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ABSTRACT: Let G be a finite abelian group and let A be an associative G-graded
algebra over a field of characteristic zero. A central G-polynomial is a polynomial of
the free associative G-graded algebra that takes central values for all graded substi-
tutions of homogeneous elements of A. We prove the existence and the integrability
of two limits called the central G-exponent and the proper central G-exponent that
give a quantitative measure of the growth of the central G-polynomials and the
proper central G-polynomials, respectively. Moreover, we compare them with the
G-exponent of the algebra.
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1. Introduction

Let G be a finite abelian group and let A be a G-graded algebra over a
field of characteristic zero. If we denote by F(X,G) the free associative G-
graded algebra, freely generated over F' by the set X of variables, then a
G-polynomial f € F(X,G) is a central G-polynomial of A if f takes values
in Z(A), the center of A. In case f vanishes on A, then it is called a G-
polynomial identity of A, otherwise f is a proper central G-polynomial.

Central polynomials were first studied after a famous conjecture of Kaplan-
sky asserting that the algebra M, (F') of n x n matrices over F' has proper
central polynomials (see [21]). Later on, such a conjecture was proved in-
dependently by Formanek and Razmyslov in [13] and [26]. Nowadays very
few is known about T-spaces of central polynomials. For instance, in [7] the
T-space of central polynomials of the Grassmann algebra in characteristic
different from 2 was computed, while a similar result for the same algebra
was achieved in [8] for central polynomials with involution. On the other
hand, there exist algebras with a non-trivial center having no proper central
polynomials (see [19, Lemma 1]).
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By using an idea of Regev (see [27]), here we are interested in a quantitative
approach in order to get information about how many central polynomials
a given G-graded algebra has. To this end, we consider for any n > 1 the
space PY of multilinear graded polynomials of degree n and we attach to
it three numerical sequences: c&(A), the dimension of P% modulo the G-
polynomial identities of A; ¢¢*(A), the dimension of P% modulo the central
G-polynomials of A; 65 (A), the dimension of the space of multilinear central
G-polynomials of degree n modulo the graded identities of A. They are called
the G-graded, central G-graded and proper central G-graded codimension
sequence, respectively, and for all n > 1,

c“(A) = &7 (A) + 65 (A).

n

It follows that one can gather informations about c%(A) by knowing how
c%*(A) behaves and viceversa (see for instance [6]).

The asymptotic behavior of the G-graded codimension sequence was ex-
tensively studied in the past years. In fact, in [15] it was proved that if A
satisfies a non-trivial ordinary polynomial identity (PI-algebra), then c¢%(A)
is exponentially bounded, moreover in [2], [3] and [14] the authors proved
the existence and the integrability of the graded exponent, exp®(A), also for
non-abelian groups. Such a result was generalized in [22] in the setting of
H-module algebras, where H is a semisimple finite dimensional Hopf algebra.

In this paper we want to prove an analogous result for the central and
the proper central G-polynomials. Because of the previous relation among
the codimension sequences, it is clear that ¢&*(A) and §¢(A) are exponen-
tially bounded, provided that A is a Pl-algebra. Furthermore, what can
we say about the central G-exponent, exp®*(A), and the proper central G-
exponent, exp®®(A)? We will prove that such exponents exist and they are
non-negative integers by showing an explicit way to compute them. More-
over, we compare the central G-exponent with the G-exponent by proving
that either exp®?(A) = exp®(A) or exp®*(A4) = 0. Similar results were re-
cently achieved for ordinary algebras in [19] and [20] and for algebras with
involution in [25].

2. The basic setting

Let F be a field of characteristic zero, G be a finite abelian group and A
be a G-graded algebra over F ie. A = @geG Ay, where the A,’s are vector
subspaces of A such that A;A, C Ay, for all g,h € G. We refer to such
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subspaces as the homogeneous component of A and we say that the element
a has homogeneous degree g if a € A, for some g € G. In this case we write
la|g = ¢ or simply |a| = ¢ if no ambiguity arises.

Let F'(X) be the free associative algebra on a countable set X of variables
X1, T, .... One can define on such an algebra a G-grading in a natural way:
write X = (g Xy, where Xy = {214, 72,,...} are disjoint sets and the
elements of X, have homogeneous degree g. If we denote by F, the subspace
of F/(X) spanned by all monomials in the variables of X having homoge-
neous degree g, then F'(X) = P . Fy is a G-graded algebra called the free
associative G-graded algebra of countable rank over F. We shall denote it by
F(X, Q).

From now on, let G = {¢1,...,9s}. A G-graded polynomial, or simply a
G-polynomial,

f=f(@ig, Ttigse s Tlges-- s Ttg.)

of F(X,@G) is a G-graded identity (or simply graded identity) of A, and we
write f =0, if

f(ang s Aty gy o5 Qg - '7atsags> =0

for all a; 5, € Ay, t; > 0, for all 1 <¢ <.

Let Id9(A) = {f € F(X,G) | f = 0 on A} be the ideal of graded identities
of A. Tt is easily seen that Id®(A) is a Tg-ideal, i.e. it is an ideal invariant
under all graded endomorphisms of F'(X, G).

Notice that if for some i > 1 we set x; = x4 + -+ + ;,,, then F(X)
is naturally embedded into F(X,G) so that we can look at the (ordinary)
identities of A as a special kind of graded identities.

Since charF' = 0, then IdG(A) is determined by the multilinear G-polynomials
it contains. Thus, for all n > 1, one can define

Pf = SpanF{xa(l),gu © To(n)gy, | O € Sy Gins -5 i € G}

as the space of multilinear G-polynomials in the graded variables z1 g, , ..., Zng, ,
gi, € G. Here S, stands for the symmetric group on the integers {1,...,n}.
The Tg-ideal Id%(A) is determined by the sequence of subspaces PEN1d%(A),
n > 1, and we can construct the quotient space
PG
PE(A) = n .
v (4 PG NId%(A)
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The non-negative integer

c(A) = dimp PY(A), n > 1,

n

is called the nth codimension of A and the asymptotic behavior of the cor-
responding sequence is in some sense a quantitative measure of how many
identities are satisfied by A. In [15] it was proved that if A satisfies a non-
trivial ordinary polynomial identity, then such a sequence is exponentially
bounded. Moreover, in [2, 3, 14] the authors captured this exponential growth
by proving the existence and the integrability of the limit
G : n
exp®(4) = lim_ /().

called the G-exponent of A. We highlight that such a result was achieved for
any finite group.

The study of multilinear G-polynomials can be reduced to the one of smaller
spaces in the following way. Take n > 1 and write n = n; + - - - + ng, where
ni,...,ns > 0. Then define P, ., as the subspace of PnG of multilinear G-
polynomials in which the first n; variables have homogeneous degree ¢;, the
next ny variables have homogeneous degree go, and so on. It is clear that P
is the direct sum of such subspaces with n; + - -- 4+ n, = n as well as P%(A)
that inherits this decomposition. Thus, one defines

P?'Ll,...,?’ls
Pn17.'.7n m Id (A)

S

Pnh...,n

and sets
Cny,....ng (A) — dlmF Pnh...,nS (A)

Notice that, given nq,...,n,, there are (n1 "n) subspaces isomorphic to
P,, ... Therefore, for all n > 1,

STORED DI () L)

ni+--+ns=n

Since there is a one-to-one correspondence between T-ideals and G-vari-
eties of algebras, often it is convenient to translate all the objects we have
introduced into the language of G-varieties. Thus if V = var®(A) is the G-
variety generated by the G-graded algebra A, then we write IdG(V) = IdG(A),
c%(V) = c%(A) and the growth of V is the growth of the codimension sequence

n

(V).
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3. Grassmann envelope and G X Z,-graded algebras

In this section we introduce a useful tool that one can use in order to
reduce the problem of computing the T-ideal of graded identities of any
G-graded algebra to that of the so-called Grassmann envelope of a suitable
finite dimensional G' x Zs-graded algebra, where Z is the cyclic group of
order 2 in additive notation.

Let E denote the infinite dimensional Grassmann algebra generated by the
elements 1,e;, e, ... subject to the relations e;e; = —eje;, for all ¢ # j. Let
E = FEy & F, be its natural Zs-grading, where

Ey=spang{e; - e, | 1 <ip < -+ <o, k> 0}

and
E, = spanF{eil SR & ‘ 1<y <2 < i2k+1, k> 0}

Moreover, let A = @(g,i)erzg A(gi) be a G x Zo-graded algebra. Then
A has an induced Zs-grading, A = Ay ® Ay, where Ay = @QGG Ag0) and
A1 = @D eq Agr), and an induced G-grading A = P, 4y where, for all
9 € G, Ag= Ao @ A

Then, the Grassmann envelope of A is defined as

E(A) = (A)® Ey) ® (A1 @ E).

On one hand, it has a natural G x Zs-grading induced by the one of A, i.e.
E(A) = EB(W-)erZQ E(A) g, where E(A),:) = A(gi) ® Ei. On the other, it
has an induced G-grading by setting E(A), = (A0 ® Eo) ® (A1) @ E1).

In case of ordinary polynomial identities, a celebrated theorem of Kemer
states that an arbitrary algebra satisfying a non-trivial polynomial identity
over a field of characteristic zero has the same identities as the Grassmann
envelope F(A) of a finite dimensional Zs-graded algebra A (see [23]). This
result was independently extended in the setting of graded algebras in [1]
and [29] by proving the following theorem.

geG

Theorem 1. Let R be a G-graded algebra satisfying a non-trivial ordinary

polynomial identity. Then there exists a finite dimensional G X Zsy-graded
algebra A such that 1d°(R) = Id°(E(A)).

It is worth mentioning that in [1] the result was proved also for non-abelian
groups.
By the Wedderburn—-Malcev decomposition, we write

A=A"+J
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where A’ is a maximal semisimple subalgebra of A, which we may assume
to be G x Zy-graded by [28], and J = J(A) its Jacobson radical, which is a
graded ideal of A. Also we can write A’ = A; & --- @ Ay, where Aq, ..., A,
are G x Zy-graded simple algebras (or simply G X Zs-simple algebras). The
description of such algebras is given in the following theorem proved by Bah-
turin, Sehgal and Zaicev in [5].

Theorem 2. Let A be a finite dimensional G X Zs-simple algebra. Then there
exist a subgroup H of G X Zs, a 2-cocycle o : H x H — F*, where the action
of H on F is trivial, an integer m and an m-tuple (g1 = 1,99,...,9m) €
(G X Zy)™ such that A is isomorphic as G X Zs-graded algebras to

R=F"H® M,(F),

where R, = spanp{b, @e;; | g = g; *hg;}. Here b, € FH is a representative
of h € H.

In order to simplify the notation we shall use the elements of the group
instead of their representatives. According to the previous result, it turns
out that Z(A) = Z(F*H) ® I,,,, where I, is the m x m identity matrix.

As a way to prove Theorem 1, the authors defined a map, denoted by ~,
relating the G x Zs-identities of a GG x Zs-graded algebra A to the ones of
E(A).

First they introduced the following notation. In the free G' X Zo-graded
algebra F'(X, G X Zy), write z; (40) = ¥iy and x; (1) = 2;y, for all g € G and
i > 1. Now let f € F(X,G X Zs) be a multilinear polynomial in the variables

21y ey Zmy Yty ..., Yy and write f in the form
f= Z Ao WW0L(1)W1 " * * Wim—12g(m)Wm
oesS,,

W=(wo,w1,..., W)
where zq,..., 2, are homogeneous variables of degree (g,1), g € G, wy,
wy, ..., W, are (eventually empty) monomials in variables of homogeneous
degree (g,0), g € G, and a,w € F. Then define

]E - Z (Sgn O)QU,WwOZJ(l)wl © o Wim—120(m) Wm -
€S,

W=(wo,w1,..., W)

According to [18], the map ~ is such that

L f=F;
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2. fis a G X Zy-identity of F(A) if and only if f is a G X Zy-identity of
A;

3. for any subset Z of variables {z1, ..., zp}, f is alternating on Z if and
only if f is symmetric on Z.

4. On central G-polynomials

In this section we shall introduce the main object of the paper. Let R be
a G-graded algebra, then a G-polynomial f(z1,, ,...,Zng, ) € F(X,G) is a
central G-polynomial (or simply a central polynomial) of R if f(ay,...,a,) €
Z(R) for all homogeneous elements a; € Ry, ,...,an € Ry, . If f takes only
the zero value, then it is clear that f is a graded identity of R, otherwise we
say that f is a proper central G-polynomial of R.

Let Id“*(R) = {f € F(X,G) | f is a central G-polynomial of R}. Then
1d9*(R) is a Tg-space of F(X,G), i.e. a vector space invariant under all
G-graded endomorphisms of the free G-graded algebra.

We set .
P

PG,Z R) = n :

() PG N1d%*(R)
and .
P% N 1d%~

aG(r) = DD

PS¢ NId™(R)

Notice that AY(R) corresponds to the space of multilinear proper central
G-polynomials of R in n fixed homogeneous variables.

It can be easily checked that if R; and Ry are two (-graded algebras
such that Id®(R;) = Id®(Ry), then Id“*(R;) = Id“*(R,) and so A%(R;) =
A%(Ry) for all n > 1.

Moreover, define ¢*(R) = dimp PS*(R) and 65(R) = dimp AY(R), n >
1, as the sequences of central G-codimensions and proper central G-codimen-
sions, respectively. Then

¢ (R) = &7*(R) + 6,/ (R), (1)

n

for all n > 1. If R is a Pl-algebra, then ¢%(R) is exponentially bounded and
so are c¢*(R) and 6¢(R) and our aim is to capture their exponential growth.

In particular, we are asking whether the two limits

exp®(R) = lim 1/c5*(R) and exp®(R)= lim {/6¢(R)

n—-+oo n—-+o00
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exist and, in case of affirmative answer, compute them.

To this end, as we already did for PS(R), one can split AY(R) into the
direct sum of subspaces
. P?’Ll ..... Mg m IdG’Z(R)
Pry...n, N1d(R)

Y

where n; + -+ -+ ngs = n, and set o, n, SO that

.....

= % ("))

ny+--+ns=n

.....

In order to guess the proper central G-exponent exp®?(R), we now intro-
duce the following notation.

Let A be a finite dimensional G x Zo-graded algebra such that Id%(R) =
1d%(E(A)) and write A= A, @ --- ® A, + J, where A,..., A, are G X Zo-
simple algebras and J is the Jacobson radical of A. We say that A is reduced
if A, JJA;,J---JA; #0, where iy,... i, € {1,...,m} are all distinct.

Definition 1. A semisimple G X Za-graded subalgebra B = A;, @& --- @ A,,,
where iy,...,1 € {1,...,m} are all distinct, is called centrally admissible
for E(A) is there exists a proper central G-polynomial

f(xl,gh) s 7567’,ng)

of E(A) such that r > k and f(ai,...,a,) # 0, for some homogeneous ele-
ments ay € E(A;))g,,, - ar € E(Ai)g, , ari1 € E(A)g, ..., ap € E(A)g, .

Jr

Remark 1. If B is centrally admissible for E(A) of mazimal dimension,
then B = B + J is reduced.

Proof: Without loss of generality, we may assume that B = A; @ --- @ Aj;.
Moreover, let f be a multilinear proper central G-polynomial as in Definition
1. Since E(A;)E(A;) =0 for all i # j and f is not a graded identity of E(A),
then
E(Ai ) E(J)E(Ai,)E(T) - E(J)E(A;) #0

for some permutation (iq,...,4) of (1,...,k). Thus A; JA,J---JA; # 0,
that is, B = B + J is reduced. |

The next two sections are devoted to the computation of an upper and

lower bound for the proper central GG-codimension sequence. In particular,
we claim that exp®(E(A)) = d, where d is the maximal dimension of a
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centrally admissible subalgebra for E(A). The last section studies the central
G-exponent compared with the G-graded (ordinary) exponent. There we will
prove that either such exponents are equal or the central G-exponent is zero.

5. The upper bound for 6%(R)

In this section we shall determine an upper bound for the proper central
G-codimensions of a G-graded Pl-algebra.

Let S be the free supercommutative algebra over F' of countable rank (see
[4]). Recall that S is defined by its universal property: we let T3 = {¢; ;},
Ty = {n;;} be countable sets, then & = F(11,T5) is the algebra with 1
generated by T7,T, subject to the condition that the elements of T} are
central and the elements of T, anticommute among themselves. The algebra
S has a natural Zy-grading S = Sy@ S by requiring that the variables &; ; are
of homogeneous degree zero and the variables n; ; are of homogeneous degree
one. Notice that the Grassmann algebra E can be viewed as a Zs-graded
subalgebra of S if one identifies the generating elements e; with the elements
i - Hence S = FE & F[Ei,j]a S() = E() X F[&J] and Sl = El X F[fz,]]

We recall our general setting: A=A, ®---A,, + J is a finite dimensional
G x Zo-graded algebra over an algebraically closed field F, u > 0 is the
smallest integer such that J*™ = 0 and G = {g1,...,9s} is an abelian
group. One can define the superenvelope of A to be

S(A) =S RA DS ® A = E(A) & F[fw]

Clearly S(A) has an induced G-grading where S(A), = E(A), ® F[& ],
g € G, and 1d°(S(A)) = 1d9(E(A)). Fix a basis B of A of homogeneous
elements respect to the GG X Zs-grading which is union of a basis of J and a
basis for each of the A;. Let B ={as,...,a,,b1,...,b;} where {ay,...,a,} is
a basis of Ay and {by,...,b;} is a basis of A;. For a fixed n > 1, we choose
nr variables & ; € Ty, 1 = 1,...,n, j = 1,...,r and nt variables 7, ; € 15,
t=1,....,n, g =1,...,t. Fori = 1,...,n, g € G, we define the generic
elements:

Uig = Zfz’,rj Q ar; + Zm,tj ® b, € S(A),

where the first sum runs over all r; such that a,; is of homogeneous degree
(9,0) and the second one runs over all ¢; such that b, is of homogeneous
degree (g,1). We denote by H the G-graded subalgebra generated by the
generic elements U; 4, 1 =1,...,n,9 € G.
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Proposition 1. The algebra H is isomorphic to the relatively free G-graded
algebra for E(A) in ns graded generators.

Proof: Let 1 be the graded homomorphism of the free G-graded algebra
F(X1gys- s Tngs-- s Llgy,---»Tng,) to the algebra H mapping z; , +— Ui,
We shall prove that Keryp = Id9(E(A)). Since Id°(E(A)) = 1d°(S(A)) C
1d%(H) we have that 1d%(E(A)) C Keri.

Now let f = f(T1gys--sTngys > Tlges---»>Tng,) € Ker, ie.,

f(Uigs- 3 Ungysoo s Urgyy oo Unyg) =0

and consider arbitrary homogeneous elements of E(A)

Ci,gy = Z jp; @ Ay, + Z Bit; @ by,

¢ =1,...,n, [ = 1,...s, where the first sum runs over all r; such that
ar, is of homogeneous degree (g;,0), the second one runs over all ¢; such
that b;, is of homogeneous degree (g;,1), a;; € Eyp and B;; € E;. Con-
sider then the homorphism p : A ® F[& j,mi] = A ® E which is the iden-
tity on A and maps & ; — «;j, mr +— B This maps U, to ¢4 and

f(cl’gla o Cngry e Clges oo CTL?QS) - p(f(Ulng o Ungys oo Ungys - Unags))'
This says that if f vanishes when computed on the generic elements U, 4, it

is a graded identity for E(A). _

As a consequence we have that a G-polynomial f is a G-identity of E(A)
if and only if it vanishes on the generic elements U; 4,9 € G,¢ > 1. Now let
Y the homomorphism defined above and consider

V(PN (B(A))) =
= { P Wiy Vg ) | F @1 0g,) € PE N1 (B(A)) ],

We say that for all f,g € PY, f D g if f = g+ h for some h € P¥. Then we
set

A, ={f € PYN1d“*(E(A)) | f 2 g, for all g € 1d“(E(A))}
and define

Z, = spanF{Ug(l),gi1 - Usm)gi. | 0 € Sn, Giys---» i, € G and

To(1),g:;, " Lo(n).g, 1S & monomial of some G-polynomial in An}.
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It is clear that
0y (B(A)) = dimspang (P N1d¥*(E(4))) < dim 2,
and, for fixed non negative integers nq,...,ns such that n =nq + -+ - 4+ ny
Oy (B(A)) = dimspang ¥(P,, . N1d*(E(A))) < dim Z,, .. (2)

where Z,, .. C Z, is the span of the monomials in which the first n;
generic elements have homogeneous degree ¢;, the next no generic elements
have homogeneous degree g» and so on.

Next we shall prove the following result.

Lemma 1. There exist constants C' > 0 and v such that
8¢ (B(A)) < On'd",
where d is the mazimal dimension of a centrally admissible algebra for E(A).

Proof: We start by computing an upper bound of dimp Z,,, ..

Take a monomial in Z,, _,. and by replacing each U, 4, write such a mono-
mial as a linear combination of elements of the type I'. ® ¢ where ¢ € A is a
product of n elements of the chosen basis and

Fc - "}/17]-1"}/2’]-2 e ,‘Y’n’,]n

with ~; ;. equal either to & ;. or to n j,. Thus we shall estimate dimp Z,,, .
through an estimate of the number of possible monomials I'. such that ¢ # 0.
Since each variable ; ; or n;; is attached to a basis element of some homoge-
neous degree, we shall say that & ; or 7;; is a radical variable or a semisimple
variable of some homogeneous degree. Take a nonzero element I'. ® ¢ where
I'. contains ¢ = iy - - - + 2, radical variables whose 7; < nj variables are of ho-
mogeneous degree g1, io < no are of homogeneous degree g; and so on. Now
this element is nonzero only if + < u. The number of nonzero monomials
containing ¢ = 41 + - - - + 44 radical variables with i; < n;, 7 =1,...,5sis at
most (7;11) e (Z) (dim J)* < e;n?, for some constants ¢; and a. Now each such
monomial involves n — ¢ semisimple variables with n; = n; — ¢; variables of
homogeneous degree g;, 7 = 1,...,s which come from some distinct simple
components Ay, ..., A;,, k > 1. This means that C = A, & --- ® 4, is a
centrally admissible subalgebra for F(A).

Now, fix a centrally admissible subalgebra C' and let d° = dimC, df =
BN C0)l and If = |BNCy, )| How many possible monomials with the
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semisimple variables coming from C' can we write? If there are i = 7;+. ..+
radical variables, such number is at most
n n . i n n'
(ﬁl) <Z> (dim J)'(dS + 1€y - (dS +19)™.
S

Hence such centrally admissible subalgebra C' may contribuite with at most

2 (7?“1> - <n) (dim J) (] 4 17)" - (A + 1)

it tis<u 1 bs
<en?(df +19)" - (dS +15)™

monomials, for some constants c¢,v. Thus if C1,...,C, are all the centrally
admissible subalgebras we get that

Oy, (E(A)) < en® > (dS" +17)™ -+ (S +157)"
i=1
Hence:

SHEVEED D (R L )

ni+---+ns=n

! . " g i\ i i\Ts v - i\ v n
en’y Y (nhm’ns)(dfﬂf) e (dOHGY = en” 3 (@) < It

i=1 nyt-tng=n i=1
where d is the maximal dimension of a centrally admissible algebra for E(A).
m

6. The lower bound for §%(R)

In this section a lower bound for the proper central G-codimension sequence
will be found. As consequence, we shall compute the proper central G-
exponent.

Recall that G = {¢1,...,9s} and R is a G-graded algebra. We shall use
for a fixed n = ny + -+ + ng > 1, the representation theory of the group
Spy X+ XSy, where S, is the symmetric group of order n;, 1 <17 < s. In fact,
the spaces P,, . n.(R) and A,, _,.(R) become S,, X ---x .S, -modules via the
permutation action of the variables of the same homogeneous degree, i.e., .S,
permutes the variables of homogeneous degree g;, S,, those of homogeneous
degree gy, and so on (see [12, 18]).

In what follows, if A(1) F nq,...,A(s) F ny are partitions, we write (\) =
(A(1),...,A(s)) F (n1,...,ns) and we say that ()\) is a multipartition of n =



CENTRAL POLYNOMIALS OF GRADED ALGEBRAS 13

ni+---+ns. Moreover, if for every 1 <14 < s, T)(;) is a Young tableau of shape
A(7) and er,, 1s the corresponding minimal essential idempotent of F'Sy,,
then we denote by Tiyy = (Ty1), - - -, T)(s)) the multitableau of shape (\) and
by er,, = er,,, - er,, the corresponding idempotent of F (Sp, X -+ X Sp.).
Furthermore, given integers d,[,t > 0, we define the hook-shaped partition
h(d,l,t) =(t+1,....t+1,1,....10).
N AN ,

-~

d t

We start by recalling some results on finite dimensional G x Zs-simple
algebras.

Lemma 2 ([14], Lemma 9). Let B be a finite dimensional G X Za-simple alge-
bra over an algebraically closed field F'. Let dimp By, o) = p; and dimp By, 1)
=q;, 1 < i <s. Then, for any positive integer t there exist a multipartition

(A = (AN1),...,A(s)) with
h(pi, qi, 2t — dimpB) < \(i) < h(p;, ¢, 2),

1 <i <s, and a multitableau T}y such that ez, f ¢ 1d°(E(B)), for a suitable
multilinear G-polynomial f with deg f = 2t dimp B.

Lemma 3 ([14], Lemma 10). Let B be a finite dimensional G X Zs-simple
algebra over an algebraically closed field F', then for any non-zero homoge-

neous elements by, by € B there exist homogeneous elements c1,co € B such
that ClblCQ = bg.

From now until the end of the section, let A = A1 @& --- D A, + J be a
finite dimensional G X Zg-graded algebra, where A;, ..., A, are G X Zy-simple
algebras and .J is the Jacobson radical of A. Moreover, let B = B1®---®B; C
A be centrally admissible for F(A) of maximal dimension, dimp B = d, where
B1,..., By are G X Zy-simple algebras, and let

f - f(ngil? R :C/ragir)

be a multilinear central proper G-polynomial of F(A) with r > k, such that
f(ay,...,a,) # 0 for some homogeneous elements a; € E(Bl)gil, ...,ap €
E(Bi)g, . ar1 € E(A)g, .. ar € E(A)g, . Notice that, since B is centrally

admissible of maximal dimension, then f ¢ Id%(E(B)), where B = B + J.
Thus we assume, as we may, that aj,...,a, are homogeneous elements of
E(B).
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Moreover, we say that a multilinear G-polynomial p has homogeneous de-
gree ¢ if any evaluation of p belongs to the homogeneous component g of the
algebra. Notice that such a definition is not ambiguous since p is multilinear
and G is abelian.

Lemma 4. Let f1,..., fi be multilinear G-polynomials on distinct sets of ho-
mogeneous variables (different from those ones in f) such that f; ¢ 1d°(E(B;)),
1=1,..., k. Then the multilinear polynomaial
f/ — f(ulflvl, C. ,ukfkvk, xk+17gik+1, e ,xr,gir)
where uy, vy, ..., U, U are new homogeneous variables such that
ujlelfilelvile = 95,0 =1, k,

s a proper central G-polynomial of E(E)

Proof: Notice that since f is a central G-polynomial of E(A) then it follows
that f’ is also a central G-polynomial. Let a1 = by @ wq,...,a, = b, ® w,,
w; € F be the homogeneous elements in the G X Z,-grading such that

f(bl®w17"'7b7“®w7“)7é07

bi € Bi,i=1,...,k. Now, fort =1,...,r,if b; € E(g”,o) (resp. b € B(gw )5
we set Tyg, = Yy, (resp. Trg, = zgit), a variable of homogeneous degree
(9i,,0) (resp. (gi,,1)). In this way we can regard f as a G X Zy-polynomial
and, by the property of ~, we can write

f(b1®w1,...,br®wr) = f(bl,...,br)@)wl'-'wr 7é 0. (3)
Let fi = fi(«},...,a}.), i =1,... k. Since f; is not a G-graded identity of
E(B;), there exist homogeneous elements in the G x Z,-grading @1, ...,z €

B, €l,... e, € E such that f;(#} ®e,..., 7, ®e€l, ) # 0. As above, if we
see f; as a G X Zo-polynomial we can write

filti®ey,....0, e, )= fil2,...,7,)®e; e, #0.

Let fi(zt,. .. , T, ) = b # 0, for some homogeneous (in the G x Zo-grading)
element b, € B By Lemma 3, for any ¢ = 1,...,k, one can choose homo-

geneous elements a;,¢; € B; such that a;bic; = b Therefore the polynomial

1

quZUZ takes the value b; by evaluating ul,ml, . x U in al,xl, ey T

Ci,
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respectively. Let h;, b} be elements of E of the same homogeneous degree (in
the Zo-grading) as a;, ¢;, respectively. Then for i =1,... &k, we get

= aifi(T, ... Tn,)er @ hiel - el b =b; @ hiel - el b

Now if we extend the evaluations of the w;f;v; to an evaluation ¢ of f' by
specializing the remaining variables as in (3) we get

~

1 1 _k _k
o(f') =f'(ar, Ty, ..., Ty, 15 Ay T, oo Ty Cly g1, D)@

1 17/ k ko
® hiey - e hy-e-hpey - ey Iy - - w,
g 1 1 / k k /
Since I is the infinite dimensional Grassmann algebra, we can choose ho-

mogeneous elements h;, hl, e!, w; in E such that

1 1 17 k k 1/
hlel...enlhl...hkel...enkhkwk+1...wr#O.

Hence, the polynomial f’ takes a non-zero value and the proof of the lemma
is complete. |

Now we describe a technique of gluing Young tableaux that one can find
in [18, Chapter 6.

For every 1 <i < k, let A’ - n; be a partition with the property
and

ti — si > max{tiy1 + dip1, tiv1 + lig1} (5)
where d;, [;,t;,s;, 1 <1 <k, are fixed integers.

As we know, we can associate a partition to the corresponding Young
diagram. Then, by the above relations, we can glue the first row of AX'*! to
the (d; + 1)th row of \’, the second row of A" to the (d; + 2)th row of \
and so on. As a result we obtain a new partition A’ x X! of the integer
ni +n;.1. Along this lines by gluing together A, ..., \*, we get the partition
=A% MNofn= Z§:1 n; with the property

hd, 1ty — s3,) < p < h(d,1,t)
where d = 3% di, 1 =30 I; and t > max{t; +d; —d,t; + 1, —I}.

In a similar way we can glue also Young tableau. Let T)1,...,T\» be young
tableaux corresponding to the partition \',... \¥ respectively. Now we
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define new tableaux as follows. Set T}, = T\1 and, for 2 < ¢ <k, let T}, be

i.;ll n; to all

the Young tableau obtained from T): by adding the integer ) ;

entries of T);. Then we denote by

the Young tableau obtained gluing together the tableaux T7,,. .., T}, accord-
ing to the previous procedure. It is clear that the tableau so obtained is filled
up with the distinct integers 1,2,...,n, where n = Zle n;. Moreover, by
[16, Lemma 14],

eTu = GT)/\l cee €T/<k +b (6)

where b € spanp{o € S, | (N;) € N; for some 1 < i < k} and N; denotes
the set of integers in the tableau T};.

Next we apply the gluing technique to multitableaux. For all 1 < 5 < k
consider the multipartition (M) = (M(1),..., M (s)) F (n’(1),...,n/(s)), and
suppose that for all 1 < i < s, the partitions A\}(7), ..., A\¥(i) satisfy conditions
(4) and (5), i.e., they are glueable. Then, by the previous arguments, we
obtain a new multipartition (u) = (u(1),..., u(s)), where pu(i) = A(i) % - - - %
Me(i), 1<i<s.

Set ng = 0, n’(i) = 0 and n; = Z?Zlnj(z’), 1 < i< s Let Ty =
(Thiq), -+ > This)), 1 < j < k, be the multitableau corresponding to the
multipartition (V). If we add the integer ng +ny + -+ +n;_1 +n(@) +-- -+
n?~1(i) to all entries of Ty(;y, 1 <4 <s,1 < j <k, we get a new multitableau
which we denote by T{M> = (Tﬁj(l)7 e 7]Kj(s)). Then we define

We denote by N7(7) the set of integers filled in T/’\j(i), 1<i<s,1<j<Ek.
Moreover, let N(i) = N'(i)U---U N¥(i), 1 < i < s. As a consequence of
(6), we get the following.

Lemma 5. Let (M) = (M(1),...,N(s)), 1 < j <k, be multipartitions and
suppose that for all 1 < i < s, the partitions \'(3), ..., \¥(i) satisfy conditions
(4) and (5). Also, let Tiyiy = (Thiq1y, - - -, Thi(s)) be multitableau corresponding
o (N). If T\, = T<’/\1> Koo *T{A’“V then

= Eqv N e 8l N 8l N e 8l
2 T Tk T Tk

6T< + 77
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where v € spanp{c € Sy, X -+ x S, | o(N’(i)) € N’(i), for some 1 <i <
s, 1 <j <k}

In the next lemma we apply the gluing technique in order to construct a
proper central G-polynomial that will be very useful. To this end, for all
1 <i <k, let d; = dimp By, ) and [; = dimp B, 1).

Lemma 6. For any positive integer t > 2k dimp B there exist an integer n,
a multipartition () = (u(1),...,u(s)) of n with

h(d;, 1;, 2t — 4d1mB) < (i) < h(d;,1;,2t),
1 <4 <'s, and a multitableau T}, such that er,, f’ 1s a proper central G-
polynomial of E(B ) for some multilinear G polynomzal f" with deg f' =n +
k4.
Proof: Let p‘g = dimp(Bj)(4,0) and qz‘.j = dimp(Bj)(g1), for all 1 < i < s,
1 <j <k Thend; = Z?lef and [; = Zle ql, 1 <i < s. Moreover, set
uj = dimp By, for all 1 < j < k.

By Lemma 2, for any integer ¢; > 1, there exists a multipartition (M) =
(M(1),...,M(s)) F (n/(1),...,n(s)), a multitableau Ty = (Thi1), - - - Thi(s))
and a multilinear G-polynomial /; such that

hp],ql,2t; —uy) < N(i) < hip], ¢, 2t)),
for all 1 <i <s, and er, h; ¢ 1d°(E(By)).
Let t =t > 2kdimp B be an arbitrary integer and for 2 <[ < k, define

= w_1+ max{pll, . ,pé,qi, . ,qé}.
Also set r; = r; if r; is even and 7, = 1+ 1 if 77 is odd. Moreover, for all
1 <1< k-1, we define
2t = 2t — T;+1.
Hence for all 1 <[ < k, it follows that

20 — g =21 1y — W > 2 F g — W =

— 2tl+1 + maX{pl+17 s 7pls+17 qll+17 SR 7qS+1}

Thus, conditions (4) and (5) hold and, for each 1 < i < s, we can glue
the partitions A'(4),...,\*(i). In this way we get a multipartition (u) =
(u(1), ..., u(s)), such that, for 1 <i <s,

h(dialia 2tkj uk) < :u( ) < h(dlallavl)
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for every v; > max{2t; + pz1 —d;, 2t + qil —1;}.
Now we compute

k—1

2ty — 2 =y (2t; — 2tj4q) =
j=1

; <k+ Z Tj+1

wmw

e

-1
=k+ ) (uj +max{p{+1,... Pt ,q{“,...,q‘gﬂ}) < k+2dimp B
1

J
< 3dimy B.
Thus,
2y, — up > 2t — 3dimp B — uy > 2t — 4dimp B.
Hence, recalling that t = ¢;, we get for all 1 <1 < s,

h(dz,lZ,Qt 4d1mF B) < Iu( ) < h(dl,l“2t)

Moreover, by the gluing technique shown above, we also obtain the multi-
tableau T(,) = (T * - - -*Tﬁk(l), s T * -*Tﬁk(s)).

For all 1 < j < k, denote by f; the polynomial eTW,)hj written in the set
of variables {x;,, | i € N/(r), 1 <r < s}, where N/(r) is the set of integers

filled in T<’ i) Hence the polynomial constructed in Lemma 4

/ / /
f - f(wlflwlu s 7wkfkwk;7 xn—i—l,gikﬂa s 7xn+7“,gir)7
where wy, ..., wg, wi,...,w, are new homogeneous variables distinct from
Trtlg, - Tntrg, and those ones of fi,..., fr, is a proper central G-

polynomial of E(E) and deg f' = n+ k +r, where n = n; + -+ + n,.
We claim that also f = er,, /' is a proper central G-polynomial of £ (E)
Notice that by construction f is a central polynomial, thus we have only
to prove that f ¢ Id“(E(B)). To this end, let ¢ be a non-zero evaluation of
f’. Then by Lemma 5
(f) =ler

A1) '

) +o(rf)

where v € spanp{c € S,, X --- X S, | o(N7(i)) € N’(i), for some 1 < i <

s, 1 < j <k} It readily follows that since E(B )E(B ) = 0 if ¢ # j, then

Y(vf) = 0. Moreover, since €2, = a] ery, for some non-zero integer a7,
M (i) J (@

T/

. /
AR (1) T

. /
M (s) er

AR (s)
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- . N P
and f; = ery, . eT;j(s)h], we also get that ery, eT;j(s)f] ay - od fj.
Hence

N no__ J i g ] /
U(F) = blery, -er,, wer,, en, ) = af--ada]-alu(f) #0,
as claimed. |

As a consequence of the previous result we get the following lemma which
gives us the required lower bound for the proper central G-codimension se-
quence of E(B).

Lemma 7. There exist constants C > 0 and a such that for n large enough,
3¢(E(B)) > Cn"d",
where d = dimp B.

Proof: Let N be any integer such that N > (4 + s)km? + 4m + r, where
m = dimp Band r = deg f, and let us divide N — k> 7, dil; — 2m —r by
2d. Then we have that N = 2td+ k Zle d;l; +2m+r+v with t > 2km and
0<v<2d.

By Lemma 6, there exist an integer n = Y7, n;, a multipartition (u) =
(u(1),...,u(s)) F (n1,...,ns) with the property

1 <4 < s, a mutitableau T}, and a multilinear proper central G-polynomial

~

f' such that er,, f’ is a proper central G-polynomial for E(B) and n < ¢ =
deg f'<n+2m+rand N > n.

Let now f be the polynomial obtained by €T, f" multiplying the variable
up by Zet11, 0 TN, Where Teiq g, ..., TN 1, are new G-graded variables
of homogeneous degree 1g. Since F(Bjp) is a unitary G-graded algebra,
it follows that f is a proper central G-polynomial of E(E) Now, by the
branching theorem (see [18, Theorem 2.4.3]) there exist a multipartition
(A = (A(1),...,A(s)) F (Ny,...,Ng) of N with N; > n;, for all 1 <1 <'s,

ie, A(d) > p(i), 1 < i < s, and a multitableau T}y such that er, f is a
proper central G-polynomial of £ (E)
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Notice that

N = |h(di 1,2t = 4m)| = 2dt + kY dil; + 2m+ 7 +v =Y dil; — 2dt + 4dm
=1 =1 =1

<(k—1)) dili+2m+r+2d+4dm = K
i=1
and K is a constant. Hence for all 1 <i < s, it follows that V; — |h(d;, l;, 2t —
4m)| < K, since N; > n; > |h(d;, 1;, 2t — 4m)|. Thus by [18, Lemma 6.2.4],
dxgy > Ni_Qth(di7li,2t—4m)7

for all 1 <7 < s, where d)(;) is the degree of the irreducible Sy,-character
associated to A\(7), 1 < i < s. By taking into account [18, Lemma 6.2.5], it
follows that

05 N ) > H dxgy 2 H N2y, 1, 00—1m)

.....

> QHNK L+ 1)) dili+(2t—4m) (di+;)

S

> BN ] (i + 1) P tmtto,
=1

for some constant «, 3, K1, ..., Ky, u.
Let r; =d; +1;, 1 <1 <s. Then, since N; > (2t — 4m)r;, we get

N (>, (2t — 4m)r;)!
NN T Tl (2t — dm)ry)!

Thus

.....
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Recalling Stirling formula n! ~ +/2mn <—) , we get
e

(D2t — 4m)m)zf:1(2t*4m)r ﬁ i
HZSZI((Qt - 4m)ri)(2t—4m)7~i

=1
s (2t—4m)>°F |
= C'N® (Z n) = ONdN

§G(E(B)) > C'N°

i=1
for some constants C’, C' and a. The proof is now complete. |

Theorem 3. Let E(A) be the Grassmann envelope of a finite dimensional
G X Zs-graded algebra A over a field F' of characteristic zero. If there exists
a centrally admissible G X Zs-subalgebra for E(A), then for n large enough,
there exist constants C1,> 0 Cs, ay, as such that

Cin®d" < 69(E(A)) < Cyn®2d™,

where d is the maximal dimension of a centrally admissible G X Zy-subalgebra
for E(A). Thus the proper central G-exponent exp®®(E(A)) exists and is a
non-negative integer.

Proof: Since the codimensions do not change by extending the ground field,
we may assume that F' is algebraically closed. The proof follows from Lem-
mas 1 and 7, by noticing that 6¢(E(A)) > 6¢(E(B)), where B = B+ J and
B is a centrally admissible G x Zs-subalgebra for F(A) of maximal dimen-
sion. |

In case E(A) has proper central polynomials but A has no centrally ad-
missible G x Zs-subalgebras, then the following proposition holds.

Proposition 2. If for E(A) there are no centrally admissible subalgebras,
then for n large enough, 0% (E(A)) = 0.

Proof: 1f A is a nilpotent algebra, we have nothing to prove. So let us assume
that A = A+ J, where A is a maximal semisimple G x Zy-graded subalgebra
of A, and A is not nilpotent. If F(A) has no proper central polynomials
then the result easily follows. Otherwise, let h(z1g, ,...,2ng, ) be a mul-
tilinear proper central G-polynomial of E(A). Then there exist G-graded
homogeneous elements a; € E(A), 1 < i < n, such that h(ai,...,a,) # 0.
Since A has no centrally admissible G x Zy-subalgebras, then a; € E(J), for
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all 1 < i < n, and J* # 0. Thus it follows that 6¢(E(A)) = 0 a soon as
JV =0. m

Corollary 1. If R is a G-graded algebra over a field of characteristic zero,
then the proper central G-exponent exp®?(R) exists and is a non-negative
integer. Moreover, exp®’(R) < exp%(R).

7. The central exponent

In this section we shall study the central graded exponent exp®?(R), where
R is any G-graded algebra, and we will compare it to the ordinary G-graded
exponent.

To that end, we need some preliminary results about G-graded minimal
varieties and their relation with central G-polynomials. Minimal varieties
were completely described in [17], [11] and [10] in the setting of ordinary
polynomial identities, identities with involution and identities with graded
involution, respectively. Moreover, in [9] the authors studied minimal vari-
eties for algebras graded by the cyclic group Z,. In what follows we present
some basic results strictly related to our purpose.

We start by recalling the definition of minimal G-graded algebra.

Definition 2. Let F' be an algebraically closed field. A finite dimensional
G-graded algebra A is called minimal if either A is G-simple or A = Ay &
@B Ay + J, where

1. Ay, ..., A, are G-simple algebras and m > 2;
2. there exist homogeneous elements wiz, Wos, ..., Wy—1,m € J and mini-
mal homogeneous idempotents ey € Ay, ..., e, € A, such that

ClWiip1 = Wiit1€i41 = Wip1, 1 <1<m
and
W12W23 * * * Wm—1,m # 0;
3. Wiz, Wa3, . . . Wy—1,m generate J as two-sided ideal of A.
We highlight that in some papers, minimal algebras are called triangular al-
gebras since their properties recall in some sense the ones of upper triangular
matrix algebras.

Strictly connected to minimal algebras, there are the minimal varieties of
exponential growth whose definition in the graded case is the following.
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Definition 3. Let V be a variety of G-graded algebras. Then V is said to be
minimal of G-exponent d if exp®(V) = d and for any proper subvariety U,
exp®(U) < d.

The next theorem relates minimal G-varieties and Grassmann envelope of
minimal algebras. To this end, notice that Definition 2 has to be properly
translated in case of algebras graded by the group G x Zs.

Theorem 4. Let V be a minimal G-variety of G-exponent d > 2. Then there
exists a minimal G X Zy-graded algebra A such that V = var®(E(A)).

Proof: By following the lines of [18, Lemma 8.1.5] with the necessary adap-
tations to the graded case, one can prove that there exists a minimal G X Z-
graded algebra A such that E(A) € V and exp¥(V) = exp®(E(A)) = d (see
also [25, Lemma 9]). Thus, by the minimality of V), it readily follows that
V = var%(E(A)) as claimed. n

Grassmann envelopes of minimal G X Zs-graded algebras, which are not sim-
ple, have no proper central G-polynomial as proved in the following lemma.

Lemma 8. Let A=A, ®---® A, + J be a minimal G X Zy-graded algebra.
If m > 2, then E(A) has no proper central G-polynomials.

Proof: Since A is minimal, we notice that Z(A) N J = 0. Moreover, if we
set Z(A)o = D eq Z2(A)(g0), then one can easily check that Z(E(A)) =
Z(A)y ® Ey, thus also

Z(E(A)NE(J)=0.
Let f = f(%14,,..,%ng,) be a multilinear central G-polynomial of E(A).

In order to reach our goal, we have to prove that f € Id“(E(A)). To this
end, let assume by contradiction that f is not a G-identity of F(A).

Since E(A;)E(A;) = 0, for all i # j, and Z(E(A)) N E(J) = 0, then in
particular we can assume that f is a proper central G-polynomial of E(A;)
for some 7. Moreover, notice that since G X Zs is abelian and f is multilinear,
any evaluation of f on elements of F(A) is G X Zy-homogeneous. Hence there
exist G X Zs-homogeneous elements aq, ..., a, € F(A;) such that

fla,...;a,) =a®@h € Z(A;) g0 @ Eo C Z(E(A)),

for some g € G, h € Ey, a # 0.
According to Theorem 2, if A; = F*HQ M (F'), forsome k > 1, H < GXZs
and « 2-cocycle, then we write a = gy ® I, where 5 € F*, gy = (9,0) € H
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and [ is the k x k identity matrix. Let suppose that [ is the order of gy,

then
-1

a' = '] elgh 90) <1G><Zz ® fk)
=1

is a non-zero central element of A;. Thus in particular, (1GXZ2 ® ]k) ®h €
Z(E(A)).

Denoted by 14, = lgxz, ® I the unit element of A;, we have that if
1<:1<m—-1

(14, @ h)(wijis1 @ h') = wijy1 @ WA #0
for some h' € E, whereas
(wi,i—i-l @ h/)(lAi @ h) = 0.
Similarly,
(1a,, @ h)(Wn-1m @ h') =0
and
(Win—1.m @ B ) (14, @ h) = Wy—1.,m @ K'h £ 0.

Hence we get a contradiction since we are assuming that 14, @ h € Z(E(A)).

Thus f € Id°(E(A;)) for all 1 < i < m and so, according to what remarked
above, f € 1d%(E(A)). _

We are now in a position to prove the existence of the central G-exponent
of a G-graded algebra provided that its graded exponent is greater or equal
than 2.

Theorem 5. Let R be a G-graded algebra over a field of characteristic zero
such that exp®(R) > 2. Then either ¢G*(R) = 0 for allm >0, or

Cin' exp®(R)" < ¢#(R) < Cyn'? exp®(R)"
for some constants C; > 0, Csy, tq, to.
Proof: If R is commutative, then it is clear that ¢¢*(R) = 0 for all n > 0, so
let us suppose that R is not commutative.

As we already did before, we may assume that F' is an algebraically closed

field and R = E(A), where A is a finite dimensional G x Zs-graded algebra.
By [14, Theorem 2|, there exist constants C; > 0, Cy, t1, t5 such that

Cint'd" < C(E(A)) < Con2d", (7)
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where d = exp®(E(A)). Hence by (1), we get that also ¢&*(E(A)) < Cynlzd™.
Thus we have to prove now the lower bound.

Let V = var®(E(A)). Since any Tg-ideal is finitely generated, it readily
follows that )V contains a subvariety ¢/ which is minimal of G-exponent d =
exp®(U) = exp”(V). Hence by Theorem 4, there exists a minimal G x Zs-
graded algebra B such that U = var®(E(B)).

Suppose first that B is not G x Zo-simple. Then by Lemma 8, E(B) has
no proper central G-polynomials and therefore

1d%*(E(A)) C 1d%*(E(B)) = Id°(E(B)).

Thus c¢*(E(A)) > % (E(B)) and, since ¢¢(E(B)) has a lower bound as in
(7), we are done in this case.

Now suppose that B is G X Zy-simple. If F(B) is commutative, then
1d“*(E(B)) = 1d°(FE(B)) and, as in the previous case, we get the desired re-
sult. Thus let us suppose that E(B) is not commutative. Let N = c¢(E(B))
and let fi,..., fy € P% be multilinear G-polynomials linearly independent
modulo I1d%(E(B)). We shall prove that fiZp.1, ..., fNZns1, Where T4 is an
extra variable of any homogeneous degree, are linearly independent modulo
1d9*(E(B)).

Suppose by contradiction that there exist not all zero scalars aq,...,ay
such that a; fiZns1+ -+ oy fyTna € Id9*(FE(B)) and set f = oy fi+- -+
ay fx. It is clear that f ¢ Id°(E(B)).

If f is a central G-polynomial of F(B), then it must be a proper cen-
tral polynomial and there exists a non-zero evaluation ¢ such that ¢(f) €
Z(E(B)) = Z(B)o ® Ey. Recall that Z(B)o = D cq Z(B)(4,0)- In particular,
if B= F*H ® My(F) for some k > 1, H < G X Zy and « 2-cocycle, then we
can assume ¢(f) = (a® I) ®ly, where a € Z(F*H), I is the k x k identity
matrix and [y € Ej.

If £ > 1, then we set b = 15«7, ® €12 and we can extend ¢ to an evaluation
@' of fr,1 such that ' (fr,11) = (a®e12) Rl # 0, for some suitable [ € E.
Since such an element is not central, we get a contradiction.

Suppose now k = 1. Since F(B) is not commutative, then either B is not
commutative or there exists an element (g, 1) € G x Zy such that B, 1) # 0.

Suppose first that B is not commutative, write a = ), 5 frh and let
ho € H be such that g, # 0. Then there exists hy ¢ Z(F*H) and we set
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b= halhl. Thus

ab =" Bpa(h, hy ' ha)hhg hy = Buyo(ho, by h)ha+ Y Bra(h, by ha)hhg b,
heH h#hg

where By,a(ho, by 'h1) # 0. We get that ab is a non-zero non central element
of F*H, since if ab € Z(F“H), then each summand should be a central
element, thus in particular hy € Z(F*H), a contradiction. We now evaluate
Tpa1 In b ® [, for some suitable [ € F, so that ¢ can be extended to an
evaluation ¢’ of fx,.1 such that

@ (frni1) = ab® lol #0

that is a non central element of E(B).
Now suppose that there exists ' = (g,1) € G x Zj such that B, ) # 0.
Then

ah' = Byoc(ho, W )hol + Y ~ Bua(h, h'Yhh! # 0.
hhy
Therefore, by evaluating x,.1 in b’ ® [ where [, € E;, we get

' (frp) =ah @ lply #0

that is a non central element of F(B) since lyl; € Ej.

Finally, suppose that f is not a central G-polynomial of F(B), then fxz,1
has a non central evaluation by specializing x,,.1 with 1z ® [, for a suitable
[ € Ey.

Thus in both cases we have a contradiction and oy = --- = ay = 0.
We have proved that ¢(E(B)) < cgfl(E(B)) and we are done. n

We now study G-graded algebras with G-exponent less or equal than 1. If
R is such an algebra, then by [24, Lemma 2.1], we may assume that R is
finite dimensional.

Lemma 9. Let R be a finite dimensional G-graded algebra over an alge-
braically closed field such that exp®(R) = 1. If ¢%*(R) = 0 for some n > 2,
then R = C'® N, where C' is a commutative G-graded algebra and N is a
nilpotent G-graded algebra.

Proof: Write R=A1®---®A,,+J, where A4, ..., A, are G-simple algebras
and J is the Jacobson radical. Since exp”(R) = 1, then A; = F for all
1 <1< m.
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Denote by e the unit element of A; and set Jy = {j € J | ej = je =0} and
Ji={jeJ]|ej=je=j} Itis clear that Jy and J; are G-graded ideals of
R.

Moreover, remark that J = Jy @& J;. In fact, for all j € J, we can write
Jj =7 —ej+ej and since cg’Z(R) = 0, for some n > 2, in particular x;1 - - -z,
is a central G-polynomial of R, where x1,...,z, are homogeneous variables
of any degree. Therefore, j —ej € Jy and ej € J.

Notice that eA; = A;e = 0 for all 2 <17 < m, hence A;J; = J1A; =0 and
R=A+)® A ---DA,+ Jy)

as G-graded algebras. Remark that for all j € J;, we can write j = e" 15,
therefore j is a central element of R and A; + J; is a commutative G-graded
algebra.

Applying the same arguments to As & --- & A, + Jy, we finally get that
R=Ci®---®C, &N, where C1,...,C,, are commutative and N C J is
nilpotent, as claimed. |

Putting together the previous results we finally get the following theorem.

Theorem 6. Let R be any G-graded algebra over a field of characteristic zero.
Then its central G-exponent exp®*(R) erists. Moreover either exp®*(R) =
exp®(R) or exp®*(R) = 0.

Proof: If exp®(R) > 2, then by Theorem 5 either exp®?(R) = exp®(R) or
exp®*(R) = 0.

Now suppose that exp(R) = 1, then R can be assumed finite dimensional.
Furthermore, since the codimension sequence does not change by extending
the base field, we may assume F' to be algebraically closed. Notice that in
this case ¢&*(R) is polynomially bounded and exp®*(R) < 1.

If c%%(R) # 0 for all n > 1, then it readily follows that exp®*(R) = 1.

Otherwise there exists an integer n such that ¢*(R) = 0, so Lemma 9
applies and R = C @& N, where C' is commutative and N is nilpotent. Thus
exp®*(R) = 0.

Finally, if exp®(R) = 0, then R is nilpotent, exp®*(R) = 0 and we are
done. -
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