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Abstract: Let G be a finite abelian group and let A be an associative G-graded
algebra over a field of characteristic zero. A central G-polynomial is a polynomial of
the free associative G-graded algebra that takes central values for all graded substi-
tutions of homogeneous elements of A. We prove the existence and the integrability
of two limits called the central G-exponent and the proper central G-exponent that
give a quantitative measure of the growth of the central G-polynomials and the
proper central G-polynomials, respectively. Moreover, we compare them with the
G-exponent of the algebra.
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1. Introduction
Let G be a finite abelian group and let A be a G-graded algebra over a

field of characteristic zero. If we denote by F 〈X,G〉 the free associative G-
graded algebra, freely generated over F by the set X of variables, then a
G-polynomial f ∈ F 〈X,G〉 is a central G-polynomial of A if f takes values
in Z(A), the center of A. In case f vanishes on A, then it is called a G-
polynomial identity of A, otherwise f is a proper central G-polynomial.

Central polynomials were first studied after a famous conjecture of Kaplan-
sky asserting that the algebra Mn(F ) of n × n matrices over F has proper
central polynomials (see [21]). Later on, such a conjecture was proved in-
dependently by Formanek and Razmyslov in [13] and [26]. Nowadays very
few is known about T -spaces of central polynomials. For instance, in [7] the
T -space of central polynomials of the Grassmann algebra in characteristic
different from 2 was computed, while a similar result for the same algebra
was achieved in [8] for central polynomials with involution. On the other
hand, there exist algebras with a non-trivial center having no proper central
polynomials (see [19, Lemma 1]).
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By using an idea of Regev (see [27]), here we are interested in a quantitative
approach in order to get information about how many central polynomials
a given G-graded algebra has. To this end, we consider for any n ≥ 1 the
space PG

n of multilinear graded polynomials of degree n and we attach to
it three numerical sequences: cGn (A), the dimension of PG

n modulo the G-
polynomial identities of A; cG,zn (A), the dimension of PG

n modulo the central
G-polynomials of A; δGn (A), the dimension of the space of multilinear central
G-polynomials of degree n modulo the graded identities of A. They are called
the G-graded, central G-graded and proper central G-graded codimension
sequence, respectively, and for all n ≥ 1,

cGn (A) = cG,zn (A) + δGn (A).

It follows that one can gather informations about cGn (A) by knowing how
cG,zn (A) behaves and viceversa (see for instance [6]).

The asymptotic behavior of the G-graded codimension sequence was ex-
tensively studied in the past years. In fact, in [15] it was proved that if A
satisfies a non-trivial ordinary polynomial identity (PI-algebra), then cGn (A)
is exponentially bounded, moreover in [2], [3] and [14] the authors proved
the existence and the integrability of the graded exponent, expG(A), also for
non-abelian groups. Such a result was generalized in [22] in the setting of
H-module algebras, where H is a semisimple finite dimensional Hopf algebra.

In this paper we want to prove an analogous result for the central and
the proper central G-polynomials. Because of the previous relation among
the codimension sequences, it is clear that cG,zn (A) and δGn (A) are exponen-
tially bounded, provided that A is a PI-algebra. Furthermore, what can
we say about the central G-exponent, expG,z(A), and the proper central G-
exponent, expG,δ(A)? We will prove that such exponents exist and they are
non-negative integers by showing an explicit way to compute them. More-
over, we compare the central G-exponent with the G-exponent by proving
that either expG,z(A) = expG(A) or expG,z(A) = 0. Similar results were re-
cently achieved for ordinary algebras in [19] and [20] and for algebras with
involution in [25].

2. The basic setting
Let F be a field of characteristic zero, G be a finite abelian group and A

be a G-graded algebra over F, i.e. A =
⊕

g∈GAg, where the Ag’s are vector
subspaces of A such that AgAh ⊆ Agh for all g, h ∈ G. We refer to such
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subspaces as the homogeneous component of A and we say that the element
a has homogeneous degree g if a ∈ Ag for some g ∈ G. In this case we write
|a|G = g or simply |a| = g if no ambiguity arises.

Let F 〈X〉 be the free associative algebra on a countable set X of variables
x1, x2, . . . . One can define on such an algebra a G-grading in a natural way:
write X =

⋃
g∈GXg, where Xg = {x1,g, x2,g, . . .} are disjoint sets and the

elements of Xg have homogeneous degree g. If we denote by Fg the subspace
of F 〈X〉 spanned by all monomials in the variables of X having homoge-
neous degree g, then F 〈X〉 =

⊕
g∈GFg is a G-graded algebra called the free

associative G-graded algebra of countable rank over F. We shall denote it by
F 〈X,G〉.

From now on, let G = {g1, . . . , gs}. A G-graded polynomial, or simply a
G-polynomial,

f = f(x1,g1, . . . , xt1,g1, . . . , x1,gs, . . . , xts,gs)

of F 〈X,G〉 is a G-graded identity (or simply graded identity) of A, and we
write f ≡ 0, if

f(a1,g1, . . . , at1,g1, . . . , a1,gs, . . . , ats,gs) = 0

for all ai,gi ∈ Agi, ti ≥ 0, for all 1 ≤ i ≤ s.

Let IdG(A) = {f ∈ F 〈X,G〉 | f ≡ 0 on A} be the ideal of graded identities
of A. It is easily seen that IdG(A) is a TG-ideal, i.e. it is an ideal invariant
under all graded endomorphisms of F 〈X,G〉.

Notice that if for some i ≥ 1 we set xi = xi,g1 + · · · + xi,gs, then F 〈X〉
is naturally embedded into F 〈X,G〉 so that we can look at the (ordinary)
identities of A as a special kind of graded identities.

Since charF = 0, then IdG(A) is determined by the multilinearG-polynomials
it contains. Thus, for all n ≥ 1, one can define

PG
n = spanF{xσ(1),gi1

· · · xσ(n),gin
| σ ∈ Sn, gi1, . . . , gin ∈ G}

as the space of multilinearG-polynomials in the graded variables x1,gi1
, . . . , xn,gin ,

gij ∈ G. Here Sn stands for the symmetric group on the integers {1, . . . , n}.
The TG-ideal IdG(A) is determined by the sequence of subspaces PG

n ∩IdG(A),
n ≥ 1, and we can construct the quotient space

PG
n (A) =

PG
n

PG
n ∩ IdG(A)

.
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The non-negative integer

cGn (A) = dimF P
G
n (A), n ≥ 1,

is called the nth codimension of A and the asymptotic behavior of the cor-
responding sequence is in some sense a quantitative measure of how many
identities are satisfied by A. In [15] it was proved that if A satisfies a non-
trivial ordinary polynomial identity, then such a sequence is exponentially
bounded. Moreover, in [2, 3, 14] the authors captured this exponential growth
by proving the existence and the integrability of the limit

expG(A) = lim
n→+∞

n

√
cGn (A),

called the G-exponent of A. We highlight that such a result was achieved for
any finite group.

The study of multilinearG-polynomials can be reduced to the one of smaller
spaces in the following way. Take n ≥ 1 and write n = n1 + · · · + ns, where
n1, . . . , ns ≥ 0. Then define Pn1,...,ns as the subspace of PG

n of multilinear G-
polynomials in which the first n1 variables have homogeneous degree g1, the
next n2 variables have homogeneous degree g2, and so on. It is clear that PG

n

is the direct sum of such subspaces with n1 + · · ·+ ns = n as well as PG
n (A)

that inherits this decomposition. Thus, one defines

Pn1,...,ns(A) =
Pn1,...,ns

Pn1,...,ns ∩ IdG(A)

and sets

cn1,...,ns(A) = dimF Pn1,...,ns(A).

Notice that, given n1, . . . , ns, there are
(

n
n1,...,ns

)
subspaces isomorphic to

Pn1,...,ns. Therefore, for all n ≥ 1,

cGn (A) =
∑

n1+···+ns=n

(
n

n1, . . . , ns

)
cn1,...,ns(A).

Since there is a one-to-one correspondence between TG-ideals and G-vari-
eties of algebras, often it is convenient to translate all the objects we have
introduced into the language of G-varieties. Thus if V = varG(A) is the G-
variety generated by the G-graded algebra A, then we write IdG(V) = IdG(A),
cGn (V) = cGn (A) and the growth of V is the growth of the codimension sequence
cGn (V).
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3. Grassmann envelope and G× Z2-graded algebras
In this section we introduce a useful tool that one can use in order to

reduce the problem of computing the TG-ideal of graded identities of any
G-graded algebra to that of the so-called Grassmann envelope of a suitable
finite dimensional G × Z2-graded algebra, where Z2 is the cyclic group of
order 2 in additive notation.

Let E denote the infinite dimensional Grassmann algebra generated by the
elements 1, e1, e2, . . . subject to the relations eiej = −ejei, for all i 6= j. Let
E = E0 ⊕ E1 be its natural Z2-grading, where

E0 = spanF{ei1 · · · ei2k | 1 ≤ i1 < · · · < i2k, k ≥ 0}
and

E1 = spanF{ei1 · · · ei2k+1
| 1 ≤ i1 < · · · < i2k+1, k ≥ 0}.

Moreover, let A =
⊕

(g,i)∈G×Z2
A(g,i) be a G × Z2-graded algebra. Then

A has an induced Z2-grading, A = A0 ⊕ A1, where A0 =
⊕

g∈GA(g,0) and
A1 =

⊕
g∈GA(g,1), and an induced G-grading A =

⊕
g∈GAg where, for all

g ∈ G, Ag = A(g,0) ⊕ A(g,1).
Then, the Grassmann envelope of A is defined as

E(A) = (A0 ⊗ E0)⊕ (A1 ⊗ E1).

On one hand, it has a natural G × Z2-grading induced by the one of A, i.e.
E(A) =

⊕
(g,i)∈G×Z2

E(A)(g,i) where E(A)(g,i) = A(g,i) ⊗ Ei. On the other, it

has an induced G-grading by setting E(A)g = (A(g,0) ⊗ E0)⊕ (A(g,1) ⊗ E1).
In case of ordinary polynomial identities, a celebrated theorem of Kemer

states that an arbitrary algebra satisfying a non-trivial polynomial identity
over a field of characteristic zero has the same identities as the Grassmann
envelope E(A) of a finite dimensional Z2-graded algebra A (see [23]). This
result was independently extended in the setting of graded algebras in [1]
and [29] by proving the following theorem.

Theorem 1. Let R be a G-graded algebra satisfying a non-trivial ordinary
polynomial identity. Then there exists a finite dimensional G × Z2-graded
algebra A such that IdG(R) = IdG(E(A)).

It is worth mentioning that in [1] the result was proved also for non-abelian
groups.

By the Wedderburn–Malcev decomposition, we write

A = A′ + J
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where A′ is a maximal semisimple subalgebra of A, which we may assume
to be G× Z2-graded by [28], and J = J(A) its Jacobson radical, which is a
graded ideal of A. Also we can write A′ = A1 ⊕ · · · ⊕ Ak, where A1, . . . , Ak

are G× Z2-graded simple algebras (or simply G× Z2-simple algebras). The
description of such algebras is given in the following theorem proved by Bah-
turin, Sehgal and Zaicev in [5].

Theorem 2. Let A be a finite dimensional G×Z2-simple algebra. Then there
exist a subgroup H of G×Z2, a 2-cocycle α : H ×H → F ∗, where the action
of H on F is trivial, an integer m and an m-tuple (g1 = 1, g2, . . . , gm) ∈
(G× Z2)

m such that A is isomorphic as G× Z2-graded algebras to

R = F αH ⊗Mm(F ),

where Rg = spanF{bh⊗ eij | g = g−1
i hgj}. Here bh ∈ F αH is a representative

of h ∈ H.

In order to simplify the notation we shall use the elements of the group
instead of their representatives. According to the previous result, it turns
out that Z(A) ∼= Z(F αH)⊗ Im, where Im is the m×m identity matrix.

As a way to prove Theorem 1, the authors defined a map, denoted by ,̃
relating the G × Z2-identities of a G × Z2-graded algebra A to the ones of
E(A).

First they introduced the following notation. In the free G × Z2-graded
algebra F 〈X,G× Z2〉, write xi,(g,0) = yi,g and xi,(g,1) = zi,g, for all g ∈ G and
i ≥ 1. Now let f ∈ F 〈X,G×Z2〉 be a multilinear polynomial in the variables
z1, . . . , zm, y1, . . . , yt and write f in the form

f =
∑
σ∈Sm

W=(w0,w1,...,wm)

ασ,Ww0zσ(1)w1 · · ·wm−1zσ(m)wm

where z1, . . . , zm are homogeneous variables of degree (g, 1), g ∈ G, w0,
w1, . . . , wm are (eventually empty) monomials in variables of homogeneous
degree (g, 0), g ∈ G, and ασ,W ∈ F. Then define

f̃ =
∑
σ∈Sm

W=(w0,w1,...,wm)

(sgnσ)ασ,Ww0zσ(1)w1 · · ·wm−1zσ(m)wm.

According to [18], the map ˜ is such that

1. ˜̃f = f ;
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2. f is a G× Z2-identity of E(A) if and only if f̃ is a G× Z2-identity of
A;

3. for any subset Z of variables {z1, . . . , zm}, f is alternating on Z if and
only if f̃ is symmetric on Z.

4. On central G-polynomials
In this section we shall introduce the main object of the paper. Let R be

a G-graded algebra, then a G-polynomial f(x1,gi1
, . . . , xn,gin) ∈ F 〈X,G〉 is a

central G-polynomial (or simply a central polynomial) of R if f(a1, . . . , an) ∈
Z(R) for all homogeneous elements a1 ∈ Rgi1

, . . . , an ∈ Rgin . If f takes only
the zero value, then it is clear that f is a graded identity of R, otherwise we
say that f is a proper central G-polynomial of R.

Let IdG,z(R) = {f ∈ F 〈X,G〉 | f is a central G-polynomial of R}. Then
IdG,z(R) is a TG-space of F 〈X,G〉, i.e. a vector space invariant under all
G-graded endomorphisms of the free G-graded algebra.

We set

PG,z
n (R) =

PG
n

PG
n ∩ IdG,z(R)

,

and

∆G
n (R) =

PG
n ∩ IdG,z(R)

PG
n ∩ IdG(R)

.

Notice that ∆G
n (R) corresponds to the space of multilinear proper central

G-polynomials of R in n fixed homogeneous variables.
It can be easily checked that if R1 and R2 are two G-graded algebras

such that IdG(R1) = IdG(R2), then IdG,z(R1) = IdG,z(R2) and so ∆G
n (R1) =

∆G
n (R2) for all n ≥ 1.
Moreover, define cG,zn (R) = dimF P

G,z
n (R) and δGn (R) = dimF ∆G

n (R), n ≥
1, as the sequences of central G-codimensions and proper central G-codimen-
sions, respectively. Then

cGn (R) = cG,zn (R) + δGn (R), (1)

for all n ≥ 1. If R is a PI-algebra, then cGn (R) is exponentially bounded and
so are cG,zn (R) and δGn (R) and our aim is to capture their exponential growth.
In particular, we are asking whether the two limits

expG,z(R) = lim
n→+∞

n

√
cG,zn (R) and expG,δ(R) = lim

n→+∞
n

√
δGn (R)
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exist and, in case of affirmative answer, compute them.
To this end, as we already did for PG

n (R), one can split ∆G
n (R) into the

direct sum of subspaces

∆n1,...,ns(R) =
Pn1,...,ns ∩ IdG,z(R)

Pn1,...,ns ∩ IdG(R)
,

where n1 + · · ·+ ns = n, and set δn1,...,ns(R) = dimF ∆n1,...,ns so that

δGn (R) =
∑

n1+···+ns=n

(
n

n1, . . . , ns

)
δn1,...,ns(R).

In order to guess the proper central G-exponent expG,δ(R), we now intro-
duce the following notation.

Let A be a finite dimensional G × Z2-graded algebra such that IdG(R) =
IdG(E(A)) and write A = A1 ⊕ · · · ⊕Am + J, where A1, . . . , Am are G× Z2-
simple algebras and J is the Jacobson radical of A. We say that A is reduced
if Ai1JAi2J · · · JAim 6= 0, where i1, . . . , im ∈ {1, . . . ,m} are all distinct.

Definition 1. A semisimple G× Z2-graded subalgebra B = Ai1 ⊕ · · · ⊕ Aik,
where i1, . . . , ik ∈ {1, . . . ,m} are all distinct, is called centrally admissible
for E(A) is there exists a proper central G-polynomial

f(x1,gj1
, . . . , xr,gjr )

of E(A) such that r ≥ k and f(a1, . . . , ar) 6= 0, for some homogeneous ele-
ments a1 ∈ E(Ai1)gj1 , . . . , ak ∈ E(Aik)gjk , ak+1 ∈ E(A)gjk+1

, . . . , ar ∈ E(A)gjr .

Remark 1. If B is centrally admissible for E(A) of maximal dimension,

then B̂ = B + J is reduced.

Proof : Without loss of generality, we may assume that B = A1 ⊕ · · · ⊕ Ak.
Moreover, let f be a multilinear proper central G-polynomial as in Definition
1. Since E(Ai)E(Aj) = 0 for all i 6= j and f is not a graded identity of E(A),
then

E(Ai1)E(J)E(Ai2)E(J) · · ·E(J)E(Aik) 6= 0

for some permutation (i1, . . . , ik) of (1, . . . , k). Thus Ai1JAi2J · · · JAik 6= 0,

that is, B̂ = B + J is reduced.

The next two sections are devoted to the computation of an upper and
lower bound for the proper central G-codimension sequence. In particular,
we claim that expG,δ(E(A)) = d, where d is the maximal dimension of a
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centrally admissible subalgebra for E(A). The last section studies the central
G-exponent compared with the G-graded (ordinary) exponent. There we will
prove that either such exponents are equal or the central G-exponent is zero.

5. The upper bound for δGn (R)
In this section we shall determine an upper bound for the proper central

G-codimensions of a G-graded PI-algebra.
Let S be the free supercommutative algebra over F of countable rank (see

[4]). Recall that S is defined by its universal property: we let T1 = {ξi,j},
T2 = {ηi,j} be countable sets, then S = F 〈T1, T2〉 is the algebra with 1
generated by T1, T2 subject to the condition that the elements of T1 are
central and the elements of T2 anticommute among themselves. The algebra
S has a natural Z2-grading S = S0⊕S1 by requiring that the variables ξi,j are
of homogeneous degree zero and the variables ηi,j are of homogeneous degree
one. Notice that the Grassmann algebra E can be viewed as a Z2-graded
subalgebra of S if one identifies the generating elements ek with the elements
ηi,j. Hence S ∼= E ⊗ F [ξi,j], S0

∼= E0 ⊗ F [ξi,j] and S1
∼= E1 ⊗ F [ξi,j].

We recall our general setting: A = A1 ⊕ · · ·Am + J is a finite dimensional
G × Z2-graded algebra over an algebraically closed field F, u ≥ 0 is the
smallest integer such that Ju+1 = 0 and G = {g1, . . . , gs} is an abelian
group. One can define the superenvelope of A to be

S(A) = S0 ⊗ A0 ⊕ S1 ⊗ A1
∼= E(A)⊗ F [ξi,j].

Clearly S(A) has an induced G-grading where S(A)g ∼= E(A)g ⊗ F [ξi,j],

g ∈ G, and IdG(S(A)) = IdG(E(A)). Fix a basis B of A of homogeneous
elements respect to the G× Z2-grading which is union of a basis of J and a
basis for each of the Ai. Let B = {a1, . . . , ar, b1, . . . , bt} where {a1, . . . , ar} is
a basis of A0 and {b1, . . . , bt} is a basis of A1. For a fixed n ≥ 1, we choose
nr variables ξi,j ∈ T1, i = 1, . . . , n, j = 1, . . . , r and nt variables ηi,j ∈ T2,
i = 1, . . . , n, j = 1, . . . , t. For i = 1, . . . , n, g ∈ G, we define the generic
elements:

Ui,g =
∑

ξi,rj ⊗ arj +
∑

ηi,tj ⊗ btj ∈ S(A),

where the first sum runs over all rj such that arj is of homogeneous degree
(g, 0) and the second one runs over all tj such that btj is of homogeneous
degree (g, 1). We denote by H the G-graded subalgebra generated by the
generic elements Ui,g, i = 1, . . . , n, g ∈ G.
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Proposition 1. The algebra H is isomorphic to the relatively free G-graded
algebra for E(A) in ns graded generators.

Proof : Let ψ be the graded homomorphism of the free G-graded algebra
F 〈x1,g1, . . . , xn,g1, . . . , x1,gs, . . . , xn,gs〉 to the algebra H mapping xi,gi 7→ Ui,gi.

We shall prove that Kerψ = IdG(E(A)). Since IdG(E(A)) = IdG(S(A)) ⊆
IdG(H) we have that IdG(E(A)) ⊆ Kerψ.

Now let f = f(x1,g1, . . . , xn,g1, . . . , x1,gs, . . . , xn,gs) ∈ Kerψ, i.e.,

f(U1,g1, . . . , Un,g1, . . . , U1,gs, . . . , Un,gs) = 0

and consider arbitrary homogeneous elements of E(A)

ci,gl =
∑

αi,rj ⊗ arj +
∑

βi,tj ⊗ btj ,

i = 1, . . . , n, l = 1, . . . s, where the first sum runs over all rj such that
arj is of homogeneous degree (gl, 0), the second one runs over all tj such
that btj is of homogeneous degree (gl, 1), αi,j ∈ E0 and βi,j ∈ E1. Con-
sider then the homorphism ρ : A ⊗ F [ξi,j, ηl,k] → A ⊗ E which is the iden-
tity on A and maps ξi,j 7→ αi,j, ηl,k 7→ βl,k. This maps Ui,gl to ci,gl and
f(c1,g1, . . . , cn,g1, . . . , c1,gs, . . . , cn,gs) = ρ(f(U1,g1, . . . , Un,g1, . . . , U1,gs, . . . , Un,gs)).
This says that if f vanishes when computed on the generic elements Ui,gl, it
is a graded identity for E(A).

As a consequence we have that a G-polynomial f is a G-identity of E(A)
if and only if it vanishes on the generic elements Ui,g, g ∈ G, i ≥ 1. Now let
ψ the homomorphism defined above and consider

ψ(PG
n ∩IdG,z(E(A))) =

=
{
f(U1,gi1

, . . . , Un,gin) | f(x1,gi1
, . . . , xn,gin) ∈ PG

n ∩ IdG,z(E(A))
}
.

We say that for all f, g ∈ PG
n , f ⊇ g if f = g + h for some h ∈ PG

n . Then we
set

An = {f ∈ PG
n ∩ IdG,z(E(A)) | f + g, for all g ∈ IdG(E(A))}

and define

Zn = spanF

{
Uσ(1),gi1

· · ·Uσ(n),gin
| σ ∈ Sn, gi1, . . . , gin ∈ G and

xσ(1),gi1
· · · xσ(n),gin

is a monomial of some G-polynomial in An
}
.
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It is clear that

δGn (E(A)) = dim spanF ψ(PG
n ∩ IdG,z(E(A))) ≤ dimZn

and, for fixed non negative integers n1, . . . , ns such that n = n1 + · · ·+ ns

δn1,...,ns(E(A)) = dim spanF ψ(Pn1,...,ns ∩ IdG,z(E(A))) ≤ dimZn1,...,ns (2)

where Zn1,...,ns ⊆ Zn is the span of the monomials in which the first n1

generic elements have homogeneous degree g1, the next n2 generic elements
have homogeneous degree g2 and so on.

Next we shall prove the following result.

Lemma 1. There exist constants C > 0 and v such that

δGn (E(A)) ≤ Cnvdn,

where d is the maximal dimension of a centrally admissible algebra for E(A).

Proof : We start by computing an upper bound of dimF Zn1,...,ns.
Take a monomial in Zn1,...,ns and by replacing each Ui,g, write such a mono-

mial as a linear combination of elements of the type Γc ⊗ c where c ∈ A is a
product of n elements of the chosen basis and

Γc = γ1,j1γ2,j2 · · · γn,jn
with γk,jk equal either to ξk,jk or to ηk,jk. Thus we shall estimate dimF Zn1,...,ns
through an estimate of the number of possible monomials Γc such that c 6= 0.
Since each variable ξi,j or ηi,l is attached to a basis element of some homoge-
neous degree, we shall say that ξi,j or ηi,l is a radical variable or a semisimple
variable of some homogeneous degree. Take a nonzero element Γc ⊗ c where
Γc contains i = i1 · · ·+ is radical variables whose i1 ≤ n1 variables are of ho-
mogeneous degree g1, i2 ≤ n2 are of homogeneous degree g2 and so on. Now
this element is nonzero only if i ≤ u. The number of nonzero monomials
containing i = i1 + · · · + is radical variables with ij ≤ nj, j = 1, . . . , s is at
most

(
n1
i1

)
· · ·
(
ns
is

)
(dim J)i ≤ c1n

a, for some constants c1 and a. Now each such

monomial involves n − i semisimple variables with n′j = nj − ij variables of
homogeneous degree gj, j = 1, . . . , s which come from some distinct simple
components Al1, . . . , Alk, k ≥ 1. This means that C = Al1 ⊕ · · · ⊕ Alk is a
centrally admissible subalgebra for E(A).

Now, fix a centrally admissible subalgebra C and let dC = dimC, dCi =
|B ∩ C(gi,0)| and lCi = |B ∩ C(gi,1)|. How many possible monomials with the
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semisimple variables coming from C can we write? If there are i = i1+. . .+is
radical variables, such number is at most(

n1

i1

)
· · ·
(
ns
is

)
(dim J)i(dC1 + lC1 )n

′
1 · · · (dCs + lCs )n

′
s.

Hence such centrally admissible subalgebra C may contribuite with at most∑
i1+...+is≤u

(
n1

i1

)
· · ·
(
ns
is

)
(dim J)i1+···+is(dC1 + lC1 )n

′
1 · · · (dCs + lCs )n

′
s

≤ cnv(dC1 + lC1 )n1 · · · (dCs + lCs )ns

monomials, for some constants c, v. Thus if C1, . . . , Cw are all the centrally
admissible subalgebras we get that

δn1,...,ns(E(A)) ≤ cnv
w∑
i=1

(dCi1 + lCi1 )n1 · · · (dCis + lCis )ns.

Hence:

δGn (E(A)) =
∑

n1+···+ns=n

(
n

n1, . . . , ns

)
δn1,...,ns(E(A)) ≤

cnv
w∑
i=1

∑
n1+···+ns=n

(
n

n1, . . . , ns

)
(dCi1 +lCi1 )n1 · · · (dCis +lCis )ns = cnv

w∑
i=1

(dCi)n ≤ c′nvdn,

where d is the maximal dimension of a centrally admissible algebra for E(A).

6. The lower bound for δGn (R)
In this section a lower bound for the proper central G-codimension sequence

will be found. As consequence, we shall compute the proper central G-
exponent.

Recall that G = {g1, . . . , gs} and R is a G-graded algebra. We shall use
for a fixed n = n1 + · · · + ns ≥ 1, the representation theory of the group
Sn1×· · ·×Sns, where Sni is the symmetric group of order ni, 1 ≤ i ≤ s. In fact,
the spaces Pn1,...,ns(R) and ∆n1,...,ns(R) become Sn1×· · ·×Sns-modules via the
permutation action of the variables of the same homogeneous degree, i.e., Sn1
permutes the variables of homogeneous degree g1, Sn2 those of homogeneous
degree g2, and so on (see [12, 18]).

In what follows, if λ(1) ` n1, . . . , λ(s) ` ns are partitions, we write 〈λ〉 =
(λ(1), . . . , λ(s)) ` (n1, . . . , ns) and we say that 〈λ〉 is a multipartition of n =
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n1+· · ·+ns. Moreover, if for every 1 ≤ i ≤ s, Tλ(i) is a Young tableau of shape
λ(i) and eTλ(i) is the corresponding minimal essential idempotent of FSni,
then we denote by T〈λ〉 = (Tλ(1), . . . , Tλ(s)) the multitableau of shape 〈λ〉 and
by eT〈λ〉 = eTλ(1) · · · eTλ(s) the corresponding idempotent of F (Sn1 × · · · × Sns).
Furthermore, given integers d, l, t ≥ 0, we define the hook-shaped partition

h(d, l, t) = (t+ l, . . . , t+ l︸ ︷︷ ︸
d

, l, . . . , l︸ ︷︷ ︸
t

).

We start by recalling some results on finite dimensional G × Z2-simple
algebras.

Lemma 2 ([14], Lemma 9). Let B be a finite dimensional G×Z2-simple alge-
bra over an algebraically closed field F . Let dimF B(gi,0) = pi and dimF B(gi,1)

= qi, 1 ≤ i ≤ s. Then, for any positive integer t there exist a multipartition
〈λ〉 = (λ(1), . . . , λ(s)) with

h(pi, qi, 2t− dimFB) ≤ λ(i) ≤ h(pi, qi, 2t),

1 ≤ i ≤ s, and a multitableau T〈λ〉 such that eT〈λ〉f /∈ IdG(E(B)), for a suitable
multilinear G-polynomial f with deg f = 2t dimF B.

Lemma 3 ([14], Lemma 10). Let B be a finite dimensional G × Z2-simple
algebra over an algebraically closed field F , then for any non-zero homoge-
neous elements b1, b2 ∈ B there exist homogeneous elements c1, c2 ∈ B such
that c1b1c2 = b2.

From now until the end of the section, let A = A1 ⊕ · · · ⊕ Ap + J be a
finite dimensional G×Z2-graded algebra, where A1, . . . , Ap are G×Z2-simple
algebras and J is the Jacobson radical of A. Moreover, let B = B1⊕· · ·⊕Bk ⊆
A be centrally admissible for E(A) of maximal dimension, dimF B = d, where
B1, . . . , Bk are G× Z2-simple algebras, and let

f = f(x1,gi1
, . . . , xr,gir )

be a multilinear central proper G-polynomial of E(A) with r ≥ k, such that
f(a1, . . . , ar) 6= 0 for some homogeneous elements a1 ∈ E(B1)gi1 , . . . , ak ∈
E(B1)gik , ak+1 ∈ E(A)gik+1

, . . . ar ∈ E(A)gir . Notice that, since B is centrally

admissible of maximal dimension, then f /∈ IdG(E(B̂)), where B̂ = B + J .
Thus we assume, as we may, that a1, . . . , ar are homogeneous elements of
E(B̂).
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Moreover, we say that a multilinear G-polynomial p has homogeneous de-
gree g if any evaluation of p belongs to the homogeneous component g of the
algebra. Notice that such a definition is not ambiguous since p is multilinear
and G is abelian.

Lemma 4. Let f1, . . . , fk be multilinear G-polynomials on distinct sets of ho-
mogeneous variables (different from those ones in f) such that fi /∈ IdG(E(Bi)),
i = 1, . . . , k. Then the multilinear polynomial

f ′ = f(u1f1v1, . . . , ukfkvk, xk+1,gik+1
, . . . , xr,gir )

where u1, v1, . . . , uk, vk are new homogeneous variables such that

|uj|G|fj|G|vj|G = gij , j = 1, . . . , k,

is a proper central G-polynomial of E(B̂).

Proof : Notice that since f is a central G-polynomial of E(A) then it follows
that f ′ is also a central G-polynomial. Let a1 = b1 ⊗ w1, . . . , ar = br ⊗ wr,
wi ∈ E be the homogeneous elements in the G× Z2-grading such that

f(b1 ⊗ w1, . . . , br ⊗ wr) 6= 0,

bi ∈ Bi, i = 1, . . . , k. Now, for t = 1, . . . , r, if bt ∈ B̂(git ,0) (resp. bt ∈ B̂(git ,1)),
we set xt,git = ygit (resp. xt,git = zgit), a variable of homogeneous degree
(git, 0) (resp. (git, 1)). In this way we can regard f as a G × Z2-polynomial
and, by the property of ,̃ we can write

f(b1 ⊗ w1, . . . , br ⊗ wr) = f̃(b1, . . . , br)⊗ w1 · · ·wr 6= 0. (3)

Let fi = fi(x
i
1, . . . , x

i
ni

), i = 1, . . . , k. Since fi is not a G-graded identity of
E(Bi), there exist homogeneous elements in the G×Z2-grading x̄i1, . . . , x̄

i
ni
∈

Bi, e
i
1, . . . , e

i
ni
∈ E such that fi(x̄

i
1 ⊗ ei1, . . . , x̄ini ⊗ e

i
ni

) 6= 0. As above, if we
see fi as a G× Z2-polynomial we can write

fi(x̄
i
1 ⊗ ei1, . . . , x̄ini ⊗ e

i
ni

) = f̃i(x̄
i
1, . . . , x̄

i
ni

)⊗ ei1 · · · eini 6= 0.

Let f̃i(x̄
i
1, . . . , x̄

i
ni

) = b′i 6= 0, for some homogeneous (in the G × Z2-grading)
element b′i ∈ Bi. By Lemma 3, for any i = 1, . . . , k, one can choose homo-
geneous elements ai, ci ∈ Bi such that aib

′
ici = bi. Therefore the polynomial

uif̃ivi takes the value bi by evaluating ui, x
i
1, . . . , x

i
ni
, vi in ai, x̄

i
1, . . . , x̄

i
ni
, ci,
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respectively. Let hi, h
′
i be elements of E of the same homogeneous degree (in

the Z2-grading) as ai, ci, respectively. Then for i = 1, . . . , k, we get

(ai ⊗ hi)fi(x̄i1 ⊗ ei1, . . . , x̄ini ⊗ e
i
ni

)(ci ⊗ h′i)

= aif̃i(x̄
i
1, . . . , x̄ni)ci ⊗ hiei1 · · · einih

′
i = bi ⊗ hiei1 · · · einih

′
i.

Now if we extend the evaluations of the uifivi to an evaluation ϕ of f ′ by
specializing the remaining variables as in (3) we get

ϕ(f ′) =f̃ ′(a1, x̄
1
1, . . . , x̄

1
n1
, c1, . . . , ak, x̄

k
1, . . . , x̄

k
nk
, ck, bk+1, . . . , br)⊗

⊗ h1e
1
1 · · · e1

n1
h′1 · · ·hkek1 · · · eknkh

′
kwk+1 · · ·wr

=f̃(b1, . . . , br)⊗ h1e
1
1 · · · e1

n1
h′1 · · ·hkek1 · · · eknkh

′
kwk+1 · · ·wr.

Since E is the infinite dimensional Grassmann algebra, we can choose ho-
mogeneous elements hi, h

′
i, e

j
i , wi in E such that

h1e
1
1 · · · e1

n1
h′1 · · ·hkek1 · · · eknkh

′
kwk+1 · · ·wr 6= 0.

Hence, the polynomial f ′ takes a non-zero value and the proof of the lemma
is complete.

Now we describe a technique of gluing Young tableaux that one can find
in [18, Chapter 6].

For every 1 ≤ i ≤ k, let λi ` ni be a partition with the property

h(di, li, ti − si) ≤ λi ≤ h(di, li, ti), (4)

and
ti − si ≥ max{ti+1 + di+1, ti+1 + li+1} (5)

where di, li, ti, si, 1 ≤ i ≤ k, are fixed integers.
As we know, we can associate a partition to the corresponding Young

diagram. Then, by the above relations, we can glue the first row of λi+1 to
the (di + 1)th row of λi, the second row of λi+1 to the (di + 2)th row of λi

and so on. As a result we obtain a new partition λi ? λi+1 of the integer
ni +ni+1. Along this lines by gluing together λ1, . . . , λk, we get the partition
µ = λ1 ? · · · ? λk of n =

∑k
i=1 ni with the property

h(d, l, tk − sk) ≤ µ ≤ h(d, l, t)

where d =
∑k

i=1 di, l =
∑k

i=1 li and t ≥ max{t1 + d1 − d, t1 + l1 − l}.
In a similar way we can glue also Young tableau. Let Tλ1, . . . , Tλk be young

tableaux corresponding to the partition λ1, . . . , λk, respectively. Now we
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define new tableaux as follows. Set T ′λ1 = Tλ1 and, for 2 ≤ i ≤ k, let T ′λi be

the Young tableau obtained from Tλi by adding the integer
∑i−1

j=1 nj to all
entries of Tλi. Then we denote by

Tµ = T ′λ1 ? · · · ? T ′λk

the Young tableau obtained gluing together the tableaux T ′λ1, . . . , T
′
λk accord-

ing to the previous procedure. It is clear that the tableau so obtained is filled
up with the distinct integers 1, 2, . . . , n, where n =

∑k
i=1 ni. Moreover, by

[16, Lemma 14],

eTµ = eT ′
λ1
· · · eT ′

λk
+ b (6)

where b ∈ spanF{σ ∈ Sn | σ(Ni) * Ni for some 1 ≤ i ≤ k} and Ni denotes
the set of integers in the tableau T ′λi.

Next we apply the gluing technique to multitableaux. For all 1 ≤ j ≤ k
consider the multipartition 〈λj〉 = (λj(1), . . . , λj(s)) ` (nj(1), . . . , nj(s)), and
suppose that for all 1 ≤ i ≤ s, the partitions λ1(i), . . . , λk(i) satisfy conditions
(4) and (5), i.e., they are glueable. Then, by the previous arguments, we
obtain a new multipartition 〈µ〉 = (µ(1), . . . , µ(s)), where µ(i) = λ1(i) ? · · · ?
λk(i), 1 ≤ i ≤ s.

Set n0 = 0, n0(i) = 0 and ni =
∑k

j=1 n
j(i), 1 ≤ i ≤ s. Let T〈λj〉 =

(Tλj(1), . . . , Tλj(s)), 1 ≤ j ≤ k, be the multitableau corresponding to the
multipartition 〈λj〉. If we add the integer n0 + n1 + · · ·+ ni−1 + n0(i) + · · ·+
nj−1(i) to all entries of Tλj(i), 1 ≤ i ≤ s, 1 ≤ j ≤ k, we get a new multitableau
which we denote by T ′〈λj〉 = (T ′λj(1), . . . , T

′
λj(s)). Then we define

T〈µ〉 = T ′〈λ1〉 ? · · · ? T ′〈λk〉 =
(
T ′λ1(1) ? · · · ? T ′λk(1), . . . , T

′
λ1(s) ? · · · ? T ′λk(s)

)
.

We denote by N j(i) the set of integers filled in T ′λj(i), 1 ≤ i ≤ s, 1 ≤ j ≤ k.

Moreover, let N(i) = N 1(i) ∪ · · · ∪ Nk(i), 1 ≤ i ≤ s. As a consequence of
(6), we get the following.

Lemma 5. Let 〈λj〉 = (λj(1), . . . , λj(s)), 1 ≤ j ≤ k, be multipartitions and
suppose that for all 1 ≤ i ≤ s, the partitions λ1(i), . . . , λk(i) satisfy conditions
(4) and (5). Also, let T〈λj〉 = (Tλj(1), . . . , Tλj(s)) be multitableau corresponding
to 〈λj〉. If T〈µ〉 = T ′〈λ1〉 ? · · · ? T ′〈λk〉, then

eT〈µ〉 = eT ′
λ1(1)
· · · eT ′

λk(1)
· · · eT ′

λ1(s)
· · · eT ′

λk(s)
+ γ,
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where γ ∈ spanF{σ ∈ Sn1 × · · · × Sns | σ(N j(i)) * N j(i), for some 1 ≤ i ≤
s, 1 ≤ j ≤ k}.

In the next lemma we apply the gluing technique in order to construct a
proper central G-polynomial that will be very useful. To this end, for all
1 ≤ i ≤ k, let di = dimF B(gi,0) and li = dimF B(gi,1).

Lemma 6. For any positive integer t ≥ 2k dimF B̂ there exist an integer n,
a multipartition 〈µ〉 = (µ(1), . . . , µ(s)) of n with

h(di, li, 2t− 4 dim B̂) ≤ µ(i) ≤ h(di, li, 2t),

1 ≤ i ≤ s, and a multitableau T〈µ〉 such that eT〈µ〉f
′ is a proper central G-

polynomial of E(B̂) for some multilinear G-polynomial f ′ with deg f ′ = n+
k + r.

Proof : Let pji = dimF (Bj)(gi,0) and qji = dimF (Bj)(gi,1), for all 1 ≤ i ≤ s,

1 ≤ j ≤ k. Then di =
∑k

j=1 p
j
i and li =

∑k
j=1 q

j
i , 1 ≤ i ≤ s. Moreover, set

uj = dimF Bj, for all 1 ≤ j ≤ k.
By Lemma 2, for any integer tj ≥ 1, there exists a multipartition 〈λj〉 =

(λj(1), . . . , λj(s)) ` (nj(1), . . . , nj(s)), a multitableau T〈λj〉 = (Tλj(1), . . . Tλj(s))
and a multilinear G-polynomial hj such that

h(pji , q
j
i , 2tj − uj) ≤ λj(i) ≤ h(pji , q

j
i , 2tj),

for all 1 ≤ i ≤ s, and eT〈λj〉hj /∈ IdG(E(Bj)).

Let t = t1 ≥ 2k dimF B̂ be an arbitrary integer and for 2 ≤ l ≤ k, define

rl = ul−1 + max{pl1, . . . , pls, ql1, . . . , qls}.
Also set r′l = rl if rl is even and r′l = rl + 1 if rl is odd. Moreover, for all
1 ≤ l ≤ k − 1, we define

2tl+1 = 2tl − r′l+1.

Hence for all 1 ≤ l ≤ k, it follows that

2tl − ul = 2tl+1 + r′l+1 − ul ≥ 2tl+1 + rl+1 − ul =

= 2tl+1 + max{pl+1
1 , . . . , pl+1

s , ql+1
1 , . . . , ql+1

s }.
Thus, conditions (4) and (5) hold and, for each 1 ≤ i ≤ s, we can glue
the partitions λ1(i), . . . , λk(i). In this way we get a multipartition 〈µ〉 =
(µ(1), . . . , µ(s)), such that, for 1 ≤ i ≤ s,

h(di, li, 2tk − uk) ≤ µ(i) ≤ h(di, li, vi)
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for every vi ≥ max{2t1 + p1
i − di, 2t1 + q1

i − li}.
Now we compute

2t1 − 2tk =
k−1∑
j=1

(2tj − 2tj+1) =
k−1∑
j=1

r′j+1 ≤ k +
k−1∑
j=1

rj+1

= k +
k−1∑
j=1

(uj + max{pj+1
1 , . . . , pj+1

s , qj+1
1 , . . . , qj+1

s }) ≤ k + 2 dimF B̂

≤ 3 dimF B̂.

Thus,

2tk − uk ≥ 2t1 − 3 dimF B̂ − uk ≥ 2t1 − 4 dimF B̂.

Hence, recalling that t = t1, we get for all 1 ≤ i ≤ s,

h(di, li, 2t− 4 dimF B̂) ≤ µ(i) ≤ h(di, li, 2t).

Moreover, by the gluing technique shown above, we also obtain the multi-
tableau T〈µ〉 = (T ′λ1(1) ? · · · ? T ′λk(1), . . . , T

′
λ1(s) ? · · · ? T ′λk(s)).

For all 1 ≤ j ≤ k, denote by fj the polynomial eT〈λj〉hj written in the set

of variables {xi,gl | i ∈ N j(r), 1 ≤ r ≤ s}, where N j(r) is the set of integers
filled in T ′〈λj〉. Hence the polynomial constructed in Lemma 4

f ′ = f(w1f1w
′
1, . . . , wkfkw

′
k, xn+1,gik+1

, . . . , xn+r,gir ),

where w1, . . . , wk, w
′
1, . . . , w

′
k are new homogeneous variables distinct from

xn+1,gik+1
, . . . , xn+r,gir and those ones of f1, . . . , fk, is a proper central G-

polynomial of E(B̂) and deg f ′ = n + k + r, where n = n1 + · · · + ns.

We claim that also f̄ = eT〈µ〉f
′ is a proper central G-polynomial of E(B̂).

Notice that by construction f̄ is a central polynomial, thus we have only
to prove that f̄ /∈ IdG(E(B̂)). To this end, let ψ be a non-zero evaluation of
f ′. Then by Lemma 5

ψ(f̄) = ψ(eT ′
λ1(1)
· · · eT ′

λk(1)
· · · eT ′

λ1(s)
· · · eT ′

λk(s)
f ′) + ψ(γf ′)

where γ ∈ spanF{σ ∈ Sn1 × · · · × Sns | σ(N j(i)) * N j(i), for some 1 ≤ i ≤
s, 1 ≤ j ≤ k}. It readily follows that since E(Bi)E(Bj) = 0 if i 6= j, then

ψ(γf ′) = 0. Moreover, since e2
T ′
λj(i)

= αjieT ′
λj(i)

, for some non-zero integer αji ,
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and fj = eT ′
λj(1)
· · · eT ′

λj(s)
hj, we also get that eT ′

λj(1)
· · · eT ′

λj(s)
fj = αj1 · · ·αjsfj.

Hence

ψ(f̄) = ψ(eT ′
λ1(1)
· · · eT ′

λk(1)
· · · eT ′

λ1(s)
· · · eT ′

λk(s)
f ′) = αj1 · · ·αjsα

j
1 · · ·αjsψ(f ′) 6= 0,

as claimed.

As a consequence of the previous result we get the following lemma which
gives us the required lower bound for the proper central G-codimension se-
quence of E(B̂).

Lemma 7. There exist constants C > 0 and a such that for n large enough,

δGn (E(B̂)) ≥ Cnadn,

where d = dimF B.

Proof : Let N be any integer such that N > (4 + s)km2 + 4m + r, where

m = dimF B̂ and r = deg f , and let us divide N − k
∑s

i=1 dili − 2m − r by
2d. Then we have that N = 2td+ k

∑s
i=1 dili + 2m+ r+ v with t ≥ 2km and

0 ≤ v < 2d.
By Lemma 6, there exist an integer n =

∑s
i=1 ni, a multipartition 〈µ〉 =

(µ(1), . . . , µ(s)) ` (n1, . . . , ns) with the property

h(di, li, 2t− 4m) ≤ µ(i) ≤ h(di, li, 2t),

1 ≤ i ≤ s, a mutitableau T〈µ〉 and a multilinear proper central G-polynomial

f ′ such that eT〈µ〉f
′ is a proper central G-polynomial for E(B̂) and n ≤ c =

deg f ′ ≤ n+ 2m+ r and N > n.
Let now f̄ be the polynomial obtained by eT〈µ〉f

′ multiplying the variable
u1 by xc+1,1G · · ·xN,1G, where xc+1,1G, . . . , xN,1G are new G-graded variables
of homogeneous degree 1G. Since E(B1) is a unitary G-graded algebra,

it follows that f̄ is a proper central G-polynomial of E(B̂). Now, by the
branching theorem (see [18, Theorem 2.4.3]) there exist a multipartition
〈λ〉 = (λ(1), . . . , λ(s)) ` (N1, . . . , Ns) of N with Ni ≥ ni, for all 1 ≤ i ≤ s,
i.e., λ(i) ≥ µ(i), 1 ≤ i ≤ s, and a multitableau T〈λ〉 such that eT〈λ〉f̄ is a

proper central G-polynomial of E(B̂).
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Notice that

N −
s∑
i=1

|h(di, li, 2t− 4m)| = 2dt+ k
s∑
i=1

dili + 2m+ r + v −
s∑
i=1

dili − 2dt+ 4dm

≤ (k − 1)
s∑
i=1

dili + 2m+ r + 2d+ 4dm = K

and K is a constant. Hence for all 1 ≤ i ≤ s, it follows that Ni−|h(di, li, 2t−
4m)| ≤ K, since Ni ≥ ni ≥ |h(di, li, 2t− 4m)|. Thus by [18, Lemma 6.2.4],

dλ(i) ≥ N−2K
i dh(di,li,2t−4m),

for all 1 ≤ i ≤ s, where dλ(i) is the degree of the irreducible SNi-character
associated to λ(i), 1 ≤ i ≤ s. By taking into account [18, Lemma 6.2.5], it
follows that

δGN1,...,Ns
(E(B̂)) ≥

s∏
i=1

dλ(i) ≥
s∏
i=1

N−2K
i dh(di,li,2t−4m)

≥ α

s∏
i=1

NKi

i (di + li)
dili+(2t−4m)(di+li)

≥ βNu
s∏
i=1

(di + li)
(2t−4m)(di+li),

for some constant α, β,K1, . . . , Ks, u.
Let ri = di + li, 1 ≤ i ≤ s. Then, since Ni ≥ (2t− 4m)ri, we get

N !

N1! . . . Ns!
≥
(∑s

i=1(2t− 4m)ri
)
!∏s

i=1((2t− 4m)ri)!
.

Thus

δGN(E(B̂)) ≥
(

N

N1, . . . , Ns

)
δGN1,...Ns

(E(B̂))

≥ Nu

(∑s
i=1(2t− 4m)ri

)
!∏s

i=1((2t− 4m)ri)!

s∏
i=1

r
(2t−4m)ri
i .
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Recalling Stirling formula n! '
√

2πn
(n
e

)n
, we get

δGN(E(B̂)) ≥ C ′Na

(∑s
i=1(2t− 4m)ri

)∑s
i=1(2t−4m)ri∏s

i=1((2t− 4m)ri)(2t−4m)ri

s∏
i=1

r
(2t−4m)ri
i

= C ′Na

(
s∑
i=1

ri

)(2t−4m)
∑s
i=1 ri

= CNadN

for some constants C ′, C and a. The proof is now complete.

Theorem 3. Let E(A) be the Grassmann envelope of a finite dimensional
G× Z2-graded algebra A over a field F of characteristic zero. If there exists
a centrally admissible G× Z2-subalgebra for E(A), then for n large enough,
there exist constants C1, > 0 C2, a1, a2 such that

C1n
a1dn ≤ δGn (E(A)) ≤ C2n

a2dn,

where d is the maximal dimension of a centrally admissible G×Z2-subalgebra
for E(A). Thus the proper central G-exponent expG,δ(E(A)) exists and is a
non-negative integer.

Proof : Since the codimensions do not change by extending the ground field,
we may assume that F is algebraically closed. The proof follows from Lem-
mas 1 and 7, by noticing that δGn (E(A)) ≥ δGn (E(B̂)), where B̂ = B + J and
B is a centrally admissible G × Z2-subalgebra for E(A) of maximal dimen-
sion.

In case E(A) has proper central polynomials but A has no centrally ad-
missible G× Z2-subalgebras, then the following proposition holds.

Proposition 2. If for E(A) there are no centrally admissible subalgebras,
then for n large enough, δGn (E(A)) = 0.

Proof : If A is a nilpotent algebra, we have nothing to prove. So let us assume
that A = Ā+J , where Ā is a maximal semisimple G×Z2-graded subalgebra
of A, and A is not nilpotent. If E(A) has no proper central polynomials
then the result easily follows. Otherwise, let h(x1,gi1

, . . . , xn,gin) be a mul-
tilinear proper central G-polynomial of E(A). Then there exist G-graded
homogeneous elements ai ∈ E(A), 1 ≤ i ≤ n, such that h(a1, . . . , an) 6= 0.
Since A has no centrally admissible G× Z2-subalgebras, then ai ∈ E(J), for
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all 1 ≤ i ≤ n, and Jn 6= 0. Thus it follows that δGN(E(A)) = 0 a soon as
JN = 0.

Corollary 1. If R is a G-graded algebra over a field of characteristic zero,
then the proper central G-exponent expG,δ(R) exists and is a non-negative
integer. Moreover, expG,δ(R) ≤ expG(R).

7. The central exponent
In this section we shall study the central graded exponent expG,z(R), where

R is any G-graded algebra, and we will compare it to the ordinary G-graded
exponent.

To that end, we need some preliminary results about G-graded minimal
varieties and their relation with central G-polynomials. Minimal varieties
were completely described in [17], [11] and [10] in the setting of ordinary
polynomial identities, identities with involution and identities with graded
involution, respectively. Moreover, in [9] the authors studied minimal vari-
eties for algebras graded by the cyclic group Zp. In what follows we present
some basic results strictly related to our purpose.

We start by recalling the definition of minimal G-graded algebra.

Definition 2. Let F be an algebraically closed field. A finite dimensional
G-graded algebra A is called minimal if either A is G-simple or A = A1 ⊕
· · · ⊕ Am + J, where

1. A1, . . . , Am are G-simple algebras and m ≥ 2;
2. there exist homogeneous elements w12, w23, . . . , wm−1,m ∈ J and mini-

mal homogeneous idempotents e1 ∈ A1, . . . , em ∈ Am such that

e1wi,i+1 = wi,i+1ei+1 = wi+1, 1 ≤ i ≤ m

and

w12w23 · · ·wm−1,m 6= 0;

3. w12, w23, . . . wm−1,m generate J as two-sided ideal of A.

We highlight that in some papers, minimal algebras are called triangular al-
gebras since their properties recall in some sense the ones of upper triangular
matrix algebras.

Strictly connected to minimal algebras, there are the minimal varieties of
exponential growth whose definition in the graded case is the following.
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Definition 3. Let V be a variety of G-graded algebras. Then V is said to be
minimal of G-exponent d if expG(V) = d and for any proper subvariety U ,
expG(U) < d.

The next theorem relates minimal G-varieties and Grassmann envelope of
minimal algebras. To this end, notice that Definition 2 has to be properly
translated in case of algebras graded by the group G× Z2.

Theorem 4. Let V be a minimal G-variety of G-exponent d ≥ 2. Then there
exists a minimal G× Z2-graded algebra A such that V = varG(E(A)).

Proof : By following the lines of [18, Lemma 8.1.5] with the necessary adap-
tations to the graded case, one can prove that there exists a minimal G×Z2-
graded algebra A such that E(A) ∈ V and expG(V) = expG(E(A)) = d (see
also [25, Lemma 9]). Thus, by the minimality of V , it readily follows that
V = varG(E(A)) as claimed.

Grassmann envelopes of minimalG×Z2-graded algebras, which are not sim-
ple, have no proper central G-polynomial as proved in the following lemma.

Lemma 8. Let A = A1⊕ · · · ⊕Am + J be a minimal G×Z2-graded algebra.
If m ≥ 2, then E(A) has no proper central G-polynomials.

Proof : Since A is minimal, we notice that Z(A) ∩ J = 0. Moreover, if we
set Z(A)0 =

⊕
g∈G Z(A)(g,0), then one can easily check that Z(E(A)) =

Z(A)0 ⊗ E0, thus also
Z(E(A)) ∩ E(J) = 0.

Let f = f(x1,gi1
, . . . , xn,gin) be a multilinear central G-polynomial of E(A).

In order to reach our goal, we have to prove that f ∈ IdG(E(A)). To this
end, let assume by contradiction that f is not a G-identity of E(A).

Since E(Ai)E(Aj) = 0, for all i 6= j, and Z(E(A)) ∩ E(J) = 0, then in
particular we can assume that f is a proper central G-polynomial of E(Ai)
for some i. Moreover, notice that since G×Z2 is abelian and f is multilinear,
any evaluation of f on elements of E(A) is G×Z2-homogeneous. Hence there
exist G× Z2-homogeneous elements a1, . . . , an ∈ E(Ai) such that

f(a1, . . . , an) = a⊗ h ∈ Z(Ai)(g,0) ⊗ E0 ⊆ Z(E(A)),

for some g ∈ G, h ∈ E0, a 6= 0.
According to Theorem 2, if Ai

∼= F αH⊗Mk(F ), for some k ≥ 1, H ≤ G×Z2

and α 2-cocycle, then we write a = βg0 ⊗ Ik, where β ∈ F ∗, g0 = (g, 0) ∈ H
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and Ik is the k × k identity matrix. Let suppose that l is the order of g0,
then

al = βl
l−1∏
i=1

α(gi0, g0)
(

1G×Z2
⊗ Ik

)
is a non-zero central element of Ai. Thus in particular,

(
1G×Z2

⊗ Ik
)
⊗ h ∈

Z(E(A)).
Denoted by 1Ai = 1G×Z2

⊗ Ik the unit element of Ai, we have that if
1 ≤ i ≤ m− 1

(1Ai ⊗ h)(wi,i+1 ⊗ h′) = wi,i+1 ⊗ hh′ 6= 0

for some h′ ∈ E, whereas

(wi,i+1 ⊗ h′)(1Ai ⊗ h) = 0.

Similarly,

(1Am ⊗ h)(wm−1,m ⊗ h′) = 0

and

(wm−1,m ⊗ h′)(1Am ⊗ h) = wm−1,m ⊗ h′h 6= 0.

Hence we get a contradiction since we are assuming that 1Ai⊗h ∈ Z(E(A)).
Thus f ∈ IdG(E(Ai)) for all 1 ≤ i ≤ m and so, according to what remarked

above, f ∈ IdG(E(A)).

We are now in a position to prove the existence of the central G-exponent
of a G-graded algebra provided that its graded exponent is greater or equal
than 2.

Theorem 5. Let R be a G-graded algebra over a field of characteristic zero
such that expG(R) ≥ 2. Then either cG,zn (R) = 0 for all n ≥ 0, or

C1n
t1 expG(R)n ≤ cG,zn (R) ≤ C2n

t2 expG(R)n

for some constants C1 > 0, C2, t1, t2.

Proof : If R is commutative, then it is clear that cG,zn (R) = 0 for all n ≥ 0, so
let us suppose that R is not commutative.

As we already did before, we may assume that F is an algebraically closed
field and R = E(A), where A is a finite dimensional G× Z2-graded algebra.

By [14, Theorem 2], there exist constants C1 > 0, C2, t1, t2 such that

C1n
t1dn ≤ cGn (E(A)) ≤ C2n

t2dn, (7)
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where d = expG(E(A)). Hence by (1), we get that also cG,zn (E(A)) ≤ C2n
t2dn.

Thus we have to prove now the lower bound.
Let V = varG(E(A)). Since any TG-ideal is finitely generated, it readily

follows that V contains a subvariety U which is minimal of G-exponent d =
expG(U) = expG(V). Hence by Theorem 4, there exists a minimal G × Z2-
graded algebra B such that U = varG(E(B)).

Suppose first that B is not G × Z2-simple. Then by Lemma 8, E(B) has
no proper central G-polynomials and therefore

IdG,z(E(A)) ⊆ IdG,z(E(B)) = IdG(E(B)).

Thus cG,zn (E(A)) ≥ cGn (E(B)) and, since cGn (E(B)) has a lower bound as in
(7), we are done in this case.

Now suppose that B is G × Z2-simple. If E(B) is commutative, then
IdG,z(E(B)) = IdG(E(B)) and, as in the previous case, we get the desired re-
sult. Thus let us suppose that E(B) is not commutative. Let N = cGn (E(B))
and let f1, . . . , fN ∈ PG

n be multilinear G-polynomials linearly independent
modulo IdG(E(B)). We shall prove that f1xn+1, . . . , fNxn+1, where xn+1 is an
extra variable of any homogeneous degree, are linearly independent modulo
IdG,z(E(B)).

Suppose by contradiction that there exist not all zero scalars α1, . . . , αN
such that α1f1xn+1 + · · ·+αNfNxn+1 ∈ IdG,z(E(B)) and set f = α1f1 + · · ·+
αNfN . It is clear that f /∈ IdG(E(B)).

If f is a central G-polynomial of E(B), then it must be a proper cen-
tral polynomial and there exists a non-zero evaluation ϕ such that ϕ(f) ∈
Z(E(B)) = Z(B)0 ⊗E0. Recall that Z(B)0 =

⊕
g∈G Z(B)(g,0). In particular,

if B ∼= F αH ⊗Mk(F ) for some k ≥ 1, H ≤ G×Z2 and α 2-cocycle, then we
can assume ϕ(f) = (a⊗ Ik)⊗ l0, where a ∈ Z(F αH), Ik is the k× k identity
matrix and l0 ∈ E0.

If k > 1, then we set b = 1G×Z2
⊗ e12 and we can extend ϕ to an evaluation

ϕ′ of fxn+1 such that ϕ′(fxn+1) = (a⊗e12)⊗ l0l 6= 0, for some suitable l ∈ E.
Since such an element is not central, we get a contradiction.

Suppose now k = 1. Since E(B) is not commutative, then either B is not
commutative or there exists an element (g, 1) ∈ G× Z2 such that B(g,1) 6= 0.

Suppose first that B is not commutative, write a =
∑

h∈H βhh and let
h0 ∈ H be such that βh0 6= 0. Then there exists h1 /∈ Z(F αH) and we set
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b = h−1
0 h1. Thus

ab =
∑
h∈H

βhα(h, h−1
0 h1)hh

−1
0 h1 = βh0α(h0, h

−1
0 h1)h1+

∑
h6=h0

βhα(h, h−1
0 h1)hh

−1
0 h1,

where βh0α(h0, h
−1
0 h1) 6= 0. We get that ab is a non-zero non central element

of F αH, since if ab ∈ Z(F αH), then each summand should be a central
element, thus in particular h1 ∈ Z(F αH), a contradiction. We now evaluate
xn+1 in b ⊗ l, for some suitable l ∈ E, so that ϕ can be extended to an
evaluation ϕ′ of fxn+1 such that

ϕ′(fxn+1) = ab⊗ l0l 6= 0

that is a non central element of E(B).
Now suppose that there exists h′ = (g, 1) ∈ G × Z2 such that B(g,1) 6= 0.

Then

ah′ = βh0α(h0, h
′)h0h

′ +
∑
h6=h0

βhα(h, h′)hh′ 6= 0.

Therefore, by evaluating xn+1 in h′ ⊗ l1 where l1 ∈ E1, we get

ϕ′(fxn+1) = ah′ ⊗ l0l1 6= 0

that is a non central element of E(B) since l0l1 ∈ E1.
Finally, suppose that f is not a central G-polynomial of E(B), then fxn+1

has a non central evaluation by specializing xn+1 with 1B ⊗ l, for a suitable
l ∈ E0.

Thus in both cases we have a contradiction and α1 = · · · = αN = 0.
We have proved that cGn (E(B)) ≤ cG,zn+1(E(B)) and we are done.

We now study G-graded algebras with G-exponent less or equal than 1. If
R is such an algebra, then by [24, Lemma 2.1], we may assume that R is
finite dimensional.

Lemma 9. Let R be a finite dimensional G-graded algebra over an alge-
braically closed field such that expG(R) = 1. If cG,zn (R) = 0 for some n ≥ 2,
then R = C ⊕ N, where C is a commutative G-graded algebra and N is a
nilpotent G-graded algebra.

Proof : Write R = A1⊕· · ·⊕Am+J, where A1, . . . , Am are G-simple algebras
and J is the Jacobson radical. Since expG(R) = 1, then Ai

∼= F for all
1 ≤ i ≤ m.



CENTRAL POLYNOMIALS OF GRADED ALGEBRAS 27

Denote by e the unit element of A1 and set J0 = {j ∈ J | ej = je = 0} and
J1 = {j ∈ J | ej = je = j}. It is clear that J0 and J1 are G-graded ideals of
R.

Moreover, remark that J = J0 ⊕ J1. In fact, for all j ∈ J, we can write
j = j − ej + ej and since cG,zn (R) = 0, for some n ≥ 2, in particular x1 · · ·xn
is a central G-polynomial of R, where x1, . . . , xn are homogeneous variables
of any degree. Therefore, j − ej ∈ J0 and ej ∈ J1.

Notice that eAi = Aie = 0 for all 2 ≤ i ≤ m, hence AiJ1 = J1Ai = 0 and

R = (A1 + J1)⊕ (A2 ⊕ · · · ⊕ Am + J0)

as G-graded algebras. Remark that for all j ∈ J1, we can write j = en−1j,
therefore j is a central element of R and A1 + J1 is a commutative G-graded
algebra.

Applying the same arguments to A2 ⊕ · · · ⊕ Am + J0, we finally get that
R = C1 ⊕ · · · ⊕ Cm ⊕ N, where C1, . . . , Cm are commutative and N ⊆ J0 is
nilpotent, as claimed.

Putting together the previous results we finally get the following theorem.

Theorem 6. Let R be any G-graded algebra over a field of characteristic zero.
Then its central G-exponent expG,z(R) exists. Moreover either expG,z(R) =
expG(R) or expG,z(R) = 0.

Proof : If expG(R) ≥ 2, then by Theorem 5 either expG,z(R) = expG(R) or
expG,z(R) = 0.

Now suppose that expG(R) = 1, then R can be assumed finite dimensional.
Furthermore, since the codimension sequence does not change by extending
the base field, we may assume F to be algebraically closed. Notice that in
this case cG,zn (R) is polynomially bounded and expG,z(R) ≤ 1.

If cG,zn (R) 6= 0 for all n ≥ 1, then it readily follows that expG,z(R) = 1.
Otherwise there exists an integer n such that cG,zn (R) = 0, so Lemma 9
applies and R = C ⊕N, where C is commutative and N is nilpotent. Thus
expG,z(R) = 0.

Finally, if expG(R) = 0, then R is nilpotent, expG,z(R) = 0 and we are
done.



28 D. LA MATTINA, F. MARTINO AND C. RIZZO

References
[1] E. Aljadeff, A. Kenal–Belov, Representability and Specht problem for G-graded algebras, Adv.

Math. 225 (2010), 2391–2428.
[2] E. Aljadeff, A. Giambruno, Multialternating graded polynomials and growth of polynomial

identities, Proc. Amer. Math. Soc. 141 (2013), 3055–3065.
[3] E. Aljadeff, A. Giambruno, D. La Mattina, Graded polynomial identities and exponential

growth, J. Reine Angew. Math. 650 (2011), 83–100.
[4] E. Aljadeff, A. Giambruno, C. Procesi, A. Regev, Rings with polynomial identities and finite

dimensional representations of algebras, American Mathematical Society Colloquium Publi-
cations, 66. American Mathematical Society, Providence, RI, (2020).

[5] Y. A. Bahturin, S. K. Sehgal, M. Zaicev, Finite-dimensional simple graded algebras, Sb. Math
199 (2008), 965–983.

[6] A. Berele, A. Regev, Growth of Central Polynomials of Verbally Prime Algebras, Israel J.
Math. 228 (2018), 201–210.

[7] A. Brandão, P. Koshlukov, A. Krasilnikov, E. A. da Silva, The central polynomials for the
Grassmann algebra, Israel J. Math. 179 (2010), 127–144.
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