE) with Jo1 # O).
1. If J;, =0, then A ~1, AL & N (resp. A ~1, (A,)" @ N), for some
k > 2 where N 1s a nilpotent L-algebra.
2. If J5; # 0, then A ~p, A5, & NS & N (resp. A ~p, (A,)* @ N; & N),
for some u > 2 and k > 2 where N is a nilpotent L-algebra.

Proof: Let A = F + Joo + Jig + Ji1 € var’(UT5) with Jyg # 0. The other
case will follow with similar arguments.

Suppose first Ji; = 0 and let ¢ > 0 be the greatest integer such that
JioJ4y # 0. Notice that if ¢ = 0 then JygJoo = 0 and A = (F+Jyp+J11)®Joo as
L-algebras. By Lemma 23 we get F'+ J0+ J11 ~7, A5, hence A ~p, A5 Joo,
where Jyo is a nilpotent L-algebra.
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So let assume t > 0, i.e., JipJ, # 0 (that is in particular JigJoy # 0) and
JuJgg' = 0.

Suppose that Jg, = 0. Then it is easy to check that zjzs-- x40 €
Id*(A), thus Id*(As +2) C Id*(A). Furthermore, since Jig.J§, # 0, there exist
a € Jipand by, ...,b € Jy such that ab; - - - b; # 0. Therefore, as in the proof
of Lemma 21, one can prove that A ~p, A7 ,.

Let suppose now J§,Jii* # 0. Remark that, since J5, C Joo, €2 = ¢ and
Lemma 15 holds, J§, is an L-ideal of A, thus we can consider A = A / JGo- As

before, since JlthH = 0, it follows that z§zy - - - 249 € 1d"(A), Id*(45,,) C
1" (A) and so A ~7, A5 ,.

Notice that Id*(A) C Id*(A) = Id*(A5,,) and, since Jy is an L-subalgebra
of A, Id*(A) C Id*(Jy). Therefore Id*(A) C IdL(At+2 D Joo)-

Conversely, let f € Id¥( Az 2@ Joo) be a multilinear L-polynomial of degree
n. We can write f as

JtJrl

f=axy -z, + Py xpx] + Z ZozLinl---xik[xi,a:j]a:jl---le

I<t+1 I,J
&
+ § § :6P7pr1 o Tp LTy § § :041’ J' i, [33% L ]33 BRRECH
s<t+1 PQ Ut 10,
£
+Y N By Ty Ty g + G, (6)

s>t P'.Q’

where g € Id*(UTs) C Id*(A) and the indices of the variables are subjected
to the conditions as in Lemma 7.

Remark that g and the last two summand of f are L-identities of A7 .
Moreover, in Lemma 7 it was also proved that the first four summand of f

are linearly independent modulo Id*(A45,,), hence a = 8 = a;; = fpg = 0
for all I, J, P and (), and

f= Z Z Qp Ty - Tyg [Ty, Tyl Ty - X
>t I,

+D D Bramy By Ty vy + g (7)

s>t P'.Q/

Since f € Id- (Joo), if we evaluate all the variables on Jyy, we get zero. Now,
since Jlthle = J§; = [Ju1, Ju1] = 0, every evaluation of f into elements of
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A gives the zero value, hence f € Id*(A). So Id*(A5,, @ Jy) C Id¥(A) and
A ~Ty A§+2 D J()() follows.

Suppose now Ji; # 0.

Let B=F + Jy+ Jigp and D = F + Jy;. It is clear that B and D are L-
subalgebras of A. Moreover, for the first part of the proof, B ~7, A7, , ® N,
for some ¢ > 0, and by Lemma 24, D ~7, NZ for some u > 2. Thus Id*(A) C
1d"(B@® D) =1d"(A; , ® NS @ N).

Conversely, let f € Id* (A3 Lo@N:BN) be a multilinear polynomial of degree
n and write f as in (6). As in the previous case, since f € 1d"(Af,,), we can
reduce f as in (7). Notice that f € Id*(B) N1d*(D), thus any evaluation of
fin B or in D gives zero. Furthermore, since JigJii! = J5;Jig = 0, we get
that f vanishes under any evaluation on elements of A.

Thus f € Id*(A) and 1d"(A) = 1d*(B @ D) = 1d"(A;,, ® N5 @ N). This
immediately implies A ~7, A7, ® N; © N and we are done. n

By putting together the previous results, we get the following.

Lemma 27. Let A = F + J € var*(UTs) with Jig # 0 and Jy # 0. Then
either A ~p, AL & (A)* @ N or A ~p, A5 & (A5)* @& NS @& N, for some
k,r,u > 2, where N is a nilpotent L-algebra.

Proof: By Lemma 25, A ~7, By & By where By = F + Jy + Ji0 + J11 and
By = F + Jyo + Jo1 + J11. Moreover, by the previous Lemma, By ~7, A7 & N
or B1 ~Tr Ai D NZ D N and BQ ~Ty (Ai)* D N or B2 ~Ty (Ai)* @ N{j D N,
for some k,r,u > 2 and N a nilpotent L-algebra. It readily follows that
Amp, 4,8 (£) &N o
A~ As® (A) @ NZo N,
as claimed. u
We are now in a position to prove the main theorem of the paper.

Theorem 28. If A € varl(UT5) then A is Ty-equivalent to one of the fol-
lowing L-algebras: UT5, N, Ny @ N, A; & N, (A.)* @ N, AL & N; & N,
(A& NSe N, A e (AS) &N, A5 & (A)* B N; & N, where N is a nilpotent
algebra and k,r,u > 2, t > 1.

Proof: If A ~p, UTs there is nothing to prove, so let suppose that A gen-
erates a proper L-subvariety of var®(UTs). Thus, by Theorem 3, ck(A) is
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polynomially bounded and by [31, Theorem 8] we may assume

A=B & & By,

where Bi,...,B,, are finite dimensional L-subalgebras of A such that
dimF% <1, foralll1 <i<m.

If for all i, dimp % = 0, then B; = J(B;) is a nilpotent L-algebra and
A ~p, N where N =B, ®---® B,,.

Thus suppose that there exists ¢ such that dimpg % = 1, that is B, =

F + J(B;). Write
J(B;) = Joo ® Jio D Jo1 © Ji1.

If Jjo = Joo = 0, then by Lemma 24, A ~qp, N, &N for some u; > 1,
where N is a nilpotent L-algebra. If either Jig # 0 or Jy; # 0, then by
Lemmas 26 and 27, B; is Tr-equivalent to one of the following L-algebras:
A ©N, (A7)* @ N, A, ® N;, O N, (A7) O N, &N, A, @ (45)"® N or
A, @ (A5)* @ N; @ N, for some k;, 73, u; > 2.

Since A = B1 & --- & B,,, by taking into account the previous possibilities,
we get the desired conclusion. |

As a direct consequence of the previous Theorem and Lemmas 19 and
22, we get the following corollary that classifies, up to Ty -equivalence, all L-
algebras generating minimal varieties of polynomial growth inside var? (UTs).

Corollary 29. Let A € var’(UTs). Then A generates a minimal L-variety
if and only if either A ~g, N: or A ~q, A5 or A ~7p, (A%)*, for some u > 1,
k> 2.

7. Classifying subvarieties of var’(UT))

In this section we classify, up to Ty-equivalence, all the L-subvarieties of
varl(UTy). As we remarked before, since L acts trivially on UTb, this is
equivalent to the classification of the algebras inside the variety generated
by UT; in the ordinary case given in [22]. In what follows we present such
results in the language of L-algebras for convenience of the reader.

For k > 2, let Ay, A; and Nj be the algebras A3, (A7})" and N constructed
in Section 3, respectively, where L acts trivially on them.

Since 2° = 0 for all § € L, in this case we are dealing with ordinary
identities. Thus we have the following results characterizing the L-identities
and the growth of the L-codimensions of the above algebras.
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Theorem 30 ([4], Lemma 3).

1. [dL(A2> = <[5131,LU2]SU3>TL and ]dL(A§> = <SU1[3}2,LU3]>TL.
2. ck(Ay) = cE(AL) = n.

Theorem 31 ([22], Lemma 3.1). Let k > 3, then:

L. [dL(Ak‘) - <[.I'1,.CE2][ZL’3,Q?4], [$1,$Q]$3 e '$k+1>TL;

k—2
2. ck(Ay) = Z (7;) (n—1—1)4+1~gn*', for some ¢ > 0.
1=0
Hencke ]dL(A}‘;) = ([z1, xo] w3, 4], 1 - TR_2|TR—1, TR]) T, AN cﬁ(A};) = CTLL(A/{)
-1
~ qn

Theorem 32 ([5], Theorem 3.4,). Let k > 3, then:

1. ]dL(Nk) = <[ZL‘1,ZE2HZL‘3, 584], [ZL‘l, Ce ,xk]>TL;
2. cl(Ny) =1+ 25;21 (7;) (j — 1) ~ gn*~L, for some q > 0.
Moreover, Ny ~p, F.

The following result classifies the subvarieties of var®(UT3).

Theorem 33 ([22], Theorem 5.4). If A € var*(UTy) then A is Ty -equivalent
to one of the following L-algebras: UT,, N, N, & N, A, & N, AX & N, A, &
N,®&N, AN, &N, Ay GA BN, Ay DA BN, ® N, where N is a nilpotent
algebra and k,r,u > 2.

As a consequence of the previous theorems, we can also get the classification
of all L-algebras generating minimal varieties.

Corollary 34. An L-algebra A € vart(UTy) generates a minimal variety of
polynomial growth if and only if either A ~p, N, or A ~1, A or A ~7, Aj,
for some u > 2, k> 2.
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