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Abstract: Let A be an associative algebra over a field F of characteristic zero and
let L be a Lie algebra over F . If L acts on A by derivations, then such an action
determines an action of its universal enveloping algebra U(L) and in this case we
refer to A as algebra with derivations or L-algebra.

Here we give a complete characterization of the ideal of differential identities of
finite dimensional L-algebras A in case the corresponding sequence of differential
codimensions cLn(A), n ≥ 1, is polynomially bounded. As a consequence, we also
characterize L-algebras with multiplicities of the differential cocharacter bounded
by a constant. Moreover, along the way we classify up to L-PI-equivalence the finite
dimensional L-algebras of almost polynomial growth.
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1. Introduction
This paper deals with differential identities of algebras over a field F of

characteristic zero. More precisely, if A is an associative algebra over F and
L is a Lie algebra acting on A by derivations, then this action can be naturally
extended to an action of the universal enveloping algebra U(L) of L and in
this case we say that A is an algebra with derivations or an L-algebra. Then
a differential identity of the L-algebra A is a polynomial in non-commuting
variables xd = d(x), d ∈ U(L), vanishing in A. Such identities have been
studied in later years (see for example [6, 9, 12, 17, 19]) and they are a natural
generalization of polynomial identities of algebras.

It is well-known that in the ordinary case the polynomial identities satis-
fied by a given associative algebra A can be measured through its sequence
of codimensions cn(A), n ≥ 1, i.e., where cn(A) is the dimension of the space
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Pn of multilinear polynomials in n variables modulo the polynomial identities
Id(A) of A. Such a sequence was introduced by Regev in [16] and, in charac-
teristic zero, gives an actual quantitative measure of the identities satisfied
by a given algebra. The most important feature of the sequence of codi-
mensions proved in [16] is that if A is an associative algebra satisfying a non
trivial polynomial identity (PI-algebra), then cn(A) is exponentially bounded.
Later Kemer in [11] showed that such codimensions are either polynomially
bounded or grow exponentially (no intermediate growth is allowed).

In light of above, it is convenient to use the language of varieties of algebras.
Recall that if V = var(A) is the variety generated by an algebra A, then the
growth of V is the growth of the sequence cn(V) = cn(A), n ≥ 1. Also we
say that V has polynomial growth if cn(V), n ≥ 1, is polynomially bounded
and V has almost polynomial growth if cn(V), n ≥ 1, is not polynomially
bounded but every proper subvariety of V has polynomial growth.

Much effort has been put into the study of varieties of polynomial growth.
In this setting a celebrated theorem of Kemer characterizes them as follows.
If G is the infinite dimensional Grassmann algebra over F and UT2 is the
algebra of 2× 2 upper triangular matrices over F , then a variety of algebras
V has polynomial growth if and only if G, UT2 6∈ V . Hence var(G) and
var(UT2) are the only varieties of almost polynomial growth. Similar results
were also proved in the setting of varieties of graded algebras [5, 20] and
algebras with involution [4].

Inspired by the above results it is natural to expect that a similar conclusion
holds for varieties of L-algebras. In fact, in analogy with the ordinary case,
one defines the sequence of differential codimensions cLn(A), n ≥ 1, of an
L-algebra A. In case A is a finite dimensional L-algebra, Gordienko in [8]
proved that cLn(A) is exponentially bounded. As a consequence, it follows
that the differential codimensions of a finite dimensional algebra are either
polynomially bounded or grow exponentially.

Our purpose here is to characterize L-varieties V , i.e., variety of algebras
with derivations, having polynomial growth and we reach our goal in the set-
ting of varieties generated by finite dimensional L-algebras A. In this setting,
we prove that V has almost polynomial growth if and only if UT2, UT

ε
2 /∈ V ,

where UT2 is the L-algebra of 2×2 upper triangular matrices over F where L
acts trivially on it and UT ε2 is the L-algebra UT2 with Fε-action, where ε is
the inner derivation induced by e11, where eij’s denote the usual matrix units
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(see [6, 19]). As a consequence, there are only two varieties with derivations
generated by a finite dimensional algebra with almost polynomial growth.

Similarly to the ordinary case, another two useful invariants can be at-
tached to an algebra with derivations A: the sequence of differential cochar-
acter χLn(A), n ≥ 1, where χLn(A) is the character of the Sn-module of multi-
linear differential polynomials in n variables modulo the differential identities
IdL(A) of A, and the differential colength sequence lLn(A), n ≥ 1, where lLn(A)
is the sum of the corresponding multiplicities of χLn(A).

It is well-known that, in case A is a finite dimensional L-algebra, the mul-
tiplicities of the differential cocharacter are polynomially bounded (see [8]).
Thus it seems interesting to characterize the differential cocharacter sequence
when stronger conditions hold for the multiplicities. In this perspective, mo-
tivated by the results for ordinary algebras [14], for graded algebras [3, 15]
and for algebras with involution [18, 21], we characterize the differential iden-
tities when the corresponding multiplicities are bounded by a constant. In
particular we prove that the multiplicities in χLn(A) are bounded by a con-
stant if and only if differential codimensions of A grow polynomially, and,
consequently, we get another characterization of L-varieties of polynomial
growth. Also as a direct consequence of this results we have that cLn(A) is
polynomially bounded if and only if lLn(A) is bounded by a constant.

We give also three others characterizations of L-varieties V of polynomial
growth: the first one in terms of the L-exponent of V , the second in terms
of the structure of an algebra generating V and the last one in terms of
the shape of the diagrams of the irreducible Sn-characters appearing with
non-zero multiplicity in the nth differential cocharacter of V .

2. Preliminaries
Throughout this paper F will denote a field of characteristic zero and L a

Lie algebra over F . Let A be an associative algebra over F . Recall that a
derivation of A is a linear map δ : A→ A such that

δ(ab) = δ(a)b+ aδ(b), for all a, b ∈ A.

In particular, an inner derivation induced by a ∈ A is the derivation ada :
A→ A of A defined by ada(b) = [a, b] = ab− ba, for all b ∈ A. The set of all
derivations of A is a Lie algebra denoted by Der(A), and the set ad(A) of all
inner derivations of A is a Lie subalgebra of Der(A).
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If L acts on A by derivations, then by the Poincaré-Birkhoff-Witt Theorem,
the L-action on A can be naturally extended to an U(L)-action, where U(L)
is the universal enveloping algebra of L. In this way A becomes a left U(L)-
module and we call it algebra with derivations or L-algebra.

Given a basis B = {hi : i ∈ I} of U(L), we let F 〈X|L〉 be the free
associative algebra over F with free formal generators xhij , i ∈ I, j ∈ N.
For all h =

∑
i∈I αihi ∈ U(L), where only a finite number of αi ∈ F are

non-zero, we set xh :=
∑

i∈I αix
hi. We let U(L) act on F 〈X|L〉 by setting

γ(x
hi1
j1
x
hi2
j2
. . . x

hin
jn

) = x
γhi1
j1

x
hi2
j2
. . . x

hin
jn

+ · · ·+ x
hi1
j1
x
hi2
j2
. . . x

γhin
jn

,

where γ ∈ L and x
hi1
j1
x
hi2
j2
. . . x

hin
jn
∈ F 〈X|L〉. In this way F 〈X|L〉 has a

structure of L-algebra. We write xi := x1
i , 1 ∈ U(L), and we set X =

{x1, x2, . . . }. Then the algebra F 〈X|L〉 is called the free associative algebra
with derivations on the countable set X over F and its elements are called
differential polynomials.

Let now A be an L-algebra. A polynomial f(x1, . . . , xn) ∈ F 〈X|L〉 is a
differential identity of A, or an L-identity of A, if f(a1, . . . , an) = 0 for all
ai ∈ A, and, in this case, we write f ≡ 0. We denote by

IdL(A) = {f ∈ F 〈X|L〉 : f ≡ 0 on A},

the TL-ideal of differential identities of A, i.e., it is an ideal of F 〈X|L〉 in-
variant under the U(L)-action. In characteristic zero IdL(A) is completely
determined by its multilinear polynomials and for every n ≥ 1 we denote by

PL
n = span{xhi1σ(1) . . . x

hin
σ(n) : σ ∈ Sn, hi ∈ B}

the space of multilinear differential polynomials of degree n. Notice that
in case U(L) acts on A as a suitable finite dimensional subalgbera of the
endomorphism algebra of A, then PL

n is finite dimensional and similarly to
the ordinary case we can define the following invariants.

The non-negative integer

cLn(A) = dimF
PL
n

PL
n ∩ IdL(A)

, n ≥ 1,

is called the nth differential codimension of A.
Recall that the symmetric group Sn acts on the left on the space PL

n as
follows: for σ ∈ Sn, σ(xhi ) = xhσ(i). Since PL

n ∩ IdL(A) is stable under this
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Sn-action, the space

PL
n (A) =

PL
n

PL
n ∩ IdL(A)

is a left Sn-module and its character, denoted by χLn(A), is called the nth
differential cocharacter of A. Since F is of characteristic zero, we can write

χLn(A) =
∑
λ`n

mλχλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to
λ and mλ ≥ 0 is the corresponding multiplicity.

Another numerical sequence that can be attached to a L-algebra A is the
sequence of differential colengths. If χLn(A) =

∑
λ`nmλχλ is the nth differ-

ential cocharacter of A, then the nth differential colength of A is defined
as

lLn(A) =
∑
λ`n

mλ.

Let L be a Lie algebra and H be a Lie subalgebra of L. If A is an L-algebra,
then by restricting the action, A can be regarded as a H-algebra. In this case
we say that A is an L-algebra where L acts on it as the Lie algebra H and we
restrict the TL-ideal IdL(A) to the TH-ideal IdH(A), i.e., in IdL(A) we omit
the differential identities xγ ≡ 0, for all γ ∈ L\H.

Notice that any algebra A can be regarded as L-algebra by letting L act
on A trivially, i.e., L acts on A as the trivial Lie algebra and U(L) ∼= F .
Hence the theory of differential identities generalizes the ordinary theory of
polynomial identities.

Recall that ifA is an L-algebra, then the variety of algebras with derivations
generated by A is denoted by varL(A) and is called L-variety. The growth
of V = varL(A) is the growth of the sequence cLn(V) = cLn(A), n ≥ 1. We say
that the L-variety V has polynomial growth if cLn(V) is polynomially bounded
and V has almost polynomial growth if cLn(V) is not polynomially bounded
but every proper L-subvariety of V has polynomial growth.

We conclude this section by recalling some basic results concerning the
sequence of cocharacters and colenghts which can be easily proved.

Remark 1. Let A and B be two L-algebras such that

χLn(A) =
∑
λ`n

mλχλ and χLn(B) =
∑
λ`n

m′λχλ.
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1. If B ∈ varL(A), then m′λ ≤ mλ, for all λ ` n, and lLn(B) ≤ lLn(A), for
all n ≤ 1.

2. The direct sum A ⊕ B is also an L-algebra with L-action induced by
the L-action by derivations defined on A and B. Moreover, if

χLn(A⊕B) =
∑
λ`n

m̄λχλ

is the decomposition of the nth differential cocharacter of A⊕B, then
m̄λ ≤ mλ +m′λ, for all λ ` n.

3. Finite dimensional L-algebras and varieties of poly-
nomial growth

In this section we shall characterize finite dimensional algebras with deriva-
tions generating varieties of polynomial growth.

We start by recalling some results on the structure of finite dimensional
algebras with derivations.

Let L be a Lie algebra over F and A an L-algebra over F . An ideal
(subalgebra) I of A is an L-ideal (subalgebra) if it is an ideal (subalgebra)
such that IL ⊆ I, where IL denotes the set of all h(a), for all a ∈ I and
h ∈ U(L). The algebra A is L-simple if A2 6= {0} and A has no non-trivial
L-ideals.

Let A be a finite dimensional L-algebra over F . By Wedderburn-Malcev
Theorem for associative algebras (see [7, Theorem 3.4.3]), we can write A as
a direct sum of vector spaces

A = Ass + J,

where Ass is a maximal semisimple subalgebra of A and J = J(A) is the Ja-
cobson radical of A. Notice that J is always an L-ideal of A (see [10, Theorem
4.2]), but it may not exist an L-invariant Wedderburn-Malcev decomposition,
i.e., it may happen that AL

ss * Ass, for every maximal semisimple subalgebra
Ass of A. However, we remark that the Wedderburn-Malcev decomposition
always exists in case L is a semisimple Lie algebra (see [9, Theorem 4]). In
what follows we give an example of an L-algebra that has no L-invariant
Wedderburn-Malcev decomposition.

Example 2. Let UT δ2 be the L-algebra of 2 × 2 upper triangular matrices
where L acts on it as the 1-dimensional Lie algebra spanned by the inner
derivation δ = ade12. Suppose that UT δ2 = Ass + J for some maximal
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semisimple subalgebra Ass of UT δ2 such that AL
ss ⊆ Ass. Since δ = ade12,

J = spanF{e12} and AL
ss ⊆ Ass, it follows that [Ass, J ] ⊆ Ass. On the

other hand , since J is an ideal of UT δ2 , [Ass, J ] ⊆ J . Thus it follows
that [Ass, J ] ⊆ Ass ∩ J = {0}. But since J = spanF{e12}, we have that
[J, J ] = {0}. This says that the center of UT δ2 contains J , that is no true.
Therefore AL

ss * Ass, for all maximal semisimple subalgebra Ass of UT δ2 .
Thus UT δ2 has no L-invariant Wedderburn-Malcev decomposition.

In [8], Gordienko proved that if A is a finite dimensional L-algebra, then
the sequence of differential codimensions cLn(A) is exponentially bounded.

Moreover, the author proved that the limit lim
n→∞

n

√
cLn(A) exists and is a non-

negative integer. In this case, this limit is called the L-exponent of A and is
denoted by expL(A). In particular, we have the following.

Theorem 3. [8, Theorems 1 and 3] Let A be a finite dimensional algebra over
a field of characteristic zero. If L is a Lie algebra acting on A by derivations,
then there exist constants C1, C2, r1, r2, C1 > 0, and a positive integer d such
that

C1n
r1dn ≤ cLn(A) ≤ C2n

r2dn, for all n ∈ N.
Hence, expL(A) = d. Moreover, If J = J(A) is the Jacobson radical of A
and A/J = A1 ⊕ · · · ⊕ Am, then

d = max{dim(Ai1 ⊕ Ai2 ⊕ · · · ⊕ Aik) : AL
i1
A+AL

i2
A+ · · ·A+AL

ik
6= {0}},

where ir 6= is, 1 ≤ r, s ≤ n, A+ = A + F · 1 and Ai is a subalgebra of A
(not necessary L-invariant) such that π(Ai) = Ai, for all 1 ≤ i ≤ m, where
π : A→ A/J is the natural projection.

As a consequence we have the following corollaries.

Corollary 4. If A is a finite dimensional L-algebra, the sequence cLn(A),
n ≥ 1, either is polynomially bounded or growth exponentially.

Corollary 5. Let A be a finite dimensional algebra over a field of character-
istic zero. Then the sequence cLn(A), n ≥ 1, is polynomially bounded if and
only if expL(A) ≤ 1.

As in the ordinary case, we have the following remark (see [7, Lemma
7.2.1]).
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Remark 6. If A and B are L-algebras, then A⊕B has an induced structure of
L-algebra and cLn(A⊕B) ≤ cLn(A)+cLn(B). As a consequence, expL(A⊕B) =
max{expL(A), expL(B)}.

Recall that if A and B are two L-algebras, then we say that A is TL-
equivalent to B, and we write A ∼TL B, if IdL(A) = IdL(B). Notice that
given an L-algebra A, A is TL-equivalent to B if and only if varL(A) =
varL(B).

Lemma 7. Let F be a field of characteristic zero, F̄ the algebraic closure of F
and A a finite dimensional L-algebra over F̄ , where L is a Lie algebra over F̄
acting on A by derivations. Suppose that dimF̄ A/J(A) ≤ 1. Then A ∼TL B
for some finite dimensional L-algebra B over F with dimF B/J(B) ≤ 1.

Proof : Since dimF̄ A/J(A) ≤ 1, it follows that either A ∼= F̄ + J(A) or
A = J(A) is a nilpotent algebra. Now we take an arbitrary basis {v1, . . . , vp}
of J(A) over F̄ and we let B be the L-algebra over F generated by B =
{1F̄ , v1, . . . , vp} or B = {v1, . . . , vp} according as A ∼= F̄ +J(A) or A = J(A),
respectively.

Since A is finite dimensional over F̄ and J(A) is a nilpotent L-ideal of A,
B is finite dimensional over F . Therefore B is a finite dimensional L-algebra
and dimF B/J(B) = dimF̄ A/J(A) ≤ 1. Now notice that, as F -algebras,
IdL(A) ⊆ IdL(B). On the other hand, if f is a multilinear differential identity
of B then f vanishes on B. But B is a basis of A over F̄ . Hence IdL(B) ⊆
IdL(A) and A ∼TL B.

Next theorem gives a characterization of L-varieties of polynomial growth
in terms of the structure of the generating algebra.

Theorem 8. Let L be a Lie algebra over a field F of characteristic zero
and A be a finite dimensional L-algebra over F . Then cLn(A), n ≥ 1, is
polynomially bounded if and only if A ∼TL B1 ⊕ · · · ⊕Bm, where B1, . . . , Bm

are finite dimensional L-algebras over F such that dimBi/J(Bi) ≤ 1, for all
1 ≤ i ≤ m.

Proof : Suppose first that A ∼TL B where B = B1⊕· · ·⊕Bm, with B1, . . . , Bm

finite dimensional L-algebras over F such that dimBi/J(Bi) ≤ 1, for all
1 ≤ i ≤ m. Then, by Theorem 3, cLn(Bi) is polynomially bounded, for all
1 ≤ i ≤ m, and cLn(A) = cLn(B) ≤ cLn(B1) + · · · + cLn(Bm). Thus cLn(A) is
polynomially bounded.
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Conversely, suppose that cLn(A) is polynomially bounded. Assume first
that F is algebraically closed. Let A = Ass + J where Ass is a semisimple
subalgebra and J = J(A) is the Jacobson radical of A. By Theorem 3, it
follows that Ass = A1⊕· · ·⊕Al with A1

∼= · · · ∼= Al
∼= F and AL

i A
+AL

k = {0},
for all 1 ≤ i, k ≤ l, i 6= k.

Set B1 = A1 + J, . . . , Bl = Al + J . Since AL
i ⊆ Ai + J for all 1 ≤ i ≤ l, and

J is an L-ideal of A, Bi is an L-subalgebra of A, for all 1 ≤ i ≤ l. We claim
that

IdL(A) = IdL(B1) ∩ · · · ∩ IdL(Bl) ∩ IdL(J).

Clearly IdL(A) ⊆ IdL(B1) ∩ · · · ∩ IdL(Bl) ∩ IdL(J). Now let f ∈ IdL(B1) ∩
· · ·∩IdL(Bl)∩IdL(J) and suppose that f is not a differential identity of A. We
may clearly assume that f is multilinear. Moreover, by choosing a basis of A
as the union of a basis of Ass and a basis of J , it is enough to evaluate f on
this basis. Let u1, . . . , ut be elements of this basis such that f(u1, . . . , ut) 6= 0.
Since f ∈ IdL(J), at least one element, say us, does not belong to J . Then
us ∈ Br, for some r. Recalling that AL

i A
L
k ⊆ AL

i A
+AL

k = {0}, for all i 6= k,
we must have that u1, . . . , ut ∈ Ar ∪ J . Thus u1, . . . , ut ∈ Ar + J = Br and
this contradicts the fact that f is a differential identity of Br. This prove
the claim. The proof is completed by noticing that IdL(B1⊕ · · · ⊕Bl⊕ J) =
IdL(B1) ∩ · · · ∩ IdL(Bl) ∩ IdL(J) and dimBi/J(Bi) = 1, for all 1 ≤ i ≤ l.

In case F is arbitrary, we consider the algebra Ā = A ⊗F F̄ , where F̄ is
the algebraic closure of F and Ā = A ⊗F F̄ is endowed with the induced
L-action (a ⊗ α)γ = aγ ⊗ α, for γ ∈ L, a ∈ A and α ∈ F̄ . Clearly, over
F , varL(A) = varL(Ā). Moreover, the differential codimensions of A over F
coincide with the differential codimensions of Ā over F̄ . Thus, by hypothesis,
it follows that the differential codimensions of Ā are polynomially bounded.
But then, by the first part of the proof, Ā ∼TL B1⊕· · ·⊕Bm where B1, . . . , Bm

are finite dimensional L-algebras over F̄ such that dimF̄ Bi/J(Bi) ≤ 1, for all
1 ≤ i ≤ m. By Lemma 7 there exist finite dimensional L-algebras C1, . . . , Cm
over F such that, for all i, Ci ∼TL Bi and dimF Ci/J(Ci) ≤ 1. It follows that
IdL(A) = IdL(Ā) = IdL(B1 ⊕ · · · ⊕ Bm) = IdL(C1 ⊕ · · · ⊕ Cm) and we are
done.

4. L-varieties of almost polynomial growth
In this section we shall introduce two finite dimensional L-algebras gener-

ating L-varieties of almost polynomial growth and we shall prove that are
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the only two finite dimensional algebras with derivations generating varieties
of almost polynomial growth.

Let L be any Lie algebra over F and let consider the algebra UT2 of 2× 2
upper triangular matrices over F where L acts trivially on it. Since xγ ≡ 0,
for all γ ∈ L, is a differential identity of UT2, we are dealing with ordinary
identities. Thus by [11] we have the following.

Theorem 9. The algebra UT2 generates a variety of algebras with derivations
of almost polynomial growth.

Recall also that in the ordinary case by [13], [11] and by the proof of Lemma
3.5 in [1], we have the following results.

Theorem 10.

1. IdL(UT2) = 〈[x1, x2][x3, x4]〉TL.

2. cLn(UT2) = 2n−1(n− 2) + 2.

3. If χLn(UT2) =
∑

λ`nmλχλ is the nth differential cocharacter of UT2,
then

mλ =


1, if λ = (n)

q + 1, if λ = (p+ q, p) or λ = (p+ q, p, 1)

0 in all other cases

.

As a consequence it follows that

lLn(UT2) =
n2 − n+ 2

2
. (1)

In [6], Giambruno and Rizzo introduced another algebra with derivations
generating a variety of almost polynomial growth. They considered UT ε2 to
be the L-algebra UT2 where L acts on it as the 1-dimensional Lie algebra
spanned by the inner derivation ε = ade11, where eij’s are the usual matrix
units. The authors proved the following.

Theorem 11. [6, Theorems 5 and 12]

1. IdL(UT ε2 ) = 〈xε21 − xε1, xε1xε2, [x1, x2]
ε − [x1, x2]〉TL;

2. cLn(UT ε2 ) = 2n−1n− 1.
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3. If χLn(UT ε2 ) =
∑

λ`nmλχλ is the nth differential cocharacter of UT ε2 ,
then

mλ =


n+ 1, if λ = (n)

2(q + 1), if λ = (p+ q, p)

q + 1, if λ = (p+ q, p, 1)

0 in all other cases

.

Theorem 12. [6, Theorem 15] The algebra UT ε2 generates a variety of alge-
bras with derivations of almost polynomial growth.

Notice that as a consequence of Theorem 11 we get that

lLn(UT ε2 ) =

{
3n2−2n+4

4 , if n is even
3n2−2n+3

4 , if n is odd
. (2)

Denote by UT η2 the L-algebra UT2 where L acts on it as the 1-dimensional
Lie algebra spanned by a derivation η of UT2. Notice that since any derivation
of UT2 is inner (see [2]), Der(UT2) is the 2-dimensional metabelian Lie algebra
with basis {ε, δ}, where ε = ade11 and δ = ade12. Then η = αε+ βδ, for some
α, β ∈ F . In [19] the author proved the following.

Theorem 13. [19, Theorem 12] Let η = αε + βδ ∈ Der(UT2) such that
α, β ∈ F are not both zero.

1. If α 6= 0, then IdL(UT η2 ) = 〈xη
2

1 − αx
η
1, x

η
1x

η
2, [x1, x2]

η − α[x1, x2]〉TL.

Otherwise, IdL(UT η2 ) = 〈xη
2

1 , x
η
1x

η
2, [x1, x2]

η〉TL.

2. cLn(UT η2 ) = 2n−1n+ 1.

As a consequence we get the following corollary.

Corollary 14. If α 6= 0, then IdL(UT η2 ) = IdL(UT ε2 ). Otherwise, IdL(UT η2 ) ⊆
IdL(UT2).

A basic result we shall need in what follows is the following.

Theorem 15. [10, Theorem 4.3] Let A = Ass + J be an algebra over F ,
where Ass is a semisimple subalgebra and J = J(A) is its Jacobson radical.
Suppose γ is a derivation of A. Then γ = ada +γ′ where a ∈ A and γ′ is a
derivation of A such that γ′(Ass) = 0.

Next lemmas will be useful to establish a structural result about L-varieties
of polynomial growth.
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Lemma 16. Let A = A1 ⊕ A2 + J be a finite dimensional L-algebra over
an algebraically closed field F of characteristic zero, where A1

∼= A2
∼= F . If

AL
1A

L
2 6= {0}, then AL

1A2 6= {0} and A1A
L
2 6= {0}.

Proof : Notice first that AL
1A2 = {0} if and only if A1A

L
2 = {0}. In fact,

if AL
1A2 = {0}, then for all γ ∈ L we have that γ(e1)e2 = 0, where

ei ∈ Ai with e2
i = ei, i = 1, 2. By definition of derivation it follows that

e1γ(e2) = −γ(e1)e2 = 0. Thus by Poincaré-Birkhoff-Witt Theorem we have
that A1A

L
2 = {0}. Similarly it can be proved the converse.

Let now assume by contradiction that AL
1A2 = A1A

L
2 = {0}. Then, since

by hypothesis AL
1A

L
2 6= {0}, there exist h1, h2 ∈ U(L) such that h1, h2 /∈

spanF{1U(L)} and h1(e1)h2(e2) 6= 0. Without loss generality we may assume
that h1 = γ1 . . . γr, γi ∈ L, i = 1, . . . , r, r ≥ 1. We proceed by induction on
r.

If r = 1, then by definition of derivation γ1(e1h2(e2)) = γ1(e1)h2(e2) +
e1γ1(h2(e2)). Since A1A

L
2 = {0}, it follows that h1(e1)h2(e2) = 0, a contradic-

tion. So let suppose that r > 1. We set I = {i1, . . . , ip} and K = {k1, . . . , kt}
to be two disjoint subsets of {1, . . . , r} such that i1 < · · · < ip, p < r,
and k1 < · · · < kt, t < r, respectively. If we denote hI = γi1 · · · γip and
hK = γk1 · · · γkt, then by definition of derivation, we have that

h1(e1h2(e2)) = h1(e1)h2(e2) + e1h1(h2(e2)) +
∑
I,K

hI(e1)hK(h2(e2)).

Thus since A1A
L
2 = {0}, it turns out that

h1(e1)h2(e2) = −
∑
I,K

cI(e1)cK(h2(e2)).

Hence by the induction hypothesis we have that h1(e1)h2(e2) = {0}, a con-
tradiction and the claim is proved.

Lemma 17. Let A = A1 ⊕ · · · ⊕ Am + J be a finite dimensional L-algebra
over an algebraically closed field F of characteristic zero, where A1

∼= · · · ∼=
Am
∼= F . If there exist 1 ≤ i, k ≤ m, i 6= k, such that AL

i A
+AL

k 6= {0}, then
UT η2 ∈ varL(A), where η = αε+ βδ, for some α, β ∈ F .

Proof : Suppose that there exist 1 ≤ i, k ≤ m, i 6= k, such that AL
i A

+AL
k 6=

{0}. Then we assume, as we may, that i = 1 and k = 2. Moreover, since
A′ = A1 ⊕ A2 + J is an L-subalgebra of A, we shall prove that UT η2 ∈
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varL(A′) ⊆ varL(A), where η = αε + βδ, for some α, β ∈ F . Hence without
loss of generality we may suppose that A = A1⊕A2 +J and AL

1A
+AL

2 6= {0}.
Let us assume first that AL

1A
L
2 = {0}. We claim that there exist elements

j ∈ J , ei ∈ Ai with e2
i = ei, i = 1, 2, such that e1je2 6= 0. In fact, assume by

contradiction that A1JA2 = {0}. Since by hypothesis AL
1A

+AL
2 6= {0} and

AL
1A

L
2 = {0}, it follows that AL

1JA
L
2 6= {0}. Thus there exist j ∈ J , ei ∈ Ai

with e2
i = ei, i = 1, 2, such that h1(e1)jh2(e2) 6= 0, for some h1, h2 ∈ U(L).

Since A1JA2 = {0}, then h1 /∈ spanF{1U(L)} or h2 /∈ spanF{1U(L)}.
Suppose first that h1, h2 /∈ spanF{1U(L)}, the other cases will follow anal-

ogously. Notice that we may assume h1, h2 ∈ L. In fact, if for example
h1 /∈ L, then without loss generality we may suppose that h1 = γ1 . . . γr,
γi ∈ L, i = 1, . . . , r, r ≥ 1. Hence by definition of derivation and the
idempotence of e1 we have that

h1(e1) = h1(e1)e1 + e1h1(e1) +
∑
I,K

hI(e1)hK(e1), (3)

where I = {i1, . . . , ip} and K = {k1, . . . , kt} are two disjoint subsets of
{1, . . . , r} such that i1 < · · · < ip, p < r, and k1 < · · · < kt, t < r,
respectively, hI = γi1 · · · γip and hK = γk1 · · · γkt. Since A1JA2 = {0} and
h1(e1)jh2(e2) 6= 0, it turn out that there exist I = {i1, . . . , ip} and K =
{k1, . . . , kt} such that hI(e1)hK(e2)jh2(e2) 6= 0. Thus if p = 1 or t = 1, we
have done. If p, t > 1, then we iterate the previous argument. Therefore it
follows that h1 ∈ L. Analogously it can be proved that h2 ∈ L.

Since h1(e1)jh2(e2) 6= 0 with h1, h2 ∈ L, then by definition of derivation
and the idempotence of e1 and e2, we have that

e1h1(e1)je2h2(e2)+e1h1(e1)jh2(e2)e2+h1(e1)e1je2h2(e2)+h1(e1)e1jh2(e2)e2 6= 0,

a contradiction since hi(ei) ∈ J , i = 1, 2. Hence A1JA2 6= {0}.
Let j ∈ J be such that e1je2 6= 0 and let B the algebra generated by

h(e1), h(e2), h(e1je2), for all h ∈ U(L). Then B is an L-subalgebra of A
and if I is the ideal generated by h1(e1), h2(e2), h3(e1je2) − e1h3(e1je2)e2,
e1je2 − h3(e1je2), for all hi ∈ U(L), hi /∈ spanF{1U(L)}, 1 ≤ i ≤ 3, such that
h3(e1je2) 6= 0 and hi(ei) 6= h3(e1je2), i = 1, 2, then I is an L-ideal of B.
Thus the algebra B̄ = B/I is an L-algebra.

Let φ : B̄ → UT η2 , where η = αε + βδ, for some α, β ∈ F , the linear map
defined by φ(e1 + I) = e11, φ(e2 + I) = e22, φ(e1je2 + I) = e12. Then for
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appropriate choose of α, β ∈ F , φ is an isomorphism of L-algebras and since
B̄ ∈ varL(A), the claim is proved.

Assume now that AL
1A

L
2 6= {0}. By Lemma 16, it follows that AL

1A2,
A1A

L
2 6= {0}. So, let h ∈ U(L), h /∈ spanF{1U(L)}, such that h(e1)e2 6= 0 and

let consider the algebra C generated by h̄(e1), h̄(e2), for all h̄ ∈ U(L). Then
C is an L-subalgebra of A. If we consider the ideal I generated by h1(e1),
h2(e2), h3(h(e1)e2)− e1h3(h(e1)e2)e2, h(e1)e2−h3(h(e1)e2), for all hi ∈ U(L),
hi /∈ spanF{1U(L)}, 1 ≤ i ≤ 3, such that h3(h(e1)e2) 6= 0 and for all h̄ ∈ U(L),
hi(ei) 6= e1h̄(h(e1)e2)e2, i = 1, 2, then I is an L-ideal of C. Thus the algebra
C̄ = C/I is an L-algebra such that C̄ ∈ varL(A). Thus in order to complete
the proof is enough to show that C̄ is isomorphic as L-algebra to UT η2 , where
η = αε+ βδ, for some α, β ∈ F .

Notice that we may assume that e1h(e1)e2 = h(e1)e2. In fact, without loss
generality we may suppose that h1 = γ1 . . . γr, γi ∈ L, i = 1, . . . , r, r ≥ 1.
We proceed by induction on r.

If r = 1, the claim ready follows from the definition of derivation. So let r >
1. Thus by (3), if

∑
I,K hI(e1)hK(e2) = 0, it follows that h(e1)e2 = e1h(e1)e2.

Otherwise there exist γl1, . . . , γls ∈ L, s < r, such that γl1 . . . γls(e1)e2 6= 0.
By the inductive hypothesis e1γl1 . . . γls(e1)e2 = γl1 . . . γls(e1)e2 and we have
done.

Let ψ : C̄ → UT η2 be the linear map defined by ψ(e1 +I) = e11, ψ(e2 +I) =
e22, ψ(h(e1)e2 + I) = e12, where η = αε + βδ, for some α, β ∈ F . Then for
an opportune choose of α, β ∈ F , ψ is an isomorphism of L-algebras and the
proof is complete.

Next theorem gives us a characterization of the varieties of algebras with
derivations of polynomial growth in terms of the L-algebras UT2 and UT ε2 .

Theorem 18. Let L be a Lie algebra over a field F of characteristic zero
and let A be a finite dimensional L-algebra over F . Then the sequence cLn(A),
n ≥ 1, is polynomially bounded if and only if UT2, UT

ε
2 /∈ varL(A).

Proof : First suppose that cLn(A) is polynomially bounded. Since, by Theo-
rem 11, UT2 and UT ε2 generate L-varieties of exponential growth, we have
UT2, UT

ε
2 /∈ varL(A).

Now assume UT2, UT
ε
2 /∈ varL(A). Using an argument analogous to that

used in the ordinary case (see [7, Theorem 4.1.9]), we can prove that the
differential codimensions do not change upon extension of the base field and
so we may assume F is algebraically closed.
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By Wedderburn-Malcev theorem for ordinary algebras,

A = A1 ⊕ · · · ⊕ Am + J,

where J = J(A) is the Jacobson radical of A and Ai is a simple algebra, for
all 1 ≤ i ≤ m. Notice that since UT2 /∈ varL(A), it follows that Ai

∼= F , for
all 1 ≤ i ≤ m. Then, in order to finish the proof, by Theorem 3, it is enough
to guarantee that AL

i A
+AL

k = {0}, for all 1 ≤ i, k ≤ m, i 6= k. Suppose to
the contrary that there exist 1 ≤ i, k ≤ m, i 6= k, such that AL

i A
+AL

k 6= {0}.
By Lemma 17, UT η2 ∈ varL(A), where η = αε+ βδ, for some α, β ∈ F . Thus
by Corollary 14 we reach a contradiction and the theorem is proved.

As a consequence we have the following corollary.

Corollary 19. UT2 and UT ε2 are the only finite dimensional algebras with
derivations generating L-varieties of almost polynomial growth.

5. Differential cocharacter of varieties of polynomial growth
In this section we give other characterizations of L-varieties V of polynomial

growth through the behaviour of their sequences of cocharacters.

Theorem 20. Let L be a Lie algebra over a field F of characteristic zero
and let A be a finite dimensional L-algebra over F . Then cLn(A), n ≥ 1, is
polynomially bounded if and only if there exists a constant q such that

χLn(A) =
∑
λ`n

|λ|−λ1<q

mλχλ

and J(A)q = {0}.
Proof : Notice that the decomposition of χLn(A) into irreducible characters
does not change under extensions of the base field. This fact can be proved
following word by word the proof for the ordinary case (see for example [7,
Theorem 4.1.9]). Also if F̄ is the algebraic closure of F and J(A)q = {0},
then J(A⊗F F̄ )q = {0}. Therefore we may assume, without loss of generality,
that F is an algebraically closed field.

Suppose cLn(A), n ≥ 1, is polynomially bounded and let λ be a partition of n
such that |λ|−λ1 ≥ q and mλ 6= 0. Then there exist f ∈ PL

n and a tableau Tλ
such that eTλf /∈ IdL(A). Let λ′ = (λ′1, . . . , λ

′
t) be the conjugate partition of λ.

Then eTλf is a linear combination of polynomials each alternating on t disjoint
sets of λ′1, . . . , λ

′
t variables, respectively. We shall reach a contradiction by

proving that these polynomials g vanish in A.
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Let A = A1 ⊕ · · · ⊕ Am + J , where A1, . . . , Am are simple algebras and
J = J(A) is the Jacobson radical, then by Theorem 3, dimAi = 1 and
AL
i A

+AL
k = {0} for all 1 ≤ i, k ≤ m, i 6= k. In order to get a non-zero value of

g we must replace at most one variable with elements of a single component,
say, Ai, and the others variables with elements of J . Since dimAi = 1, we
can substitute at most one element of Ai in each alternating set. Thus we
can substitute at most λ1 elements from Ai. It follows that to get a non-zero
value, we must substitute at least |λ| −λ1 elements from J , but |λ| −λ1 ≥ q,
and we reach a contradiction since Jq = {0}.

Suppose now that χLn(A) =
∑
λ`n

|λ|−λ1<q

mλχλ. Since |λ|−λ1 < q, then λ1 > n−q

and by the hook formula dλ = degχλ =
n!

(n− q)!
≤ nq. Thus by [8, Theorem

5], it follows that

cLn(A) =
∑
λ`n

|λ|−λ1<q

mλdλ ≤ nq
∑
λ`n

|λ|−λ1<q

mλ ≤ Cnq
′

for some constant C, q′, and the claim is proved.

Next theorem give us a characterization of finite dimensional L-algebras
with multiplicities of the nth differential cocharacter bounded by a constant.

We start by proving the following result.

Lemma 21. Let A be a finite dimensional L-algebra over an algebraically
closed field such that dimF A/J(A) ≤ 1. Then there exists a constant C such
that in χLn(A) =

∑
λ`nmλχλ

mλ ≤ C,

for all n ≥ 1.

Proof : Let A = Ass + J where Ass is a semisimple subalgebra and J = J(A)
is the Jacobson radical of A. Since dimF A/J(A) ≤ 1, it follows that either
Ass
∼= F or A = J(A) is a nilpotent algebra. Clearly if A is a nilpotent

algebra, we have nothing to prove. So let assume that Ass
∼= F .

Let now d = dimF A and {a1, . . . , ad} be a basis of A where a1 ∈ Ass and
a2, . . . , ad ∈ J . If q is the smallest positive integer such that Jq = {0}, we
shall prove that mλ ≤ dqdq, for all λ ` n.

Notice that since dimF A/J(A) ≤ 1, by Theorem 3, cLn(A) is polynomially
bounded. Then, by Theorem 20, we get that mλ 6= 0 if and only if h(λ) ≤ q,
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where h(λ) is the height of the partition λ ` n, i.e., the number of the rows
of λ.

So let λ ` n be a partition such that h(λ) ≤ q. Consider the Young tableau
Tλ of shape λ and the corresponding minimal essential idempotent eTλ. Then
it is well-known that

eTλ =
∑
σ∈RTλ
τ∈CTλ

(sgn τ)στ

where RTλ and CTλ are the subgroups of row and column permutations of Tλ,
respectively.

For all 1 ≤ j ≤ q, let Xj be the set of variables whose indices lies in the
ith row of Tλ. Thus, for any f ∈ PL

n , the polynomial eTλf is symmetric in
each set X1, . . . , Xq and its variables are partitioned into the disjoint union
of q subsets X1 ∪ · · · ∪Xq. Notice that Xj may be empty if h(λ) < j < q.

Notice that for any ρ ∈ Sn, ρeTλ 6= 0. Then it follows that, if eTλf 6= 0,
where f is a multilinear differential polynomial, then eTλf and ρeTλf generate
the same irreducible Sn-module.

Let f1, . . . , fm be a multilinear differential polynomial generating in PL
n (A)

different isomorphic irreducible Sn-modules corresponding to the same par-
tition. By the above, one can choose ρ1, . . . , ρm ∈ Sn and a decomposition
X = X1 ∪ · · · ∪ Xq such that ρ1f1, . . . , ρmfm are simultaneously symmetric
on Xj, 1 ≤ j ≤ q. Thus without loss of generality, we may assume that
f1, . . . , fm satisfy this condition.

Now assume by contradiction that m = mλ > C = dqdq and prove that A
satisfies a differential identity of the type

f = β1f1 + · · ·+ βmfm, (4)

where β1, . . . , βm ∈ F are not all zero. Then we shall reach a contradiction
since this will say that f1, . . . , fm are linearly dependent modulo IdL(A).

Since f is multilinear, in order to verify that f ≡ 0, it is sufficient to verify
that f has only zero value on elements of a basis of A. First let us define
substitutions of special kind. Consider the non-negative integers αj1, . . . , α

j
d

such that, for all 1 ≤ j ≤ q,

d∑
i=1

αji = |Xj|.
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We say that an evaluation ϕ has type

(αj1, . . . , α
j
d)

for 1 ≤ j ≤ q, if we replace the variables from X in the following way: for
fixed j, 1 ≤ j ≤ q, we evaluate the first αj1 variables from Xj by elements a1,

the next αj2 in a2, and so on up to the last αjd variables from Xj in ad.
In order to get a non-zero value of f in (4), any substitution should satisfy

the following condition
d∑
i=2

αji ≤ q − 1,

for all 1 ≤ j ≤ q, since Jq = {0}. Moreover, by definition we have also the
following restriction

αj1 = |Xj| −
d∑
i=2

αji ,

for all 1 ≤ j ≤ q. Then for any 1 ≤ j ≤ q, the number of distinct d-tuples
(αj1, . . . , α

j
d) is less than qd. Thus it follows that the total number N of

distinct type of special substitutions is less than qdq.
Let us consider all these N distinct special substitutions ϕ1, . . . , ϕN and

construct the matrix (bij), where, for all 1 ≤ i ≤ m and 1 ≤ j ≤ N ,

ϕj(fi) = bij.

This matrix has m rows and N columns of elements of A. Since m > dqdq >
dN , the rows of (bij) are linearly dependent. Thus there exist β1, . . . βm ∈ F
not all zero such that

m∑
i=1

βibij = 0,

for all 1 ≤ j ≤ N , i.e., the polynomial f =
∑m

i=1 βifi is zero under all special
substitution ϕ1, . . . , ϕN . Therefore it is enough to show that this implies that
f ∈ IdL(A).

To this end, let ψ be any substitution by elements of the basis {a1, . . . , ad}.
Let lj1 be the number of variables in Xj mapped by ψ in a1; let lj2 the number
of variables in Xj mapped by ψ in a2, and so on. Since f is simultaneously
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symmetric on X1, . . . , Xq, we get that, for all ρ ∈ Sn such that ρ(X1) =
X1, . . . ρ(Xq) = Xq,

ψ(f) = ψ(ρf) = (ψρ)f.

In particular, we can choose ρ ∈ Sn such that ψρ is the special substitution
of the type (lj1, . . . , l

j
d). By the above, ψ(f) = (ψρ)f = 0 and f ∈ IdL(A), a

contradiction. This complete the proof.

Theorem 22. Let L be a Lie algebra over a field F of characteristic zero,
A be a finite dimensional L-algebra over F and χLn(A) =

∑
λ`nmλχλ be its

nth differential cocharacter. Then cLn(A) is polynomially bounded if and only
if there exists a constant C such that, for all λ ` n, the inequality

mλ ≤ C

holds.

Proof : Since the decomposition of χLn(A) into irreducible characters do not
change by extending the base field, we may assume that F is algebraically
closed. Suppose now that cLn(A), n ≥ 1, is polynomially bounded, then the
proof follows by Theorem 8, Remark 1 and Lemma 21.

Conversely, assume by contradiction that cLn(A) is not polynomially bounded.
Then by Theorem 18 UT2 ∈ varL(A) or UT ε2 ∈ varL(A). But by Theorems
10 and 11 the multiplicities in χLn(UT2) and in χLn(UT ε2 ) are not bounded by
a constant. Thus by Remark 1 we get a contradiction and the theorem is
proved.

As an important consequence, we shall prove the following corollary that
relates the growth of the differential codimension sequence of a finite dimen-
sional L-algebra A with its differential colength.

Corollary 23. Let L be a Lie algebra over a field F of characteristic zero
and let A be a finite dimensional L-algebra over F . Then cLn(A), n ≥ 1, is
polynomially bounded if and only if lLn(A) ≤ k, for some constant k and for
all n ≥ 1.

Proof : Assume first that cLn(A), n ≥ 1, is polynomially bounded. By the
previous theorem all non-zero multiplicities mλ in

χLn(A) =
∑
λ`n

mλχλ
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are bounded by a constant C. On the other hand, by Theorem 20, n−λ1 ≤ q
as soon as mλ 6= 0, where q is such that J(A)q = {0}. Since the number of
partition n− λ1 ≤ q is less than q2, we get

lLn(A) =
∑
λ`n

mλ ≤ C · q2 = const.

Conversely, suppose that lLn(A) is bounded by a constant. By using Remark
1 and equations (1) and (2) we get that UT2, UT

ε
2 /∈ varL(A). Thus by

Theorem 18, cLn(A) must be polynomially bounded.

We now collect the results obtained in the following theorem which gives a
complete characterization of the L-variety generated by a finite dimensional
algebras with derivations of polynomial growth.

Theorem 24. Let L be a Lie algebra over a field F of characteristic zero and
let A be a finite dimensional L-algebra over F . Then the following conditions
are equivalent:

1. cLn(A) ≤ αnt, for some constant α, t, for all n ≥ 1;

2. expL(A) ≤ 1;

3. UT2, UT
ε
2 /∈ varL(A);

4. A ∼TL B1 ⊕ · · · ⊕ Bm, with B1, . . . , Bm finite dimensional L-algebras
over F such that dimBi/J(Bi) ≤ 1, for all 1 ≤ i ≤ m;

5. There exists a constant q such that

χLn(A) =
∑
λ`n

|λ|−λ1<q

mλχλ

and J(A)q = 0;

6. There exists a constant C such that in χLn(A) =
∑

λ`nmλχλ

mλ ≤ C,

for all n ≥ 1;

7. there exists a constant k such that lLn(A) =
∑

λ`nmλ ≤ k, for all
n ≥ 1.
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