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Universidade de Coimbra
Preprint Number 21–44

FULLY NONLINEAR FREE TRANSMISSION PROBLEMS

EDGARD A. PIMENTEL AND MAKSON S. SANTOS

Abstract: We examine a free transmission problem driven by fully nonlinear el-
liptic operators. Since the transmission interface is determined endogeneously, our
analysis regards this object as a free boundary. By relating our problem with a pair
of viscosity inequalities, we resort to approximation methods and prove that strong
solutions are of class C1,Log-Lip, locally. Then additional, natural conditions allow
us to prove quadratic growth of the solutions away from branch points.
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1. Introduction
We consider a fully nonlinear transmission problem of the form

F1(D
2u) = 1 in Ω+(u) ∩B1

F2(D
2u) = 1 in Ω−(u) ∩B1

(1)

where F1, F2 : S(d) → R are (λ,Λ)-elliptic operators, Ω−(u) := {x ∈ B1 |
u < 0}, and Ω+(u) := {x ∈ B1 | u > 0}. We examine local regularity of the
strong solutions to (1) and study their growth regime at branch points along
the free boundary. In particular, we prove that solutions are locally C1,Log-Lip-
regular, with estimates. Under further conditions, we prove quadratic growth
of the solutions away from branch points.

We emphasize the operators F1 and F2 are comparable only locally in S(d).
As a consequence, (1) differs from the usual obstacle problem. We also stress
that discontinuities arise in the diffusion process, as the solutions change sign.
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Transmission problems comprise a class of models aimed at examining a va-
riety of phenomena in heterogeneous media. The problems under the scope of
this formulation include thermal and electromagnetic conductivity, compos-
ite materials and, more generally, diffusion processes driven by discontinuous
laws.

Given a domain Ω ⊂ Rd, it gets split into mutually disjoint subregions Ωi b
Ω for i = 1, . . . , k, for some k ∈ N. The mechanism governing the problem is
smooth within Ωi, though possibly discontinuous across ∂Ωi. A paramount,
subtle, aspect of the theory concerns the nature of those subregions.

In fact, (Ωi)
k
i=1 and the geometry of ∂Ωi can be prescribed a priori. The al-

ternative is (Ωi)
k
i=1 to be determined endogenously. The latter setting frames

the theory in the context of free boundary problems. Both cases differ sub-
stantially; as a consequence, their analysis also requires distinct techniques.
The vast majority of former studies on transmission problems presupposes
a priori knowledge of the subregions Ωi and their geometric properties. A
work-horse of the theory is the divergence-form equation

div (a(x)Du) = 0 in Ω, (2)

where the matrix-valued function a(·) is defined as

a(x) := ai for x ∈ Ωi,

for constant matrices ai and i = 1, . . . , k. Though smooth within every
Ωi, the coefficients of (2) can be discontinuous across ∂Ωi. This feature
introduces genuine difficulties in the analysis.

The first formulation of a transmission problem appeared in [31] and ad-
dressed a topic in the realm of material sciences. More precisely, in elasticity
theory. In that paper, the author proves the uniqueness of solutions for a
model consisting of two subregions, which are known a priori. The existence
of solutions is discussed in [31], although not examined in detail. See also
[30].

The formulation in [31] motivated a number of subsequent studies [5, 12, 13,
14, 27, 19, 29, 33, 35, 34]. Those papers present a wide range of developments,
including the existence of solutions for the transmission problem in [31] and
the analysis of several variants. We refer the reader to [6] for an account of
those results and methods.

Estimates and regularity results for the solutions to transmission prob-
lems have also been treated in the literature. In [26] the authors consider a
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bounded subdomain Ω ⊂ Rd, which is split into a finite number of subregions
Ω1,Ω2, . . . ,Ωk, known a priori. The motivation is in the study of compos-
ite materials with closely spaced inclusions. A two-dimensional example is
the cross-section of a fiber-reinforced material. The mathematical analysis
amounts to the study of

∂

∂xi

(
a(x)

∂

∂xj
u

)
= f in Ω, (3)

where

a(x) :=

{
ai(x) for x ∈ Ωi, i = 1, . . . , k

ak+1(x) for x ∈ Ω \ ∪ki=1Ωi.

Under natural assumptions on the data, the authors establish local Hölder
continuity for the gradient of the solutions. From the applied perspective,
the gradient encodes information on the stress of the material. Their findings
imply bounds on the gradient independent of the location of the fibers. C.f.
[3].

The vectorial setting is the subject of [25]. In that paper the authors extend
the developments reported in [26] to systems. Moreover, they produce bounds
for higher derivatives of the solutions.

In [1] the authors consider a domain with two subregions, which are sup-
posed to be ε-apart, for some ε > 0. Within each subregion, the divergence-
form equation is governed by a constant coefficient k. Conversely, outside
those subregions the diffusivity coefficient is equal to 1. By setting k = +∞,
the authors frame the problem in the context of perfect conductivity.

In this setting, it is known that bounds on the gradient deteriorate as the
two subregions approach each other. The analysis in [1] yields blow up rates
for the gradient bounds as ε → 0. The case of multiple inclusions, covering
perfect conductivity and insulation (k = 0), is discussed in [2]. See also [7].

Recently, new developments have been obtained under minimal regularity
requirements for the transmission interfaces. In [11] the authors consider
a smooth and bounded domain Ω and fix Ω1 b Ω, defining Ω2 := Ω \ Ω1.
They suppose the boundary of the transmission interface ∂Ω1 to be of class
C1,α and prove existence, uniqueness and C1,α(Ωi)-regularity of the solutions
to the problem, for i = 1, 2. Their argument imports regularity from flat
problems, through a new stability result; see [11, Theorem 4.2].

Another class of transmission problems concerns models where the subre-
gions of interest are determined endogenously. For example, given Ω ⊂ Rd,
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one would consider

Ω1 : {x ∈ Ω | u(x) < 0} and Ω2 : {x ∈ Ω | u(x) > 0} ,

where u : Ω→ R solves a prescribed equation. Roughly speaking, knowledge
of the solution is required to determine the subregions of the domain where
distinct diffusion phenomena take place. In this context, a further structure
arises, namely, the free interface, or free boundary. Here, in addition to the
analysis of the solutions, properties of the free boundary are also of central
interest.

In [15] the authors examine the (p, q)-functional

Jp,q(v) :=

∫
Ω

(
|Dv+|p + |Dv−|q

)
dx. (4)

Heuristically, in the region where v is positive, the functional satisfies a p-
growth regime, whereas in the region where v is negative, a q-growth regime
is in force. Though the functional in (4) is discontinuous, and distinct regimes
drive the process in distinct subregions of the domain, such discontinuities
depend on the sign of the argument v.

Among the findings in [15], we mention the existence of minimizers for Jp,q
and their Hölder continuity. In addition, the authors prove the free boundary
is of class C1,α with respect to the p-harmonic measure ∆pu

+. Finally, they
conclude that ∆pu

+ is supported on a set of σ-finite (d − 1)-dimensional
Hausdorff measure.

We remark that (1) relates to (and is very much inspired by) the literature
on the fully nonlinear obstacle problem. To the best of our knowledge, the
fully nonlinear obstacle problem was first examined in [23]; see also [24].
In [16] the authors introduced the so-called unconstrained free boundary
problems, which are driven by fully nonlinear operators. This class of models
accommodate a variety of distinct formulations, unifying the approach to
regularity of the solutions and the analysis of the free boundary; see also
[17, 22].

Still in the context of the obstacle problem governed by fully nonlinear
operators, we mention the issue of non-transversality; see for instance [20, 21].
By examining the intersection of the fixed and the free boundaries, one can
extract geometrical information on the latter. In addition, the techniques
involved in this analysis have important spillovers on the classification of
blow-up limits.
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In the present paper we study W 2,d-strong solutions to (1). We start by
noticing that a W 2,d-solution to (1) is a continuous viscosity solution to

min
(
F1(D

2u), F2(D
2u)
)
≤ 1 in B1 (5)

and

max
(
F1(D

2u), F2(D
2u)
)
≥ −1 in B1. (6)

We emphasize the importance of (5)-(6), even in the context of W 2,d-strong

solutions. Although it is clear that a solution u ∈ W 2,d
loc (B1) is, for instance,

α-Hölder continuous for every α ∈ (0, 1), this inclusion does not ensure uni-
versal estimates for u. Because our analysis relies on the precompactness of
strong solutions to (1), this type of estimates is critical. By noticing that
strong solutions to (1) are viscosity solutions to (5)-(6), we access a maximum
principle, stability results, and a Krylov-Safonov theory.

By requiring F1 and F2 to satisfy a near convexity condition we prove that
solutions to (1) are locally of class C1,Log-Lip, with the appropriate estimates.
This is done through approximation methods; see [8, 9]. Our first main result
reads as follows.

Theorem 1 (Local C1,Log-Lip-regularity). Let u ∈ W 2,d
loc (B1) be a strong solu-

tion to (1). Suppose Assumption A1-A2 are in force. Then, u ∈ C1,Log-Lip
loc (B1)

and there exists C > 0 such that

sup
x∈Br(x0)

|u(x)− u(x0)−Du(x0) · (x− x0)| ≤ Cr2 ln
1

r
,

for every x0 ∈ B1/2 and r ∈ (0, 1/4). In addition, C = C(d, λ,Λ, ‖u‖L∞(B1)).

Remark 1. We notice the optimal regularity of the solutions to (1) is un-
known. Of particular interest is whether or not the end-pointW 2,∞-regularity
is available for strong solutions of this problem.

After examining the local regularity of solutions, we turn our attention to
the so-called branch points. In brief, such points lie at the interface of Ω+(u),
Ω−(u) and {u = 0}. From a rigorous viewpoint, a point on the free boundary
Γ(u) := (∂Ω+(u) ∪ ∂Ω−(u)) ∩B1 can be of three different types.

First, x0 ∈ Γ(u) is a one-phase point if

x0 ∈
(
∂Ω±(u) \ ∂Ω∓(u)

)
∩B1.
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If this is the case, the local regularity of the solutions and properties of the
free boundary follow from the fully nonlinear obstacle problem [23]. Alter-
natively, x0 ∈ Γ(u) may behave as a two-phase point; that is,

x0 ∈
(
∂Ω+(u) ∩ ∂Ω−(u)

)
∩B1.

Among two-phase points, branch points are of particular interest, as they are
at the interface of the positive and the negative phases with the region where
the solutions vanishes. Formally, we say that x∗ ∈ Γ(u) is a branch point if

|Br(x
∗) ∩ {u = 0}| > 0

for every 0 < r � 1. We denote with ΓBR(u) ⊂ Γ(u) the set of branch points.
Under a small-density condition with respect to the negative phase, we prove
a result on the quadratic growth of the solutions away from branch points.

This is done by requiring both F1 and F2 to be convex and supposing they
are positively homogeneous of degree one. Here, a dyadic analysis builds
upon the maximum principle and a scaling strategy, using the L∞-norms of
the solutions as a normalization factor. This machinery was introduced in
[10] in the context of an obstacle problem driven by the Laplacian. In [24] the
authors took this perspective to the fully nonlinear setting and developed a
fairly complete analysis of the obstacle problem governed by fully nonlinear
operators. We also refer the reader to [23].

We consider the quantity

Vr(x
∗, u) :=

vol (Br(x
∗) ∩ Ω−(u))

rd
;

by supposing Vr(x
∗, u) is controlled for a branch point x∗ ∈ ΓBR(u), we are

capable of proving quadratic growth for the solutions, away from x0. We
state our second main result in the sequel.

Theorem 2 (Quadratic growth away from branch points). Let u ∈ W 2,d
loc (B1)

be a strong solution to (1). Suppose A1, A3, and A4, to be detailed further,
are in force. Let x∗ ∈ ΓBR(u) be such that A5, yet to be presented, holds true
at x∗. Then the exists a universal constant C > 0 such that

sup
x∈Br(x∗)

|u(x)| ≤ Cr2

for every 0 < r � 1.

We note Theorem 2 does not require F1 and F2 to be close, or even com-
parable, in any topology.



FULLY NONLINEAR FREE TRANSMISSION PROBLEMS 7

Remark 2. The small-density of the negative phase is critical in establishing
Theorem 2. Were it reasonable to suppose it holds for every x0 ∈ Γ(u)∩B1/2,
the conclusion of Theorem 2 would hold for every such point. Then a clever
scaling argument, as in [10, 24], would produce local C1,1-regularity estimates
for the solutions. However, to impose a small-density condition for every free
boundary point x0 ∈ Γ(u) ∩B1/2 implies the negative phase has no effect on
the problem. Ultimately, it turns (1) into a one-phase fully nonlinear obstacle
problem, whose theory is currently well-understood and documented.

Remark 3. We notice the formulation in (1) includes the free transmission
obstacle problem

F1(D
2u)χ{u>0} + F2(D

2u)χ{u<0} = χ{u6=0} in B1, (7)

in the sense that solutions to (7) also solve (1).

The remainder of this paper is organized as follows: Section 2 gathers
elementary results and details the main assumptions under which we work.
In Section 3 we study the regularity of the strong solutions to (1) and present
the proof of Theorem 1. A fourth section examines the growth regime of the
solutions away from branch points and puts forward the proof of Theorem 2.

2. Preliminaries
This section presents some preliminary material, as well as the main hy-

potheses we use in the paper. With S(d) we denote the space of symmetric

matrices of order d; when convenient, we identify S(d) ∼ R
d(d+1)

2 . We start
with the uniform ellipticity of the operators Fi.

A 1 (Uniform ellipticity). For i = 1, 2, we suppose the operator Fi : S(d)→ R
to be (λ,Λ)-uniformly elliptic. That is, for 0 < λ ≤ Λ, it holds

λ‖N‖ ≤ Fi(M +N)− Fi(M) ≤ Λ‖N‖,
for every M,N ∈ S(d), N ≥ 0, and i = 1, 2. We also suppose Fi(0) = 0.

Uniform ellipticity relates closely with the extremal operators

M+
λ,Λ(M) := Λ

∑
ei>0

ei + λ
∑
ei<0

ei

and
M−

λ,Λ(M) := λ
∑
ei>0

ei + Λ
∑
ei<0

ei.
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In fact, Assumption A1 can be rephrased as

M−
λ,Λ(M −N) ≤ Fi(M)− Fi(N) ≤M+

λ,Λ(M −N),

for every M,N ∈ S(d), and i = 1, 2. For completeness, we recall the defini-
tion of viscosity solutions.

Definition 1 (C-viscosity solution). Let G : S(d) → R be a (λ,Λ)-elliptic
operator. We say that u ∈ USC(B1) is a C-viscosity subsolution to

G(D2u) = 0 in B1 (8)

if, for every ϕ ∈ C2
loc(B1) and x0 ∈ B1, such that u − ϕ attains a local

maximum at x0, we have
G(D2ϕ(x0)) ≤ 0.

Similarly, we say that u ∈ LSC(B1) is a C-viscosity supersolution to (8) if,
for every ϕ ∈ C2

loc(B1) and x0 ∈ B1, such that u−ϕ attains a local minimum
at x0, we have

G(D2ϕ(x0)) ≥ 0.

If u ∈ C(B1) is simultaneously a subsolution and a supersolution to (8), we
say it is a viscosity solution to the equation.

For 0 < λ ≤ Λ and f ∈ C(B1), we define S(λ,Λ, f) as the set of functions
u ∈ C(B1) satisfying

M−
λ,Λ(D2u) ≤ f

in B1, in the viscosity sense. Similarly, S(λ,Λ, f) is the set of functions
u ∈ C(B1) satisfying

M+
λ,Λ(D2u) ≥ f.

Finally, we set
S(λ,Λ, f) := S(λ,Λ, f) ∩ S(λ,Λ, f)

and
S∗(λ,Λ, f) := S(λ,Λ,−|f |) ∩ S(λ,Λ, |f |).

For a comprehensive account of the theory of C-viscosity solutions, we refer
the reader to [9]. We proceed with the definition of W 2,d-strong solution.

Definition 2 (W 2,d-strong solution). We say that u ∈ W 2,d
loc (B1) is a strong

solution to
G(D2u(x)) = 0 in B1

if u satisfies the equation at almost every x ∈ B1.
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We refer the reader to [18, Chapter 9] for further details on this class of
solutions and their properties. In the sequel, we put forward two assumptions
concerning the convexity of the opeators F1 and F2. We start with a near-
convexity condition used in the context of local C1,Log-Lip-regularity.

A 2 (Near-convexity condition). For i = 1, 2, we suppose the operator F i :
S(d)→ R satisfies a near-convexity condition. That is, there exists a convex,
(λ,Λ)-elliptic operator F : S(d)→ R such that

|Fi(M)− F (M)| ≤ τ(1 + ‖M‖),

for some small constant τ > 0, yet to be determined.

When it comes to the analysis of branching points, we require F1 and F2

to be convex operators.

A 3 (Convexity). For i = 1, 2, we suppose the operator Fi : S(d)→ R to be
convex.

The next assumption concerns homogeneity of degree 1. It plays a major
role in the quadratic growth of the solutions. The argument towards qua-
dratic growth in [10] uses the linearity of the Laplacian operator. In [24] the
authors notice that in the fully nonlinear case the condition that parallels
linearity is the homogeneity of degree 1.

A 4 (Homogeneity of degree one). We suppose F1 and F2 to be homogeneous
of degree one; that is, for every τ ∈ R and M ∈ S(d), we have

Fi(τM) = τFi(M),

for every i = 1, 2.

Before proceeding with further assumptions, we gather some notation used
throughout the paper. We denote by Ω+(u) the subset of the unit ball where
u > 0, whereas Ω−(u) stands for the set where u < 0. That is,

Ω+(u) := {x ∈ B1 | u(x) > 0} and Ω−(u) := {x ∈ B1 | u(x) < 0} .

When referring to the set where u 6= 0 it is convenient to use the notation
Ω(u) := Ω+(u) ∪ Ω−(u). With Γ(u) we denote the union of the topological
boundaries of Ω+ and Ω−. I.e.,

Γ(u) :=
(
∂Ω+(u) ∪ ∂Ω−(u)

)
∩B1.



10 E. A. PIMENTEL AND M. S. SANTOS

We say that x∗ ∈ Γ(u) is a branch point if

|Br(x
∗) ∩ Σ(u)| > 0

for every 0 < r < 1. The set of branch points is denoted with ΓBR(u). We
also denote with Σ(u) the set where u vanishes:

Σ(u) = {x ∈ B1 | u(x) = 0} .

A further condition on the problem regards the subregion Ω−(u); it is crit-
ical in proving quadratic growth of the solutions through the set of methods
used in the paper. For x∗ ∈ ∂Ω and 0 < r � 1, we consider the quantity

Vr(x
∗, u) :=

vol (Br(x
∗) ∩ Ω−(u))

rd
. (9)

For ease of notation, we set Vr(0, u) =: Vr(u).

A 5 (Normalized volume of Ω−(u)). Let x∗ ∈ ΓBR(u) be fixed. We suppose
there exists C0 > 0, to be determined later, such that

Vr(x
∗, u) ≤ C0

for every r ∈ (0, 1/2).

The former assumption imposes a control on the size of the subregion where
u is negative, ina. vicinity of x∗ ∈ ΓBR(u). It resonates on the geometry of
the free boundary. In the next section we examine the regularity of strong
solutions to (1). In particular, we present the proof of Theorem 1.

3. Local regularity of solutions
In this section we detail the proof of Theorem 1. We start by relating (1)

with viscosity inequalities of the form

min
(
F1(D

2u), F2(D
2u)
)
≤ 1 in B1 (10)

and

max
(
F1(D

2u), F2(D
2u)
)
≥ −1 in B1 (11)

Lemma 1. Let u ∈ W 2,d
loc (B1) be a strong solution to (1). Suppose A1 holds

true. Then u is a C-viscosity solution to the inequalities (10)-(11).
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The proof of Lemma 1 follows from standard computations and the max-
imum principle for W 2,d-functions, see [28, Corollary 3] and [4]. In addi-
tion, if u is a continuous viscosity solution to (10)-(11) we also have u ∈
S(λ,Λ, 1) ∩ S∗(λ,Λ, 1). In fact, because

M−
λ,Λ(M) ≤ Fi(M) ≤M+

λ,Λ(M)

holds for i = 1, 2, we have

M−
λ,Λ(D2u) ≤ min

(
F1(D

2u), F2(D
2u)
)
≤ 1

and

M+
λ,Λ(D2u) ≥ max

(
F1(D

2u), F2(D
2u)
)
≥ −1.

As a consequence to the former inclusion we derive the Hölder continuity for
the strong solutions to (1), with universal estimates.

Lemma 2 (Hölder continuity). Let u ∈ W 2,d
loc (B1) be a strong solution to (1)

and suppose A1 holds. Then u ∈ Cα
loc(B1), for some α ∈ (0, 1), and there

exists C > 0 such that

‖u‖Cα(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖f‖Ld(B1)

)
.

In addition, α = α(λ,Λ, d) and C = C(λ,Λ, d).

For a proof of Lemma 2, see [9, Lemma 4.10]. In the sequel we prove that
solutions to (1) satisfy a quadratic growth away from the free boundary.

3.1. Proof of Theorem 1. We continue with an approximation lemma.

Proposition 1. Let u ∈ W 2,d
loc (B1) be a W 2,d-strong solution to (1). Suppose

A1 and A2 hold true. Given δ > 0, there exists 0 < τ0 � 1 such that, if the
parameter τ > 0 in A2 satisfies τ < τ0, there exists h ∈ C2,α

loc (B9/10) with

‖u− h‖L∞(B8/9) ≤ δ

and

‖h‖C2,α(B8/9) ≤ C,

for some universal constant C > 0 and some universal exponente α ∈ (0, 1).

Proof : For ease of presentation we split the proof into three main steps.

Step 1 - We argue by contradiction; suppose the statement of the proposition
is false. Then there exist sequences (un)n∈N, (F n

1 )n∈N and (F n
2 )n∈N such that:
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(1) F n
i satisfies A1 for i = 1, 2, and every n ∈ N. Moreover,

|F n
i (M)− F (M)| ≤ 1

n
(1 + ‖M‖) (12)

for every i = 1, 2, n ∈ N, and M ∈ S(d);
(2) un is a viscosity solution to

min
(
F n

1 (D2un), F
n
2 (D2un)

)
≤ 1

n
(13)

and

max
(
F n

1 (D2un), F
n
2 (D2un)

)
≥ −1

n
(14)

in B9/10, with un = u on ∂B9/10, for every n ∈ N;
(3) there exists δ0 > 0 for which

‖un − h‖L∞(B8/9) > δ0

for every h ∈ C2(B9/10) with ‖h‖C2(B8/9) ≤ C, and every n ∈ N.

Step 2 - Because of (13)-(14) and Lemma 2, we learn that ‖un‖Cβ(B9/10) ≤ C
for every n ∈ N, for some universal constant C > 0. As a consequence, it
converges locally uniformly, through a subsequence if necessary, to a function

u∞ ∈ Cβ/2
loc (B9/10). Also, (12) ensures that F n

1 and F n
2 converge locally uni-

formly on S(d) to the convex operator F from A2. The stability of viscosity
sub and supersolutions implies

F (D2u∞) = 0 in B9/10.

Step 3 - Because F is convex, we infer u∞ ∈ C2,α
loc (B9/10), with ‖u∞‖C2,α(B8/9) ≤

C, for some universal constant C > 0 and some universal exponent α ∈ (0, 1).
Set h := u∞ to get a contradiction and complete the proof.

Proposition 2. Let u ∈ W 2,d
loc (B1) be a W 2,d-strong solution to (1). Suppose

A1 and A2 hold true. There exists 0 < τ0 � 1 such that, if the parameter
τ > 0 in A2 satisfies τ < τ0, one can find 0 < ρ � 1 and a sequence of
quadratic polynomials (Pn)n∈N, with

Pn(x) := an + bn · x+
x · Cnx

2
,

with
‖u− Pn‖L∞(Bρn) ≤ ρ2n, (15)

F (Cn) = 0, (16)
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and

|an − an−1|+ ρn−1|bn − bn−1|+ ρ2(n−1)|Cn − Cn−1| ≤ Cρ2(n−1), (17)

for every n ∈ N.

Proof : We resort to an induction argument; for ease of clarity, we split the
proof into four steps.

Step 1 - We consider the base case. Set P0 := 0; let h ∈ C2,α
loc (B9/10) be the

δ-approximating function whose existence follows from Proposition 1 and
define

P1(x) := h(0) +Dh(0) · x+
x ·D2h(0)x

2
.

We verify (15)-(17) in the case n = 1. Notice that

sup
x∈Bρ
|u(x)− P1(x)| ≤ sup

x∈Bρn
|u(x)− h(x)|+ sup

x∈Bρn
|h(x)− P1(x)| ≤ δ + Cρ2+α.

By choosing

δ :=
ρ

2
and ρ :=

(
1

2C

) 1
α

one ensure (15) holds. Because h is the approximating function from Propo-
sition 1, we have (16). Finally, (17) follows from the C2,α-estimates available
for h.

Step 2 - Now we formulate the induction hypothesis: suppose (15)-(17) have
been verified for n = k. We examine the case n = k+ 1. Let vk : B1 → R be
defined as

vk(x) :=
u(ρkx)− Pk(ρkx)

ρ2k
.

It is clear from the induction hypothesis that vk is a normalized viscosity
solution to

min
(
F1(D

2vk + Ck), F2(D
2vk + Ck)

)
≤ 1 in B1

and

max
(
F1(D

2vk + Ck), F2(D
2vk + Ck)

)
≥ −1 in B1.

Also, A2 implies

sup
M∈S(d)

|Fi(M + Ck)− F k(M)| ≤ τ(1 + ‖M‖),
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where F k is the convex operator defined as F k(M) := F (M+Ck). Because of
the induction hypothesis, F (Ck) = 0; hence, F (D2w) = 0 and F k(D

2w) = 0
have the same estimates.

As a consequence, if 0 < τ < τ0, Proposition 1 ensures the existence of
h̃ ∈ C2,α

loc (B9/10), with ‖h̃‖C2,α(B8/9) ≤ C satisfying

‖vk − h̃‖L∞(B8/9) ≤ δ.

Arguing as in the former step, one concludes the existence of

P̃ (x) := ã+ b̃ · x+
x · C̃x

2

such that

sup
x∈Bρ

∣∣∣vk(x)− P̃ (x)
∣∣∣ ≤ ρ2.

The induction assumption and the definition of vk yield

sup
x∈Bρk+1

|u(x)− Pk+1(x)| ≤ ρ2(k+1),

where Pk+1 is given by

Pk+1(x) := ak + ρ2kã+ (bk + ρkb̃) · x+
x · (Ck + C̃)x

2
. (18)

Because C̃ = D2h̃(0), it follows that F (Ck+1) = 0. Defining ak+1, bk+1 and
Ck+1 as in (18), one ensures that (17) is also satisfied at the (k + 1)-level,
and the proof is complete.

Now we are in a position to detail the proof of Theorem 1.

Proof of Theorem 1: Once Proposition 2 is available, the proof of Theorem 1
follows from (by now) standard computations. See, for instance, [32, Proof
of Theorem 2.6, p. 1398]

4. Quadratic growth away from branch points
Let x∗ ∈ ΓBR(u) ∩ B1 be fixed. Consider the maximal subset of N whose

elements j are such that

sup
x∈B2−j−1(x∗)

|u(x)| ≥ 1

16
sup

x∈B2−j (x
∗)

|u(x)|; (19)

we denote such set by M(x∗, u).
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Proposition 3. Let u ∈ W 2,d
loc (B1) be a strong solution to (1). Suppose A1,

A3, and A4 hold true. Let x∗ ∈ ΓBR(u) and suppose A5 holds at x∗. There
exists a choice of C0 > 0 in A5 such that, if

V2−j(x
∗, u) < C0 (20)

for every j ∈M(x∗, u), then

sup
x∈B2−j (x

∗)

|u(x)| ≤ 1

C0
2−2j, ∀j ∈M(x∗, u).

Proof : For ease of presentation, we split the proof into three steps.

Step 1 - Set x∗ = 0 and M(u) := M(0, u). We resort to a contradiction
argument; suppose the statement of the proposition is false. Then, there exist
sequences (un)n∈N and (jn)n∈N such that un is a normalized strong solution
to (1),

V 1
2n

(un) <
1

n
, (21)

with

sup
x∈B2−jn

|un(x)| > n

22jn
, (22)

for every jn ∈M(un), and n ∈ N. Because ‖un‖L∞(B1) is uniformly bounded,

it follows from (22) that jn −→∞. In particular, we may re-write (21) as

V 1

2jn
(un) <

1

jn
. (23)

Step 2 - Now, we introduce an auxiliary function vn : B1 → R, given by

vn(x) :=
un(2

−jnx)

‖un‖L∞(B2−(jn+1))
.

Clearly, vn(0) = 0. In addition, V1(vn) −→ 0. Moreover, it follows from the
definition of vn that

sup
B1/2

|vn(x)| = 1 (24)

and

sup
B1

|vn(x)| ≤ 16.
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We notice that A4 yields

min
(
F1(D

2vn), F2(D
2vn)

)
≤

min
(
F1(D

2un(2
−jnx)), F2(D

2un(2
−jnx))

)
22jn ‖un‖L∞(B2−(jn+1))

.

Therefore,

min
(
F1(D

2vn), F2(D
2vn)

)
≤ 1

n

C ‖un‖L∞(B2−jn)

‖un‖L∞(B2−(jn+1))
≤ C

n
≤ C0, (25)

for some C0 > 0 and n� 1. On the other hand,

max
(
F1(D

2vn), F2(D
2vn)

)
≥

max
(
F1(D

2un(
x

2jn )), F2(D
2un(

x
2jn ))

)
22jn ‖un‖L∞(B2−(jn+1))

≥ −C0. (26)

It follows from (25)-(26) that (vn)n∈N ⊂ S∗(λ,Λ, C0). As a consequence,
vn ∈ Cα

loc(B1) for every n ∈ N, for some unknown α ∈ (0, 1), with uniform
estimates; see [9, Proposition 4.10]. Therefore, there exists v∞ such that

vn −→ v∞ in Cβ
loc(B1), for every 0 < β < α. Since vn(0) = 0 for every n ∈ N

we infer that v∞(0) = 0, whereas (24) leads to ‖v∞‖L∞(B1/2) = 1. Because

V1(vn) −→ 0, we conclude that v∞ ≥ 0 in B1.

Step 3 - Standard stability results for viscosity solutions build upon (25) to
ensure

min
(
F1(D

2v∞), F2(D
2v∞)

)
≤ 0 in B1.

We conclude that v∞ ∈ S(λ,Λ, 0) attains an interior local minimum at the
origin, which leads to a contradiction (see, for instance, [9, Proposition 4.9]).

In Proposition 3 the constant C0 > 0 informing A5 is determined. This
quantity remains unchanged throughout the paper. The next result extrapo-
lates the former analysis fromM(x∗, u) to the entire set of natural numbers.

Proposition 4. Let u ∈ W 2,d
loc (B1) be a strong solution to (1). Suppose A1,

A3, and A4 hold true. Let x∗ ∈ ΓBR(u) and suppose A5 holds at x∗. Finally,
suppose that for every j ∈M(x∗, u) we have

V2−j(x
∗, u) < C0,
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for C0 > 0 fixed in (20). Then

sup
x∈B2−j (x

∗)

|u(x)| ≤ 4

C0
2−2j, ∀j ∈ N.

Proof : As before we set x∗ = 0 and argue through a contradiction argument.
Suppose the proposition is false. Let m ∈ N be the smallest natural number
such that

sup
B2−m

|u(x)| > 4

C0
2−2m. (27)

We claim that m− 1 ∈M(u). Indeed,

sup
B21−m

|u(x)| ≤ 4

C0
2−2(m−1) =

16

C0
2−2m < 4 sup

B2−m

|u(x)|.

We conclude

sup
B2−m

|u(x)| ≤ sup
B21−m

|u(x)| ≤ 1

C0
2−2(m−1) =

4

C0
2−2m,

which contradicts (27) and completes the proof.

Consequential to Proposition 4 is the quadratic growth of u away from the
branch point x∗. We detail this argument in the proof of Theorem 2.

Proof of Theorem 2: Find j ∈ N satisfying 2−(j+1) ≤ r < 2−j. It is straight-
forward to notice that

sup
Br

|u(x)| ≤ sup
B2−j

|u(x)| ≤ C

[(
1

2

)j+1−1
]2

≤ Cr2,

which ends the proof.
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