
Pré-Publicações do Departamento de Matemática
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1.Introduction

We consider a free transmission problem

|Du|β(x,u,Du)F
(
D2u

)
= f(x) in B1, (1)

where β ­ 0, F is uniformly elliptic and f is bounded and continuous. The
model (1) accounts for a diffusion process degenerating as a variable power
of the gradient.

Transmission problems appear frequently in various fields of physics and
biology. They model phenomena which follow different laws in separate sub-
sets of the domain. Typical examples consist of studying mathematical mod-
els in composite materials. For a description of these problems, we suggest
the readers to the reference [6]. When these subsets depend on the solution
itself, these equations become free transmission problems.

Problems of the form

|Du|β F
(
D2u

)
= f

belong to a larger class of equations studied in a series of papers by Birindelli
and Demengel, starting with the singular case in [2]. The degenerate case
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was also considered in [3, 4]. An important development concerning higher
regularity for degenerate fully nonlinear equations was put forward in [12].
In that paper, the authors obtain local C1,α regularity, for

α ∈ (0, α0) and α ¬ 1
1 + β

,

with α0 corresponding to the C1,α0 regularity of the homogeneous equation
F
(
D2u

)
= 0. In [12, Lemma 6], the authors provide a connection between

the homogeneous degenerate equation and the corresponding homogeneous
uniformly elliptic equation. This step unlocks a higher regularity class which
they access via a tangential path.

The methods introduced in [12] resonated, launching new perspectives in
the theory of degenerate fully nonlinear equations. In [7], the authors consider
the equation

|Du|β(x) F
(
D2u

)
= f(x)

where β is allowed to change sign, and obtain local C1,α regularity, where

α ∈ (0, α0) and α ¬ 1
1 + ‖β+‖∞ + ‖β−‖∞

,

with β+ and β− corresponding to the positive and negative parts of β, re-
spectively. The estimates obtained in [7] are independent of the continuity
modulus of β.

In [11], the authors consider a degeneracy law depending on the sign of the
solution. They study the equation

|Du|β+χ{u>0}+β−χ{u<0}F
(
D2u

)
= f(x),

which has constant degeneracy rates at each of the phases {±u > 0}, but has
a discontinuity across the free boundary ∂{u = 0}. They obtain local C1,α

regularity, for

α ∈ (0, α0) and α ¬ 1
1 + max {β−, β+}

.

The authors also establish existence of solutions via Perron’s method.
Finally, we mention the recent paper [10] where the author considered the

following equation
[
|Du|pu(x) + a(x)χ{u>0}|Du|q + b(x)χ{u<0}|Du|s

]
F (D2u) = f, in Ω,

u = g on ∂Ω,
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where pu(x) = p+χ{u>0}+ p−χ{u<0}. In this setting, they prove existence and
uniqueness of solutions and obtain local C1,α regularity.

The present paper consists of two main results. First, we obtain a local
regularity result under very general assumptions on β(x, u,Du) which gener-
alizes the results mentioned above. Indeed, we only require β : B1 × R× Rd

to be well-defined in its domain and bounded from above and below. The
first main result in this paper is the following.

Theorem 1 (Local C1,α regularity). Let u ∈ C(B1) be a viscosity solution to
(1). Assume that 0 < βm ¬ β(x, t, p) ¬ βM for fixed βm, βM ; assume also that
F is uniformly (λ,Λ)-elliptic, F (0) = 0 and f is continuous and bounded in
B1. Let finally α0 ∈ (0, 1) be given in Remark 3 below.

Then, there exist α > 0 and C > 0 such that any viscosity solution u of
(1) is in C1,α(B1/2) and

[u]C1,α(B1/2) ¬ C
(
‖u‖L∞(B1) + ‖f‖L∞(B1)

)
,

where

α = min
{
α−0 ,

1
1 + βM

}
,

and C = C(λ,Λ, d, βm, βM).

We now state some remarks concerning this result.

Remark 1. Theorem 1 includes the following examples
• β(x, u,Du) = β(x)χG(u), where G(u) = B1 \ {u = |Du| = 0};
• β(x, u,Du) = θ(|Du|), where θ(t) → 2 as t → 0 and θ(t) → 1 as
t→∞. This equation was considered for the first time in [5].

Remark 2. The regularity class is interpreted in the following sense: If 1
1+βM

<

α0, then solutions are C1,α(B1/2) with α = 1
1+βM

; if, alternatively, α0 ¬ 1
1+βM

,
then solutions are C1,α(B1/2) for every α < α0.

Remark 3. By the classical Krylov-Safanov and Trudinger theory, every vis-
cosity solution of

F (D2u) = 0, in B1,

belongs to C1,α0(B1/2) for a universal α0 ∈ (0, 1) (see for example [8, Chapter
5]).
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As one can see from the previous result, there is an intrinsic dependence
between the regularity obtained and the degeneracy rate. Hence, if this rate
is variable over the domain, it seems natural to obtain regularity results
which also vary over the domain. This idea, put forward in Lemma 7 which
corresponds to the geometric iterations, is the novelty in the current paper.
By considering variable exponents in each iteration, we are able to better
capture the pointwise degenerate behaviour of the equation.

To obtain this improved regularity, we consider the following explicit ex-
pression for the exponent. Let Gi(u,Du) ⊂ B1, i = 1, ..., N be disjoint sets
which depend on the solution u and its gradient Du, and define G0(u,Du) :=
B1 \

⋃N
i=0Gi(u,Du). Assume the exponent β has the form

β(x, u,Du) =
N∑
i=0

βi(x)χGi(u,Du). (2)

An example to keep in mind is the following. Let N = 2,
G1(u,Du) = {u > 0}, G2(u,Du) = {u < 0} and G0(u,Du) = {u = 0}.
If β0 = 0, β1 and β2 are constants, then we recover the result from [11]. Our
result is thus more refined, not only in the sense that it includes a much
broader class of degeneracies, but also because we obtain an improved point-
wise regularity. The second main result in this paper is the following.

Theorem 2 (Pointwise C1,α regularity). Let u ∈ C(B1) be a viscosity solu-
tion to (1). Assume that β is given by (2) with βi(·) ∈ [βm, βM ] for fixed
0 ¬ βm ¬ βM and have modulus of continuity ω satisfying

lim sup
t→0

ln
(1
t

)
ω(t) = 0; (3)

assume also that F is uniformly (λ,Λ)-elliptic, F (0) = 0 and f is continuous
and bounded in B1. Let finally α0 ∈ (0, 1) be given in Remark 3.

Then for every x0 ∈ B1/2, there exist α > 0 and C > 0 such that any
viscosity solution u of (1) is pointwise C1,α(x0) and

[u]C1,α(x0) ¬ C
(
‖u‖L∞(B1) + ‖f‖L∞(B1)

)
,

where

α = min
i=0,...,N

α−0 , 1
1 + βi(x0)

 ,
and C = C(λ,Λ, d, βm, βM , ω).
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Assumptions of the type (3) are typical when obtaining higher regularity
of solutions to equations with variable exponents. For example, in [1] the au-
thors are able to prove improved regularity to a class of variational problems
with variable exponents, under the assumption above.

Pointwise regularity has been the subject of various papers, see for example
[8] and [14]. These are useful when a certain property is not verified locally
but instead only at a point. Obtaining such a result as in Theorem 2 instead
of a local regularity result as in Theorem 1, comes with a cost, since we
must assume stronger uniform continuity of the functions βi. However, more
information is gathered. For example, consider N = 0,

β0(x) = 1000e−
1
2 |1000x|2

and assume F is convex, so that α0 = 1 (see [8, Chapter 6]). Then a local
result would yield C1,α regularity, with α = 1

1001 . The problem with this
result is that β0 ≈ 0 except in a small neighborhood of 0. On the other hand,
Theorem 2 would immediately yield C1,α regularity with α ≈ 1 for points
away from the origin.

Another advantage of having such a sharp pointwise regularity comes when
studying the free boundary of the problem, where a finer analysis is required.

The remainder of the paper is organized as follows. Section 2 introduces
the assumptions to hold throughout the paper, some basic notation and a
characterization of Hölder spaces. We also obtain a simple proof for Theorem
1. In Section 3, we simplify the equation, rewriting it as viscosity inequal-
ities and removing the dependence of the exponents on the solution. We
then obtain an important smallness assumption, which provides a tangential
path between our equation and the homogeneous one. Hölder continuity of
a perturbed equation is the topic of Section 4. In Section 5 we derive an
approximation lemma. Finally, Section 6 consists of the geometric iterations
with variable exponents which combined with the characterization of Hölder
spaces put forward in Section 2, provides the improved, pointwise Hölder
continuity of the gradient.

2.Preliminary material and main assumptions
In this introductory section, we present some basic results that will be

instrumental in the sequel and detail our main assumptions. We start with
some notation.
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For r > 0, we call Br(x) the ball in Rd centered around x and with radius
r. Br denotes Br(0). The space of symmetric d × d real matrices is denoted
by S(d). We say u ∈ C1,α(Ω) if u ∈ C1(Ω) and

[u]C1,α(Ω) := sup
x, y∈Ω

|Du(x)−Du(y)|
|x− y|α

<∞.

Similarly, we say u ∈ C1,α(x0) if u ∈ C1 in a neighborhood of x0 and

[u]C1,α(x0) := sup
r>0, y∈Br(x0)

|Du(y)−Du(x0)|
|y − x0|α

<∞.

Next, we introduce the uniform ellipticity assumption, assumed to hold
throughout the paper.

[A1] (Uniform ellipticity). The operator F : S(d)→ R is (λ,Λ)-elliptic, i.e,
there exist 0 < λ ¬ Λ such that

λ|N | ¬ F (M)− F (M +N) ¬ Λ|N |,

for every M,N ∈ S(d), with N ­ 0.

A well-known consequence of [A1] is the uniform Lipschitz regularity of F
(see for example [8, Chapter 2]).

Next, let Gi(u,Du) ⊂ B1, i = 1, ..., N be disjoint sets and define
G0(u,Du) := B1 \

⋃N
i=0Gi(u,Du). Assume the exponent β has the form

β(x, u,Du) =
N∑
i=0

βi(x)χGi(u,Du).

We now make some assumptions on βi. First, assume they have a modulus
of continuity which decays at the origin as o(ln(1/t)−1).

[A2] (Uniform continuity of the exponents). The exponents βi : B1 → R
have modulus of continuity satisfying

lim sup
t→0

ln
(1
t

)
ω(t) = 0.

Note that [A2] is equivalent to the following statement. For every
0 < r < e−1, the following holds

lim sup
k→∞

kω(rk) = 0.



REGULARITY OF DEGENERATE PROBLEMS 7

Hence, by definition, for every ε > 0 there exists δ1 > 0 such that if ρ ¬ δ1,
then for every k ∈ N,

k ln
(1
ρ

)
ω(ρk) ¬ ε.

Since ρ will be chosen to be small, we can assume ρ < e−1, and it follows
that

kω(ρk) ¬ ε.

Now, by defining ε = α0−α
2 (it will become clear later why we make this

choice) we also fix δ1 such that if ρ ¬ δ1, then for every k ∈ N,

kω(ρk) ¬ α0 − α
2

. (4)

This δ1 depends only on the continuity modulus ω, the universal exponent
α0 introduced in Remark 3, and the exponent α which is defined in Theorem
2.

Remark 4. To emphasize this idea, let’s consider some concrete examples.
Suppose ω(t) = t1/2 and choose α such that ε = α0−α

2 = 1/100. Then one
can calculate that (4) holds for ρ ¬ 4.7× 10−7. If ε = 1/1000, then we need
ρ ¬ 2.55 × 10−9. These are numbers that depend only on these quantities
and can be calculated, provided we know the expression of ω explicitly.

An example of a modulus of continuity satisfying [A2] is

ω(t) = ln
(1
t

)−p
,

with p > 1.
Finally, we assume that the exponents are bounded uniformly from above

and below.

[A3] (Boundedness of the exponents). There exist constants βm and βM such
that

0 ¬ βm ¬ βi(·) ¬ βM < 1.

In the following proposition, we improve slightly the usual proof of Hölder
continuity of the gradient to the case with variable exponents.
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Proposition 1. Suppose we can find r < 1 and sequences of affine functions
`k(x) = ak + bk · x and exponents αk ↑ α, such that (αk − α) = o(k) and

‖u− `k‖L∞(Brk (x0)) ¬ Krk(1+αk). (5)

Then u ∈ C1,α(x0) with constant C(r)K and 0 < α < 1.

Proof : Assume without loss of generality that x0 = 0. The idea is that `k → `
uniformly, where ` satisfies the desired characterization.

Consider the first order scaling fr(x) := 1
rf(rx). We have, by assumption,

‖`k+1 − `k‖L∞(Brk+1)
¬ ‖u− `k+1‖L∞(Brk+1)

+ ‖u− `k‖L∞(Brk+1)

¬ Kr(k+1)(1+αk+1) +Krk(1+αk)

¬ Krk(1+αk)
(
rk(αk+1−αk) + 1

)
¬ 2Krk(1+αk),

since αk+1 − αk ­ 0 and r < 1. First order scaling gives

‖(`k+1)rk − (`k)rk‖L∞(B1)
¬ 2Krkαk.

Clearly, this estimate in B1 implies the following estimates on the coefficients
(up to a different K)

|ak+1 − ak| ¬ Krk(1+αk),

|bk+1 − bk| ¬ Krk αk. (6)

Since these are Cauchy sequences, we have that

ak → a, bk → b,

respectively in R and Rd. It now follows that `k → ` in L∞(B1), where
` = a+ b · x. Using these estimates, we get

‖u− `‖L∞(Brk ) ¬ ‖u− `k‖L∞(Brk ) + |ak − a|+ rk|bk − b|

¬ CKrk(1+αk),

where C depends only on r. Now, we apply the usual discretization strategy:
for an arbitrary 0 < R < 1, there exists k ∈ N such that rk+1 ¬ R < rk.
Then,

‖u− `‖L∞(BR) ¬ ‖u− `‖L∞(Brk ) ¬ CKrk(1+αk)

¬ rk(αk−α)CKrk(1+α).
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Now we use the fast convergence αk → α, so that

lim
k→∞
|k(αk − α)| = 0.

Then rk(αk−α) < C1 and therefore we get the desired inequality

‖u− `‖L∞(BR) ¬ C(r)KR1+α.

To conclude this introductory section, we present a simple proof of Theorem
1, using the results from [11].

Lemma 1. Let u ∈ C(B1) be a viscosity solution to the equation

|Du|β(x,u,Du)F
(
D2u

)
= f(x), (7)

with β(x, t, p) ∈ [βm, βM ] and 0 ¬ βm ¬ βM .
Then u is a viscosity subsolution to the equation

min
{
|Du|βm F

(
D2u

)
, |Du|βM F

(
D2u

) }
¬ ‖f‖L∞(B1) , (8)

and a viscosity supersolution to the equation

max
{
|Du|βm F

(
D2u

)
, |Du|βM F

(
D2u

) }
­ −‖f‖L∞(B1) . (9)

Proof : We prove only that if u is a viscosity subsolution to (7), then it is a
subsolution to (8), noting that the remaining case follows similarly.

Let ϕ ∈ C2(B1) be such that u− ϕ has a local maximum at x0. Then

|Dϕ(x0)|β(x0,u(x0),Dϕ(x0))F
(
D2ϕ(x0)

)
¬ f(x0).

Thus, depending on whether |Dϕ(x0)| ­ 1 or |Dϕ(x0)| < 1 one of the fol-
lowing must hold, respectively

|Dϕ(x0)|βmF
(
D2ϕ(x0)

)
¬ ‖f‖L∞(B1) ,

|Dϕ(x0)|βMF
(
D2ϕ(x0)

)
¬ ‖f‖L∞(B1) ,

provided F
(
D2ϕ(x0)

)
­ 0 (clearly if this is not the case, both inequalities

are trivially verified). In either case, we have

min
{
|Dϕ(x0)|βmF

(
D2ϕ(x0)

)
, |Dϕ(x0)|βMF

(
D2ϕ(x0)

) }
¬ ‖f‖L∞(B1) .
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Hence, we have proved that u is a subsolution of (8).

This simple result places the equation (7) in the framework of [11] with
θ1 = βm and θ2 = βM (see Proposition 1 therein). A direct application of [11,
Theorem 2] yields local regularity u ∈ C1,α(B1/2) with

α = min
{
α−0 ,

1
1 + βM

}
,

together with the estimate

[u]C1,α(B1/2) ¬ C
(
‖u‖L∞(B1) + ‖f‖L∞(B1)

)
,

which implies Theorem 1.
The remaining of this paper is devoted to proving Theorem 2. In the next

section, we begin our analysis.

3.Scaling properties
The following result disconnects the dependence of the exponents on the

solution, by separating the possible cases.

Lemma 2. Let u ∈ C(B1) be a viscosity solution to the perturbed equation

|Du+ p|β(x,u,Du)F
(
D2u

)
= f(x), (10)

with β given by (2). Assume that assumptions [A1], [A2] and [A3] are in
force.

Then u is a viscosity subsolution to the equation

min
i=0,...,N

{
|Du+ p|βi(x) F

(
D2u

) }
¬ ‖f‖L∞(B1) , (11)

and a viscosity supersolution to the equation

max
i=0,...,N

{
|Du+ p|βi(x) F

(
D2u

) }
­ −‖f‖L∞(B1) . (12)

Proof : We prove only that if u is a viscosity subsolution to (10), then it is a
subsolution to (11), noting that the remaining case follows similarly.

Let ϕ ∈ C2(B1) be such that u− ϕ has a local maximum at x0. Then

|Dϕ(x0) + p|β(x0,u,Du)F
(
D2ϕ(x0)

)
¬ f(x0),

where

β(x, u,Du) =
N∑
i=0

βi(x)χGi(u,Du).
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We recall that by Theorem 1 we know that u ∈ C1,α, hence Gi(u,Du) are
well-defined. Since Gi, i = 0, ..., N , form a disjoint partition of B1, there is a
unique i0 ∈ {0, ..., N} such that x0 ∈ Gi0(u,Du). Thus

|Dϕ(x0) + p|βi0(x0)F
(
D2ϕ(x0)

)
¬ f(x0).

In particular, we have

min
i=0,...,N

{
|Dϕ(x0) + p|βi(x0)F

(
D2ϕ(x0)

) }
¬ ‖f‖L∞(B1) .

Hence, we have proved that u is a subsolution of (11).

The following result states that to prove Theorem 2, we can assume a
smallness regime, without loss of generality. It provides a tangential path
between our equation and the homogeneous one.

Proposition 2 (Smallness regime). Let u be a subsolution to the equation

min
i=0,...,N

{
|Du|βi(x) F

(
D2u

) }
¬ ‖f‖L∞(B1) , (13)

and a supersolution to the equation

max
i=0,...,N

{
|Du|βi(x) F

(
D2u

) }
­ −‖f‖L∞(B1) . (14)

satisfying

[u]C1,α(x0) ¬ C,

under the assumption that ‖u‖L∞(B1) ¬ 1 and ‖f‖L∞(B1) ¬ ε0 , where C and
ε0 are universal constants. Then, Theorem 2 holds.

Proof : Let u(x) = Ku(x) where

K :=
‖u‖L∞(B1) +

‖f‖L∞(B1)

ε0

−1

.

Note that we can assume K ¬ 1, since otherwise we are already in the
smallness regime and we can just take K = 1.

The function u is a viscosity subsolution to

min
i=0,...,N

{
K−βi(x)|Du|βi(x)KF

(
K−1D2u

) }
¬ K ‖f‖L∞(B1) ,

which implies

min
i=0,...,N

{
|Du|βi(x)F (D2u)

}
¬ max

i=0,...,N

{
K1+βi(x)

}
‖f‖L∞(B1) ,
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where F (M) := KF
(
K−1M

)
still satisfies [A1]. SinceK ¬ 1, we immediately

get

min
i=0,...,N

{
|Du|βi(x)F (D2u)

}
¬ ε0.

Similarly, we get

max
i=0,...,N

{
|Du|βi(x)F (D2u)

}
­ −ε0.

Since ‖u‖L∞(B1) ¬ 1, we note that the smallness assumptions are now satis-
fied. Hence, if we verify that

[u]C1,α(B1) ¬ C,

we can infer that

[u]C1,α(B1) ¬ C1

(
‖u‖L∞(B1) + ‖f‖L∞(B1)

)
, (15)

where C1 depends on ε0, which will be fixed universally.

Remark 5. The choice of K in the previous proof differs from the literature
(see for example [11]). The observation that K ¬ 1 allows us to obtain the
simple estimate (15).

In the following section we obtain improved regularity.

4.Hölder continuity
In this section, we obtain a compactness result for solutions. This result is

essential when studying stability since it will allow us to obtain convergence
of sequences of solutions.

We start by stating the maximum principle for viscosity solutions, Theorem
3.2 of [9].

Proposition 3 (Maximum principle). Let Ω be a bounded domain and G, H ∈
C
(
B1 × Rd × S(d)

)
be degenerate elliptic. Let u1 be a viscosity subsolution of

G
(
x,Du1, D

2u1
)

= 0 and u2 be a viscosity supersolution of H
(
x,Du2, D

2u2
)

=
0 in Ω. Let ϕ ∈ C2(Ω× Ω). Define v : Ω× Ω→ R by

v (x, y) := u1(x)− u2(y).

Suppose further that (x, y) ∈ Ω × Ω. Then, for every ι > 0, there exist
matrices X and Y in S (d) such that

G (x,Dxϕ (x, y) , X) ¬ 0 ¬ H (y,−Dyϕ (x, y) , Y ) ,
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and the matrix inequality

−
(1
ι

+ ‖A‖
)
I ¬

X 0
0 −Y

 ¬ A+ ιA2

holds true, where A := D2ϕ (x, y).

We proceed by stating a result from [13], which we present in the following
simplified form.

Proposition 4. Let u ∈ C(B1) be a bounded viscosity subsolution to equation

P−λ,Λ
(
D2u

)
− |Du| = 0, in {|Du| > γ}

and a viscosity supersolution to equation

P+
λ,Λ

(
D2u

)
+ |Du| = 0, in {|Du| > γ}.

Then u ∈ Cθ
loc(B1) and, for every 0 < τ < 1, there exists C > 0 such that

‖u‖Cθ(Bτ ) ¬ C.

The constant θ depends only on d, λ,Λ and C depends only on d, λ,Λ, γ,
‖u‖L∞(B1) , τ .

Intuitively, in the set where the gradient of a function u is bounded, the
function is already Lipschitz. The idea behind the previous result is that if u
is a solution of an elliptic equation in the set where its gradient is very large,
then we are able to obtain improved regularity.

This proposition will imply Hölder continuity of solutions to (11) and (12)
in the case where |p| is sufficiently small. More precisely, let A0 > 1 (to be
fixed) be such that |p| < A0. We claim that u is a viscosity subsolution to

F
(
D2u

)
− |Du| = 0, in {|Du| > 2A0}. (16)

Indeed, take ϕ ∈ C2 such that u − ϕ has a local maximum at
x0 ∈ {|Du| > 2A0}. Then |Dϕ(x0)| > 2A0 and therefore
|Dϕ(x0) + p| ­ A0 > 1. From (11) we have

min
i=0,...,N

{
|Dϕ(x0) + p|βi(x0)F

(
D2ϕ(x0

)
)
}
¬ ‖f‖L∞(B1) ,

which implies

F
(
D2ϕ(x0

)
) ¬ ‖f‖L∞(B1) ¬ |Dϕ(x0)|
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since we are under the assumption ‖f‖L∞(B1) ¬ ε0 and ε0 will be chosen very
small. Hence, from uniform ellipticity and recalling that F (0) = 0,

P−λ,Λ
(
D2ϕ(x0

)
)− |Dϕ(x0)| ¬ F

(
D2ϕ(x0

)
)− |Dϕ(x0)| ¬ 0.

We verified that u is a viscosity subsolution to (16). In a similar way, we
prove that u is a viscosity supersolution to

P+
λ,Λ

(
D2ϕ(x0

)
) + |Du| = 0,

in {|Du| > 2A0}. Hence, we proved the following corollary.

Corollary 1. Let u ∈ C(B1) be a bounded viscosity subsolution to (11)
and a supersolution to (12). Assume [A1], [A2] and [A3] are in force, let
‖u‖L∞(B1) ¬ 1, ‖f‖L∞(B1) ¬ ε0 and assume further that |p| < A0. The con-
stants ε0 and A0 will be fixed in the sequel.

Then u ∈ Cθ
loc(B1) for some θ ∈ (0, 1), depending only on d, λ,Λ. In addi-

tion, for every 0 < τ < 1, there exists C > 0 such that

‖u‖Cθ(Bτ ) ¬ C,

where C = C(d, λ,Λ, A0, τ).

In the following lemma we obtain Hölder continuity for arbitrary p ∈ Rd,
which concludes this section.

Lemma 3 (Cθ regularity). Let u ∈ C(B1) be a bounded viscosity subsolution
to (11) and a supersolution to (12). Assume [A1], [A2] and [A3] are in force
and let ‖u‖L∞(B1) ¬ 1 and ‖f‖L∞(B1) ¬ ε0, to be fixed universally.

Then u ∈ Cθ
loc(B1) for some θ ∈ (0, 1), depending only on d, λ,Λ. In addi-

tion, for every 0 < τ < 1, there exists C > 0 such that

‖u‖Cθ(Bτ ) ¬ C,

where C = C(d, λ,Λ).

Proof : We begin by using Proposition 3 to obtain a subjet and a superjet
satisfying the estimate (20) below. This was done in [11, Proposition 7] but
for completion we replicate the proof.

Fix 0 < r < 1−τ
2 and define

ω(t) = t− t2

2
.
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For constants L1, L2 > 0 and x0 ∈ Br, we set

L := sup
x,y∈Br(x0)

[
u(x)− u(y)− L1ω (|x− y|)− L2

(
|x− x0|2 + |y − x0|2

)]
Set A0 = 4L1 and assume |p| ­ A0.
We aim at establishing that there exist constants L1 and L2, independent of

x0, for which L ¬ 0. This immediately implies that u is Lipschitz continuous
in Bτ by taking x0 = x.

We argue by contradiction. Suppose there exists x0 ∈ Bτ for which L > 0,
regardless of the choices of L1 and L2. Consider the auxiliary functions ψ, φ :
B1 ×B1 → R given by

ψ (x, y) := L1ω (|x− y|) + L2
(
|x− x0|2 + |y − x0|2

)
and

φ (x, y) := u(x)− u(y)− ψ (x, y) .

Let (x, y) be a point where φ attains its maximum. Then

φ (x, y) = L > 0

and

L1ω (|x− y|) + L2
(
|x− x0|2 + |y − x0|2

)
¬ 2.

Set

L2 :=
4
√

2
r

2

.

Then

|x− x0|+ |y − x0| ¬
r

2
,

which implies that x, y ∈ Br(x0). In addition, x 6= y, since if this isn’t the
case we would conclude that L ¬ 0.

We now use Proposition 3 to ensure the existence of a subjet (ξx, X) of u
at x and a superjet (ξy, Y ) of u at y with

ξx := Dxψ (x, y) = L1ω
′ (|x− y|)σ + 2L2 (x− x0) ,

ξy := −Dyψ (x, y) = L1ω
′ (|x− y|)σ − 2L2 (x− x0) ,

where

σ :=
x− y
|x− y|

.
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Since ω′ (|x− y|) ¬ 1,

|ξx| ¬ L1 +
L2

2
¬ 2L1, (17)

and

|ξy| ¬ L1 +
L2

2
¬ 2L1 (18)

for L1 large enough.
In addition, the matrices X and Y satisfy the inequalityX 0

0 −Y

 ¬
 Z −Z
−Z Z

 + (2L2 + ι) I, (19)

for

Z := L1ω
′′ (|x− y|)σ ⊗ σ + L1

ω′ (|x− y|)
|x− y|

(I − σ ⊗ σ) ,

where 0 < ι� 1 depends solely on the norm of Z.
Next we apply the matrix inequality (19) to special vectors as to obtain

information about the eigenvalues of X − Y . First, apply it to vectors of the
form (z, z) ∈ R2d to get

z · (X − Y ) z ¬ (4L2 + 2ι) |z|2

which implies that all eigenvalues of X−Y are less than or equal to 4L2 +2ι.
Now we apply (19) to the vector z = (σ,−σ) to obtain

σ · (X − Y )σ ¬4L2 + 2ι+ 4L1ω
′′ (|x− y|)

=4L2 + 2ι− 4L1.

We thus conclude that at least one eigenvalue of X−Y is below 4L2+2ι−4L1,
which will be a negative number, provided we choose L1 large enough.

Evaluating the minimal Pucci operator on X − Y , we get

P−λ,Λ(X − Y ) ­4λL1 − (λ (d− 1) Λ) (4L2 + 2ι)

­3λL1 (20)

for L1 even larger, if necessary. Furthermore, these jets satisfy the viscosity
estimates

min
i=0,...,N

{
|p+ ξx|βi(x)F (X)

}
¬ ε0, (21)
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and

max
i=0,...,N

{
|p+ ξy|βi(x)F (Y )

}
­ −ε0. (22)

Since we fixed A0 = 4L1 and assumed |p| ­ A0, this together with (17) and
(18) imply

|p+ ξx| ­ 2L1 > 1,

|p+ ξy| ­ 2L1 > 1.

Hence, (21) and (22) imply, respectively,

F (X) ¬ ε0

and

F (Y ) ­ −ε0.

Combining these inequalities with (20) by means of uniform ellipticity, we
get

3λL1 ¬ 2ε0,

which is clearly a contradiction, provided we choose L1 large enough.
This concludes the proof for the case |p| ­ A0, which combined with Co-

rollary 1 completes the proof.

With compactness available, we proceed with a key step in our tangential
analysis.

5.Approximation Lemma
We present an approximation lemma for the perturbed equation.

Lemma 4 (Approximation Lemma). For every 0 < δ < 1, there exists
ε0 > 0 such that, if u ∈ C(B1) is a viscosity subsolution to (11) and a
viscosity supersolution to (12) with p = 0, satisfying ‖u‖L∞(B1) ¬ 1 and
‖f‖L∞(B1) ¬ ε0, then one can find a function h which is a viscosity solution
to F (D2h) = 0 for some F satisfying assumption [A1], such that

‖u− h‖L∞(B1/2)
¬ δ.

Such a function h satisfies

‖h‖C1,α0(B1/2) ¬ C ‖h‖L∞(B3/4)
.
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Proof : We argue by contradiction. For simplicity, we split the proof in steps.

Step 1 - Assume that there exist δ0 > 0 and sequences (un)n, (Fn)n and
(βni )n such that

(1) ‖un‖∞ ¬ 1;
(2) Fn satisfy [A1];
(3) βni satisfy [A2] and [A3];

linked together by the equations

min
i=0,...,N

{
|Dun + pn|β

n
i (x) Fn

(
D2un

) }
¬ 1
n

and

max
i=0,...,N

{
|Dun + pn|β

n
i (x) Fn

(
D2un

) }
­ −1

n
,

in the viscosity sense, in B1; however, for every function h ∈ C1,α0, it holds

‖un − h‖L∞(B1/2)
> δ0. (23)

Step 2 - Since un are equibounded in Cθ(B9/10), by the Arzelà-Ascoli The-
orem they will converge, up to a subsequence, locally uniformly to
u∞ ∈ C(B1).

Since Fn are (λ,Λ)-elliptic, they are also Lipschitz continuous. Therefore,
again by the Arzelà-Ascoli Theorem they will converge locally uniformly to
an (λ,Λ)-elliptic operator F∞.

Finally, since βni satisfy assumptions [A2] and [A3] they will converge locally
uniformly to continuous functions β∞i , respectively.

Our goal is to prove that the limiting function u∞ is a viscosity solution to
the equation F∞(D2u∞) = 0. We only prove that it is a subsolution, since the
proof for supersolution is analogous. We will consider two cases, depending
on the limit behaviour of (pn)n.
Step 3: Assume that (pn)n does not admit a convergent subsequence. Then
|pn| → ∞. Let ϕ ∈ C2(B1) and assume that u∞ − ϕ attains a local strict
maximum at x0 ∈ B1. By contradiction, assume that

F∞
(
D2ϕ(x0)

)
> 0. (24)

There exists a sequence xn → x0 such that un − ϕ has a local maximum at
xn. Notice that Dϕ(xn) → Dϕ(x0) and D2ϕ(xn) → D2ϕ(x0). Also, by the
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equation satisfied by un in the viscosity sense, we have

min
i=0,...,N

{
|Dϕ(xn) + pn|β

n
i (xn) Fn

(
D2ϕ(xn)

) }
¬ 1
n
.

Taking n large enough, we have |Dϕ(xn) + pn| > 1 and since βni ­ 0, we get

Fn
(
D2ϕ(xn)

)
¬ 1
n
,

which is inconsistent with (24), when we take the limit n→∞. Therefore,

F∞(D2ϕ(x0)) ¬ 0,

concluding the proof for the case |pn| → ∞.
Step 4: Suppose now that we can extract a subsequence pn → p∞. Resort-

ing to standard stability results (see for example [9, Remarks 6.2 and 6.3]),
we conclude that u∞ is a viscosity subsolution to

min
i=0,...,N

{
|p∞ +Du∞|β

∞
i (x) F∞(D2u∞)

}
¬ 0,

and a viscosity supersolution to

max
i=0,...,N

{
|p∞ +Du∞|β

∞
i (x) F∞(D2u∞)

}
­ 0.

We can assume without loss of generality that p∞ = 0, i.e., assume that u∞
is a viscosity subsolution to

min
i=0,...,N

{
|Du∞|β

∞
i (x) F∞(D2u∞)

}
¬ 0,

and a viscosity supersolution to

max
i=0,...,N

{
|Du∞|β

∞
i (x) F∞(D2u∞)

}
­ 0.

We now claim that these inequalities imply that F∞(D2u∞) = 0. This is
proved in Lemma 5 below.
Step 5: Since F∞(D2u∞) = 0, by Remark 3 we get that u∞ ∈ C1,α0(B1/2).

This, together with the uniform convergence un → u∞ produces a contradic-
tion with (23), which completes the proof.

We present a homogeneous division lemma which concludes the proof of
Lemma 4. We follow closely the proof of [12, Lemma 6].
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Lemma 5. Let u ∈ C(B1) be a bounded viscosity subsolution to

min
i=0,...,N

{
|Du|βi(x)F

(
D2u

) }
¬ 0, (25)

and a viscosity supersolution to

max
i=0,...,N

{
|Du|βi(x)F

(
D2u

) }
­ 0. (26)

Then u is a viscosity solution to

F
(
D2u

)
= 0.

Proof : We prove that (26) implies F
(
D2u

)
­ 0, noting that F

(
D2u

)
¬ 0

follows similarly from (25) in a similar way.
Let P (x) = 1

2(x−y) ·N(x−y) + b · (x−y) +u(y) be a polynomial touching
u strictly from below at a point y ∈ B3/4. We shall assume, without loss of
generality, that y = 0 and u(0) = 0. Then we have the estimate

min
i=0,...,N

{
|b|βi(0)F (N)

}
¬ 0.

If b 6= 0, then the result is trivial. Hence, assume otherwise. So
P (x) = 1

2x · Nx. We argue by contradiction, assuming that F (N) < 0.
By ellipticity, this implies that N has at least one positive eigenvalue. Let S
be the subspace generated by the eigenvectors corresponding to the positive
eigenvalues and consider the projection PS to this subspace. We consider the
following perturbed test function

ψ(x) = P (x) + ε|PSx|, for x ∈ Br.

For ε large enough, u−ψ attains a negative minimum at Br−B 9
10r

(since S is
not empty and u is continuous). Indeed, let m = maxBr |u−P | and ε = 21m

r .
Then

min
x∈B 9

10 r

(u(x)− P (x)− ε|PSx|) ­ −m−
21M
r

9
10
r = −199

10
m;

on the other hand, for x ∈ ∂Br,

u(x)− P (x)− ε|PSx| ¬ m− 21m
r
r = −20m,

which concludes that the minimum is negative and attained at
x0 ∈ Br \B 9

10r
.
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Using this ε, we claim that PSx0 6= 0. In fact, since
(u− ψ)(x0) ¬ (u− ψ)(x),

(u− P )(x0)− ε|PSx0| ¬ (u− ψ)(x)

if PSx0 = 0, we take x = 0 and get

(u− P )(x0) ¬ (u− ψ)(0) = (u− P )(0) = 0.

But P touches u strictly from below at y = 0 which implies (u− P )(x0) ­ 0
with equality only if x0 = 0, therefore (u−ψ)(x0) = 0, contradicting the fact
that the minimum is negative and that x0 6= 0.

We proved that |PSx0| 6= 0 which implies that ψ is smooth in a neigh-
bourhood of x0. Hence, for an appropriate translation of ψ, call it ψ̃, u − ψ̃
has a local minimum in Br at x0. Let B be the Hessian of |PSx| at x = x0.
Note that since |PSx| is a convex function, B ­ 0. We also have the viscosity
inequality

max
i=0,...,N

{
|Nx0 + εe0|βi(x0)F (N + εB)

}
­ 0,

for e0 = PSx0/|PSx0|. Note (Nx0 + εe0) · PSx0 > 0, since PS is the projec-
tion into the subspace generated by the eigenvalues of N associated with its
positive eigenvalues. Then, by ellipticity we obtain

F (N) ­ F (N + εB) ­ 0,

which is a contradiction. Hence F
(
D2u

)
­ 0 which concludes the proof.

In the next and final section we provide an iterative scheme to control the
oscillation of the gradient.

6.Hölder continuity of the gradient
In the following lemmas, we proceed with the geometric iteration argument

in a sequence of concentric, shrinking balls. The first geometric iteration
follows immediately from the approximation lemma.

Lemma 6. Let u ∈ C(B1) be a viscosity subsolution to (11) and a viscosity
supersolution to (12) with p = 0. Under the assumptions of Lemma 4, for
every θ < α0, there exists a polynomial `(x) = a + b · x and a constant
0 < ρ < 1, depending on ω and universal constants, such that

‖u− `‖L∞(Bρ) ¬ ρ1+θ.

Furthermore, there exists a universal C > 0 such that |a| ¬ C and |b| ¬ C.
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Proof : By Lemma 4, there exists h ∈ C1,α0(B1/2) such that

‖u− h‖L∞(B1/2)
¬ δ,

with the uniform estimate

‖h‖C1,α0(B1/2) ¬ C ‖h‖L∞(B3/4)
.

This implies that, for every 0 < r � 1 and for the polynomial
`(x) = h(x0) +Dh(x0) · (x− x0),

‖h− `‖L∞(Br(x0)) ¬ Cr1+α0,

with |h(x0)| ¬ C and |Dh(x0)| ¬ C where C is universal.
Let θ < α0 be arbitrary and take r = ρ given by

ρ := min
{
δ1, (2C)

1
θ−α0

}
,

where δ1 is given implicitly in (4). Finally fix δ = ρ1+θ

2 , which also fixes ε0 via
Lemma 4. Then

‖u− `‖L∞(Bρ(x0)) ¬‖u− h‖L∞(Bρ(x0)) + ‖h− `‖L∞(Bρ(x0))

¬δ + Cρ1+α0 ¬ ρ1+θ.

Now we iterate the previous result concentric, shrinking balls.

Lemma 7 (Geometric iterations). There exist a non-decreasing sequence
(αk)k and universal constants ε0 > 0 and ρ > 0 such that if u is a vis-
cosity subsolution of (11) and a supersolution of (12) with p = 0, satisfying
‖u‖L∞(B1) ¬ 1 and ‖f‖L∞(B1) ¬ ε0, there exist polynomials `k(x) = ak + bk · x
such that

‖u− `k‖L∞(Bρk (x0)) ¬ ρk(1+αk), (27)

and

|ak − ak−1|+ ρk−1|bk − bk−1| ¬ Ceρ
(k−1)(1+αk−1). (28)

Furthermore, the sequence (αk)k converges to

α := min
i=0,...,N

α−0 , 1
1 + βi(x0)


and

lim sup
k→∞

k (α− αk) = 0. (29)
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Proof : Assume without loss of generality that x0 = 0. Take ε0 and ρ given
by Lemma 6, depending on θ, which will be fixed soon.

Define the nondecreasing sequence

αk := min
i=0,...,N

α−0 , min
x∈Bρk

 1
1 + βi(x)

 ,
which converges to the number

α := min
i=0,...,N

α−0 , 1
1 + βi(0)

 .
Note that, by [A2],

k

 1
1 + βi(0)

− 1
1 + maxx∈Bρk βi(x)

 ¬k
max
x∈Bρk

βi(x)− βi(0)


¬kω(ρk).

Therefore, considering all possible cases, we can easily check that

0 ¬ k(α− αk) ¬ kω
(
ρk
)
,

with

lim sup
k→∞

kω(ρk) = 0.

To prove (27) and (28), we will proceed by induction.
Let `0 ≡ 0 and `1 be given by Lemma 6. Then (27) and (28) hold for k = 1

by Lemma 6.
Assume that (27) and (28) hold up to k. Define

vk(x) =
(u− `k)
ρk(1+αk) (ρkx).

Then ‖vk‖L∞(B1) ¬ 1 and vk is a viscosity subsolution to

min
i=0,...,N

ρkαkβi(ρkx)
∣∣∣Dvk(x) + ρ−kαkbk

∣∣∣βi(ρkx)
Fk

(
D2vk

)  ¬ ρk(1−αk)ε0,

where

Fk(M) := ρk(1−αk)F
(
ρk(αk−1)M

)
.
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This implies the following estimate

min
i=0,...,N


∣∣∣Dvk(x) + ρ−kαkbk

∣∣∣βi(ρkx)
Fk

(
D2vk

) 
¬ max

i=0,...,N

{
ρk(1−αk)−kαkβi(ρkx)

}
ε0 ¬ ε0,

where the last inequality follows from the definition of αk. Calling
pk := ρ−kαkbk and βki (x) := βi(ρkx), we get that vk is a subsolution to

min
i=0,...,N

 |Dvk(x) + pk|β
k
i (x) Fk

(
D2vk

)  ¬ ε0.

Similarly, we prove that vk is a viscosity supersolution to

max
i=0,...,N

 |Dvk(x) + pk|β
k
i (x) Fk

(
D2vk

)  ­ −ε0.

Note that βki still satisfy assumption [A2].
Hence, we can use Lemma 6 to guarantee the existence of a linear function

`(x) = a+ p · x such that

sup
Bρ

|vk − `| ¬ ρ1+θ,

where θ = α+α0
2 < α0 and the coefficients satisfy

a = h(0),

p = Dh(0),

where h is a viscosity solution to G(D2h) = 0 and G has the same ellipticity
constants as F . Hence, as a straightforward application of ellipticity, h has
interior C1,α0 estimates which imply universal bounds on the coefficients of
`.

Rescalling back to the unit ball, we get

sup
x∈Bρ

∣∣∣∣∣ u− `kρk(1+αk) (ρ
kx)− `(x)

∣∣∣∣∣ ¬ ρ1+θ

⇐⇒ sup
y∈Bρk+1

∣∣∣u(y)− `k(y)− ρk(1+αk)`(ρ−ky)
∣∣∣ ¬ ρ1+θρk(1+αk)

⇐⇒ sup
y∈Bρk+1

|u(y)− `k+1(y)| ¬ ρ1+θρk(αk−αk+1)ρk(1+αk+1),
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where

`k+1(y)− `k(y) =(ak+1 − ak) + (pk+1 − pk) · y
=ρk(1+αk)h(0) + ρkαkDh(0) · y.

Because of (4), we have

ρk(αk−αk+1) ¬ ρ−kω(ρk) ¬ ρ
α−α0
2 ,

hence, we can further estimate

ρ1+θρk(αk−αk+1)ρk(1+αk+1) ¬ ρθ−αk+1ρ
α−α0
2 ρ(k+1)(1+αk+1)

and since θ = α+α0
2 , we can write

θ − αk+1 +
α− α0

2
= α− αk+1 ­ 0.

Combining all these inequalities, we can finally estimate

sup
y∈Bρk+1

|u(y)− `k+1(y)| ¬ ρ(k+1)(1+αk+1)

which proves (27) and since |h(0)| ¬ C, |Dh(0)| ¬ C, estimate (28) follows
immediately aswell. This concludes the proof for the case x0 = 0. A standard
translation locates this argument at any point x0 ∈ B1/2.

Theorem 2 follows from Lemma 7 together with Proposition 1.

Acknowledgments. The author is very grateful to E. A. Pimentel and J. M. Urbano for
pointing out this problem and for the fruitful discussions they had together. DJ was sup-
ported by FCT, Portugal, through scholarship PD/BD/150354/2019, under POCH funds,
co-financed by the European Social Fund and Portuguese National Funds from MEC, Por-
tugal and by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020,
funded by the Portuguese Government through FCT/MCTES.

Declaration. The author declares that he has no conflict of interest.

References
[1] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard

growth, Arch. Ration. Mech. Anal. 156 (2001) 121–140.
[2] I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular

fully nonlinear operators, Ann. Fac. Sci. Toulouse Math. (6) 13 (2) (2004), 261–287.
[3] I. Birindelli and F. Demengel, Eigenvalue, maximum principle and regularity for fully non

linear homogeneous operators, Commun. Pure Appl. Anal. 6 (2) (2007), 335–366.
[4] I. Birindelli and F. Demengel, Eigenvalue and Dirichlet problem for fully-nonlinear operators

in non-smooth domains, J. Math. Anal. Appl. 352 (2) (2009), 822–835.



26 D. JESUS

[5] P. Blomgren, T. Chan, P. Mulet, L. Vese, W. Wan, Variational PDE models and methods
for image processing, in: Numerical Analysis 1999, Dundee, in: Chapman and Hall/CRC Res.
Notes Math., vol. 420, Chapman and Hall/CRC, Boca Raton, FL, (1999), 43–67.

[6] M. Borsuk, Transmission problems for elliptic second-order equations in non-smooth domains,
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